
What is AST?

• AST is a library of functions that implement an object
oriented model for describing physical coordinate
systems, and the transformations that exist between
them.

• It provides a comprehensive range of facilities for
attaching world coordinate systems (WCS) to
astronomical data, for retrieving and manipulating that
information and for generating graphical output such as
coordinate grids based upon it.

• It can read and write WCS information in several
different forms, including FITS-WCS headers of various
flavours.

• It is written in pure ANSI C but also has interfaces for
Python, Java, Perl and FORTRAN.

• It has built-in intelligence for identifying types of celestial,
spectral, time and other coordinate systems (including
compound systems that combine axes of different types)
and determining how to transform between them. This
allows general purpose code to be written that makes no
assumptions about the nature of the coordinate systems.

• It includes a flexible and versatile “tool-kit” for creating
and modifying collections of coordinate frames
interconnected by arbitrarily complex transformations.

• It includes easy-to-use graphical facilities that allow the
production of annotated 2D or 3D grids. Graphics are
draw via a simple “driver” module which AST calls to
draw lines, strings, markers, etc. AST includes drivers for
PGPLOT; drivers for other graphics systems (Tcl/Tk,
Java/Swing, etc.) can easily be (and have been) written.

• It is actively supported and developed by the Joint
Astronomy Centre, Hawaii.

• It forms the basis of the coordinate handling facilities in
the Starlink Software Collection, including GAIA, SPLAT
and KAPPA. It is also used in other non-Starlink
software such as DS9 and XIMAGE.

PyAST—a Python wrapper

for AST:

• PyAST is a Python library that provides wrappers for the
majority of AST functions.

• PyAST requires Python 2.7 or later (version 3 is
supported).

• PyAST depends only on the numpy library. A copy of
AST is bundled with PyAST, so no other parts of the
Starlink Software Collection are required.

• PyAST is publicly available and can be downloaded from
github. See the “Links” section below.

• An optional interface is provided for use with the AST
Plot class that allows annotated axes to be drawn using
the popular matplotlib graphics library. This has many
advantages over direct use of the axis annotation
facilities provided by matplotlib itself. For instance, axis
labels can be placed within the body of the plot, rather
than round the edges—beneficial for many projections,
and essential for all-sky projections. Also, AST can draw
coordinate grids for projections that have peculiarities
such as singularities and discontinuities.

• An optional interface is provided for use with the AST
FitsChan class that allows AST to read and write FITS
headers stored in a PyFITS header.

• PyAST provides a few high level functions that wrap up
other PyAST calls to perform commonly required
operations more easily.

Support for FITS-WCS “TAB”
algorithm:

• AST now includes support for reading and writing tabular
WCS information in the form of FITS headers using the “-
TAB” algorithm described in FITS-WCS Paper III
(Representation of Spectral Coordinates in FITS, Greisen et
al, 2006).

• Currently, no support is included for the multi-dimensional
tables needed to describe non-separable axes.

Support for distorted
projections:

• When published, FITS-WCS Paper IV will address the
issue of the representation of distorted projections. But in
the meantime, AST supports several of the interim
schemes that are in common use, as listed below.

• IRAF “-TNX”: AST can now reads TNX projections
described by Chebyshev or simple polynomial with half-
cross terms.

• IRAF “-ZPX”: AST can now reads ZPX projections
described by Chebyshev or simple polynomial with half-
cross terms.

• Spitzer “-SIP”: AST has been able to read SIP projections
for some time, but SIP support has been improved
recently. Within a SIP header, the forward and inverse
transformations between world and pixel coordinates are
defined by separate polynomials, but some SIP headers
do not define an inverse transformation (from world to
pixel coordinates). For such a header, AST can now
implement an iterative inverse transformation.

• NOAO “–TPV”: AST now supports this renaming of the
distorted TAN projection included in an early draft of
FITS-WCS Paper II (Representation of celestial
coordinates in FITS, Calbretta & Greisen).

• SCAMP “–TAN”: This is exactly the same as the TPV
projection, except that it uses a CTYPE code of “-TAN”
instead of “-TPV”. AST differentiates between SCAMP
TAN headers and standard TAN headers by looking for
PV keywords attached to the latitude axis (a standard
TAN projection should have no such latitude PV
keywords).

• AUTOASTROM “–TAN”: This is another representation
of the TPV projection, again using a CTYPE code of “-
TAN”, but using QV keywords instead of PV keywords to
store the polynomial coefficients.

DS9 and AST:

• The DS9 image browser has for many years used AST to
draw its annotated coordinate grids. As of DS9 version
7.0 (currently in beta testing), it will use AST additionally
for all its WCS transformations, thus benefitting from the
improvements to support for distorted projections listed
above.

GAIA using AST to display a coordinate grid

for a ZEA (zenithal equal area) projection.

DS9 using AST to display a coordinate grid

for a TPV (a distorted TAN) projection.

New Features in AST - a WCS
Management and Manipulation Library

David Berry, Tim Jenness

 Joint Astronomy Centre, Hilo, Hawaii

Dr David Berry
d.berry@jach.hawaii.edu

PyAST displaying a HEALPix grid

in a matplotlib window.

The code needed to produce a plot such as

the HEALPix grid shown above.

>>> import pyfits
>>> import starlink.Atl as Atl
>>> import matplotlib.pyplot
>>>
>>> hdulist = pyfits.open(‘hpx.fit’)
>>> Atl.plotfitswcs(matplotlib.pyplot.figure().add_subplot(111),
>>> [0.1, 0.1, 0.9, 0.9], hdulist)
>>> matplotlib.pyplot.show()

Links:

Starlink Software Collection: www.starlink.ac.uk

AST: www.starlink.ac.uk/ast

PyAST download: github.com/timj/starlink-pyast/downloads

PyAST docs: dsberry.github.com/starlink/pyast.html

DS9: hea-www.harvard.edu/RD/ds9/

Joint Astronomy Centre, Hawaii: www.jach.hawaii.edu

Numpy: numpy.scipy.org

Matplotlib: matplotlib.sourceforge.net

PyFITS: www.stsci.edu/resources/software_hardware/pyfits

