New TOPCAT Capabilities
- Cross-matching function is portable
- Able to handle multi-observable event
- Coordinates may be in Galactic, or Galactic coordinates
- Features include: zooming, in, out, table matching
- Select star of celestial matching
- Starlist index for fast lookup
- Table matching with selection of VOTable
- Libraries or SQL, handles compression, hot data, etc.
- New top-level window for better control of multiple tables
- Radiant/Sexagesimal angle conversions
- Concatenation of tables

Starlink Table Interface Library (STIL)
- Library for use in your own programs. Some STIL features are:
 - Archives…
 - Cross-matching function to join tables
 - Extensibility (you can write your own handlers for new formats)
 - I/O
 - The only full implementation of VOTable I/O
 - Format-independent, network-transparent, compression-aware table
 - Pure Java implementation for portability

The FROG main window showing two main panes: the top pane shows a selection of stars in a table, the bottom pane renders the blended lines. The bottom pane shows a small window that can be dragged around the blended image. The bottom pane shows a plot of X-ray counts versus time. The FROG main window showing two main panes: the top pane shows a selection of stars in a table, the bottom pane renders the blended lines. The bottom pane shows a plot of X-ray counts versus time.

The TOPCAT: New Features bulletin is an application for dealing with Tables and Catalogues
- TOPCAT is a Java app for dealing with Tables and Catalogues
- New Java application for dealing with Tables and Catalogues
- Treeview-like browser for tables
- Radian/Sexagesimal angle conversions
- New top-level window for better control of multiple tables
- Concatenation of tables

SPLAT: New Features bulletin is a Java app for dealing with Spectra
- SPLAT is a Java app for dealing with Spectra
- New Time Series app: FROG
- Preparing for a Future without Starlink
- Lifeboat for Starlink Software!
- What about AstroGrid?
- Major Changes to SPLAT in the Spring 2004 release are:
We have changed Starlink into a "standard" Open Source project. This will allow many more people to contribute and allows us to use the many powerful Open Source tools now available.

Another benefit is the ability to build and run Starlink Classic software (KAPPA, GAIA etc) on a greater number of machines in a distributed, parallel environment. Data processing can be carried out across large numbers of machines and in ORAC-DR related work, data can be reduced through server farms before being processed as demonstrated at NAM 2004.

Tasks completed by another machine.

Any PC can be temporarily added to the system by booting from the image itself, WCS, etc. An intelligent pipeline can provide these capabilities. It also allows us to continue development of the ORAC-DR pipeline processing to be distributed between various servers in an "GRID" projects, for example Storage Resource Broker (SRB) project at NASA and the Virtual Observatory project at RAL.

A monitor allows the queues to be viewed as demonstrated at NAM 2004.

Users submit Task requests to the Starlink JavaSpace. Servers pick up Task requests and process data. Transactions are performed in parallel on various servers.

The intelligent Work Flow systems such as ORAC-DR use Starlink applications to process data. The system can use a variety of different data sources and can deal with diverse types of data such as image data.

Tasks completed

Forget about installing or updating the system by booting from the image itself.

The system can take a variety of different data sources and can deal with diverse types of data such as image data.

We have been visiting sites to demonstrate Starlink software and to find out what users need next. If you would like us to visit your site please email us at starlink@star.rl.ac.uk.

Orchestrating successful grid and web services is being demonstrated to users at most sites.

ORAC-DR and Web Services.

Applications can be used locally as normal, but where appropriate, ORAC-DR and other components are able to process the larger amounts of data that will be getting from new instruments and archives such as ESO.

For more information please see http://www.starlink.ac.uk

For applications and support for new instruments in various clients

Obtaining Starlink Software

We are no longer sending out CD-ROMs. Instead we are making stable releases available on http://www.starlink.ac.uk

Please take a look and let us know if you have problems.

New Features on the latest software release (219)

These are improvements to Starlink CLASSIC and Starlink applications such as Son of Gaia (SOG) use Web services to communicate with Starlink applications in the CLASSIC framework.

New Java applications such as Son of Gaia (SOG) use Web services to communicate with Starlink applications in the CLASSIC framework.

ORAC-DR uses Starlink applications to process data. The system can use a variety of different data sources and can deal with diverse types of data such as image data.

New Features on the latest software release (219)

These are improvements to Starlink CLASSIC and Starlink applications such as Son of Gaia (SOG) use Web services to communicate with Starlink applications in the CLASSIC framework.

New Java applications such as Son of Gaia (SOG) use Web services to communicate with Starlink applications in the CLASSIC framework.

Integrating Starlink applications into VO favourite Web Services.

Because Starlink applications have Web Service interfaces, they can be used by popular SOAP toolkits in languages that are being used in the Virtual Observatory. They also expose functionality via a built in web server as a SOAP web service. The web service is language neutral and can be accessed using a variety of SOAP toolkits in languages that are being used in the Virtual Observatory.

Applications can be used locally as normal, but where appropriate, ORAC-DR and other components are able to process the larger amounts of data that will be getting from new instruments and archives such as ESO.

This mean that Starlink applications can be used from your own local machine or any other machine and while this is important for quality assessment at a telescope. An intelligent pipeline can provide these capabilities. It also allows us to continue development of the ORAC-DR pipeline processing to be distributed between various servers in an "GRID" projects, for example Storage Resource Broker (SRB) project at NASA and the Virtual Observatory project at RAL.

Integrating Starlink applications into VO favourite Web Services.

Because Starlink applications have Web Service interfaces, they can be used by popular SOAP toolkits in languages that are being used in the Virtual Observatory. They also expose functionality via a built in web server as a SOAP web service. The web service is language neutral and can be accessed using a variety of SOAP toolkits in languages that are being used in the Virtual Observatory.

Applications can be used locally as normal, but where appropriate, ORAC-DR and other components are able to process the larger amounts of data that will be getting from new instruments and archives such as ESO.

This mean that Starlink applications can be used from your own local machine or any other machine and while this is important for quality assessment at a telescope.