
SC/16.2

Starlink Project
STARLINK Cookbook 16.2

A. Allan & Malcolm J. Currie

2008 July 4

The IFU Data-Product Cookbook
Version 1.3

SC/16.2 —Abstract ii

Abstract

This cookbook is a collection of material covering IFU data reduction and analysis. Along with
this material are pointers to more advanced documents dealing with the various packages, and
hints and tips about how to deal with commonly occurring problems.

iii SC/16.2—Contents

Contents

1 Introduction 3

2 The Datacube Package 3

3 Data reduction 4
3.1 Reduction paradigms . 4
3.2 INTEGRAL data . 4
3.3 OASIS data . 4
3.4 SAURON data . 5
3.5 GMOS data . 5
3.6 CIRPASS data . 5
3.7 SMIRFS data . 6
3.8 TEIFU data . 6
3.9 UIST data . 6
3.10 VIMOS data . 6
3.11 Other IFU instruments . 7

4 File formats 8
4.1 The GMOS working format . 8
4.2 The new IRAF spectral format . 9
4.3 The UK data-cube format . 10
4.4 MEF to data-cube format . 12
4.5 Format conversion . 12

4.5.1 GMOS MEF to NDF . 12
4.5.2 TEIFU FITS to NDF . 13

4.6 GMOS vs. TEIFU format . 14
4.7 FITS header manipulation . 14

4.7.1 Native FITS files . 14
4.7.2 The NDF FITS extension . 14

4.8 FITS I/O with IDL . 14
4.9 NDF I/O with IDL . 15

5 Data-cube manipulation 17
5.1 Existing software . 17

5.1.1 Arithmetic Operations . 17
5.1.2 Cube manipulation . 18
5.1.3 Two-dimensional manipulation . 19
5.1.4 Pixel Operations . 20
5.1.5 Other tools and file manipulation . 20
5.1.6 Visualisation . 21
5.1.7 Mosaics . 22
5.1.8 Spectral fitting . 22

5.2 Locating Features . 23
5.3 Dealing with Graphical Devices . 25

5.3.1 Devices and Globals . 25
5.3.2 The Graphics Database . 25
5.3.3 Pseudo Colour and LUTs . 26

SC/16.2 —Contents iv

5.4 Dealing with WCS Information . 26
5.5 GAIA data visualisation . 29

5.5.1 Cube toolbox . 29
5.5.2 Spectral plot . 30
5.5.3 Volume Visualisation . 31

5.6 IDL and data visualisation . 33
5.6.1 Display problems . 33
5.6.2 Slicer3 . 34
5.6.3 The IDL Astronomy Library . 35
5.6.4 ATV Image Viewer . 35

5.7 IRAF and the Starlink software . 36
5.8 Visualisation using the DATACUBE scripts . 36

5.8.1 How do I create a white-light image? . 37
5.8.2 How do I create a passband image? . 39
5.8.3 How do I step through passband images? 41
5.8.4 How do I extract individual spectra? . 43
5.8.5 How do I compare spectra? . 44
5.8.6 How do I plot stacked spectra? . 46
5.8.7 How do I create a grid of spectra? . 48
5.8.8 How do I create a velocity map? . 50
5.8.9 How do I create line-strength map? . 54
5.8.10 But they don’t handle blended lines! . 55
5.8.11 How do I create line-ratio map? . 55

5.9 Mosaicking . 56

6 Writing csh scripts 58
6.1 How do I get pixel positions using the cursor? . 58
6.2 How do I get real world co-ordinate positions using the cursor? 58
6.3 How do I overplot contours from one image on to another? 59
6.4 How do I use scientific notation in bc? . 59
6.5 My file has been converted to NDF. How do I access FITS header keywords? . . . 60
6.6 How do I create an NDF file from an ASCII file? 61
6.7 How to make a simple GUI . 62

7 Instrument information sources 63

8 Other information sources 64

v SC/16.2—List of Figures

List of Figures

1 The UIST staggered slitlets. 7
2 The GAIA toolbox for displaying a cube. 29
3 GAIA displays a collapsed cube with two spectra. 31
4 Isophotal contours . 32
5 Volume rendering of the Orion dataset. 33
6 The IDL Slice3 GUI showing a projection and a cut. 35
7 The IDL Slice3 GUI showing a projection and the data probe. 36
8 The ATV viewr interface. 37
9 The squash script. 38
10 The passband script. 39
11 A series of 500Å passband images of 3C 27 produced by the step shell script. . . 41
12 The ripper script. 43
13 The compare script. 44
14 The stacker script. 46
15 The gridspec script. 49
16 The velmap script . 51
17 The velmoment script. 54
18 The peakmap script. 55
19 A white-light image of a mosaic. 56
20 An XDialog script based on velmap; here it asks for an input file. 63
21 The same XDialog script later in the run. 64

