
SC/15.2

Starlink Project
STARLINK Cookbook 15.2

A. Allan, D. Terrett

22nd August 2000

The Graphics Cookbook

SC/15.2 —Abstract ii

Abstract

This cookbook is a collection of introductory material covering a wide range of topics dealing
with data display, format conversion and presentation. Along with this material are pointers to
more advanced documents dealing with the various packages, and hints and tips about how to
deal with commonly occurring graphics problems.

iii SC/15.2—Contents

Contents

1 Introduction 3

2 Call for contributions 3

3 Subroutine Libraries 3
3.1 The PGPLOT library . 3

3.1.1 Encapsulated Postscript and PGPLOT . 5
3.1.2 PGPLOT Environment Variables . 5
3.1.3 PGPLOT Postscript Environment Variables 5
3.1.4 Special characters inside PGPLOT text strings 7

3.2 The BUTTON library . 7
3.3 The pgperl package . 11

3.3.1 Argument mapping – simple numbers and arrays 12
3.3.2 Argument mapping – images and 2D arrays 13
3.3.3 Argument mapping – function names . 14
3.3.4 Argument mapping – general handling of binary data 14

3.4 Python PGPLOT . 14
3.5 GLISH PGPLOT . 15
3.6 ptcl Tk/Tcl and PGPLOT . 15
3.7 Starlink/Native PGPLOT . 15
3.8 Graphical Kernel System (GKS) . 16

3.8.1 Enquiring about the display . 16
3.8.2 Compiling and Linking GKS programs . 17

3.9 Simple Graphics System (SGS) . 17
3.10 PLplot Library . 17

3.10.1 PLplot and 3D Surface Plots . 18
3.11 The libjpeg Library . 19
3.12 The giflib Library . 20
3.13 The libungif Library . 20
3.14 The angif Library . 21
3.15 The PNG Format . 21
3.16 The MNG Format . 21
3.17 The Python Imaging Library . 22
3.18 The gd Library . 22

3.18.1 gd from other languages . 23

4 Plotting Packages 23
4.1 QDP . 23

4.1.1 QDP Basic Stuff . 23
4.1.2 Plot devices and PostScript output . 25
4.1.3 Error Bars . 26
4.1.4 That “Date and Time” Thing . 27
4.1.5 Fitting using QDP . 27
4.1.6 QDP Files . 30
4.1.7 COD and QDP models . 30

4.2 PONGO . 31
4.3 SM . 31

SC/15.2 —Contents iv

4.4 GNUplot . 31
4.4.1 Co-ordinate systems . 32
4.4.2 Plotting 3D data . 33

5 Image Display 35
5.1 KAPPA . 35
5.2 SAOimage . 35

5.2.1 Printing in SAOimage . 35
5.3 GAIA . 35

6 Visualisation 37

7 Other Applications 37
7.1 ImageMagick . 37

7.1.1 display . 37
7.1.2 import . 38
7.1.3 animate . 39
7.1.4 montage . 39
7.1.5 convert . 39
7.1.6 mogrify . 39
7.1.7 identify . 40
7.1.8 combine . 40
7.1.9 XTP . 40
7.1.10 XMagick . 40
7.1.11 PythonMagick . 42

7.2 XV . 43
7.2.1 Screen Capture . 43
7.2.2 Problems with small images . 43
7.2.3 Getting XV, patches and enhancements . 43
7.2.4 Compiling XV on RedHat 6.0 . 43
7.2.5 XV is not under the GPL . 45

7.3 XPaint . 45
7.4 Xfig . 46

7.4.1 pstoedit . 46
7.5 Sketch . 47
7.6 GIMP . 47

7.6.1 Plug-ins, Script-Fu, GIMP-Perl and Gimp::Fu 50
7.6.2 GIMP-Python . 51
7.6.3 GIMP Plug-In Registry . 53
7.6.4 The GIMP and layers . 53
7.6.5 Mapping images to solid objects . 60

7.7 Electric Eyes . 62
7.8 WhirlGIF . 62

8 CAD Applications 65
8.0.1 QCad . 65
8.0.2 XCircuit . 67

9 Format Conversion 67

v SC/15.2 —Contents

9.1 CONVERT . 67
9.1.1 NDF2GIF . 68

9.2 PBMplus . 69
9.2.1 PBM, PGM, PPM or PNM images? . 69

9.3 Image Resizing . 69

10 Postscript and PDF 69
10.1 Ghostscript . 70
10.2 GV and Ghostview . 70
10.3 Acrobat . 70
10.4 psmerge . 72
10.5 epsutil . 72
10.6 prescript and pstotext . 72
10.7 Postscript to PDF . 72
10.8 PS Utils . 72
10.9 Generating Postscript Output . 76

11 X Window Displays 76
11.1 Pseudocolor . 76
11.2 Grey Scale . 76
11.3 Static Grey . 76
11.4 Directcolor . 76
11.5 Truecolor . 77
11.6 What does this mean for you? . 77
11.7 Pseudo Colour applications on True Colour desktops 78

12 Virtual Computing 79
12.1 Virtual Network Computing (VNC) . 79

12.1.1 Pseudo colour displays . 79
12.1.2 Computing by remote control . 81

12.2 VMWare . 81
12.3 plex86 (previously FreeMWare) . 84
12.4 The VMWare and plex86 Patent Position . 84

13 Hardware 85
13.1 Scanners . 85
13.2 Digital Cameras . 85

14 The Web 87
14.1 Transparent GIFs . 87
14.2 Animated GIFs . 88
14.3 Beveled Images . 88
14.4 “Web Safe” Colour Maps . 89
14.5 Browser support of PNG images . 89

15 The GIF Legal Position 89

16 From the Quick Archives 90
16.1 FITS to MPEG . 90

SC/15.2 —Contents vi

17 Package Availability 92

vii SC/15.2—List of Figures

List of Figures

1 Output from the simple PGPLOT Fortran program. 4
2 Example of an application using the BUTTON PGPLOT extension library. 8
3 Output from the simple pgperl example script. 12
4 The default appearance when plotted using QDP. 24
5 Plotting in QDP using a Roman font. 26
6 Our second test data set plotted using QDP with the default options. 27
7 Our second test data set plotted using QDP with best fit model. 29
8 A plot of a function using GNUplot . 32
9 A plot in polar co-ordinates using GNUplot. 33
10 A 3D plot using GNUplot. 34
11 A 3D plot of a digitised blue whale using GNUplot. 34
12 The GAIA interface. 36
13 The ImageMagick display GUI. 38
14 The xv interface. 44
15 The xv interface being used to grab an image from the display. 45
16 The xpaint interface. 46
17 Creating a figure using xfig. 47
18 The GIMP interface. 48
19 Tux the penguin. 53
20 The GIMP Layers & Channels dialog. 54
21 Making a “floating selection” in GIMP. 54
22 A new layer has been created for the image. 55
23 The pop-up dialog. 55
24 Our renamed text layer is selected in the dialog. 55
25 The GIMP Levels dialog. 56
26 The Levels dialog again, note the position of the bottom slider. 56
27 Tux with his darkened text layer. 57
28 The GIMP Text dialog. 57
29 Tux with additional layers. 58
30 The Layers & Channels dialog again with the first text layer selected. 58
31 The final product, Tux with text. 59
32 The GIMP File dialog. 59
33 Original star spot image generated using PGPLOT 60
34 Star spot image mapped on sphere. 61
35 Star spot image projected on plane. 61
36 Star spot image with an inverse bump map and gaussian blur. 62
37 Bump mapped star spot image projected on a plane 63
38 The GIMP Map Object Dialog “Options” . 63
39 The GIMP Map Object Dialog “Light” . 64
40 The GIMP Map Object Dialog “Material” . 64
41 The GIMP Map Object Dialog “Orientation” . 65
42 The Electric Eyes interface. 66
43 The QCad application running under KDE. 67
44 The Xcircuit interface. 68
45 The GV interface. 71
46 VNC displaying a pseudo colour desktop on a true colour display. 80

SC/15.2 —List of Figures viii

47 VNC displaying a Windows 98 desktop on a X Windows display. 82
48 VMWare Schematic . 82
49 VMWare booting the virtual machine using Linux as the “host” OS. 83
50 VMWare running Windows 98 as a “guest” OS, using Linux as the “host” OS. . . 84
51 plex86 running DOS 6.22 as a “guest” operating system. 85
52 The gphoto interface. 86

1 SC/15.2 —List of Figures

Revision history

(1) 2nd February 2000; Version 1. Release version (AA)

(2) 22nd August 2000; Version 2. Checked URLs + minor updates (AA)

SC/15.2 —List of Figures 2

3 SC/15.2 —Subroutine Libraries

1 Introduction

Data display and visualisation has become more complex over the last few years. Considering
that it was not trivial to begin with it is unsurprising that this is an area that throws a few
problems in the path of getting your paper into press.

This cookbook will attempt to address some of the more common problem areas, however it
is unlikely that it will deal with your specific graphics problem (unless you are really lucky)
since the sheer scope of the topic precludes such an approach. Instead of discussing solutions
to a few individual problems, we’ll focus on the tools that will allow you to solve a range of
problems. Hopefully it will help you to help yourself. This document is therefore more of a
collection of basic material with pointers to move advanced and in-depth documents, than a
cookbook which provides set recipes to approach your graphics problems. Indeed, perhaps it
should be referred to as an “ingredients” book rather than a cookbook.

The cookbook is probably best browsed in the HTML version since much of its content is pointers
to packages, anonymous FTP sites and further information about the various packages, libraries
and applications discussed. All of these are more easily accessed from an online copy than a
bound one. I have, however, made an effort to include URLs in the text whereever possible in
the LATEXversion.

Details of where the packages discussed in this cookbook can be obtained, if not explicitly
mentioned in the relevant section, can be found in Section 17.

2 Call for contributions

As with the Theory and Modelling Resources Cookbook the Graphics Cookbook is a wide ranging and
(virtually) open ended project. Hopefully I’ve covered enough ground so that you at least know
which tool you should be using to solve you problem, even if you are not sure (quite yet) how
to use it. I would welcome comments, contributions and corrections to this document, since
I have been aware while compiling it of bias towards my own favourite applications, such as
PGPLOT. Comments should be sent either to me at aa@astro.keele.ac.uk or to the Starlink
software librarian starlink@jiscmail.ac.uk.

3 Subroutine Libraries

3.1 The PGPLOT library

The PGPLOT library is Fortran or C high-level callable graphics library. It has become the
de-facto standard for display of astronomical data. Along with the standard primitives to draw
lines, write text and annotate plots, there are also high level routines which use these primitives
to build up more complicated graphs such as histograms and contour maps. PGPLOT also has
the capability for interactive graphics where the user can interact with the plots using the cursor.

http://www.starlink.ac.uk/cgi-bin/htxserver/sc13.htx/sc13.html?xref_
mailto:aa@astro.keele.ac.uk
mailto:starlink@jiscmail.ac.uk
http://astro.caltech.edu/~tjp/pgplot/index.html

SC/15.2 —Subroutine Libraries 4

Figure 1: Output from the simple PGPLOT Fortran program.

While it would be quite possible for me to fill the entire cookbook with PGPLOT information an
excellent tutorial style manual already exists for the library written by Tim Pearson of CalTech
the package’s author. If you work at a Starlink node this manual should be available to you, if
not it’s available on the web at http://astro.caltech.edu/~tjp/pgplot/contents.html.

A simple example program is shown below, taken from Chapter 2 of the PGPLOT manual.
It shows how a simple plot can be generated in just a few lines of code, the output from the
program is shown in Figure 1.

PROGRAM GRAPH

INTEGER I, IER, PGBEG
REAL XR(100), YR(100)
REAL XS(5), YS(5)

DATA XS/1.,2.,3.,4.,5./
DATA YS/1.,4.,9.,16.,25./

IER = PGBEG(0,’?’,1,1) ! Start PGPLOT
! Specify the device

IF (IER.NE.1) STOP ! No response? Stop execution
CALL PGENV(0.,10.,0.,20.,0,1) ! Initialise the axes
CALL PGLAB(’(x)’, ’(y)’, ’A Simple Graph’) ! Label the axes
CALL PGPT(5,XS,YS,9) ! Plot 5 points using symbol 9

DO 10 I=1,60
XR(I) = 0.1*I ! Calculate X^2 function
YR(I) = XR(I)**2

10 CONTINUE
CALL PGLINE(60,XR,YR) ! Draw a line
CALL PGEND
END

mailto:tjp@astro.caltech.edu
http://astro.caltech.edu/~tjp/pgplot/contents.html
http://astro.caltech.edu/~tjp/pgplot/chapter2.html

5 SC/15.2 —Subroutine Libraries

3.1.1 Encapsulated Postscript and PGPLOT

A commonly asked question is how to get PGPLOT to produce valid encapsulated postscript
(EPSF) files. Most PGPLOT postscript files are valid EPSF files, except for multi-page plots.
Some problems do exists however, valid EPSF files should have a %%BoundingBox comment line
in the header of the file, PGPLOT places this line in the trailer of the file where some programs
will fail to find it. This comment can be moved into the file header using any text editor. If you
do not wish to do this you can also modify the way PGPLOT deals with bounding boxes using
the PGPLOT_PS_BBOX environment variable.

Additionally PGPLOT Postscript files do not contain a screen preview section. A device-
independent screen preview can be added to PGPLOT files with the program ps2epsi by
George Cameron, available with the GhostScript PostScript interpreter.

3.1.2 PGPLOT Environment Variables

Some of the more useful environment variables which control the behaviour of PGPLOT are
listed below, the list is not exhaustive, for a full list you should see the relevant sections of the
PGPLOT manual.

PGPLOT_DIR Directory name. Unless told otherwise by environment variables PGPLOT_FONT
and PGPLOT_RGB, PGPLOT looks for the files it needs at run-time in this directory. The
binary font file is grfont.dat and the color-name database is rgb.txt. If this variable is
undefined, or if the specified file does not exist in this directory, PGPLOT looks in the
current default directory, e.g. setenv PGPLOT_DIR /usr/local/lib/pgplot/. For Starlink
users this environment variable will be set at login when you source the Starlink login
file, or by typing the starlink command at the UNIX prompt.

PGPLOT_DEV Device specification. If this variable is defined, it is used as the default device
specification: if the device specification given to PGBEG (or supplied by the user in response
to the PGPLOT prompt) is a blank string, this device specification is used, e.g. setenv
PGPLOT_DEV /xwin. The Starlink distributed version of Native PGPLOT has an additional
device, /gwm, that allows plotting in GWM Windows.

PGPLOT_TYPE Device type. If this variable is defined, it is used as the default device type: if the
device specification supplied to PGBEG consists of a file name without a trailing slash (/)
and device type, this device type is assumed, e.g. setenv PGPLOT_TYPE ps

PGPLOT_BUFFER If this variable is defined, with any non-null value, PGPLOT buffers output.
The effect is the same as if PGBBUF is called immediately after opening the graphics device,
and PGEBUF immediately before closing it. It will have no effect on programs that already
include these calls. On some devices, buffering output can lead to large improvements in
speed, but enabling buffering may upset synchronization between graphical output and
other program activity, e.g. setenv PGPLOT_BUFFER yes

3.1.3 PGPLOT Postscript Environment Variables

Problems dealing with PGPLOT’s Postscript output are amongst the most common complaints
about the package. PGPLOT has several environment variables which control the output from
its Postscript device driver

http://www.cs.wisc.edu/~ghost/index.html
http://astro.caltech.edu/~tjp/pgplot/contents.html

SC/15.2 —Subroutine Libraries 6

PGPLOT_PS_WIDTH (default 7800)

PGPLOT_PS_HEIGHT (default 10500)

PGPLOT_PS_HOFFSET (default 350)

PGPLOT_PS_VOFFSET (default 250) These variables tell PGPLOT how big an image to pro-
duce. The driver uses resolution elements of 0.001 inches, (i.e. milli-inches)giving an
“apparent” resolution of 1000 pixels per inch. The true resolution is device-dependent. The
image dimensions are therefore 7.8 inches horizontally by 10.5 inches vertically (portrait
mode) by default. These defaults while defined with American 8.5 x 11-inch paper in
mind, rather than the European A4 size sheets, are appropriate in most circumstances.
The maximum dimensions of a PGPLOT image are WIDTH by HEIGHT, with the lower left
corner offset by HOFFSET horizontally and VOFFSET vertically from the lower left corner of
the paper. The “top” of the paper is the edge that comes out of the printer first.

PGPLOT_IDENT If this variable is defined (with any value), the user name, date and time are
written in the bottom right corner of each page.

PGPLOT_PS_BBOX Normally, PGPLOT computes the bounding box for the entire plot (the small-
est rectangle that includes all the graphics) as it creates the PostScript file, and writes
this information in a %%BoundingBox comment in the file trailer. Some programs that
read encapsulated PostScript files expect to find the %%BoundingBox comment in the file
header, not the trailer, and may not display the plot correctly. To fix this problem, you
may need to move the comment from the trailer to the header with a text editor or special
program. Alternatively, you can define PGPLOT_PS_BBOX = MAX. This tells PGPLOT to put
a %%BoundingBox comment in the header of the PostScript file; the bounding box is one
which encompasses the whole plotable area, not a minimal one, because PGPLOT does
not know the correct bounding box until it has finished writing the file.

PGPLOT_PS_DRAW_BBOX If this variable is set, the bounding box (the smallest rectangle that
includes all the graphics) is drawn on each page.

PGPLOT_PS_VERBOSE_TEXT If this variable is set, the text of each plotted character string is
included in the PostScript file as a comment before the sequence of vectors that represents
the string. This makes the file slightly larger, but it can be useful if you want to hand edit
the PostScript file.

PGPLOT_PS_EOF Normally the output file does not contain special end-of-file characters. But
if environment variable PGPLOT_PS_EOF is defined (with any value) PGPLOT writes a
Control-D job-separator character at the beginning and at the end of the file. This is
appropriate for Apple LaserWriters using the serial interface, but it may not be appropriate
for other PostScript devices.

PGPLOT_PS_MARKERS Specify NO to suppress use of a PostScript font for the graph markers;
markers are then emulated by line-drawing. If this option is not requested, PGPLOT graph
markers are scaled geometrically with the character-height attribute and the line-width
attribute is ignored. This is different from most of the other drivers, where the line-width
used for markers is set by the line-width attribute rather than the character-height attribute.
Requesting this option makes the PostScript driver behave like the other drivers, but it
also makes the PostScript files larger.

7 SC/15.2 —Subroutine Libraries

3.1.4 Special characters inside PGPLOT text strings

Another group of commonly asked questions about PGPLOT concern how to put Greek char-
acters, or super- and sub-scripts into text strings (such as axis annotations) in PGPLOT. The
PGPTXT subroutine, along with all the routines that call it such as the higher level PGTEXT or
PGLAB) uses escape sequences embedded in the text string to print these characters. Escape
sequences are characters which are not plotted, but instead instruct the program to change font,
draw superscripts, subscripts or non-ASCII characters (e.g. Greek letters). All escape sequences
start with a backslash character “\”. The following escape sequences are defined:

\u Start a superscript, or end a subscript

\d Start a subscript, or end a superscript

\b Do not advance text pointer after plotting the previous character

\fn Switch to Normal font (1)

\fr Switch to Roman font (2)

\fi Switch to Italic font (3)

\fs Switch to Script font (4)

\\ Print a backslash character “\”

\x Multiplication sign (×)

\. Centered dot (·)

\A Ångström symbol (Å)

\gx Greek letter corresponding to roman letter x

\mn

\mnn Standard graph marker number n or nn (1-31)

\(nnnn) Character number nnnn (1 to 4 decimal digits) from the Hershey character set; the
closing parenthesis may be omitted if the next character is neither a digit nor “)”. This
makes a number of special characters (e.g. mathematical, musical, astronomical, and
cartographical symbols) available. See Appendix B in the PGPLOT manual for a list of
available characters.

3.2 The BUTTON library

While plots can be made interactive using standard PGPLOT functions, e.g. PGCURS, the BUTTON
library extends this functionality to allow you to easily create interactive FORTRAN applications
using graphic buttons, see Figure 2.

The program which produced the plot shown in Figure 2 is shown below, and is compiled
using the command f77 -o sample sample.f libbutton.a -lpgplot -lX11 (assuming that
libbutton.a shared library has been built and is in the current directory).

http://astro.caltech.edu/~tjp/pgplot/hershey.html
http://www.ucm.es/info/Astrof/button/button.html

SC/15.2 —Subroutine Libraries 8

Figure 2: Example of an application using the BUTTON PGPLOT extension library.

!--
! Version 23-July-1998 File: sample.f
!--
! Copyright N. Cardiel and J. Gorgas, Departamento de Astrofisica
! Universidad Complutense de Madrid, 28040-Madrid, Spain
! E-mail: ncl@astrax.fis.ucm.es or fjg@astrax.fis.ucm.es
!--
! This program is free software; you can redistribute it and/or modify it
! under the terms of the GNU General Public License as published by the Free
! Software Foundation; either version 2 of the License, or (at your option) any
! later version. See the file gnu-public-license.txt for details.
!--

PROGRAM SAMPLE
IMPLICIT NONE

INTEGER I,NB,NCOLOR
INTEGER NTERM,IDN(8),ITERM
REAL XC,YC
REAL XX(100),YY(100)
REAL XV3,XV4,YV3,YV4
LOGICAL LCOLOR(8)
CHARACTER*1 CH

! Open graphic output

9 SC/15.2 —Subroutine Libraries

CALL RPGBEGIN(NTERM,IDN,LCOLOR)

! Plot and label buttons

5 CALL BUTTON(1,’sin’,0)
CALL BUTTON(2,’cos’,0)
CALL BUTTON(3,’clear’,0)
CALL BUTTON(4,’color’,0)
CALL BUTTON(6,’EXIT’,0)
CALL BUTTON(7,’mode 0’,0)
CALL BUTTON(8,’mode 1’,0)
CALL BUTTON(8,’mode 1’,1)
CALL BUTTON(9,’mode 2’,0)
CALL BUTTON(10,’mode 3’,0)
CALL BUTTON(10,’mode 3’,3)
CALL BUTTON(11,’mode 4’,4)
CALL BUTTON(12,’mode 5’,5)

! Plot box

DO ITERM=NTERM,1,-1
CALL PGSLCT(IDN(ITERM))
IF(ITERM.EQ.1)THEN

CALL RPGENV(0.,1.,-1.1,1.1,0,0)
ELSE

CALL PGENV(0.,1.,-1.1,1.1,0,0)
END IF
CALL PGLABEL(’X axis’,’Y axis’,’Plot label’)

END DO
NCOLOR=1

10 CONTINUE ! main loop: button handle

CALL RPGBAND(0,0,0.,0.,XC,YC,CH)
CALL IFBUTTON(XC,YC,NB)

IF(NB.EQ.0)THEN

WRITE(*,100)’Cursor at:’
WRITE(*,*)XC,YC

ELSEIF(NB.EQ.6)THEN

CALL BUTTON(6,’EXIT’,5)
WRITE(*,100)’Press to EXIT’
READ(*,*)
GOTO 20

ELSEIF(NB.EQ.1)THEN ! plot sin function

CALL BUTTON(1,’sin’,5)
DO I=1,100

XX(I)=REAL(I-1)/99.*2.*3.141593
YY(I)=SIN(XX(I))

SC/15.2 —Subroutine Libraries 10

XX(I)=XX(I)/(2.*3.141593)
END DO
DO ITERM=NTERM,1,-1

CALL PGSLCT(IDN(ITERM))
IF((NCOLOR.NE.1).AND.(LCOLOR(ITERM))) CALL PGSCI(NCOLOR)
CALL PGLINE(100,XX,YY)
IF((NCOLOR.NE.1).AND.(LCOLOR(ITERM))) CALL PGSCI(1)

END DO
CALL BUTTON(1,’sin’,0)

ELSEIF(NB.EQ.2)THEN ! plot cos function

CALL BUTTON(2,’cos’,5)
DO I=1,100

XX(I)=REAL(I-1)/99.*2.*3.141593
YY(I)=COS(XX(I))
XX(I)=XX(I)/(2.*3.141593)

END DO
DO ITERM=NTERM,1,-1

CALL PGSLCT(IDN(ITERM))
IF((NCOLOR.NE.1).AND.(LCOLOR(ITERM))) CALL PGSCI(NCOLOR)
CALL PGLINE(100,XX,YY)
IF((NCOLOR.NE.1).AND.(LCOLOR(ITERM))) CALL PGSCI(1)

END DO
CALL BUTTON(2,’cos’,0)

ELSEIF(NB.EQ.3)THEN ! clear plot

CALL BUTTON(3,’clear’,5)
DO ITERM=NTERM,1,-1

CALL PGSLCT(IDN(ITERM))
CALL BUTTQBR(XV3,XV4,YV3,YV4)
CALL RPGERASW(0.,1.,0.,YV3)

END DO
GOTO 5

ELSEIF(NB.EQ.4)THEN ! change color

CALL BUTTON(4,’color’,5)
WRITE(*,100)’Current PGPLOT color is number: ’
WRITE(*,*)NCOLOR
WRITE(*,100)’Enter new PGPLOT color number: ’
READ(*,*) NCOLOR
CALL BUTTON(4,’color’,0)

END IF

GOTO 10

20 CONTINUE ! end of main loop: button handle

CALL PGEND
STOP

11 SC/15.2 —Subroutine Libraries

100 FORMAT(A,$)
END

The BUTTON library is available from http://www.ucm.es/info/Astrof/button/button.html
along with installation instructions and a description of the library functions.

3.3 The pgperl package

The pgperl package is a dynamically loadable Perl module which interfaces to Fortran PGPLOT
library. Perl provides a superset of the features of the useful UNIX utilities awk and sed and is
the “Swiss-Army Chainsaw” of UNIX programming. Users of PONGO and SM packages will
be familiar with this style of programming.

The simple example shown below, taken from the pgperl distribution, shows how the Fortran
routines are interfaced into a simple Perl script, the output from this script is shown in Figure 3.

#!/usr/local/bin/perl

use PGPLOT; # Load PGPLOT PERL module

print "\nTesting simple point plot...\n\n";
print "PGPLOT module version $PGPLOT::VERSION\n\n";

pgqinf("VERSION",$val,$len); # Query PGPLOT version number
print "PGPLOT $val library\n\n";

$dev = "?" unless defined $dev; # "?" will prompt for device

pgbegin(0,$dev,1,1); # Open plot device

pgscf(2); # Set character font
pgslw(4); # Set line width
pgsch(1.6); # Set character height

pgenv(0,10,-5,5,0,0); # Define data limits and plot axes

pglabel("X","Y","Data"); # Print axis labels
pgsci(5); # Change plot colour

@x=(); @y=(); $i=0;

while(<DATA>){
Read data in 2 columns
from file handle and
put in two perl arrays

($x[$i], $y[$i]) = split(’ ’);
$i++;

}

pgpoint($i,\@x,\@y,17); # Plot points

 http://www.ucm.es/info/Astrof/button/button.html
http://www.aao.gov.au/local/www/kgb/pgperl/
http://www.perl.com/

SC/15.2 —Subroutine Libraries 12

Figure 3: Output from the simple pgperl example script.

note how perl arrays are passed
pgend; # Close plot

__DATA__
1 -4.5
2 -4
3 -3.2
4 -2.1
5 -1
6 0.3
7 1.2
8 2.4
9 2.9

For every PGPLOT Fortran function the pgperl module provides an equivalent Perl function
with the same arguments. Thus the user of the module should refer to the PGPLOT manual
to learn all about how to use pgperl and for the complete list of available functions. More
information on pgperl can be found at http://www.aao.gov.au/local/www/kgb/pgperl/.

3.3.1 Argument mapping – simple numbers and arrays

Passing simple numbers and arrays to the PGPLOT subroutines via the pgperl module any
Fortran REAL, INTEGER or CHARACTER scalar variable maps to a Perl scalar, since Perl doesn’t
care about the differences between strings, integers or reals. Therefore to draw a line to point
(42,$x):

http://astro.caltech.edu/~tjp/pgplot/contents.html
http://www.aao.gov.au/local/www/kgb/pgperl/

13 SC/15.2 —Subroutine Libraries

pgdraw(42,$x);

To plot ten points of data held in in Perl arrays @x and @y with plot symbol 17 the Perl arrays are
passed (by reference) to the PGPLOT module as follows:

pgpoint(10, \@x, \@y, 17);

Label the axes:

pglabel("X axis", "Data units", $label);

Draw a single point, note that when N = 1, pgpoint() can take a scalar argument rather than
an array:

pgpoint(1, $x, $y, 17);

3.3.2 Argument mapping – images and 2D arrays

Many of the PGPLOT calls (e.g. pggray) take 2D arrays as arguments. Several methods to access
these subroutines are provided by pgperl:

(1) Pass a reference to a 2D array:

Create 2D array
$x=[];

for($i=0; $i<128; $i++) {
for($j=0; $j<128; $j++) {

$$x[$i][$j] = sqrt($i*$j);
}

}
pggray($x, 128, 128, ...);

(2) Pass a reference to a 1D array :

@x=();
for($i=0; $i<128; $i++) {

for($j=0; $j<128; $j++) {
$x[$i][$j] = sqrt($i*$j);

}
}
pggray(\@x, 128, 128, ...);

Here @x is a 1D array of 1D arrays. Alternatively @x could be a flat 1D array with 128x128
elements, 2D routines such as pggray() are programmed to do the right thing as long as
the number of elements match.

(3) If your image data is packed in raw binary form into a character string you can simply
pass the raw string:

read(IMG, $img, 32768);
pggray($img, $xsize, $ysize, ...);

SC/15.2 —Subroutine Libraries 14

Here the read() function reads the binary data from a file and the pggray() function
displays it as a grey-scale image. This saves unpacking the image data in to a potentially
very large 2D perl array. However the types must match. The string must be packed as
a “f*” for example to use pggray. This is intended as a short-cut for sophisticated users.
Even more sophisticated users will want to download the PDL module which provides a
wealth of functions for manipulating binary data.

3.3.3 Argument mapping – function names

Some PGPLOT functions (e.g. pgfunx) take functions as callback arguments. In Perl simply pass
a subroutine reference or a name, for example:

Anonymous code reference:
pgfunx(sub{ sqrt($_[0]) }, 500, 0, 10, 0);
Pass by ref:
sub foo {

my $x=shift;
return sin(4*$x);

}
pgfuny(\&foo, 360, 0, 2*$pi, 0);
Pass by name:
pgfuny("foo", 360, 0, 2*$pi, 0);

3.3.4 Argument mapping – general handling of binary data

In addition to the implicit rules mentioned above PGPLOT now provides a scheme for explictly
handling binary data in all routines.

If your scalar variable (e.g. \$x) holds binary data (i.e. ’packed’) then simply pass PGPLOT a
reference to it (e.g. \$x). Thus one can say:

read(MYDATA, $wavelens, $n*4);
read(MYDATA, $spectrum, $n*4);
pgline($n, \$wavelens, \$spectrum);

This is very efficient as we can be sure the data never gets copied and will always be interpreted
as binary.

3.4 Python PGPLOT

Python is one of the new breed of object-oriented programming languages. It is commonly used
both for scripting and as a stand alone rapid development language. One of the properties of
the language is that it provides facilities for the easy integration of external services. It should
therefore come as no surprise that there are currently several different Python interfaces to the
PGPLOT subroutine libraries. Due to the nature of the language, being a rapid development
tool, it should also come as no surprise that the documentation is a bit on the patchy side.

The most well documented seems to be an interface to PLplot. While based on PGPLOT,
and having a similar API, PLplot is not derived from the PGPLOT source and care must be

http://www.geog.ubc.ca/~phil/ubc_python.html
http://emma.la.asu.edu/plplot/

15 SC/15.2 —Subroutine Libraries

taken when using it if you are used to PGPLOT. More information on PLplot can be found in
Section 3.10.

Both of the other interfaces require the installation of the NumPy libraries. NumPy is a collection
of C extension modules to the Python programming language which add multi-dimensional
array objects. These new objects give Python the number crunching power of numeric lan-
guages like Matlab and IDL while maintaining all of the advantages of the general-purpose
programming language Python. If you are running Linux it is possible that NumPy may already
be installed, else or otherwise, it can be found at http://andrich.net/python/.

One interface also requires you to install SWIG. The Simplified Wrapper and Interface Generator
(SWIG) is is a software development tool that connects programs written in C, C++, and
Objective-C with a variety of high-level programming languages. SWIG is primarily used with
common scripting languages such as Perl, Python, and Tcl/Tk but has been extended to include
languages such as Java.

More details of the interfaces available, including some basic usage and installation instructions,
can be found on the UBC Python Page at http://www.geog.ubc.ca/~phil/ubc_python.html.

3.5 GLISH PGPLOT

For users of aips++ a PGPLOT binding for GLISH has been developed. While the PGPLOT
library itself has a large number of device drivers, only the Tk and PostScript drivers are
available from GLISH. More information on the PGPLOT bindings in GLISH can be found at
http://aips2.nrao.edu/released/docs/reference/Glish/node97.html.

3.6 ptcl Tk/Tcl and PGPLOT

ptcl registers PGPLOT functions as tcl commands. It allows you to create plots from the
command line or from scripts. If the tk extensions are installed it is simple to create graphical
user interfaces (GUIs) allowing you to directly interact with the plots. More information on ptcl
can be found at http://www.InfoMagic.com/~nme2/ptcl/ptcl.html.

3.7 Starlink/Native PGPLOT

Unbeknown to some, PGPLOT commonly comes in two flavours on Starlink supported ma-
chines. The original or “Native” version which uses the low level graphics package GRPCKG,
which was also written at Caltech, and a version developed by Starlink, in collaboration with Dr
Pearson, which uses RAL GKS. The two versions have identical subroutine interfaces and in
most cases, applications can be moved from one version to the other simply by re-linking.

Starlink currently supports both the native version and the Starlink versions. Most packages
available in the Starlink Software Collection (USSC) currently are linked against the Starlink
version. Work is ongoing to port these applications to the Native version. More information
can be found in SUN/15 which describes the use of PGPLOT on Starlink systems. Use of the
Starlink/GKS version is deprecated. The Starlink distributed version of Native PGPLOT has an
additional device, /gwm, that allows plotting in GWM Windows.

To compile a program and link it to the native version of PGPLOT you should use the following
command line:

http://www.python.org/topics/scicomp/numpy.html
http://andrich.net/python/
http://www.swig.org/
http://www.geog.ubc.ca/~phil/ubc_python.html
http://www.cv.nrao.edu/glish/
http://aips2.nrao.edu/released/docs/reference/Glish/node97.html
http://www.InfoMagic.com/~nme2/ptcl/ptcl.html
http://www.InfoMagic.com/~nme2/ptcl/ptcl.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_

SC/15.2 —Subroutine Libraries 16

% f77 prog.f -L/star/lib ‘pgplot_link‘

While to use the Starlink version you should use:

% f77 prog.f -L/star/lib ‘pgp_link‘

Or to link the code in an ADAM application:

% alink prog.f -L/star/lib ‘pgp_link_adam‘

More detailed discussion of the differences between the two versions can be found in SUN/15.

3.8 Graphical Kernel System (GKS)

The Graphical Kernel System (GKS) is a device independent low level graphics system designed
to be the kernel of a wide variety of higher-level graphics systems. It is very comprehensive
but does not itself set out to provide the most convenient or user-friendly interface for all
applications. For high level graphics you are recommended to use the PGPLOT library, while
for low-level graphics you may prefer to use SGS rather than play with GKS directly.

More information on the GKS system can be found in the Starlink GKS document SUN/83.
While detailed API information can be found in the RAL GKS User Guide and the RAL GKS
Reference Manual (obtainable from your Starlink site manager or Starlink user support at RAL).

3.8.1 Enquiring about the display

With the current movement away from pseudo- to true-colour XWindow displays, a common
problem when writing software is trying to find what sort of X display the person running your
package has available. A good indicator as to the type of X display available is whether the
colour table is writable. If it is, then your user is probably sitting in front of a pseudo-colour
display. If it’s not, then it is more likely that the display is True Colour (see Section 11).

GKS provides a function to enquire whether the colour table (amongst other attributes) is
writable, formally called “Inquire Dynamic Modification of Workstation Attributes”, i.e.

CALL GQDWKA(WTYPE, IERR, PLBUN, PMBUN, TXBUN, FABUN,
: PAREP, COLREP, WKTR)

Where the variables are defined as:

WTYPE = _INTEGER (Read)
workstation type

IERR = _INTEGER (Returned)
error indicator

PLBUN = _INTEGER (Returned)
polyline bundle representation changeable

http://www.starlink.ac.uk/cgi-bin/htxserver/sun113.htx/sun113.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun83.htx/sun83.html?xref_
http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gksguide.html
http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gks_cat.html
http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gks_cat.html

17 SC/15.2 —Subroutine Libraries

PMBUN = _INTEGER (Returned)
polymarker bundle representation changeable

TXBUN = _INTEGER (Returned)
text bundle representation changeable

FABUN = _INTEGER (Returned)
fill area bundle representation changeable

PAREP = _INTEGER (Returned)
pattern representation changeable

COLREP = _INTEGER (Returned)
colour representation changeable

WKTR = _INTEGER (Returned)
workstation transformation changeable

If the colour table is writable, COLREP will be returned as 1. More information on other useful
GKS functions can be found in the RAL GKS Reference Manual, which can be found online at
http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gks_cat.html.

3.8.2 Compiling and Linking GKS programs

Before compiling a program that uses the GKS include file GKS_PAR you must first execute the
command:

$ gks_dev

Programs are linked with GKS by:

$ ld objmodule -L/star/lib ‘gks_link‘

3.9 Simple Graphics System (SGS)

The Simple Graphics System (SGS) is a low-level graphics subroutine library sitting above the
GKS package allowing easier access to GKS features. Full details of the SGS library package can
be found in SUN85.

3.10 PLplot Library

PLplot is a library of C functions that are useful for making scientific plots from a program
written in C, C++, or Fortran. The PLplot library can be used to create standard x-y plots, semilog
plots, log-log plots, contour plots, 3D plots, mesh plots, bar charts and pie charts. Multiple
graphs (of the same or different sizes) may be placed on a single page with multiple lines in each
graph. Different line styles, widths and colors are supported. A virtually infinite number of
distinct area fill patterns may be used. There are almost 1000 characters in the extended character
set. This includes four different fonts, the Greek alphabet and a host of mathematical, musical,
and other symbols. The fonts can be scaled to any desired size. A variety of output devices are
supported. More information on PLplot can be found at http://emma.la.asu.edu/plplot/.

http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gks_cat.html
http://www.itd.clrc.ac.uk/Publications/RAL-GKS/gks_cat.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun85.htx/sun85.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun85.htx/sun85.html?xref_
http://emma.la.asu.edu/plplot/

SC/15.2 —Subroutine Libraries 18

3.10.1 PLplot and 3D Surface Plots

One important feature available in PLplot, which is not (trivially) available in PGPLOT is the
ability to represent a single-valued function of two variables as a surface.

As usual, we would like to refer to a three dimensional point (X, Y, Z) in terms of some mean-
ingful user-specified coordinate system. These are called three-dimensional world coordinates.
We need to specify the ranges of these coordinates, so that the entire surface is contained within
the cuboid defined by xmin < x < xmax, ymin < y < ymax and zmin < z < zmax. Typically,
we shall want to view the surface from a variety of angles, and to facilitate this, a two-stage
mapping of the enclosing cuboid is performed. Firstly, it is mapped into another cuboid called
the normalized box whose size must also be specified by the user, and secondly this normalized
box is viewed from a particular azimuth and elevation so that it can be projected onto the
two-dimensional window.

This two-stage transformation process allows considerable flexibility in specifying how the
surface is depicted. The lengths of the sides of the normalized box are independent of the
world coordinate ranges of each of the variables, making it possible to use “reasonable” viewing
angles even if the ranges of the world coordinates on the axes are very different. The size of the
normalized box is determined essentially by the size of the two-dimensional window into which
it is to be mapped. The normalized box is centered about the origin in the x and y directions,
but rests on the plane z = 0. It is viewed by an observer located at altitude, alt, and azimuth, az,
where both angles are measured in degrees. The altitude should be restricted to the range zero
to ninety degrees for proper operation, and represents the viewing angle above the xy plane.
The azimuth is defined so that when az = 0, the observer sees the xz plane face on, and as the
angle is increased, the observer moves clockwise around the box as viewed from above the xy
plane. The azimuth can take on any value.

The routine PLWIND or PLENV (equivalent to the PGPLOT PGENV routine) is used in the usual way
to establish the size of the two-dimensional window.

XMIN2D = -2.5;
XMAX2D = 2.5;
YMIN2D = -2.5;
YMAX2D = 4.0;
PLENV(XMIN2D, XMAX2D, YMIN2D, YMAX2D, 0, -2);

The routine PLW3D must then be called to establish the range of the three dimensional world
coordinates, the size of the normalized box and the viewing angles. After calling PLW3D, the
actual surface is drawn by a call to PLOT3D.