1 SC/16.2 —List of Figures

Revision history

(1) 1st September 2000; Version 0.1 Original version (AA)

(2) 24th November 2000; Version 0.2 Added VIMOS information (AA)

(3) 12th December 2000; Version 0.3 Added IDL procedures (AA)

(4) 30th December 2000; Version 0.4 Cleanup for release (AA)

(5) 2nd January 2001; Version 1.0 Release version (AA)

(6) 30th September 2002; Version 1.0-1 Minor changes (AA)

(7) 2005 October; Version 1.1 Updated for DATACUBE version 1.1 and major tidy. (MJC)

(8) 2006 March 17; Version 1.1-1 Add illustrated velmoment and gridspec sections; mention
CLINPLOT. (MJC)

(9) 2006 June 16; Version 1.1.-2 Introduce GAIA ‘3D’ in a new illustrated subsection. List
CHANMAP, and smoothing of planes by BLOCK and GAUSMOOTH. (MJC)

(10) 2008 July 4; Version 1.2 Add section on locating features with CUPID and STILTS. Up-
date GAIA section and graphics; add new illustrated subsection on three-dimensional
rendering. Mention PLUCK and PERMAXES. (MJC)

SC/16.2 —List of Figures 2

3 SC/16.2 —The Datacube Package

1 Introduction

Integral Field Spectroscopy (IFS) is a technique to produce a spectra over a contiguous two-
dimensional field, producing as a final data product a three-dimensional data cube of the two
spatial co-ordinate axes plus an additional spectral axis, usually in wavelength. Although
existing techniques, such as stepping a longslit spectrograph or scanning a Fabry-Perot device,
can produce such a data cube, the IFS technique collects the data simultaneously with obvious
savings in observing efficiency. However, IFS has only recently approached maturity as a
hardware technique.

The technique started with the use of lenslet arrays without fibres, but the lack of a reformatting
ability resulted in a short spectral range. The use of fibres improves on the lenslet-only technique,
since the field can be reformatted into a pseudo-slit which can be dispersed by conventional
spectrographs, and allows an IFS capability to be retrofitted to existing spectrographs. The
earliest versions used bare fibres (e.g. INTEGRAL on WHT) but this suffers from inefficient
coupling to the telescope and incomplete field coverage due to gaps between the fibre cores.
Both these problems can be solved by coupling the fibres to micro-lenses. Despite its greater
technical difficulty, this technique has been successfully prototyped, e.g. SMIRFS on UKIRT
and TEIFU on the WHT. For infrared instruments working in cryogenic or space environments
which are hostile to fibres, the technique of image slicing has been developed. Here the field is
sliced into one-dimensional sections which are then reformatted into a near-continuous long slit.

2 The Datacube Package

The Starlink DATACUBE Package (see SUN/237) of which this cookbook forms a part, mainly
consists of C-shell (csh) scripts layered on top of various pieces of the Starlink Software Collec-
tion (SSC). This approach was a deliberate design decision to allow the maximum amount of
flexibility during data visualisation. Due to the relative lack of maturity in this still developing
field, it is difficult to say exactly what visualisation tasks you may wish (or be required) to carry
out to achieve the underlying science. While I (AA) have attempted to anticipate commonly
required tasks, the implementation of the package in easily understandable, and modifiable,
scripts allows you to make minor (or even major) changes to the way they behave, although
most of the scripts already have command-line arguments which can modify their behaviour to
some extent (see SUN/237 for details).

It is to be hoped that enough ground work has been done so that the approach to solving
your data visualisation or manipulation problem is obvious, even if DATACUBE doesn’t have a
script or application to exactly what you require. I would welcome comments, contributions
and corrections to the package since I have been very much aware while compiling it my on
lack of experience in this fast evolving field, and my own biases. For instance, this document
deals only briefly with IRAF, while I am aware that there are IRAF applications available that
will deal with spectral data cubes, my own lack of familiarlity with the IRAF package has
lead to only spartan coverage. Comments should be sent to the Starlink support mailing list
starlink@jiscmail.ac.uk .

http://www.starlink.ac.uk/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://iraf.noao.edu/iraf-homepage.html
mailto:starlink@jiscmail.ac.uk

SC/16.2 —Data reduction 4

3 Data reduction

Initial data reduction to remove instrumental effects such as flat fielding and cosmic-ray removal,
and mapping between the two-dimensional detector co-ordinates and the data cube, is highly
instrument dependent. The IFU instruments currently in use, with obvious exceptions, tend not
to be common user but instead fast-track or in-house instruments. This has had a strong influence
on the available data-reduction software.