BASEX = 2.0;
BASEY = 4.0;
HEIGHT = 3.0;
XMIN = -10.0;
XMAX = 10.0;
YMIN = -3.0;
YMAX = 7.0;
ZMIN = 0.0;
ZMAX = 8.0;
ALT = 45.0;
AZ = 30.0;

19 SC/15.2 —Subroutine Libraries

SIDE = 1;
PLW3D(BASEX, BASEY, HEIGHT, XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, ALT, AZ);
PLOT3D(X, Y, Z, NX, NY, OPT, SIDE);

The values of the function are stored in a two-dimensional array z[][] where the array element
z[i][j] contains the value of the function at the point xi, yj. (The two-dimensional array z is a
vectored array instead of a fixed size array. z points to an array of pointers which each point to a
row of the matrix.) Note that the values of the independent variables xi and yj do not need to
be equally spaced, but they must lie on a rectangular grid. Thus two further arrays x[nx] and
y[ny] are required as arguments to plot3d to specify the values of the independent variables.
The values in the arrays x and y must be strictly increasing with the index. The argument opt
specifies how the surface is outlined. If opt = 1, a line is drawn representing z as a function of x
for each value of y, if opt = 2, a line is drawn representing z as a function of y for each value of
x, and if opt = 3, a net of lines is drawn. The first two options may be preferable if one of the
independent variables is to be regarded as a parameter, whilst the third is better for getting an
overall picture of the surface. If side is equal to one then sides are drawn on the figure so that
the graph doesn’t appear to float.

The routine PLMESH is similar to PLOT3D, except that it is used for drawing mesh plots. Mesh
plots allow you to see both the top and bottom sides of a surface mesh, while 3D plots allow
you to see the top side only (like looking at a solid object). The side option is not available with
PLMESH.

Labelling a three-dimensional or mesh plot is somewhat more complicated than a two dimen-
sional plot due to the need for skewing the characters in the label so that they are parallel to the
coordinate axes. The routine PLBOX3 thus combines the functions of box drawing and labelling.

3.11 The libjpeg Library

Let us get it clear right from the start, JPEG is not an image format, instead the ANSI JPEG
specification lays down a definition for a family of compression algorithms. In fact the JPEG
specification is commonly used in two file formats JFIF and TIFF. The JFIF format is a simple
format used for applications that just need to store image data, this is the format that is commonly
referred to as being “JPEG” and files in this format usually have .jpg or .jpeg endings. The
second, more complex, TIFF file format is used by applications that need to store extra data
about images (e.g. colour correction curves). However TIFF, while more flexible, are far less
portable than JFIF since different applications implement different subsets of TIFF specification.
It should be noted that the official standard for JPEG image compression is not available on-line,
you have to order a paper copy from ANSI (or ISO).

The forthcoming JPEG Part 3 standard defines a file format called SPIFF. This format should be
backwards compatible with the JFIF image standard, although it has some technical advantages.
However its major advantage is that it is an official ANSI standard, where JFIF and TIFF are not.
At this time it is unclear as to whether SPIFF will replace JFIF, or whether JFIF will continue to
be widely used with the new SPIFF standard being ignored by the rest of the world.

The JPEG standard is optimised for “real-world” images, cartoons and other non-realistic images
are not handled well, since JPEG is a lossy algorithm. This means that the output image is not
identical to the image, you trade off output image quality against a smaller file size, by adjusting
a compression parameter (how lossy the image will be) on image generation.

SC/15.2 —Subroutine Libraries 20

The Independent JPEG Group (IJG) has a freely redistributable implementation of the JPEG
(JFIF) image compression/decompression algorithms. The distributed programs provide con-
version between JPEG format and image files formats such as PPM/PGM, GIF, BMP, and Targa.
The core programs used to do this is cjpeg to compress an image file into JPEG format and
djpeg to decompress a JPEG file back into a conventional format. The core compression and
decompression library, libjpeg.so, which is written in C can easily be reused in your own
programs programs.

The code is available for both commercial and non-commercial use, and the latest version of the
code can be obtained via anonymous FTP from ftp://ftp.uu.net/graphics/jpeg/. Detailed
documentation on how to code using the library API is provided along with the distribution
(see the libjpeg.doc file).

If you are using a Linux system it is likely that the library, and associated applications, are
already installed. RedHat 6.0 ships with libjpeg.so shared object library as part of the standard
distribution. The libjpeg library is also distributed as part of the Starlink Base Set, if you
are using a Starlink supported machine you can link your program to the Starlink distributed
version.

3.12 The giflib Library

GIF files use Lempel-Ziv-Welsh (LZW) compression algorithm to encode the image data to save
space, however there is a great deal of controversy over the GIF legal position (see Section 15)
due to the Unisys patent issue.

Eric S. Raymond, the maintainer of giflib has this to say about Unisys’s licensing: “Due to
Unisys’s increasingly aggressive interpretation of its patent claims on the LZW compression
format, I can no longer recommend the use of the giflib library or utilities. giflib may be
withdrawn in the near future”.

If you need to deal with GIF images it is recommended that you use the the libungif library.

3.13 The libungif Library

The way round the entire legal mess surrounding the GIF image standard is simply not to use
the LZW compression algorithm. The libungif library follows this approach and is designed to
handle uncompressed GIFs. These are image files that, while not using LZW compression, are
still recognizable as GIF files by decoders which expect normal (compressed) GIFs. The obvious
problem is that the uncompressed GIF images will be larger than those encoded using the LZW
algorithm. This library speaks both GIF87a and GIF89.

The latest version of the libungif library can be obtained from the anonymous FTP archive at
ftp://prtr-13.ucsc.edu/pub/libungif/. Extensive documentation on how to code using the
library API is included with the distribution. However if you are using a Linux system it is
likely that the library, and associated applications, are already installed. RedHat 6.0 for instance
ships with both libgif.so and libungif.so shared object libraries as part of the standard
distribution.

ftp://ftp.uu.net/graphics/jpeg/
ftp://prtr-13.ucsc.edu/pub/libungif/

21 SC/15.2 —Subroutine Libraries

3.14 The angif Library

ANGIF is a C library to generate GIF format output. It can generate animated or, a bit of a
standard breaker here, true colour (24bpp) GIFs. Due to the legal problems surrounding the
format ANGIF is LZW free. Command line test programs are included with the distribution.

It should be noted that ANGIF is in pre-beta release, the only documentation available is the
source code comments. Although there doesn’t appear to be a home page for the library yet, it
can be downloaded via HTTP from http://phil.ipal.org/freeware/angif/.

3.15 The PNG Format

The Portable Network Graphics (PNG) format was designed to replace the older and simpler
GIF format and, to some extent, the much more complex TIFF format.

PNG format several major advantages over GIF. Firstly it uses alpha channels, allowing you to
have variable transparency images. Unlike GIF, which implements a simple binary transparency
(either a pixel is transparent or opaque) PNG specifies 254 levels of partial transparency. Instead
of storing three bytes for each pixel for red, green and blue (RGB), four are now stored, these
being red, green, blue and alpha (RGBA). PNG supports both true colour, greyscale and palette-
based (pseudo) colour images, unlike GIF which supports only pseudo colour images. All
three types of PNG image support alpha channels, although the size of true colour PNG images
effectively rules them out for use on the web. Additionally, the format makes use of gamma
correction, allowing cross-platform control of image brightness. Finally, the PNG format specifies
two-dimensional interlacing (progressive display) rather than the one-dimensional scheme used
by GIF images.

PNG also compresses better than GIF in almost every case, but the difference is generally
only around 5 to 25 per cent. Additionally, and quite importantly, PNG is free of any legal
entanglement.

For those of you wanting to implement programs to handle PNG images, the official PNG library
libpng is available via anonymous FTP from ftp://swrinde.nde.swri.edu/pub/png/src/.
This library requires zlib, a general purpose lossless compression library. A copy of the library
can be found at the same FTP site, but the latest version and more information about the library
can be found at ftp://ftp.freesoftware.com/pub/infozip/zlib/index.html

More information on the PNG format, programming resources and supporting applications can
be found online at http://www.libpng.org/pub/png/.

3.16 The MNG Format

The Multiple-image Network Graphics (MNG) format has been implemented by the same
people that brought you PNG, and it therefore shares the same modular philosophy. The idea
behind the format is to provide a home for all of the multi-image capabilities that have no place
in PNG. While it has fairly extensive animation and image-manipulation capabilities, there is
no serious expectation that it will ever integrate audio or video. In other words this format it
intended to replace multi-image GIF animations.

Though the MNG specification itself has not yet been promoted to release status, as of 11 May
1999 it was officially frozen by a vote of the MNG developers. Although relatively mature, MNG

http://phil.ipal.org/freeware/angif/
http://phil.ipal.org/freeware/angif/
http://www.libpng.org/pub/png/
ftp://swrinde.nde.swri.edu/pub/png/src/
ftp://ftp.freesoftware.com/pub/infozip/zlib/index.html
http://www.libpng.org/pub/png/
http://www.libpng.org/pub/mng/

SC/15.2 —Subroutine Libraries 22

is still a draft proposal. There is therefore no general use MNG reference library (along the
same lines as libjpeg for example). However, there are already several applications with partial
MNG support, the main UNIX application being ImageMagick (see Section 7.1).

3.17 The Python Imaging Library

The Python Imaging Library (PIL) adds an image object to your Python interpreter. You can
load image objects from a variety of file formats, including BMP, EPS, GIF, JPEG, PNG, PPM,
TIFF and XBM, and apply a rich set of image operations to them. See the feature sheet at
http://www.python.org/sigs/image-sig/Imaging.html for more details.

3.18 The gd Library

gd is a C graphics library that allows you to quickly draw images with lines, arcs, text, multiple
colors, cut and paste from other images, and flood fills, and write out the result as a PNG file.
More information can be found at http://www.boutell.com/gd/gd.html.

A simple example of the gd library in use, taken from the documentation, is shown below:

/* Bring in gd library functions */
#include "gd.h"

/* Bring in standard I/O so we can output the PNG to a file */
#include <stdio.h>

int main() {
/* Declare the image */
gdImagePtr im;
/* Declare an output file */
FILE *out;
/* Declare color indexes */
int black;
int white;

/* Allocate the image: 64 pixels across by 64 pixels tall */
im = gdImageCreate(64, 64);

/* Allocate the color black (red, green and blue all minimum).
Since this is the first color in a new image, it will
be the background color. */

black = gdImageColorAllocate(im, 0, 0, 0);

/* Allocate the color white (red, green and blue all maximum). */
white = gdImageColorAllocate(im, 255, 255, 255);

/* Draw a line from the upper left to the lower right,
using white color index. */

gdImageLine(im, 0, 0, 63, 63, white);

/* Open a file for writing. "wb" means "write binary", important
under MSDOS, harmless under Unix. */

out = fopen("test.png", "wb");

http://www.python.org/sigs/image-sig/Imaging.html
http://www.python.org/sigs/image-sig/Features.html
http://www.python.org/sigs/image-sig/Imaging.html
http://www.boutell.com/gd/gd.html
http://www.boutell.com/gd/gd.html

23 SC/15.2 —Plotting Packages

/* Output the image to the disk file. */
gdImagePng(im, out);

/* Close the file. */
fclose(out);

/* Destroy the image in memory. */
gdImageDestroy(im);

}

When run, this program creates an image, allocates two colours (the first colour allocated
becomes the background colour) and draws a diagonal line (note that 0, 0 is the upper left
corner) before writing the image to a PNG file.

3.18.1 gd from other languages

The gd library can also be accessed from languages other than C. There is an API for both the
Perl, see http://stein.cshl.org/WWW/software/GD/GD.html, and Tcl scripting languages, see
http://www.tcltk.com/ftp/ellson/.

4 Plotting Packages

4.1 QDP

QDP is an interactive graphics plotting package that began life in the late seventies on a PDP
11/70 at the Goddard Space Flight Center, it doesn’t seem that likely that any of code has
survived from that first version.

QDP is now an interactive front end to Tim Pearson’s PGPLOT package, and is distributed by
HEASARC as a stand alone segment of their XANADU X-ray analysis package. Most Starlink
sites should have XANADU, and hence QDP, already installed. Ask your site manager, or any
random X-ray astronomer if you have one to hand, for site specific instructions on how to setup
the package for use. The QDP manual is available on the web at http://heasarc.gsfc.nasa.
gov/docs/software/ftools/others/qdp/node3.html.

4.1.1 QDP Basic Stuff

QDP takes standard ASCII text files as input, there need to be at least two columns. The first
column is taken to X values for the data points, while the second column is taken to be Y values.
If there are more than two columns then QDP (by default) assumes that further columns are
additional Y values data points (with the same X values). Comments can be included either as
separate lines, or at the end of a line of data using the “!” character to signify the start, and
the end of a line to signify the end, of a comment. Data values may be separated by spaces, a
comma, or tabs. However, each row should contain the same number of columns, although if
some data are missing you can enter the word NO instead of an actual number. QDP regards the
NO to mean no data available. An example data file is shown below:

http://stein.cshl.org/WWW/software/GD/GD.html
http://stein.cshl.org/WWW/software/GD/GD.html
http://www.tcltk.com/ftp/ellson/
http://www.tcltk.com/ftp/ellson/
http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html
http://heasarc.gsfc.nasa.gov/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xanadu.html
http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html
http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html
http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html

SC/15.2 —Plotting Packages 24

Figure 4: The default appearance of the test.qdp data file when plotted using QDP.

! A Comment Line
1 1 16
2 4 9 ! Another Comment
3 9 4
4 15 NO

By default QDP will look for files with the .qdp extension, if your file has a .qdp extension you
do not need to pass this to QDP as it will automatically assume its presence. Although the
program is perfectly happy to read files with any extension, it will in fact refuse to read files that
do not have a filename extension. This sounds complicated, it is not really, for instance if we
create a file called test.qdp, with the above data, you’d plot it by typing:

% qdp
QDP file name: test
To produce plot, please enter

PGPLOT file/type: /xw
PLT>

There are two important features in this short exchange that you should take notice of, firstly,
since QDP sits on top of native PGPLOT any device that you can access with PGPLOT you
can use with QDP (and is specified in the same way you’d specify native PGPLOT devices,
see the PGPLOT Manual. Here we specified that we wished to use X Windows to display our
plot so that we can interact with it later. Obviously non-interactive devices like PostScript files
are exactly that, you can’t interact with your plot once it is created. Which leads to the second
important point, the PLT> prompt, QDP has processed your data file and it is now waiting for
commands. The plot from this command is shown in Figure 4.

Since the file contained three columns of numbers, the default mode assumes there are three
plot groups. The first plot group determines the X coordinate. The next two columns are plotted
as two lines. The name of the QDP file appears in the top left of the plot and your userid, current
date, and time appear in the bottom right of the plot. All this can now be changed interactively

http://astro.caltech.edu/~tjp/pgplot/contents.html

25 SC/15.2 —Plotting Packages

from the PLT prompt. A useful command at this point is help which provides access to the
online help for all QDP commands.

Plots can be rescaled using the rescale command and the axes labelled using the label com-
mand, which also controls other labelling like the filename at the top left of the plot. The default
is to draw the plots using a line, this can be turned off using line off which will result in each
data point being plotted as a dot. This is not that desirable, and the data point marker can be
changed using the mark command. A list of markers, and associated numbers can be found by
typing mark ? (this will overwrite the current plot on the graphics display, it can be gotten back
simply by typing plot). More information on all these commands, and all the others, can be
found in the online help from the application which is excellent.

It should be noted that it is important to type plot after making changes to a plot, otherwise
the current display will not be changed, and that most QDP commands can be abbreviated (for
instance typing ma ? and mark ? will produce the same result).

4.1.2 Plot devices and PostScript output

QDP generates hard copy in the same way it writes to any other device, therefore you question
shouldn’t be “How do I get hardcopy of my plot?”, but instead “How do I change the plot
device I’m currently using?”. The answer is to issue a dev command to change your current
plotting device, for instance:

PLT> dev /ps
PLT> plot
PLT> dev /xw

would change our current plotting device to a landscape PostScript file and re-plot our current
plot. The final dev command to (yet again) change out current plot device is important since
this closes the PostScript file, without which the file would be empty. By default QDP writes
PostScript output to a file called pgplot.ps.

Despite the fact that PostScript output is “just another device” there is a specific command to
deal with this common case of device switching, the hard command. You can find out your
default hard copy device by:

PLT> hard ?
Current hardcopy device is: /PS

PLT>

which tells us we’re currently going to generate a PostScript file as our default hardcopy output.
Typing hard on its own will result in the current plot being written to the default pgplot.ps
output file. It is possible to override the default hardcopy device, for instance the hard /vps
command would generate a vertical (portrait) mode PostScript file no matter what the current
default hardcopy output device. It should be noted that the default hardcopy device can be set
using the PLT_HARDCOPY environment variable.

By default QDP uses the Simple font since this is fastest, for hard copy output you may wish
to change this to something more professional looking like the Roman font. Additionally, since
most journals photo-reduce the size of supplied figures before printing it may be advisable to
increase the size of the characters on the labels, and also to increase the line width (which by
default is one pixel). For instance:

SC/15.2 —Plotting Packages 26

Figure 5: The appearance of the test.qdp data file when plotted in QDP using a Roman font
with csize 1.3 and lwidth 7.

PLT> font Roman
PLT> csize 1.3
PLT> lwidth 7
PLT> hard

would set the current font to Roman, increase the character size by a factor of 1.3 and set the
current line width to 7 pixels before generating a hardcopy of the current plot. Our test.qdp
data plotted with these options is shown in Figure 5 (compare with the same figure plotted with
the default options, shown in Figure 4).

4.1.3 Error Bars

How do we go about telling QDP that the one of the columns in a data file is not data, but
instead is a list of errors on our data values? This is done from the QDP file, by putting the READ
Serr QDP command at top. This tells QDP that the data has symmetric errors. For instance:

READ Serr 1 2
1.0 0.25 1.24 0.5
1.5 0.25 1.86 0.5
2.0 0.25 3.76 0.5
4.0 1.75 16.43 4.8
7.0 1.25 49.06 0.5

would tell QDP that the third and fourth columns of numbers in our data file are the X and Y
errors respectively. Confused? Don’t worry, this confuses many of people to being with, let
us take a step back. Basically when it thinks about columns QDP doesn’t count columns that
contain errors, so that to QDP there is not really four column in our file. Instead there are only
two, a column containing X data and the associated errors, and a column containing the Y data
and the associated errors. Perhaps this will make more sense if we separate the columns QDP
perceives using commas. Hence:

27 SC/15.2 —Plotting Packages

Figure 6: Our second test data set plotted using QDP with the default options.

READ Serr 1 2
1.0 0.25 , 1.24 0.5
1.5 0.25 , 1.86 0.5
2.0 0.25 , 3.76 0.5
4.0 1.75 , 16.43 4.8
7.0 1.25 , 49.06 0.5

Does it make more sense now? The READ Serr command basically tells QDP that the the two
lists of numbers should each have two real columns (one for data, one for errors). You can see
what QDP makes of this file in Figure 6.

You can also tell QDP to use two-sided errors using the READ Terr command. It takes three real
columns to specify a two-sided error. The first column is the central value, the second (which
must be positive) specifies the upper error the third column (which must be negative or zero)
specifies the lower error. For instance the file:

READ Serr 1
READ Terr 2
1. .1 2. +.1 -.2

would plot a point at (1± 0.1, 2±0.1
0.2)

4.1.4 That “Date and Time” Thing

A commonly asked question by QDP novices is how to turn off the display of the date and time
in the bottom right hand corner. This is done simply through use of the time command: time
off will suppress printing the current date and time, while time on will restore this default
behaviour.

4.1.5 Fitting using QDP

QDP has some basic fitting capabilities, for instance to fit our second lot of test data with a
model consisting of a constant, linear and quadratic components (in other words fit it to the

SC/15.2 —Plotting Packages 28

equation Y = X2 + X + C) we must first define a model, e.g.

PLT> model cons linr quad
1 CO: VAL(-1.000), SIG(0.000), PLO(0.000), PHI(0.000)?

2 LI: VAL(1.000), SIG(0.000), PLO(0.000), PHI(0.000)?

3 QU: VAL(1.000), SIG(0.000), PLO(0.000), PHI(0.000)?

PLT>

Here we have simply accepted the default values (VAL) by hitting return, I could have instead
entered likely estimates for our model parameters. This procedure becomes necessary for more
complicated data and models. Having established which model we want to fit to the data, now
type fit.

PLT> fit
Fitting group 2, from 0.850 to 7.15
Fitting 5 points in a band of 5.
-1. 1. 1.
(-3) W-VAR=0.5758
(-4) W-VAR=0.4192
(-5) W-VAR=0.4189
0.764678299 -0.742543042 1.09179008

PLT>

You’ll see that we’ve got an acceptable fit, if you look at the display you’ll see that the a line has
been drawn showing the fit. The fit doesn’t look very nice on screen however since QDP has
illustrated its fit with a line having only the same number of points as our initial data values. If
you want a smoother curve for a publication you should now type:

PLT> fit plot 200
PLT> plot

This will replot the fit with 200 points interpolated along the best fit model, which looks much
nicer, as can be seen in Figure 7. Note that the fit parameters and variance, along with the
number of data points fitted, is shown down the right hand side of the plot.

You can get a list of the different possible models available by typing model, e.g.

PLT> model
Possible components are:
CONS LINR QUAD CUBI X4 X5 POWR SIN GAUS
EXP AEXP BURS SBUR PEAR WIND KING LN LORE
DEMO SPLN AKIM

PLT>

While to get help on specific model components you must turn to the online help system, e.g.

PLT> help model cons

29 SC/15.2 —Plotting Packages

Figure 7: Our second test data set plotted using QDP with best fit model.

HELP
MOdel

CONS

Select a model with a constant component:

FNY=FNY+CO.

help>

You’ll note that the CONS model has, obviously, only one component while:

PLT> help model gaus
GAUS

HELP
MOdel

GAUS

Select a model with a Gaussian component:

FNY=FNY+GN*EXP(-Z*Z/2.),

where Z=(X-GC)/GW and with integral SQRT(2*PI)*GN*GW.

help>

has three, GN, GC and GW.

It is possible to save the current model to disk using the wmodel command, e.g.

PLT> wmodel file

SC/15.2 —Plotting Packages 30

will create a file.mod file. To read this model back into QDP use the command model @file. If you do
not enter a file name with the wmodel command, then the model is written to the screen.

The uncertain command can now used to estimate uncertainties in the parameter values, e.g.

PLT> uncertain 1
Delta parm Delta Chi^2
-2.19 2.70
2.19 2.70

Parameter 1, Delta CHI^2= 2.700 -1.424 2.953
PLT>

would give an error estimate for the first parameter of our fit (CO). You’ll see that this shows us that we
really didn’t need to add a constant value to our model, since our value 0.765± 2.188 is consistent with
zero. More information on fitting models can be found in the QDP manual and online help.

4.1.6 QDP Files

You’ve already seen that you can instruct QDP to treat the columns in your .qdp file differently using
the READ Serr command. QDP also lets you put commands that you would normally type at the PLT
prompt into you .qdp file, for instance:

READ Serr 1 2
label X Time
label Y Distance
1.0 0.25 1.24 0.5
1.5 0.25 1.86 0.5
2.0 0.25 3.76 0.5
4.0 1.75 16.43 4.8
7.0 1.25 49.06 0.5

Would plot our second example data file with the X axis labelled “Time” and the Y axis labelled “Distance”.
You can in fact have QDP files that are entirely commands, these have the default extension .pco instead
of the usual .qdp. For instance if we have a file test.pco which contains:

label X %1%
label Y %2%
label T %3%

and at the PLT prompt we typed:

PLT> @test Time Distance "A Test Plot"

we would execute the commands contained in the test.pco file, putting the label “Time” on the X axis,
“Distance” on the Y axis and the string “A Test Plot” along the top of the graph.

4.1.7 COD and QDP models

You can use something called COD (COmponent Definition) to generate new functions that can be used
as components in QDP models. COD can also be used interactively as a reverse polish calculator. More
information on COD is available in the QDP manual and from COD’s own online help, e.g.

http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html
http://heasarc.gsfc.nasa.gov/docs/software/ftools/others/qdp/node3.html

31 SC/15.2 —Plotting Packages

% cod
Type HELP for help.

COD> help

cod

The COD (COmponent Definition) program is intended to fill two roles:

First, it can be used interactively as a reverse-Polish calculator
using all the functions described in the ’dictionary’ section.

Second, it can be used to test COD programs as described in the ’files’
section.

In all cases, COD will accept several commands on a single line.

dictionary files forth future GEt List
Newpar Quit RUn Step

cod topic?

4.2 PONGO

PONGO is another interactive plotting package that, like QDP, is based on PGPLOT. The PONGO
package can used from both the Starlink/ICL and IRAF/CL command languages and integrates with
other Starlink software packages.

Using graphics between different applications packages is often difficult because once one package has
finished plotting and completed execution all information concerning the contents of the plot is lost.
PONGO makes use of the Starlink Applications Graphics Interface (AGI) libraries, see SUN/48, which
allows different graphics applications to be used to display images, draw contours and annotate, for
example, on the same plot without each application losing access to the plot dimensions. This means, for
instance, that you can display an image using the KAPPA display application and then annotate it using
PONGO.

Full details of the PONGO package can be found in SUN/137 which should be available from your
Starlink site manager.

4.3 SM

Another interactive plotting package that may be found at your site is SM. Full details about SM can be
found in the SM User Guide (MUD/159) and the SM Tutorial (MUD/160) which can be obtained from
your Starlink site manager.

4.4 GNUplot

GNUplot is a command-driven interactive function plotting program that, for once, doesn’t sit on top of
PGPLOT. It can be used to plot both functions (e.g. sin) and data points in both 2 and 3D plots (i.e. contour
plot, mesh, etc.). Despite its name GNUplot is not written/maintained by the FSF, nor is it released under
the GPL.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun137.htx/sun137.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun48.htx/sun48.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun137.htx/sun137.html?xref_
http://www.cs.dartmouth.edu/gnuplot_info.html

SC/15.2 —Plotting Packages 32

Figure 8: A plot of the function (1 − 0.1 cos(v)) cos(u), (1 − 0.1 cos(v)) sin(u), 0.1(sin(v) +
u/1.7− 10), a parametric helix, using GNUplot

An important thing to note about GNUplot is that its commands are case sensitive (like UNIX) and
should be entered in lower case. Commands may extend over several input lines (for clarity) by ending
each line but the last with a backslash (\). The backslash must be the last character on each line. Strings
are indicated with quotes, although they may be either single or double quotation marks.

Since GNUplot accepts the name of a command file as a command line argument or as a redirection from
standard input, e.g.

% gnuplot file.dat

or

% gnuplot < file.dat

the application is therefore very suitable for batch processing of data files. Extensive documentation
on GNUplot is available on the web at http://www.cs.dartmouth.edu/gnuplot_info.html, and while
the application can be used as at the simplest level as a plotting tool for 2D data, GNUplot has many
powerful features including plotting of 3D parametric functions (see Figure 8) and data, and the ability to
integrate functions and show the result graphically.

4.4.1 Co-ordinate systems

One of GNUplot’s strengths its ability to plot functions, and data, in different co-ordinate systems. For
instance Figure 9 shows a plot of the function cos(2x) in polar co-ordinates.

http://www.cs.dartmouth.edu/gnuplot_info.html
http://www.cs.dartmouth.edu/gnuplot_info.html

33 SC/15.2 —Plotting Packages

Figure 9: A plot of the function cos(2x) in polar co-ordinates using GNUplot.

4.4.2 Plotting 3D data

GNUplot has quite powerful 3D plotting abilities, using the splot command, reading either from an
ASCII or binary file. ASCII data files should have the data stored in a format that looks something like:

<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
<x1> <y2> <z1,2>

. . .

. . .

. . .

while binary files should have single precision floats stored as follows:

<ncols> <x0> <x1> <x2> ...
<y0> <z0,0> <z0,1> <z0,2> ...
<y1> <z1,0> <z1,1> <z1,2> ...

GNUplot will automatically determine if the data is in binary or ASCII format when it is read in using
the load command.

An example of a 3D data file plotted using the splot command is shown in Figure 10. While another,
very impressive, example from the GNUplot manual is shown in Figure 11.

SC/15.2 —Plotting Packages 34

Figure 10: A 3D plot using GNUplot.

Figure 11: A 3D plot of a digitised blue whale using GNUplot.

35 SC/15.2 —Image Display

5 Image Display

5.1 KAPPA

The KAPPA display program displays a 1- or 2-dimensional NDF in (by default) a GWM X Windows
window. This GWM window can then be accessed by other Starlink applications (including other
KAPPA applications) and the image manipulated. For instance, before carrying out photometry using
the PHOTOM package you would display your CCD image using the KAPPA display command.

More information about KAPPA, and the display application, can be found in SUN/95.

5.2 SAOimage

SAOimage is a utility for displaying astronomical images in the X Window environment. It was written
at the Smithsonian Astrophysical Observatory by Mike Van Hilst in 1990 and is now maintained by Doug
Mink. Image files (including NDF) can be read directly, or image data may be passed through a named
pipe from IRAF display tasks.

SAOimage provides a large selection of options for zooming, panning, scaling, coloring, pixel readback,
display blinking, and region specification.

The SAOimage desktop includes, a main image display window, a button menu panel, a display magnifier,
a pan and zoom reference image, and a color bar. A color table graph window can be brought up by
clicking on the color bar at the bottom of the SAOimage desktop.

A quick introduction to SAOimage can be found in SUN/166. Further information can then be found in
the SAOimage User Manual (MUD/140) which is distributed in LaTeX form with the SAOimage source
code in the ‘doc’ subdirectory. Further information is also available on the web on the SAOimage Home
Page at http://tdc-www.harvard.edu/software/saoimage.html.

5.2.1 Printing in SAOimage

One of the most commonly asked questions when dealing with image display in SAOimage is how to
change the default printer. Under csh or tcsh (the default shell at Starlink sites) the following lines
should be put in your .cshrc file:

setenv PRINTER printer
setenv PSPRINTER printer
setenv R_DISPOSE ’lpr -Pprinter -r %s’

where printer is the name of the printer you want to make your default printer.

5.3 GAIA

GAIA is an image display tool written in C++ by Peter Draper based on the SkyCat image display
and catalogue browsing tool developed as part of the VLT project at ESO. GAIA is extendable and
can integrate other applications. Currently extensions are provided that allow the user to do aperture
and optimal photometry, automatic source detection, contouring, arbitrary region analysis, celestial
coordinate readout, calibration and modification, grid overlays, blink comparison, image defect patching
and the ability to connect to resources available in on-line catalogues and archives. An example of GAIA
in action is shown in Figure 12

A full discussion of GAIA’s capabilities can be found in SUN/214.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun130.htx/sun130.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun45.htx/sun45.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://tdc-www.harvard.edu/software/saoimage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun166.htx/sun166.html?xref_
http://tdc-www.harvard.edu/software/saoimage.html
http://tdc-www.harvard.edu/software/saoimage.html
http://tdc-www.harvard.edu/software/saoimage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_
mailto:P.W.Draper@durham.ac.uk
http://archive.eso.org/skycat/
http://www.eso.org/vlt/
http://www.eso.org/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

SC/15.2 —Image Display 36

Figure 12: The GAIA interface.

37 SC/15.2 —Other Applications

6 Visualisation

For astronomers with complex datasets the standard tools, such as PGPLOT, may not be sufficient for
your needs. Instead for display of three-dimensional scalar data you should look towards IDL or DX.

IBM DX (Data Explorer) is the data visualisation package recommended by Starlink, particularly for the
visualisation of three-dimensional scalar and vector data. The package is covered in detail in The DX
Cookbook (SC/2). However, additional information about DX and documentation dealing with SX, the
Starlink enhancements to DX, can be found in SUN/203.

The Interactive Data Language (IDL) is designed to be used for data analysis, visualization, and cross-
platform application development. IDL may be available at your site, see your Starlink system adminis-
trator for details.

An Introduction to Visualisation Software for Astronomy, SG/8, provides a general overview of visualisation
software for astronomers and includes details of a number of packages. The author of SG/8, Clive
Davenhall, also maintains a web page covering visualisation software at http://www.roe.ac.uk/~acd/
vissys/index.html.

7 Other Applications

There is so much graphics and image manipulation software available, usually under the GNU Public
License (GPL), that I couldn’t possibly hope to cover it all. Although I have tried to cover the major
packages, new (sometimes better) applications appear every day.

7.1 ImageMagick

ImageMagick, is a collection of GUI and command line tools along with callable libraries allows you to
read, write, and manipulate images in any of the more popular image formats including GIF, JPEG, TIFF,
PNG and PDF.

There are two methods for accessing the capabilities of ImageMagick. Firstly you can incorporate its
functionality directly into your own code by linking to the ImageMagick libraries, you can do this from
several languages, including Perl, C, C++, Java and Python. More information can be found in the
ImageMagick Users Guide at http://www.wizards.dupont.com/cristy/ImageMagick.pdf.

You can also access ImageMagick functions directly from the command line using the display, import,
animate, montage, convert, mogrify, identify, and combine tools. These tools allow powerful manipu-
lations to be carried out on images in a manner understandable to anyone familiar with the UNIX way of
doing things, for instance:

% convert file.jpg HISTOGRAM:- | display -

pipes the output of convert into the display application to get a intensity histogram for the image
file.jpg. Here the use of “-” for the file specifier (for both convert and display) directs the applications
to use standard input and output (i.e. streams).

7.1.1 display

Not to be confused with KAPPA display, the ImageMagick display program is an image processing
tool. The program is invoked from the command line as below, Figure 13 shows the interface to the
application.

http://www.starlink.ac.uk/cgi-bin/htxserver/sc2.htx/sc2.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sc2.htx/sc2.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun203.htx/sun203.html?xref_
http://www.rsinc.com/idl/index.cfm
http://www.starlink.ac.uk/cgi-bin/htxserver/sg8.htx/sg8.html?xref_
mailto:acd@roe.ac.uk
mailto:acd@roe.ac.uk
http://www.roe.ac.uk/~acd/vissys/index.html
http://www.roe.ac.uk/~acd/vissys/index.html
http://www.roe.ac.uk/~acd/vissys/index.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.wizards.dupont.com/cristy/ImageMagick.html
http://www.wizards.dupont.com/cristy/ImageMagick.pdf
http://www.wizards.dupont.com/cristy/ImageMagick.pdf
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_

SC/15.2 —Other Applications 38

Figure 13: The ImageMagick display GUI.

% display penguin.tif

The display application is a powerful image manipulation and processing tool, full details of its functions
can be found at http://www.wizards.dupont.com/cristy/www/display.html.

One important point for people used to xv is that the command menu is brought up by left clicking on
the image rather than right clicking (as with xv).

7.1.2 import

import reads an image from any visible window on your X Windows desktop and outputs it as an image
file. You can capture a single window, the entire screen, or any rectangular portion of the screen. Full
details of its functions can be found at http://www.wizards.dupont.com/cristy/www/import.html.

For instance, to capture the entire X Windows desktop screen in the JPEG image format in a file titled
root.jpg, use:

% import -window root root.jpg

While to select a a specific window, using the mouse, and save it in Encapsulated Postscript format use:

% import figure.eps

A common problem with import running on pseudo colour displays is that the image it captures
sometimes has the wrong colour map. To correct this use the -descend option, e.g.

http://www.wizards.dupont.com/cristy/www/display.html
http://www.wizards.dupont.com/cristy/www/import.html

39 SC/15.2 —Other Applications

% import -descend image.miff

By default, import quickly grabs the image from the X server. However, it may not always have the
correct colors in some areas. This can happen when a sub-window has a different colour map than its
parent. With -descend, import descends the window hierarchy. Descending involves grabbing the image
and colour map of each window or sub-window associated with the window you select and combining
them on a blank canvas. This can be significantly slower than just grabbing the top-level window but
ensures that the final composite image will have the correct colour map.

7.1.3 animate

animate displays a sequence of images. To help prevent color flashing on pseudo colour displays,
animate creates a single colourmap from the image sequence. This can be rather time consuming.
You can speed this operation up by reducing the colours in the image before you “animate” them.
Use mogrify to colour reduce the images to a single colourmap. Full details can be found at http:
//www.wizards.dupont.com/cristy/www/animate.html.

7.1.4 montage

montage creates a composite by combining several separate images. The images are tiled on the composite
image with the name of the image optionally appearing just below the individual tile.

7.1.5 convert

Not to be confused with the Starlink CONVERT package, the ImageMagick convert program converts
an input file from one image format to an output file with a differing image format. Various types of
image processing can be performed on the converted image during the conversion process.

For example, to convert a TIFF image to an A4 Postscript page with the image in the lower left corner we
would use:

% convert -page A4+0+0 image.tiff document.ps

Or to annotate an image with the word “Stuff” written in blue at position (100,100) in the Helvetica 12x24
pixel font, we would use:

%convert -font helvetica -pen blue -draw "text 100,100 Stuff" in.jpg out.miff

In this case we read in a JPEG file and write out a MIFF (ImageMagick internal format) file. Full
details of the different file formats handled by convert can be found on the ImageMagick web site at
http://www.wizards.dupont.com/cristy/www/convert.html.

7.1.6 mogrify

mogrify performs transformations such as scaling, rotation and colour reduction on a image or series of
images.

For instance to scale an image to 640×40 pixels we would use:

% mogrify -geometry 640x480! image.miff

http://www.wizards.dupont.com/cristy/www/animate.html
http://www.wizards.dupont.com/cristy/www/animate.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.wizards.dupont.com/cristy/www/convert.html

SC/15.2 —Other Applications 40

7.1.7 identify

identify describes the format and characteristics of one or more image files. It will also report if an
image is incomplete or corrupt. The information displayed includes the scene number, the file name,
the width and height of the image, whether the image is colourmapped or not, the number of colors in
the image, the number of bytes in the image, the format of the image (JPEG, PNM, etc.), and finally the
number of seconds it took to read and process the image. An example line output from identify follows:

images/image.miff 640x480 PseudoClass 256c 308135b MIFF 1s

If -verbose is set, expect additional output including any image comment, e.g.

Image: images/image.miff
class: PseudoClass
colors: 256
signature: eb5dca81dd93ae7e6ffae99a5275a53e
matte: False
geometry: 640x480
depth: 8
bytes: 308135
format: MIFF
comments:
Imported from MTV raster image: image.mtv

7.1.8 combine

The combine program is used to, well combine, two or more images into a single new images. For
instance, to compute the difference between two images in a series you could:

% combine -compose difference series.1 series.2 difference.miff

Or to combine a red, green and blue colour plane into a single composite image:

% combine -compose ReplaceGreen red.png green.png red-green.png
% combine -compose ReplaceBlue red-green.png blue.png composite.png

7.1.9 XTP

Not strictly an image-processing application, xtp is a non-interactive replacement for ftp.

7.1.10 XMagick

XMagick is a C library, which allows integration of the ImageMagick library calls with any X application
by providing functions which convert between the native X image format (XImage) and the native
ImageMagick format (Image).

The example code below, which is included in the library, reads an image image.xpm, converts the Image
to an XImage and back, and stores the result as image2.xpm.

http://siag.nu/xmagick/

41 SC/15.2 —Other Applications

#include <magick/magick.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include "xmagick.h"

static void add_pixel(unsigned long pixel, unsigned long *pixels,
int *npixels, int max_pixels)

{
int i;

if (*npixels >= max_pixels) return;
for (i = 0; i < *npixels; i++) {

if (pixel == pixels[i]) return;
}
pixels[i++] = pixel;
*npixels = i;

}

static int npixels_in_ximage(XImage *img, int max_pixels)
{

int x, y;
int npixels = 0;
unsigned long *pixels = malloc(max_pixels*sizeof(*pixels));
for (y = 0; y < img->height; y++) {

for (x = 0; x < img->width; x++) {
unsigned long pixel = XGetPixel(img, x, y);
add_pixel(pixel, pixels, &npixels, max_pixels);

}
}
return npixels;

}

int main(int argc, char **argv)
{

Image *image, *image2;
ImageInfo image_info;
XImage *ximage;
Display *display;

display = XOpenDisplay(NULL);
if (display == NULL) {

fprintf(stderr, "Can’t open X display\n");
exit(1);

}

GetImageInfo(&image_info);
strcpy(image_info.filename, "image.xpm");
image = ReadImage(&image_info);
if (image == NULL) return 1;

printf("%ld colors in image\n", GetNumberColors(image, NULL));
ximage = XMagickImageToXImage(display, image);
printf("%d pixels in ximage\n", npixels_in_ximage(ximage, 256));
image2 = XMagickXImageToImage(display, ximage);

SC/15.2 —Other Applications 42

printf("%ld colors in image2\n", GetNumberColors(image2, NULL));
strcpy(image2->filename, "image2.xpm");

/* Save to disk */
WriteImage(&image_info, image2);

/* Free resources */
DestroyImage(image);
DestroyImage(image2);
XDestroyImage(ximage);
XCloseDisplay(display);

return 0;
}

The prototypes for the XMagick conversion calls are as follows:

XImage *XMagickImageToXImage(Display *display, Image *image)
Creates XImage from Image. Returns NULL if not successful.

Image *XMagickXImageToImage(Display *display, XImage *ximage)
Creates Image from XImage. Returns NULL if not successful.

The Xmagick library is available via anonymous FTP from ftp://siag.nu/pub/xmagick/.

7.1.11 PythonMagick

PythonMagick, is a interface to ImageMagick. It is similar in function to the Python Imaging Library and
calls to PythonMagick can be combined with calls to the Imaging Library. A simply example script from
the PythonMagick distribution is shown below:

PythonMagick, is a interface to ImageMagick. It is similar in function to the Python Imaging Library and
calls to PythonMagick can be combined with calls to the Imaging Library. A simple example script from
the PythonMagick distribution is shown below:

#!/usr/local/bin/python
import Magick

Use the Python Imaging Library to create a Tk display
dpy = Magick.TkDisplay(startmain=0)

Read the image
img = Magick.read(’test.gif’)

Display the image
dpy(img)
dpy(img.Swirl(90))

dpy.startmain=1
dpy.show()

ftp://siag.nu/pub/xmagick/
http://starship.python.net/crew/zack/pymagick/

43 SC/15.2 —Other Applications

7.2 XV

The XV program seems to have been around forever, it was first released sometime during 1990, with the
current release version being 3.10a. For a long time it was not only the best image manipulation package
available for UNIX, it was the only image manipulation package available for UNIX.

Despite many people using it to convert images from one format to another, XV doesn’t have any support
for bulk conversions, if you want to convert a lot of images from one format to another you should
probably look at PBMplus. XV is definitely not a paint program, if you are interested in creating graphics
you should look towards the GIMP, xpaint or xfig. While XV does have some features of a paint
program they aren’t that high powered, for instance I very heavily recommend against using the text
annotation command in XV.

XV is primarily a graphics display and manipulation package, you can see an example of the interface in
use in Figure 14.

While the interface is usually fairly self explanatory, the package has a very good online manual available
at http://www.trilon.com/xv/manual/xv-3.10a/cover.html.

7.2.1 Screen Capture

Most of the screen captures you’ll see in this cookbook were done using XV. Simply run xv, right click on
the XV window to bring up the control panel, and hit the GRAB button bring up the Grab Dialog (see
Figure 15). Check the “Hide XV Windows” tick-box, so that the XV windows will disappear while you
are doing the screen grab, and hit the GRAB button. A single click on your desktop will now carry out a
screen grab.

7.2.2 Problems with small images

XV has a problem displaying images which are less than 100 pixels wide, it will actually stretch the
images to this minimum size if you try and get it to display something smaller. This problem is due
to your window manager rather than XV itself. XV tries to automatically resize the image window to
the size of your image, however most modern window managers enforce a minimum window size (so
there is room for the minimise/maximise buttons and other such things in the title bar). There are two
workarounds. Firstly, you can start XV with the -nodecor command line argument, this should allow XV
to resize the window to the correct dimensions. However, depending on your window manager this may
cause you problems trying to move the XV window around the screen. Alternatively, you can accept that
the image is going to be displayed incorrectly, so long as you check the NORMAL SIZE box in the XV save
dialog the image will be written to disk correctly.

7.2.3 Getting XV, patches and enhancements

The current version of XV is 3.10a, there probably won’t be a version 3.2 (or the long awaited version 4.0)
until the author is successful in sorting out a licence to use the LZW compression algorithm with UniSys.

Both source code and binary distributions are available for download, along with a selection of patches
and enhancements, from http://www.trilon.com/xv/downloads.html. The patches provided at the
site are not pre-applied to the standard distributions. Enhancements include patches to read/write PNG
and PDF files, so it is worth applying them if you are going to the trouble to compile the source.

7.2.4 Compiling XV on RedHat 6.0

There are two, minor, source-code changes that need to be made to get XV to compile under RH6.0. Firstly
in xv.h lines 119-121 should be commented out, otherwise the compilation will fail with an “already
defined in stdio.h” error.

http://www.trilon.com/xv/
http://www.trilon.com/xv/manual/xv-3.10a/cover.html
http://www.trilon.com/xv/manual/xv-3.10a/cover.html
http://www.trilon.com/xv/downloads.html
http://www.trilon.com/xv/downloads.html

SC/15.2 —Other Applications 44

Figure 14: The xv interface along with the Color Editor Dialog (accessed from the Windows
pull down menu).

45 SC/15.2 —Other Applications

Figure 15: The xv interface being used to grab an image from the display.

Additionally, in the machine-specific options of the package Makefile the Linux entry need to
specify the full path to the X11 libraries. So line 105 needs to read:

MCHN = -DLINUX -L/usr/X11R6/lib

7.2.5 XV is not under the GPL

It may surprise some people but XV has not been released under the GPL or another similar
community licence. For personal use XV is shareware, if you find it useful you should register
the program with the author ($25). Commercial, government, and institutional users must
register their copies of XV. Users at Starlink sites are covered by the project wide XV licence
purchased by Starlink. More information about XV licensing issues can be found http://www.
trilon.com/xv/pricing.html.

7.3 XPaint

XPaint is a color image editing tool which features most standard paint program options. It
allows for the editing of multiple images simultaneously and supports most of the common
formats, including PPM, XBM, TIFF, JPEG, etc.

XPaint is divided into a toolbox area, for selecting the current paint operation, and paint
windows for modifying/creating images. Each paint window has access to its own color palette
and set of patterns, although the paint operation in use is globally selected for all windows. An
example of the interface in use is shown in Figure 16.

More information on xpaint can be found at http://home.worldonline.dk/\simtorsten/
xpaint/.

http://www.trilon.com/xv/pricing.html
http://www.trilon.com/xv/pricing.html
http://home.worldonline.dk/~torsten/xpaint/
http://home.worldonline.dk/$\sim $torsten/xpaint/
http://home.worldonline.dk/$\sim $torsten/xpaint/

SC/15.2 —Other Applications 46

Figure 16: The xpaint interface.

7.4 Xfig

Unlike xpaint, xfig is a drawing rather than a painting package. The difference is subtle. In a
paint package if you have for instance drawn a line, the application no longer remembers that
it is a line, it is simply a bunch of individual (unrelated) pixels that are now a different colour
than they were previously. In a drawing package the application considers the line as an “object”
that can be moved, modified or deleted without disturbing anything else. xfig allows you to
construct figures using objects such as circles, boxes, lines and spline curves. It is also possible
to import images in formats such as GIF, JPEG or PostScript, imported images are treated as
“objects”. A simple example of what can be easily done with the package is shown in Figure 17.

xfig saves figures in its native format, Fig format, but they may be converted into various for-
mats such as PostScript, GIF or JPEG. There are other applications that are capable of producing
output in Fig format that can subsequently be read into xfig. For example, xfig doesn’t have a
facility to create graphs, but tools such as GNUPLOT can create graphs and output them in Fig
format.

More information on xfig can be found at http://epb1.lbl.gov/xfig/.

7.4.1 pstoedit

The pstoedit application can convert PostScript and PDF graphic files into a variety of vector
formats, including the xfig Fig format and the Sketch internal format. pstoedit can be found
at http://www.geocities.com/SiliconValley/Network/1958/pstoedit/.

http://epb1.lbl.gov/xfig/
http://epb1.lbl.gov/xfig/
http://www.geocities.com/SiliconValley/Network/1958/pstoedit/
http://www.geocities.com/SiliconValley/Network/1958/pstoedit/

47 SC/15.2 —Other Applications

Figure 17: Creating a figure showing line of sight effects on a magnetically accreting white
dwarf using the xfig package.

7.5 Sketch

Sketch is another interactive drawing program which somewhat resembles Corel Draw or Adobe
Illustrator. Unusually for such a beast Sketch has been implemented entirely in Python, and to
use it you must have Python installed along with the Python Imaging Library. In addition the
application also requires Tk/Tcl to be present. More information can be found on the Sketch
home page at http://sketch.sourceforge.net/.

Sketch also has a scripting function (using Python) to automate tasks and add new functionality.
Since Sketch was been developed in Python, scripts have access to all areas of the application
(including internal data structures) which allows user written scripts to be very powerful tools.

7.6 GIMP

The GNU Image Manipulation Program (GIMP) is package suited to tasks as photo retouching,
image composition and image authoring. It can be used as a simple paint program but is perhaps
better suited to tasks such as photo retouching. However, the GIMP is extensible. It has been
designed to be augmented with plugins, and includes a scripting interface to simplify repetitive
image processing, making it suitable for batch processing tasks and image format conversion.
Figure 18 shows the interface during a typical GIMP session.

It requires the presence of the GTK+ library. If you are working on a Linux machine it is likely
that both GTK+ and the GIMP will already be installed. The latest stable version of the GIMP
available before going to press is 1.1.13 (released 29th Nov 1999).

Likened to Adobe Photoshop by its supporters, the GIMP is a complex tool in the right hands,
it is a professional quality graphics package. Unfortunately this doesn’t mean that anything

http://sketch.sourceforge.net/
http://sketch.sourceforge.net/
http://www.gimp.org/
http://www.gtk.org/

SC/15.2 —Other Applications 48

Figure 18: The GIMP interface.

49 SC/15.2 —Other Applications

coming out of the GIMP will be of professional quality, it means that if a professional graphics
artist goes to use it they’ll find all the tools they’re used to or need to get the job done. I don’t
claim to be a professional graphics or layout artist, and am therefore in no position to try and
teach anyone how to use the GIMP. However I still make use of the program quite extensively
when dealing with graphics, because the truth is you don’t have to be a professional to make use
of the GIMP at a basic level. In fact, due to the plugin nature of Script-Fu some highly advance
graphics manipulation techniques are available very easily to the novice user. A good start is
the GIMP User Manual (GUM) which you can find at http://manual.gimp.org/, however I’d
also like point you towards the following books:

• GIMP: The Official Handbook
By Karin Kylander, Olof S. Kylander
US List Price: $49.99
UK List Price: £46.99
Paperback – 895 pages (3 November, 1999)
Coriolis Group Books; ISBN: 1576105202

• The Artists’ Guide to the GIMP
By Hammel, Michael J.
US List Price: $39.95
UK Equivalent: £24.54
Paperback – 332 pages (1 December, 1998)
Specialized Systems Consultants; ISBN: 1578310113

GIMP: The Official Handbook appears to be a bound copy of the GIMP User Manual (GUM), while
The Artists Guide to the GIMP is a tutorial style book that seems to be well thought of by the Open
Source community.

A good series of introductory articles can be found on The Graphics Muse web site which is
maintained by the author of The Artists’ Guide to the GIMP, see http://graphics-muse.com/.

• Mastering GIMP - Part I (5th Nov 1999)
http://graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/15/article.html

• Mastering GIMP - Part II (12th Nov 1999)
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/16/article.html

• Mastering GIMP - Part III (4th Dec 1999)
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/17/article.html

• Mastering GIMP - Part IV (13th Dec 1999)
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/18/article.html

Another good article, also on The Graphics Muse site is “Better aliens through science”. This article
shows some of the power of the GIMP when used to do photo manipulation work.

• Better aliens through science (May 1999)
http://graphics-muse.com/gimp/tutorials/1999/9/tutorial.html

http://manual.gimp.org/
http://manual.gimp.org/
http://manual.gimp.org/
http://graphics-muse.com/
http://graphics-muse.com/
http://graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/15/article.html
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/16/article.html
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/17/article.html
http://www.graphics-muse.com/graphics-cgi/gmGimp.pl/gimp/articles/1999/18/article.html
http://graphics-muse.com/
http://graphics-muse.com/gimp/tutorials/1999/9/tutorial.html

SC/15.2 —Other Applications 50

7.6.1 Plug-ins, Script-Fu, GIMP-Perl and Gimp::Fu

There seems to be some confusion between GIMP Plug-ins and Script-Fu. Plug-ins are external
modules that do the graphics transformations, while Script-Fu is the name of the Scheme based
scripting interface in the GIMP. Scripts written in SIOD, the Scheme subset that GIMP uses, are
known simply as Script-Fu scripts.

GIMP-Perl is the name of the Perl module that interfaces with the GIMP, it is the primary interface
between Perl scripts and the GIMP. However, it does not include easy access to the user interface
(the GUI), nor does it abstract the Procedural Database. These two aspects are more properly
handled by, yet another, Perl module Gimp::Fu. Perl scripts that use GIMP-Perl and Gimp::Fu
are sometimes referred to as Perl-Fu scripts. All this can get somewhat confusing at times. The
GIMP-Perl extensions have been part of the core GIMP distribution since version 1.1, however if
you are using GIMP on even a recent distribution of Linux (e.g. RedHat 6.x) then it is likely that
you are using and older version of the GIMP (1.0.x or below). The simplest course if you want
to make use of GIMP-Perl interface is to ask your system manager to upgrade your version of
the application, alternative you can download the plug-in from the GIMP Plug-In Registry. The
official GIMP-Perl web site can be found at http://www.goof.com/pcg/marc/gimp.html.

A good introduction to the GIMP-Perl extensions can be found (again) at the The Graphics Muse
site:

• Gimp-Perl Introduction (July 1999)
http://graphics-muse.com/gimp/articles/1999/5/article.html

• Gimp-Perl Part II (August 1999)
http://graphics-muse.com/gimp/articles/1999/6/article.html

An example script, taken from the GIMP-Perl documentation, to add a “scratch effect” to an
image is shown below:

#!/usr/bin/perl

use Gimp;
use Gimp::Fu;
use Gimp::Util;

sub new_scratchlayer {
my($image,$length,$gamma,$angle)=@_;
my $type=$image->layertype(0);
my($layer)=$image->layer_new ($image->width, $image->height, $image->layertype(0),

"displace layer ($angle)", 100, NORMAL_MODE);
$layer->add_layer(-1);
$layer->fill (WHITE_IMAGE_FILL);
$layer->noisify (0, 1, 1, 1, 0);
$layer->mblur (0, $length, $angle);
#$layer->levels (VALUE_LUT, 120, 255, $gamma, 0, 255);
$layer->levels (VALUE_LUT, 120, 255, 0.3, 0, 255);

$layer;
}

http://www.goof.com/pcg/marc/gimp.html
http://www.goof.com/pcg/marc/gimp.html
http://graphics-muse.com/
http://graphics-muse.com/gimp/articles/1999/5/article.html
http://graphics-muse.com/gimp/articles/1999/6/article.html

51 SC/15.2 —Other Applications

register "scratches",
"Create a scratch effect",
"Add scratches to an existing image. Works best on a metallic-like background.",
"Marc Lehmann",
"Marc Lehmann <pcg\@goof.com>",
"19990223",
N_"<Image>/Filters/Distorts/Scratches",
"*",
[
[PF_SLIDER, "angle_x" , "The horizontal angle" , 30, [0, 360]],
[PF_SLIDER, "angle_y" , "The vertical angle" , 70, [0, 360]],
[PF_SLIDER, "gamma" , "Scratch map gamma" , 0.3, [0.1, 10, 0.05]],
[PF_SPINNER, "smoothness", "The scratch smoothness", 15, [0, 400]],
[PF_SPINNER, "length" , "The scratch length" , 10, [0, 400]],
#[PF_BOOL, , "bump_map" , "Use bump map instead of displace", 0],

],
[],
[’gimp-1.1’],
sub {

my($image,$drawable,$anglex,$angley,$gamma,$length,$width)=@_;

$image->undo_push_group_start;

my $layer1 = new_scratchlayer ($image, $length, $gamma, $anglex);
my $layer2 = new_scratchlayer ($image, $length, $gamma, $angley);

$drawable->displace ($width, $width, 1, 1, $layer1, $layer2, WRAP);

$layer1->remove_layer;
$layer2->remove_layer;

$image->undo_push_group_end;

$image;
};

exit main;

7.6.2 GIMP-Python

GIMP-Python is a package that allows people to write plug-ins for the GIMP in Python rather
than Script-Fu (Scheme), Perl or C. GIMP-Python binds to the GTK+ Python extention library
PyGTK, found at http://www.daa.com.au/~james/pygimp/, rather than the more commonly
used (under Python) Tkinter extentions for a more consistent look and feel interface to the GIMP.
The package provides an almost complete wrapper for the libgimp plug-in library, and also
offers Script-Fu capabilities through the gimpfu module.

An example of a GIMP-Python plug-in (a translation of the Script-Fu clothify plug-in) is shown
below, in this example the GUI is generated by the gimpfu module.

from gimpfu import *

have_gimp11 = gimp.major_version > 1 or \

http://www.daa.com.au/~james/pygimp/
http://www.gtk.org
http://www.daa.com.au/~james/pygtk/
http://www.daa.com.au/~james/pygimp/

SC/15.2 —Other Applications 52

gimp.major_version == 1 and gimp.minor_version >= 1

def python_clothify(timg, tdrawable, bx=9, by=9,
azimuth=135, elevation=45, depth=3):

bx = 9 ; by = 9 ; azimuth = 135 ; elevation = 45 ; depth = 3
width = tdrawable.width
height = tdrawable.height
img = gimp.image(width, height, RGB)
layer_one = gimp.layer(img, "X Dots", width, height, RGB_IMAGE,

100, NORMAL_MODE)
img.disable_undo()
if have_gimp11:

pdb.gimp_edit_fill(layer_one)
else:

pdb.gimp_edit_fill(img, layer_one)
img.add_layer(layer_one, 0)
pdb.plug_in_noisify(img, layer_one, 0, 0.7, 0.7, 0.7, 0.7)
layer_two = layer_one.copy()
layer_two.mode = MULTIPLY_MODE
layer_two.name = "Y Dots"
img.add_layer(layer_two, 0)
pdb.plug_in_gauss_rle(img, layer_one, bx, 1, 0)
pdb.plug_in_gauss_rle(img, layer_two, by, 0, 1)
img.flatten()
bump_layer = img.active_layer
pdb.plug_in_c_astretch(img, bump_layer)
pdb.plug_in_noisify(img, bump_layer, 0, 0.2, 0.2, 0.2, 0.2)
pdb.plug_in_bump_map(img, tdrawable, bump_layer, azimuth,

elevation, depth, 0, 0, 0, 0, TRUE, FALSE, 0)
gimp.delete(img)

register(
"python_fu_clothify",
"Make the specified layer look like it is printed on cloth",
"Make the specified layer look like it is printed on cloth",
"James Henstridge",
"James Henstridge",
"1997-1999",
"<Image>/Python-Fu/Alchemy/Clothify",
"RGB*, GRAY*",
[

(PF_INT, "x_blur", "X Blur", 9),
(PF_INT, "y_blur", "Y Blur", 9),
(PF_INT, "azimuth", "Azimuth", 135),
(PF_INT, "elevation", "elevation", 45),
(PF_INT, "depth", "Depth", 3)

],
[],
python_clothify)

main()

The GIMP-Python manual is available as either HTML or DocBook SGML at:

53 SC/15.2 —Other Applications

Figure 19: Larry Ewing’s image of Tux the penguin.

• GIMP-Python Documentation (HTML)
http://www.daa.com.au/~james/pygimp/pygimp.html

• GIMP-Python Documentation (SGML)
http://www.daa.com.au/~james/pygimp/pygimp.sgml

The package can be downloaded via FTP from ftp://ftp.daa.com.au/pub/james/pygimp/. It
should be noted that the version available at the GIMP Plug-In Registry is out of date.

7.6.3 GIMP Plug-In Registry

The GIMP Plug-In Registry is a central repository for GIMP extentions, and can be found at
http://registry.gimp.org/. The available plugins provide everything from support for exotic
file format (e.g. Adobe Photoshop) to interfacing with SANE. If you have a graphics problem
that someone else might have faced, and you are considering using the GIMP, maybe you should
look here before trying to write your own code to do the job.

7.6.4 The GIMP and layers

One important feature of the GIMP that most casual users, who aren’t used to applications such
as Photoshop, may not be aware of is the concept of layers. Let us work through an (very) basic
example together to show you how they can be useful.

Take an image – I’m going to use Larry Ewing’s image of Tux the penguin, the Linux mascot
(see Figure 19). As part of the example we are going to want to modify the channel levels of the
image, since my example image was a GIF (pseudo colour) image we need to convert it to RGB
before we start to play with it. Alot of the GIMP tools work only on RGB (true colour) images
rather than indexed (which is how the GIMP refers to pseudo colour).

This is not a problem, if your image is not RGB to begin with right click on the image to bring up
the actions menu and choose IMAGE→RGB

http://www.woodsoup.org/projs/tux_aqfh/doc/index.html
http://www.daa.com.au/~james/pygimp/pygimp.html
http://www.daa.com.au/~james/pygimp/pygimp.sgml
ftp://ftp.daa.com.au/pub/james/pygimp/
http://registry.gimp.org/
http://registry.gimp.org/
http://www.woodsoup.org/projs/tux_aqfh/doc/index.html

SC/15.2 —Other Applications 54

Figure 20: The GIMP Layers & Channels dialog.

Figure 21: Making a “floating selection” in GIMP.

We now want the Layers & Channels dialog, so bring up the action menu again and choose
LAYERS→LAYERS & CHANNELS, this should produce a dialog similar to Figure 20.

As I’ve done in Figure 21 we want to select a box on the image, we’re going to put some text in
the box so it needs to be big enough to write in.

We want to select this area to work with, go to the menu and choose SELECT→FLOAT. If you
look at the Layers & Channels dialog (Figure 22) you should see that a “Floating Selection” has
appeared.

Double click on the Floating Selection layer in the Layers & Channels dialog, a pop-up dialog
will appear allowing you to rename it (as in Figure 23). We’re going to make this a text layer, so
call it something appropriate like “text Box”.

Make sure the new layer is selection in the Layers & Channels dialog (see Figure 24).

55 SC/15.2 —Other Applications

Figure 22: A new layer has been created for the image.

Figure 23: The pop-up dialog.

Figure 24: Our renamed text layer is selected in the dialog.

SC/15.2 —Other Applications 56

Figure 25: The GIMP Levels dialog.

Figure 26: The Levels dialog again, note the position of the bottom slider.

Back to the image and bring up the menu, select IMAGE→COLORS→LEVELS to bring up the
Levels dialog (see Figure 25).

We want to change the cut off level in the layer, so move the upper (white) slider in the lower
(Output Level) bar from the extreme right to around the centre of the allowed range. So long as
the PREVIEW button above this slider is selected you should see out text box getting darker. If
you are not sure what I’m talking about here compare Figure 25 (before) and Figure 26 (after).

Hit OK and the you should end up with something like Figure 27.

Now we want some text, bring up the menu and select TOOLS→TEXT. Alternatively, you can
also go to the control panel (probably by now exiled to the corner of your screen) and hit the
TEXT TOOL button (the T button mid-way down the right hand side). Either of these actions
will bring up the Text dialog (see Figure 28). Choose your font and whatever font properties
you wish, and type some text into the dialog. On hitting OK you’ll find that the text appears as

57 SC/15.2 —Other Applications

Figure 27: Tux with his darkened text layer.

Figure 28: The GIMP Text dialog.

a floating selection which you can move around using the MOVE TOOL (the thing that looks like
a addition sign, third down on the left hand side of the control panel, or TOOLS→MOVE from
the action menu).

If you look at your Layers & Channels dialog again you’ll see that the the text has appeared as
another “Floating Selection”. We’ve just created another layer in our image. Rename this layer
as before and use the text tool to add any additional text you want to the image, see Figure 29

Figure 30 shows the Layers & Channels dialog after adding two additional layers with the TEXT

TOOL, the first text layer is selected (which is why the words “Tux the Penguin” are surrounded
with a dotted line in Figure 29.

Click on the “Background” layer in the Layers & Channels dialog, and you should be left with
something like the pen-ultimate figure in the series, Figure 31.

SC/15.2 —Other Applications 58

Figure 29: Our Tux image with text added as additional layers ontop of the box we prepared
earlier.

Figure 30: The Layers & Channels dialog again with the first text layer selected.

59 SC/15.2 —Other Applications

Figure 31: The final product, Tux with text.

Figure 32:

SC/15.2 —Other Applications 60

Figure 33: Original star spot image generated using PGPLOT

Now select FILE→SAVE AS from the action menu, see Figure 32, to bring up the File dialog.

Save the image as an XCF file. Then go back to the image and select LAYERS→MERGE VISIBLE

LAYERS from the menu, choosing EXPAND AS NECESSARY from the popup menu. If you look at
the Layers & Channels dialog you’ll see that your carefully crafted layers have disappeared and
we now have a flat bitmap. You can now save the image in a usable format, although since we
currently have an RGB image if you want to save it as GIF (for instance) you’ll have to change
the image back to Indexed by selecting IMAGE→INDEXED from the menu.

Okay, you are probably now wondering why we went to all this trouble of creating multiple
layers for such little pay back. Well we can now go back to our saved XCF image at any time in
the future and change things, GIMP can work with individual layers so, for instance, we can
delete or move the text easily by deleting or moving its layer. Layers add flexibility, it would be
very difficult to remove the text from our final GIF image, but with the layered XCF image this
is a trivial operation.

7.6.5 Mapping images to solid objects

You may have noticed the rather nice star spot image on the front cover of the cookbook. The
inital star spot image, see Figure 33, was generated using some modelling code which wrote
out a greyscale image using PGPLOT. Mapping the image onto the sphere was done using the
GIMP.

Mapping images onto solid objects is just one of the many tools and filters avialable in the GIMP,
the map object function can be found by selecting FILTERS→MAP→TO OBJECT. Newer version
of the GIMP (≥1.1x) have the ability to map images more complex objects, however the version
I was using (v1.0.4, shipped with RedHat 6.0) only allows you to map objects to a sphere (see
Figure 34) or a plane (see Figure 35).

61 SC/15.2 —Other Applications

Figure 34: Star spot image mapped on sphere illuminated from the upper left quadrant by a
point source.

Figure 35: Star spot image projected on plane.

SC/15.2 —Other Applications 62

Figure 36: Star spot image with an inverse bump map and gaussian blur.

Another interesting thing that you can do with the mapping functions in the GIMP is bump map
our image (see Figure 36) by selecting FILTERS→MAP→BUMP MAP to emphasize the star spots.
In this case I’ve used a bump map followed by a gaussian blur, FILTERS→BLUR→GAUSSIAN

BLUR (IIR), to soften the effect. The bump mapped image can be seen in mapped onto a plane
in Figure 37. The MAP OBJECT dialog can be seen in Figures 38, 39, 40 and 41.

Another way to present our star spot map is given by the SCRIPT-FU→ANIMATE→SPINNING

GLOBE extention. This generates multiple maps onto a sphere and could be used to create an
animated GIF of our star.

7.7 Electric Eyes

The development of Electric Eyes is bound up along with GNOME, the GNU Project user environ-
ment. It was originally intended to be the default image viewer on the GNOME/Enlightenment
desktop, although it does now have some limited image editing facilities. An example of the
Electric Eyes interface, which is typically GNOMEish, is shown in Figure 42

If you have GNOME, for more information see http://www.gnome.org/, installed then Electric
Eye will likely also be installed. If you are working on a RedHat Linux box this is almost
certainly the case.

7.8 WhirlGIF

WhirlGIF is a command-line utility for generating multi-image GIF animations from a sequence
of GIF files. More information can be found at http://www.msg.net/utility/whirlgif/. For
example:

http://www.gnome.org/
http://www.gnome.org/
http://www.enlightenment.org/
http://www.gnome.org/
http://www.msg.net/utility/whirlgif/
http://www.msg.net/utility/whirlgif/

63 SC/15.2 —Other Applications

Figure 37: Bump mapped star spot image projected on a plane

Figure 38: The GIMP Map Object Dialog “Options”

SC/15.2 —Other Applications 64

Figure 39: The GIMP Map Object Dialog “Light”

Figure 40: The GIMP Map Object Dialog “Material”

65 SC/15.2 —CAD Applications

Figure 41: The GIMP Map Object Dialog “Orientation”

% whirlgif -loop 5 -trans "#00f10e" file*.gif

would create an animated GIF (directed to standard out) from all files in the current directory
fitting the pattern file*.gif, which would loop five times before stoping and have colour
#00f10e set to be the transparent index. While:

% whirlgif -o out.gif -time 5 a.gif b.gif -time 100 c.gif -time 5 d.gif e.gif

would create an animated GIF (called out.gif) from the files a.gif, b.gif, c.gif, d.gif and
e.gif. The d.gif file would be displayed for 1s, while the remaining frames would be displayed
for only 50ms each (delays are in units of 1/100 th of a second).

8 CAD Applications

8.0.1 QCad

QCad is a professional level CAD System. With QCad you can construct and change drawings
and save them in DXF format which allows you to import/export your drawing into other CAD
systems such as AutoCAD. An example of the QCad interface is shown in Figure 43.

The QCad application requires the presence of the Troll Tech Qt Library which underlies the
KDE desktop environment. If you are running Linux it is likely that KDE, and hence the Qt
library, is already installed. If not, more information about the Troll Tech Qt library can be found
at http://www.kde.org/ and http://www.troll.no/.

Further information on the QCad program can be found at http://www.qcad.org.

http://www.qcad.org
http://www.troll.no/
http://www.kde.org/
http://www.kde.org/
http://www.troll.no/
http://www.qcad.org

SC/15.2 —CAD Applications 66

Figure 42: The Electric Eyes interface.

67 SC/15.2 —Format Conversion

Figure 43: The QCad application running under KDE.

8.0.2 XCircuit

The XCircuit application, while flexible enough to be used as a generic drawing program, is
primarly aimed at the production of publishable-quality electrical circuit schematic diagrams
and related figures, see Figure 44.

Further information on the XCircuit application can be found on the author’s web site at
http://bach.ece.jhu.edu/~tim/programs/xcircuit/.

9 Format Conversion

9.1 CONVERT

The Starlink CONVERT package is used to convert data files between Starlink’s Extensible
n-dimensional Data Format (NDF), which is used by most Starlink applications, and a number
of other common data formats. Using these utilities, astronomers can process their data selecting
the best applications from a variety of Starlink or other packages. The package is discussed in
depth in SUN/55.

Starting up the CONVERT package will also set up defaults for the automatic NDF conversion
facilities to enable applications which use the NDF library to read and write most of the file
formats handled by the CONVERT package.

http://bach.ece.jhu.edu/~tim/programs/xcircuit/
http://bach.ece.jhu.edu/~tim/programs/xcircuit/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_sect_auto
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SC/15.2 —Format Conversion 68

Figure 44: The Xcircuit interface.

An application to convert NDF to a PBMplus format PGM file is one of the conversion utilities
available, so further conversion (to formats not handled by CONVERT) can be carried out using
the PBMplus package.

9.1.1 NDF2GIF

The NDF2GIF application (part of the Starlink CONVERT package, can be used to convert an
NDF into the common (and therefore portable) GIF format. Usage:

ndf2gif in [out] [scale] {high=? low=?
{percentiles=[?,?], [numbin=?]
{sigmas=[?,?]

The application converts the imput NDF image into a 256 grey-level GIF image, e.g.

% ndf2gif image scale=percentiles

will convert the file image.sdf into a GIF file scaling the image between the values corresponding
to two percentiles. In this case, since the thresholds were not provided, the program would
prompt for the percentile values between which the image should be scaled.

69 SC/15.2 —Postscript and PDF

9.2 PBMplus

The PBMplus package is a command line toolkit for fonverting a large slection of image formats
to and from a portable internal format. In addition to the converters the package includes some
(simple) tools for manipulation of the images while in the portable format. PBMplus compiles
out of the box, however you may want to add support for TIFF, JPEG and PNG format images
by installing the relevant libraries, see http://www.acme.com/software/pbmplus/ for details.

A quick example, if you want to convert a Sun raster file to a Postscript file you’d use something
that looks like:

% rasttopnm < infile | pnmtops > outfile

9.2.1 PBM, PGM, PPM or PNM images?

The PBMplus package is split into four distinct suites. PBM programs to handle bitmaps (1 bit
per pixel), PGM programs to handle grayscale images, PPM programs to handle full colour
images and lastly PNM programs which carry out content-independent manipulations on any
of the three internal formats. PBM stands for Portable Bit Map, PGM stands for Portable Gray
Map, PPM stands for Portable Pixel Map and PNM stands for Portable Any Map

The suites are upwardly compatible, e.g. PGM programs can read both PGM and PBM files,
but only write PGM files, and PPM programs can read all three formats, butu only write PPM
files. PNM programs will read all three formats and , in general, write out the same type as they
read in. Understanding this realtionship is fundamental to understanding the way the package
works. for instance if you want to convert an xwd to a gif file you would read the xwd image in
using xwdtopnm and then convert to gif using ppmtogif. Since ppmtogif is a PPM program it
can read whichever of the three formats xwdtopnm writes.

9.3 Image Resizing

A common task linked with format conversion is image resizing. Traditionally under UNIX most
people tend to use the XV package to carry out this task, unfortunately this package has poor
dithering capabilities and resized images tend to be badly pixelated. I’d personally recommend
the ImageMagick display application which does a superior job of dithering the final resized
image to avoid pixelization.

10 Postscript and PDF

Postscript is a page description language. It was introduced by Adobe Systems in the mid-
eighties and has become the standard device independent file format for printing graphics
files. What this means is that PostScript describes a graphics image in such a way so that it
does not make any reference to specific device features (e.g. printer resolution) so that the same
description (postScript file) could be used on any PostScript compatible printer.

http://www.acme.com/software/pbmplus/
http://www.libtiff.org/
http://www.ijg.org/
http://www.libpng.org/pub/png/pngcode.html
http://www.cs.indiana.edu/docproject/programming/postscript/postscript.html

SC/15.2 —Postscript and PDF 70

An Encapsulated PostScript File (EPSF or EPS) is a PostScript file structured so that it can be
incorporated or included into another PostScript file (so that for example a diagram created
with a graphics application can be inserted into a text document created with a word processor).

PDF is another page description language introduced by Adobe to replace PostScript, however
it isn’t yet in as widespread use as PostScript. For instance its quite hard to find a printer that
has a PDF interpreter implemented in hardware, i.e. you can not sent a PDF file directly to the
printer but must first convert it to PostScript using display software such as Adobe Acrobat.

10.1 Ghostscript

The Ghostscript software suite is an interpreter for the PostScript language, with the ability
to convert PostScript language files to many other formats, display them, and print them on
printers that don’t have PostScript language capability built in. Additionally Ghostscript also
functions as an interpreter for Portable Document Format (PDF) files, with the much the same
capabilities. Finally the suite also contains a C subroutine library (the Ghostscript library)
that implements the graphics capabilities that appear as primitive operations in the PostScript
language.

There are actually two different versions of Ghostscript, these being the Aladdin and GNU dis-
tributions. The main difference between them seems to be the licencing terms, GNU Ghostscript
being distributed under the GPL of course with the Aladdin version being distributed under
the Aladdin Free Public Licence. The only difference in the licencing terms appears to be that
the Aladdin licence does not allow commercial distribution. If you are using Linux you almost
certainly have GNU Ghostscript installed due to the licencing issue.

Further information on Ghostscript can be found at http://www.cs.wisc.edu/~ghost/.

10.2 GV and Ghostview

Ghostview is a full fuction X Windows interface for the Ghostscript the PostScript interpreter.
Ghostview and Ghostscript function as two cooperating programs. Ghostview creates the
viewing window and Ghostscript draws in it. The GUI is fairly self explanatory, however the
application ships with an extensive manual page (type man ghostview at the UNIX prompt).

GV is a version of Ghostview that was modified for VMS, some enhancements made, and then
modified to run again under Unix. It is now replacing Ghostview as the standard desktop tool
for viewing PostScript files, and is in fact the default viewier in most Linux dsitributions (i.e. if
you type ghostview on a Linux prompt you’ll probably actually start the GV program instead).
An example of GV in action can be seen in Figure 45. Further information on GV and Ghostview
can be found at http://www.cs.wisc.edu/~ghost/.

10.3 Acrobat

Adobe Acrobat Reader allows you to view and print PDF files. While the viewer is free, if you
want to create PDF content the tools to do so are not. More information is available at http:
//www.adobe.com/products/acrobat/readermain.html. The Acrobat reader is distributed as
part of the Staarlink baseset software, and can be started by typing acroread.

http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/aladdin/index.html
http://www.cs.wisc.edu/~ghost/aladdin/index.html
http://www.cs.wisc.edu/~ghost/gnu/index.html
http://www.gnu.org/copyleft/gpl.html
http://www.cs.wisc.edu/~ghost/aladdin/doc/Public.htm
http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/ghostview/index.html
http://www.cs.wisc.edu/~ghost/gv/index.html
http://www.cs.wisc.edu/~ghost/
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.adobe.com/products/acrobat/readermain.html

71 SC/15.2 —Postscript and PDF

Figure 45: The GV interface.

SC/15.2 —Postscript and PDF 72

10.4 psmerge

psmerge is a utility program for merging one or more Encapsulated PostScript Files into a single
PostScript file. The input files can be individually rotated, scaled and shifted. The output file
can either be Encapsulated PostScript or “normal” PostScript suitable for sending to a printer.
The psmerge utility is covered in detail in SUN/164.

10.5 epsutil

epsutil is a utility for manipulating Encapsulated PostScript files. For more information see
the manual at http://www.math.utah.edu/~beebe/software/epsutil/epsutil.html.

10.6 prescript and pstotext

prescript extracts text from a PostScript file, storing it either as plain ASCII text, or as HTML
according to the mandatory first command-line argument. Usage is:

prescript [html | plain] [input.ps]

The output file will be given the same base name as the input file, with its file extension set to
one of .html or .txt, according to the first command-line argument.

prescript uses a PostScript interpreter, normally gs, to execute the PostScript program, so that
even text that is generated programmatically, rather than being explicitly present in PostScript
strings, can be extracted. Particular attention is paid to heuristic recognition of word breaks, to
reconstruction of words hyphenated at line breaks, to preservation of paragraph breaks, and to
recognition of TEXligatures.

The prescript program can be downloaded from http://www.nzdl.org/html/prescript.
html.

A possible substitute for prescript is the pstotext utility. More information can be found at
http://www.research.digital.com/SRC/virtualpaper/pstotext.html.

10.7 Postscript to PDF

PDF files can be easily generated using the gs utility using the following command.

gs -q -dSAFER -dNOPAUSE -sPAPERSIZE=a4 -sDEVICE=pdfwrite
-sOutputFile=output.pdf input.ps

10.8 PS Utils

PSUtils, written by Angus Duggan, is a collection of useful utilities for manipulating PostScript
documents. Programs included are psnup, for placing out several logical pages on a single sheet
of paper, psselect, for selecting pages from a document, pstops, for general imposition, psbook,
for signature generation for booklet printing, and psresize, for adjusting page sizes.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_
http://www.math.utah.edu/~beebe/software/epsutil/epsutil.html
http://www.math.utah.edu/~beebe/software/epsutil/epsutil.html
http://www.nzdl.org/html/prescript.html
http://www.nzdl.org/html/prescript.html
http://www.research.digital.com/SRC/virtualpaper/pstotext.html
http://www.research.digital.com/SRC/virtualpaper/pstotext.html
http://www.dcs.ed.ac.uk/home/ajcd/psutils/index.html

73 SC/15.2 —Postscript and PDF

• psbook

The psbook program rearranges pages from a PostScript document into “signatures” for
printing books or booklets, creating a new PostScript file.

Usage is:

psbook [-q] [-ssignature] [infile [outfile]]

Where -q surpresses printing of page numbers below the pages being rearranged (by
default page numbers are printed), and -ssignature selects the size of signature which
will be used. The signature size is the number of sides which will be folded and bound
together; the number given should be a multiple of four. The default is to use one signature
for the whole file. Extra blank sides will be added if the file does not contain a multiple of
four pages.

• psnup

The psnup program puts multiple logical pages onto each physical sheet of paper. The
potential use of this utility is varied but one particular use is in conjunction with psbook.
For example, using groff to create a PostScript document and lpr as the UNIX print
spooler a typical command line might look like this:

% groff -Tps -ms file | psbook | psnup -2 | lpr

Where file is a four-page document this command will result in a two-page document
printing two pages of file per page and rearranges the page order to match the input Pages
4 and 1 on the first output page and Pages 2 then 3 of the input document on the second
output page.

Usage is:

psnup [-wwidth] [-hheight] [-ppaper] [-Wwidth] [-Hheight]
[-Ppaper] [-l] [-r] [-f] [-c] [-mmargin]
[-bborder] [-dlwidth] [-sscale] [-+nup] [-q]
[infile [outfile]]

The -w option gives the paper width, and the -h option gives the paper height, normally
specified in ‘cm’ or ‘in’ to convert PostScript’s points (1/72 of an inch) to centimeters or
inches. The -p option can be used as an alternative, to set the paper size to A3, A4, A5, B5,
letter, legal, tabloid, statement, executive, folio, quarto or 10x14. The default paper size is
A4.

The -W, -H, and -P options set the input paper size, if it is different from the output size.
This makes it easy to impose pages of one size on a different size of paper.

The -l option should be used for pages which are in landscape orientation (rotated 90
degrees anticlockwise). The -r option should be used for pages which are in seascape
orientation (rotated 90 degrees clockwise), and the -f option should be used for pages
which have the width and height interchanged, but are not rotated.

Psnup normally uses “row-major” layout, where adjacent pages are placed in rows across
the paper. The -c option changes the order to “column-major”, where successive pages
are placed in columns down the paper.

SC/15.2 —Postscript and PDF 74

A margin to leave around the whole page can be specified with the -m option. This is
useful for sheets of “thumbnail” pages, because the normal page margins are reduced by
putting multiple pages on a single sheet.

The -b option is used to specify an additional margin around each page on a sheet.

The -d option draws a line around the border of each page, of the specified width. If the
lwidth parameter is omitted, a default linewidth of 1 point is assumed. The linewidth is
relative to the original page dimensions, i.e. it is scaled down with the rest of the page.

The scale chosen by psnup can be overridden with the -s option. This is useful to merge
pages which are already reduced.

The -nup option selects the number of logical pages to put on each sheet of paper. This can
be any whole number; psnup tries to optimise the layout so that the minimum amount of
space is wasted. If psnup cannot find a layout within its tolerance limit, it will abort with
an error message. The alternative form -n nup can also be used, for compatibility with
other n-up programs. psnup normally prints the page numbers of the pages re-arranged;
the -q option suppresses this feature.

• psselect

The psselect program selects pages from a PostScript document, creating a new PostScript
file. Usage is:

psselect [-q] [-e] [-o] [-r] [-ppages] [pages]
[infile [outfile]]

Where the -e option selects all of the even pages; it may be used in conjunction with the
other page selection options to select the even pages from a range of pages, alternatively
the -o option selects all of the odd pages; it also may be used in conjunction with the other
page selection options.

The -ppages option specifies the pages which are to be selected. Pages is a comma-separated
list of page ranges, each of which may be a page number, or a page range of the form
first-last. If first is omitted, the first page is assumed, and if last is omitted, the last page is
assumed. The prefix character “_” indicates that the page number is relative to the end of
the document, counting backwards. If just this character with no page number is used, a
blank page will be inserted in the output.

The -r option causes psselect to output the selected pages in reverse order.

psselect normally prints the page numbers of the pages rearranged; the -q option sup-
presses this. If any of the -r, -e, or -o options are specified, the page range must be given
with the -p option.

• pstops

The pstops program preforms general page rearrangement and selection, creating a new
PostScript file. pstops can be used to perform a large number of arbitrary re-arrangements
of documents, including arranging for printing 2-up, 4-up, booklets, reversing, selecting
front or back sides of documents, scaling, etc.

Usage is:

pstops [-q] [-b] [-wwidth] [-hheight] [-ppaper] [-dlwidth]
pagespecs [infile [outfile]]

75 SC/15.2 —Postscript and PDF

where pagespecs follow the syntax:

pagespecs = [modulo:]specs
specs = spec[+specs][,specs]
spec = [-]pageno[L][R][U][@scale][(xoff,yoff)]

modulo is the number of pages in each block. The value of modulo should be greater than
0; the default value is 1. specs are the page specifications for the pages in each block. The
value of the pageno in each spec should be between 0 (for the first page in the block) and
modulo-1 (for the last page in each block) inclusive. The optional dimensions xoff and yoff
shift the page by the specified amount. xoff and yoff are in PostScript’s points, but may
be followed by the units ‘cm’ or ‘in’ to convert to centimetres or inches, or the flags ‘w’ or
‘h’ to specify as a multiple of the width or height. The optional flags L, R, and U rotate
the page left, right, or upside-down. The optional scale parameter scales the page by the
fraction specified. If the optional minus sign is specified, the page is relative to the end
of the document, instead of the start. If page specs are separated by ‘+’ the pages will be
merged into one page; if they are separated by ‘,’ they will be on separate pages. If there
is only one page specification, with pageno zero, it may be omitted.

The shift, rotation, and scaling are performed in that order regardless of which order they
appear on the command line.

The -w option gives the width which is used by the ‘w’ dimension specifier, and the -h
option gives the height which is used by the ‘h’ dimension specifier. These dimensions are
also used (after scaling) to set the clipping path for each page. The -p option can be used
as an alternative, to set the paper size to A3, A4, A5, B5, letter, legal, tabloid, statement,
executive, folio, quarto or 10x14. The default paper size is A4.

The -b option prevents any bind operators in the PostScript prolog from binding. This
may be needed in cases where complex multi-page re-arrangements are being done.

The -d option draws a line around the border of each page, of the specified width. If the
lwidth parameter is omitted, a default linewidth of 1 point is assumed. The linewidth is
relative to the original page dimensions, i.e. it is scaled up or down with the rest of the
page.

pstops normally prints the page numbers of the pages re-arranged; the -q option sup-
presses this feature.

• psresize

The psresize program rescales and centres a document on a different size of paper. Usage
is:

psresize [-wwidth] [-hheight] [-ppaper] [-Wwidth] [-Hheight]
[-Ppaper] [-q] [infile [outfile]]

The -w option gives the output paper width, and the -h option gives the output paper
height, normally specified in ‘cm’ or ‘in’ to convert PostScript’s points (1/72 of an inch) to
centimeters or inches. The -p option can be used as an alternative, to set the output paper
size to A3, A4, A5, B5, letter, legal, tabloid, statement, executive, folio, quarto or 10x14.
The default output paper size is A4. The -W option gives the input paper width, and the -H
option gives the input paper height. The -P option can be used as an alternative, to set the

SC/15.2 —X Window Displays 76

input paper size. psresize normally prints the page numbers of the pages output; the -q
option suppresses this feature.

10.9 Generating Postscript Output

A common task is to take an image, for instance a GIF or JPEG, and generate a PS or EPS output
figure for publication. Depending on which package is used for this task there is a suprising
difference between the size of the final postscript image. Of the packages available ImageMagick
seems to produce the smallest postscript output files due to its use of vectorised postscript
rather than bitmaps which other packages (such as xv) use. In extreme cases this can mean the
difference between a 2Mb and 50k final postscript file. All the postscript images in this cookbook
were generated from the original GIF files using ImageMagick.

11 X Window Displays

11.1 Pseudocolor

The pixel value in the frame buffer selects an entry in a colour table which contains the intensities
of the three primary colours (Red, Green, Blue). This is how the traditional image display from
the days before X worked and there are typically 8 planes in the frame buffer and therefore
256 entries in the colour table. Each colour table entry typically has 8 bits for each component
giving 256 levels of red, 256 of green etc. Put another way, at any one time you can have up to
256 different colours out of a palette of 1024 (∼16 million) possible colours.

11.2 Grey Scale

This is the same as pseudocolor except that only only one of the primary colours drives the
monitor. Since colour monitors are cheap these days (can you get a monochrome monitor for a
PC now?) it is of little interest.

11.3 Static Grey

Like Grey Scale but you can’t change the colour table—its contents are fixed at some values
chosen by either the video adapter manufacturer or the writer of the X server. Even less
interesting than grey scale.

11.4 Directcolor

The frame buffer pixel value is divided into three fields; one for each primary colour and each
of the fields selects an entry in a separate lookup table each of which holds the intensity of the
appropriate primary colour. A typical configuration is a frame buffer with 24 bits per pixel
divided into three 8 bit fields each of which addresses a 256 entry colour table with 8 bits per
entry. Such a configuration will be described by a manufacturer as supporting 224 (16 million)
colours out of a palette of 16 million.

77 SC/15.2 —X Window Displays

11.5 Truecolor

This is like Direccolor but with the contents of the colour tables fixed.

11.6 What does this mean for you?

Until a few years ago, the best an astronomer could hope for was an 8-bit frame buffer which
supported pseudocolor and most applications were written to work with this colour model.
Unfortunately, an application that wants to change the colour table has to be aware of whether
it is using pseudocolor or directcolor and supporting both in the same application is not trivial—
different X lib calls are needed for setting the colour tables in the two models and the way that
images are formatted is different. This means that there are still plenty of application in use that
display pseudocolor on a directcolor or truecolor display. Most modern hardware supports both
pseudocolor and directcolor with a 24 bit frame buffer and you are typically given the choice of
either 8 bit pseudocolor or 24-bit directcolor (or 24-bit truecolor—more on this later). But why
not 24-bit pseudocolor I hear you ask—the answer lies in the the amount of memory required
for the colour tables. For 8-bit pseudo-colour you need (assuming 8 bits per colour) 768 bytes
(3×256); for 24-bit directcolor you need the same but for 24-bit pseudocolor you would need a
little over 40 Mbytes! (3×224). So, how is it that direct-colour can give you 16 million colours
with less that a Mbyte of colour table while pseudocolor need more than 50 times this to give
you the same number of colours? Where’s the catch?

Consider what happens when you want to change the colour of something drawn on the screen.
When using pseudocolor you change the colour table entry addressed by the pixel value used
to draw the object—only things drawn with that pixel value change colour. However, with
directcolor this is not true—if, for example, you change the red colour table entry for the selected
pixel value not only do the things drawn with that pixel value change but anything drawn with
a pixel value with the same value in the red component also changes—and there are 65 thousand
pixel values that satisfy this condition. The end result is that if you want to be able to change the
colours of things without effecting the colours of anything drawn with a different colour you
find that you are back to only 256 colours—exactly what you get with 8-bit pseudocolor (and for
1 third of the video memory).

So, for a typical astronomical image display application which enables you to adjust the colour
table interactively you are no better off using a 24-bit display than you are with an 8 bit one.
This is not quite true because most applications have some fixed colours and you can potentially
use up fewer colour table entries for the same number of fixed colours.

Running X server has a "default visual" (and hence colour model) but may support the creation
of other windows with other colour models. However, not all applications are capable of
requesting a visual type other than the default. An important exception is applications written
in tcl/tk which has a -visual qualifier that enables you to select the visual type when you start
the application. One undesirable consequence of running applications with different visual
types on the same display is “colour flashing” where as the focus moves to one application the
display of others is garbled. This effect is only absent on very high-end hardware.

Many X servers allow the default visual type to be specified when they are started (sometimes
indirectly by specifying the frame buffer depth—e.g. 8 implies pseudocolor while 24 implies
truecolor). The choice of truecolor rather then directcolor for the 24-bit mode may, at first, sight
seem surprising. The reason is that with 8 bits per colour component in the frame buffer and 8

SC/15.2 —X Window Displays 78

bits per colour in the colour table you can load the colour tables so that every possible intensity
is available simultaneously and applications can draw in every one of the 16 million different
colours simply by drawing with the right pixel value. Since the colour tables can’t be changed,
all applications are guaranteed to have the full palette available—with a directcolor model the
available pallet may have been reduced by some other application allocating entries for its own
exclusive use. Unless applications are going to change the colours of things after they have been
drawn—and most don’t (animation of button presses and the like are done by redrawing with a
different pixel value)—you are better off with truecolor.

To find out what visual types an X server supports, run xdpyinfo (part of the X software) and
don’t assume that you will necessarily get the same set if you start the server with a different
default.

None of the above applies to MS Windows or NT (or Macs)—they handle colour allocation
in a quite different way and may well exploit the capabilities of your video adapter rather
better—after all it was probably designed to work with Windows from the start.

11.7 Pseudo Colour applications on True Colour desktops

Some applications, including several Starlink supported ones, were designed to be used on
Pseudocolor displays. While this is not a problem on the Sun, DEC or NCD hardware, most of
which supply a Pseudocolor display by default, the newer Linux machines supplied by Starlink
are usually configured to take full advantage of their superior graphics hardware and provide
Truecolor displays by default. Trying to use applications which were designed to run uder
Pseudocolor displays on a Truecolor desktop may cause the program to display poorly, fail to
run, or in extreme cases crash the X server.

There are several approaches to this problem. The least desirable option is to run your Linux
X server in Pseudocolor (so called 8 bpp) mode by starting X Windows using the following
command:

% startx -- -bpp 8

this does mean however that you are not utilising your graphics hardware at it best performance.
This is somewhat irritating, hence there is a second (better) approach to the problem, you can
run two different X servers on the same machine at the same time.

Linux offers the ability to use virtual consoles, these enable you to have several simultaneous
sessions on the same machine. You can change between sessions by hitting Alt-F?, e.g. Alt-F2
(hold down the Alt key and press the F2 key), or if you are in X Windows Ctrl-Alt-F?.

So how does this help us run multiple X servers? Login to your Linux machine as normal and
start X Windows using the startx command. Once X Windows has booted, hit Ctrl-Alt-F2
to switch to a second virtual console, and login again. Once you’ve logged in start a second X
server, this one in 8 bpp mode, using the following command:

% startx -- :1 -bpp 8

You can now switch between the two X servers using Ctrl-Alt-F7 (the original Truecolor
X server on :0) and Ctrl-Alt-F8 (the Pseudocolor X server on :1). Applications can even

http://www.linuxdoc.org/HOWTO/Keyboard-and-Console-HOWTO-7.html

79 SC/15.2 —Virtual Computing

be started in an xterm on one X server and displayed in another by using the -display
localhost:0 and -display localhost:1 command line options, which most X applications
will accept.

You should note that your system administrator may have configured your Linux box to
automatically start a Pseudocolor display. If so you can follow the instructions above towards
the opposite goal, having a Truecolor display on :1 by starting the second X server using the
following command:

% startx -- :1 -bpp 16

or if you have more graphics memory (and your X server has been configured to use it):

% startx -- :1 -bpp 24

There is a down side, since you are now running two X servers you are using twice as much
memory, it is inadvisable to try this approach on machines with only a small amount of system
memory (RAM). However, yet another additional solution to the problem of Pseudocolor
applications and Truecolor desktops is presented in Section 12.1.

12 Virtual Computing

12.1 Virtual Network Computing (VNC)

Virtual Network Computing (VNC) allows the remote display of a computer “desktop” not
only on the machine where it is running, but also from anywhere on the internet and on a wide
variety of operating systems and hardware architectures.

12.1.1 Pseudo colour displays

As I mentioned in section 11.7 you can use VNC as another way around the problems with
Pseudocolor applications on Truecolor displays. Effectively you use VNC to display a self-
contained 8-bit Pseudocolor X display on your desktop, programs which require such a display
will then run happily in that window, and colour hungry applications which can run in True
color can run outside it.

With VNC installed on your system, and the binaries in your PATH, to start a Pseudocolor
window on any X display you must first start a VNC server using:

% vncserver -cc 3 -depth 8

New ’X’ desktop is mypc:1

Starting applications specified in /home/aa/.vnc/xstartup
Log file is /home/aa/.vnc/X.log

http://www.uk.research.att.com/vnc/
http://www.uk.research.att.com/vnc/

SC/15.2 —Virtual Computing 80

Figure 46: VNC displaying a pseudo colour desktop on a true colour display.

The first time you do this, you will be asked for a password for protecting your VNC sessions.
This can be the same or different from the password you use for logging in on that computer.
Choose it in the same way as you would a normal Unix password.

You must then start a VNC viewer using the display numebr reported by the preceeding
command:

% vncviewer :1
vncviewer: VNC server supports protocol version 3.3 (viewer 3.3)
Password:

At this point type in the password you gave when you first ran vncserver. A window will now
pop up on your screen, this is a new X Windows desktop. Run Starlink programs from xterms in
that window, and they will pop up as sub-windows in that window and run without problem.
Outside that window, the X display will carry on working as normal.

When you have finished with the pseudocolour desktop, close down the windows as in a normal
X session and terminate the server, using the display number again:

% vncserver -kill :1

Figure 46 illustrates several aspects of the VNC system. Here we show a Pseudocolor VNC X
Windows desktop (1024×768 pixels) running the twm window manager on a DEC Alpha using
KAPPA to display a CCD image. The VNC desktop is being displayed ontop of a True colour X

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_

81 SC/15.2 —Virtual Computing

Windows desktop (1280×1024 pixels) running the WindowMaker window manager on a Linux
PC.

You can customise the size of the pop up desktop by using the command line option -geometry,
e.g.

% vncserver -cc 3 -depth 8 -geometry 1024x768
New ’X’ desktop is mypc:1

Starting applications specified in /home/aa/.vnc/xstartup
Log file is /home/aa/.vnc/X.log

While the applications automatically started along with the vncserver can be customised from
the ∼/.vnc/xstartup script (created the first time vncserver is run) in your home directory. By
default this script starts one xterm and the twm window manager. By editing ∼/.vnc/xstartup
this behaviour can be modified; by copying or symbolically linking your .xsession or .xinitrc
to it the VNC window can be given the same behaviour as your normal X session.

Additionally, it is not necessary to kill the VNC server at the end of a session, or indeed ever; the
only important thing is not to leave an ever increasing number of unused servers running on
the system. If it’s more convenient, you can simply close the VNC viewer window at the end
of a session, and next time you wish to use it start vncviewer again, without having to rerun
vncserver, and your desktop will be exactly as you left it.

12.1.2 Computing by remote control

VNC also comes in other flavours, with versions for many different operating systems. If you
think hard enough you can come up with lots of different possible uses, but one that has proved
useful for teaching is the remote control of single user machines.

If you run a VNC server on a MS Windows PC and display the screen on your UNIX workstation
(or even another Windows machine) you can control the machine remotely using the vncviewer,
if you move the mouse inside your VNC window the mouse cursor on the actual machine will
move with it. If you start a VNC server on every machine in a teaching lab then you can flick
between them monitoring student progress, useful for remote diagnostic purposes.

Figure 47 illustrates this setup, showing a MS Windows 98 desktop (1024×768 pixels) being
displayed ontop of a Truecolor X Windows desktop (1280×1024 pixels) running the WindowMaker
window manager on a Linux PC.

12.2 VMWare

What is VMWare? This is actually a fairly complicated thing to explain, although it is obvious
whats going on when you see the application running. VMware is software that runs multiple
virtual computers on a single PC – at the same time – without partitioning or rebooting. On
top of these virtual machines you can then run the OS of your choice. In other words you boot
your machine into, say, Linux which VMware refers to as the “host” operating system. You
then run the VMWare virtual machine, which can run a variety of other operating systems, e.g.
MS Windows, as a so called “guest” OS. This proceedure is illustrated in Figure 48, while an
example of the application in action is shown in Figures 49 and 50.

http://www.uk.research.att.com/vnc/
http://www.vmware.com/

SC/15.2 —Virtual Computing 82

Figure 47: VNC displaying a Windows 98 desktop on a X Windows display.

Figure 48: Schematic showing how VMWare is used as a layer between the real and virtual
machines.

83 SC/15.2 —Virtual Computing

Figure 49: VMWare booting the virtual machine using Linux as the “host” OS.

This is not an emulator, you are not emulating the CPU or the hardware inside the virtual
machine, you are just allowing another operating system to use it in parallel with the one you
already have running. Each virtual machine can have its own IP number (if your machine is on
a network) and you can treat it exactly as it it was another physical computer. Of course you
don’t really have two computers so your guest operating system ends up sharing resources with
your host operating system. Basically, the more RAM you have when using VMWare the better,
although I’ve quite comfortably used it on machines with as little as 64Mb and gotten away
with it.

This is not a boot manager; boot managers and VMware are complementary. Boot managers
help you select one of several available operating systems and boot it on the computer. Only
one operating system is ever running at one time, and moving to another requires rebooting the
system. Adding an operating system also typically requires repartitioning a disk. By contrast,
VMware allows multiple operating systems to run simultaneously on the same computer.
VMware can work with existing disk partitions on an IDE drive or can support new operating
systems in VMware logical disks without the need to repartition a disk.

VMWare supports two host operating systems, Linux and Windows NT, and a variety of guest
opertaing systems including DOS, Windows, Linux and BSD dervided operating systems.
Support for OS/2 and BeOS as guest operating systems is likely to be introduced eventually.

Although it is fairly cheap for academic purchase at US$99.00 per user licence, VMWare is not
free. More information about VMWare can be found online at http://www.vmware.com.

http://www.vmware.com/
http://www.vmware.com

SC/15.2 —Virtual Computing 84

Figure 50: VMWare running Windows 98 as a “guest” OS, using Linux as the “host” OS.

12.3 plex86 (previously FreeMWare)

There is an open source competitor to VMWare, called plex86 (previously called FreeMWare).
Since the last edition of this cookbook coding has advanced rapidly and is now actually able to
run DOS 6.22 as a guest operating system. However the virtual machine only makes it part way
through booting Linux, so for most purposes the application is yet to reach the “usable” stage.
More information can be found at http://www.plex86.org/.

12.4 The VMWare and plex86 Patent Position

The GIF legal problems are not the only ones in the software world. Very recently a new player in
the virtualisation game has appeared called VOS, unknown until recently they have apparently
filled broad ranging patent applications across the discipline. If legitimate this casts a shadow
across the continued development of both VMWare and plex86. On the other hand the VOS web
site looks somewhat suspicious and the current opinion in the community is that it might be a
hoax, and since they are currently taking credit card orders, a malicious hoax at that. Even if this
is not the case, there is a great deal of prior art in the field and it seems unlikely that these patent
applications will be upheld in court. However, for anyone that is a heavy user of one of the
main virtualisation products, VMWare or Bochs for instance, this is something worth following
fairly closely.

http://www.plex86.org/
http://www.flashvos.com/
http://www.flashvos.com/page_20.htm
http://www.vmware.com/
http://www.plex86.org/
http://www.vmware.com/
http://www.bochs.com/

85 SC/15.2 —Hardware

Figure 51: plex86 running DOS 6.22 as a “guest” operating system.

13 Hardware

13.1 Scanners

Only a limited amount of the available scanner hardware is supported under UNIX, if you
want to use a scanner with a UNIX workstation (or Linux PC) it is important to investigate the
availability of hardware drivers for your chosen platform. SCSI scanners are currently the most
heavily supported hardware, support for parallel and USB scanners is much patchier.

The SANE Project attempts to provide a standardised application programming interface (API)
for access to any raster image scanner hardware (flatbed scanner, hand-held scanner, video- and
still-cameras, frame-grabbers, etc.).

The SANE package is divided into two parts: a selection of backend hardware drivers which sup-
port scanners from different Manufacturers, and a variety of different frontend GUI applications
that sit ontop of the backend drivers.

SANE has been ported to a variety of platforms including Linux, Solaris and Digital UNIX,
although the Digital UNIX port is still in need of debugging and is untested. More information
on the SANE Project can be found at http://www.mostang.com/sane/.

13.2 Digital Cameras

The GNU Digital Camera Project supports over 90 different digital camera models with the
gphoto program under both Linux and BSD operating systems, see Figure 52. The program is

http://www.mostang.com/sane/
http://www.mostang.com/sane/sane-support.html
http://www.mostang.com/sane/
http://www.gphoto.org/index.html

SC/15.2 —Hardware 86

Figure 52: The gphoto interface.

known to run under RedHat Linux 6.1, SuSE Linux 6.2, Linux Mandrake 6.1, Debian GNU/Linux
2.1, FreeBSD 3.2, NetBSD 1.4.1 and OpenBSD 2.6. The package requires GNU sed, GTK+, glib
and imlib. If you are running Linux these packages will likely already be installed on your
system, however if they do not appear to be present then they can be found at the following
sites:

• GNU sed
ftp://gnudist.gnu.org/pub/gnu/sed/

• GTK+
ftp://ftp.gtk.org/pub/gtk/

• glib
ftp://ftp.gtk.org/pub/gtk/

• imlib
ftp://www.rasterman.com/pub/enlightenment/enlightenment/

The gphoto package can be downloaded from http://www.gphoto.org/gphoto/download.html,
and is available as source code or binary RPMs. If you want to install the package it is recom-
mended that you download the latest stable version as a binary RPM, and ask your system
administraor to install the RPM on your system. Configuration is straight forward, plug your
camera into a spare serial port and select the appropriate COM Port and Camera Model from the
configuration menu. To download images from your camera, go to the camera menu and select
the Get Index option.

ftp://gnudist.gnu.org/pub/gnu/sed/
ftp://ftp.gtk.org/pub/gtk/
ftp://ftp.gtk.org/pub/gtk/
ftp://www.rasterman.com/pub/enlightenment/enlightenment/
http://www.gphoto.org/gphoto/download.html

87 SC/15.2 —The Web

14 The Web

14.1 Transparent GIFs

There are many equally valid ways of generating a GIF with a transparent background index.
For instance using ImageMagick, first display your GIF image using the display program.
Choose MATTE from the IMAGE EDIT command menu and identify a pixel with the cursor that
has the colour you wish to make transpart. From the new menu select METHOD and choose the
most appropriate method:

• point
The point method changes the matte value of the selected pixel

• replace
The replace method changes the matte value of any pixel that matches the color of the
pixel you selected

• floodfill
The most useful, floodfill changes the matte value of any pixel that matches the color of
the pixel you selected and is a neighbour.

Select your transparent pixel with the pointer and press a button. The image is redisplayed with
any transparent pixels recolored to the background color. You can select other pixels or areas to
force to transparent. When you are satisfied, press Return.

Alternatively you can do this from the command line using the giftrans program available via
anonymous FTP from ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/. The giftrans
program is distributed as part of the STAR2HTML Starlink package and should therefore be
available on Starlink supported systems.

To get a list of the current colourmap for the image use:

% giftrans -l file.gif
Global Color Table:

Color 0: Red 0, Green 0, Blue 0, #000000 (black, gray0, grey0)
Color 1: Red 90, Green 90, Blue 0, #5a5a00
Color 2: Red 123, Green 123, Blue 0, #7b7b00
Color 3: Red 156, Green 156, Blue 0, #9c9c00
Color 4: Red 189, Green 189, Blue 0, #bdbd00
Color 5: Red 255, Green 255, Blue 0, #ffff00 (yellow, yellow1)
Color 6: Red 222, Green 231, Blue 222, #dee7de
Color 7: Red 255, Green 255, Blue 255, #ffffff (white, gray100, grey100)

this shows the colour index, the RGB colour value in decimal/hexidecimal and (for some
colours) an X Window colour name.

To set colour index zero a the transparent colour you would then use:

% giftrans -t 0 file.gif > out.gif

ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/
ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/

SC/15.2 —The Web 88

You can also specify the color as an RGB triple or an X Windows color name; invoke giftrans
with the -? option to see a complete usage description.

If you intend to use GIF images on your web pages, you should make yourself aware of the
legal position before proceeding.

14.2 Animated GIFs

Again there are may perfectly valid ways of going about this, see for instance the WhirlGIF
program, discussed in Section 7.8.

Alternatively we can, make use of the ImageMagick convert application with the -delay and
-page options. The -delay option is used to specify the delay in 1/100th of a second between
the display of each frame of the animation. For example:

% convert -delay 20 frame*.gif animation.gif

You can also declare specific delays for each frame of the image sequence. For example, if the
delay was 20, 10, and 5, use:

% convert -delay 20 frame1.gif -delay 10 frame2.gif -delay 5 \
frame3.gif animation.gif

Use -page to specify the left and top locations of the image frame:

% convert frame1.png -page +50"+1"00 frame2.png -page +0"+1"00 \
frame3.png animation.png

If you want the image to loop within Netscape, use -loop option, for instance:

% convert -loop 50 frame*.png animation.png

You can also use the convert application in the opposite sense to split a GIF animation into
individual image files, e.g.

% convert animation.gif frame%02d.gif

The resulting image files are titled frame01.gif, frame02.gif, frame03.gif, etc.

If you intend to use GIF images on your web pages, you should make yourself aware of the
legal position before proceeding.

14.3 Beveled Images

Again, most packages including the GIMP and ImageMagick will allow you to add borders to
your image to make buttons.

The simplest method is using the GIMP. Make sure you are working on an RGB image (using
IMAGE→RGB) and then select SCRIPT-FU→DECOR→ADD BEVEL. You’ll be queried as to the
width of the bevel in pixels, and it will then be automagically generated for you.

89 SC/15.2 —The GIF Legal Position

14.4 “Web Safe” Colour Maps

Netscape predefines 216 colours for colour mapped (pseudo colour) workstations. When
dithering an image into Indexed mode, the GIMP asks whether you want to use a WWW
optimised palette. If you do so the image will be dithered to use the netscape colour map.
ImageMagick has similar functionality implemented using the convert command, e.g.

% convert -map netscape: alpha.gif beta.gif

14.5 Browser support of PNG images

Due to the legal problems surrounding GIF images the PNG image standard has been put
forward as its replacement. Unfortunately support for PNG images is still pretty patchy in the
main stream browsers such as netscape. Details of the extent of PNG support implemented
into the different browsers are listed at http://www.libpng.org/pub/png/pngapbr.html.

15 The GIF Legal Position

The Lempel-Ziv-Welsh (LZW) compression algorithm is patented by UniSys. This algorithim is
used in the GIF image standard to store the image data inside the GIF image, and because of
this software which creates GIFs are subject to licensing fees by UniSys. However Unisys has
refused to issue licences to open-source software producers for the use of LZW.

While this contraversy has being going on for several years, Unisys recently (late 1999) raised
the stakes by stating that its policy is to require a $5000 fee (so called Intranet or Billboard Web
site license) from web sites, even non-commerical web sites, that carry GIF images made by unli-
censed software. If you make use of GIF images on your web site that have been generated with
an unlicenced piece of software you may be guilty of “contributory infringement”. Alarmingly,
the LZW compression algorithim is also used in the popular PDF format. Open source software
written to handle PDF files is therefore also at risk from this decision.

While it is debatable whether the patent covers LZW decompressors, while the Open Source
community take the view that it does not, Unisys argues otherwise. It is possible you may be
liable if you distribute code which implements LZW decompression.

For a history of the patent controversy, see http://lpf.ai.mit.edu/Patents/Gif/Gif.html
and http://www.cloanto.com/users/mcb/19950127giflzw.html. To avoid legal problems, it
would be a good idea to convert all GIFs on your web sites to PNGs or JPEGs.

When does all this nonsense go away? The basic U.S. patent on the LZW algorithim expires in
June of 2003, however patents on variants of the basic algorithim run for another 20 years and
further U.S. applications are pending.

http://www.netscape.com
http://www.libpng.org/pub/png/pngapbr.html
http://www.patents.ibm.com/details?pn=US04558302__
http://www.unisys.com/unisys/lzw/lzw-license.asp
http://lpf.ai.mit.edu/Patents/Gif/Gif.html
http://www.cloanto.com/users/mcb/19950127giflzw.html

SC/15.2 —From the Quick Archives 90

16 From the Quick Archives

16.1 FITS to MPEG

A question that has come up more than once as a QUICK request is how to turn a series of FITS
files into a movie. Antony Holloway has written a script to automatically convert a series of
FITS images into an MPEG movie. The script makes use of the Starlink CONVERT and the
Berkely mpeg_encode packages.

The script, along with copies of the mpeg_encode source and documentation is available via
anonymous FTP:

• fitstompeg script
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-script.tar

• mpeg_encode documentation
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-docs.ps

• mpeg_encode for Linux
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-linux.tar.gz

• mpeg_encode for Digital UNIX
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-osf.tar.gz

• mpeg_encode for SunOS/Solaris
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-sunos.tar.gz

The mpeg_encode program should be installed and accessible somewhere in your $PATH, the
fitstompeg script and default.param.head file should be copied into the directory containing
the FITS file you want to convert into a movie. By default the script will take all the files in the
current directory whose filename ends in “.FITS” and convert them into PGM images using the
Starlink CONVERT program. At this stage if you have the pbmplus package installed (which
should be the case for most Starlink sites) you can then modify the output PGM files before they
are used to produce the final animation. Two examples of such tinkering are shown in the script
(shown below).

#!/bin/csh

#+
Name:
fitstompeg

Purpose:
Convert a series of FITS images to PGM format and from these
generate an mpeg animation file.

Description:
The script tries to find the files (*.FITS) which must be in
the correct order when listed with ls. The program then generates

http://www.starlink.ac.uk/quick/
http://www.cv.nrao.edu/fits/
mailto:ajh@ast.man.ac.uk
ftp://mm-ftp.cs.berkeley.edu/pub/mpeg/encode/
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-script.tar
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-docs.ps
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-linux.tar.gz
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-osf.tar.gz
ftp://ftp.astro.keele.ac.uk/pub/aa/mpeg_encode-sunos.tar.gz

91 SC/15.2 —From the Quick Archives

the pnm files in the local directory and finally produces the
mpeg animation.

Authors:
AJH: Anthony Holloway (Starlink, Manchester)
{add_further_authors_here}

History:
1-DEC-1998 (AJH):
Original version.
{add_further_changes_here}
#-

Source Starlink setup scripts

source /star/etc/login
source /star/etc/cshrc

Enable Convert commands

convert

Convert FITS files to NDF

echo "Converting FITS files to NDF"

fits2ndf in="*.FITS" out="*"

Convert and count each NDF to PGM format, animframeX.pgm

echo "Converting NDF files to PGM format"

set i = 1

foreach file (*.sdf)

set outname = $file:r

Original attempt - fails on BITPIX -32 files
fits2pnm $file >! $outname".pnm"

ndf2pgm in=$outname out="animframe"$i".pgm"

Optional delete of input file
rm -f $file

Optional pgm image manipulation
NB: Final image must be animframe$i.pgm, hence mv command
e.g. Scaling by a factor 0.25
#
pnmscale 0.25 animframe$i.pgm > animframe-s$i.pgm
mv animframe-s$i.pgm animframe$i.pgm

SC/15.2 —Package Availability 92

e.g. Change the contrast of the images
pgmnorm animframe$i.pgm > animframe-s$i.pgm
mv animframe-s$i.pgm animframe$i.pgm

@ i = $i + 1

end

@ i = $i - 1

echo "Total number of frames is $i"
echo "Editing the default.param file to set this value"

Edit the mpeg_encode parameter file to set the number of frames

cp default.param.head default.param
echo "animframe*.pgm [1-$i]" >> default.param
echo "END_INPUT" >> default.param

Run the mpeg encoding command

mpeg_encode default.param

Optional delete of PGM files
rm -f animframe*

end

17 Package Availability

• angif
http://phil.ipal.org/freeware/angif/

• libjpeg
ftp://ftp.uu.net/graphics/jpeg/

• libpng
http://www.libpng.org/pub/png/pngcode.html

• libungif
http://prtr-13.ucsc.edu/~badger/software/libungif/index.shtml

• PGPLOT
http://astro.caltech.edu/~tjp/pgplot/index.html

• PGPERL
http://www.aao.gov.au/local/www/kgb/pgperl/

• BUTTON library
http://www.ucm.es/info/Astrof/button/button.html

http://phil.ipal.org/freeware/angif/
ftp://ftp.uu.net/graphics/jpeg/
http://www.libpng.org/pub/png/pngcode.html
http://prtr-13.ucsc.edu/~badger/software/libungif/index.shtml
http://astro.caltech.edu/~tjp/pgplot/index.html
http://www.aao.gov.au/local/www/kgb/pgperl/
http://www.ucm.es/info/Astrof/button/button.html

93 SC/15.2 —Package Availability

• PLplot
http://emma.la.asu.edu/plplot/

• ptcl
http://www.InfoMagic.com/~nme2/ptcl/ptcl.html

• QDP
http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html

• PONGO
http://www.starlink.ac.uk/

• VNC
http://www.uk.research.att.com/vnc/

• zlib
ftp://ftp.freesoftware.com/pub/infozip/zlib/index.html

• gphoto
http://www.gphoto.org/

• SANE
http://www.mostang.com/sane/

• mpeg_encode
ftp://mm-ftp.cs.berkeley.edu/pub/mpeg/encode/

• GTK+
http://www.gtk.org

• PyGTK
http://www.daa.com.au/~james/pygtk/

• GIMP-Python
http://www.daa.com.au/~james/pygimp/

• Python Imaging Library
http://www.python.org/sigs/image-sig/Imaging.html

• PBMplus
http://www.acme.com/software/pbmplus/

• gd Library
http://www.boutell.com/gd/gd.html

• XPaint
http://home.worldonline.dk/~torsten/xpaint/

• PSUtils
http://www.dcs.ed.ac.uk/home/ajcd/psutils/index.html

http://emma.la.asu.edu/plplot/
http://www.InfoMagic.com/~nme2/ptcl/ptcl.html
http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html
http://www.starlink.ac.uk/
http://www.uk.research.att.com/vnc/
ftp://ftp.freesoftware.com/pub/infozip/zlib/index.html
http://www.gphoto.org/
http://www.mostang.com/sane/
ftp://mm-ftp.cs.berkeley.edu/pub/mpeg/encode/
http://www.gtk.org
http://www.daa.com.au/~james/pygtk/
http://www.daa.com.au/~james/pygimp/
http://www.python.org/sigs/image-sig/Imaging.html
http://www.acme.com/software/pbmplus/
http://www.boutell.com/gd/gd.html
http://home.worldonline.dk/~torsten/xpaint/
http://www.dcs.ed.ac.uk/home/ajcd/psutils/index.html

SC/15.2 —Package Availability 94

Acknowledgments

In compiling this document I have leant heavily on already available material, usually the
packages manual or other documentation, in all cases links to the original sources have been
included. Some of the material on VNC was based on a draft SUN written by Mark Taylor.
The image of Tux the penguin used throughout this cookbook was created by Larry Ewing
(lewing@isc.tamu.edu) using The GIMP.

http://www.ast.cam.ac.uk/~mbt/
http://www.woodsoup.org/projs/tux_aqfh/doc/index.html
mailto:lewing@isc.tamu.edu

	Introduction
	Call for contributions
	Subroutine Libraries
	The PGPLOT library
	Encapsulated Postscript and PGPLOT
	PGPLOT Environment Variables
	PGPLOT Postscript Environment Variables
	Special characters inside PGPLOT text strings

	The BUTTON library
	The pgperl package
	Argument mapping – simple numbers and arrays
	Argument mapping – images and 2D arrays
	Argument mapping – function names
	Argument mapping – general handling of binary data

	Python PGPLOT
	GLISH PGPLOT
	ptcl Tk/Tcl and PGPLOT
	Starlink/Native PGPLOT
	Graphical Kernel System (GKS)
	Enquiring about the display
	Compiling and Linking GKS programs

	Simple Graphics System (SGS)
	PLplot Library
	PLplot and 3D Surface Plots

	The libjpeg Library
	The giflib Library
	The libungif Library
	The angif Library
	The PNG Format
	The MNG Format
	The Python Imaging Library
	The gd Library
	gd from other languages

	Plotting Packages
	QDP
	QDP Basic Stuff
	Plot devices and PostScript output
	Error Bars
	That ``Date and Time'' Thing
	Fitting using QDP
	QDP Files
	COD and QDP models

	PONGO
	SM
	GNUplot
	Co-ordinate systems
	Plotting 3D data

	Image Display
	KAPPA
	SAOimage
	Printing in SAOimage

	GAIA

	Visualisation
	Other Applications
	ImageMagick
	display
	import
	animate
	montage
	convert
	mogrify
	identify
	combine
	XTP
	XMagick
	PythonMagick

	XV
	Screen Capture
	Problems with small images
	Getting XV, patches and enhancements
	Compiling XV on RedHat 6.0
	XV is not under the GPL

	XPaint
	Xfig
	pstoedit

	Sketch
	GIMP
	Plug-ins, Script-Fu, GIMP-Perl and Gimp::Fu
	GIMP-Python
	GIMP Plug-In Registry
	The GIMP and layers
	Mapping images to solid objects

	Electric Eyes
	WhirlGIF

	CAD Applications
	QCad
	XCircuit

	Format Conversion
	CONVERT
	NDF2GIF

	PBMplus
	PBM, PGM, PPM or PNM images?

	Image Resizing

	Postscript and PDF
	Ghostscript
	GV and Ghostview
	Acrobat
	psmerge
	epsutil
	prescript and pstotext
	Postscript to PDF
	PS Utils
	Generating Postscript Output

	X Window Displays
	Pseudocolor
	Grey Scale
	Static Grey
	Directcolor
	Truecolor
	What does this mean for you?
	Pseudo Colour applications on True Colour desktops

	Virtual Computing
	Virtual Network Computing (VNC)
	Pseudo colour displays
	Computing by remote control

	VMWare
	plex86 (previously FreeMWare)
	The VMWare and plex86 Patent Position

	Hardware
	Scanners
	Digital Cameras

	The Web
	Transparent GIFs
	Animated GIFs
	Beveled Images
	``Web Safe'' Colour Maps
	Browser support of PNG images

	The GIF Legal Position
	From the Quick Archives
	FITS to MPEG

	Package Availability