3.1 Reduction paradigms

There are two paradigms for IFS data reduction. First, the ‘traditional’ method, adapted from
multi-object spectroscopy (MOS), where the output from each fibre is extracted by tracing the
spectrum and accounting for wavelength-dependent distortion (normally referred to as the MOS
paradigm). More recently, with the arrival of TEIFU where the fibre outputs are under-sampled
by the detector, an alternative paradigm has arisen (usually referred to as the longslit paradigm).
Although the independence of the spatial samples is lost due to the under-sampling of the
point-spread function (PSF) by the detector, it can be shown that this is irrelevant so long as
the target is critically sampled by the IFU; see Allington-Smith & Content (1998). Here the
methods adapted from MOS cannot be used and the resulting dataset bears more resemblance
to traditional longslit spectroscopy than to MOS data.

3.2 INTEGRAL data

INTEGRAL is an integral-field spectroscopic facility deployed at the Nasmyth focus of the
WHT, and channels the light into WYFFOS fibre spectrograph. Up to six fibre bundles are
available, although only three bundles are used in normal operation, with field sizes ranging
from 10 to 40 arcseconds and different fibre core sizes. These options allow observers to make
the most efficient use of the prevailing seeing conditions. More information can be found at
http://www.iac.es/proyect/integral/.

Data-reduction facilities for the instrument are provided by the INTEGRAL IRAFpackage which
contains some standard tasks from other IRAF packages (such as ONEDSPEC, SPECRED, and
CCDRED) and some custom tasks designed to deal with INTEGRAL data. The package can be
downloaded from

http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/integral-0.3.tar.gz along
with the package user manual, which contains installation instructions and a description of the
available reduction software (see Section 7). It should be noted that to compile the INTEGRAL
package requires the Starlink public-domain algorithms (PDA) package to be present on your
machine (see SUN/194).

3.3 OASIS data

OASIS is an integral field spectrograph for use with AOB/PUEO although it can also be used
at the direct f/8 Cassegrain focus as a backup mode and for science programs necessitating
IFS but with a coarser spatial sampling defined by the natural seeing. OASIS can currently
be used in two modes. The imagery mode is used primary for accurate pointing on objects.

http://www.iac.es/proyect/integral/
http://www.iac.es/proyect/integral/
http://iraf.noao.edu/iraf-homepage.html
http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/integral-0.3.tar.gz
http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/integral-0.3.tar.gz
http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/manual_de_reducciones.ps.gz
http://www.starlink.ac.uk/cgi-bin/htxserver/sun194.htx/sun194.html?xref_
http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/
http://www.cfht.hawaii.edu/Instruments/Imaging/AOB/

5 SC/16.2 —Data reduction

Image quality has been optimized so that high spatial resolution (0.′′1) images can be obtained.
The spectroscopic mode offers low-to-medium spectral resolution with a wide range of spatial
samplings performed by an array of hexagonal micro-lenses. Depending of the configuration
employed, the spectrographic field diameter varies from 1.5 arcsec to 10 arcsec. More information
can be found at http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/.

Data-reduction facilities is provided by the XOASIS software and detailed installation and ‘cook-
book style’ usage instructions are available online.

3.4 SAURON data

SAURON is another IFS based on the TIGRE/OASIS concept of a micro-lens array built for the
WHT. It has an array of 1500 square lens, and a wide field, either 10 or 35 arcsec2. Data reduction
is via pipeline software (XSAURON and PALANTIR) especially developed for the instrument which
was modelled after the XOASIS package. More information about the instrument can be found at
http://www.strw.leidenuniv.nl/sauron/.

3.5 GMOS data

The two Gemini Multi-Object Spectrographs (GMOS), one for each Gemini telescope, provides
facilities for two-dimensional spectroscopy over a contiguous field of∼50 arcsec2 with 0.2-arcsec
sampling. A small background field will be available at fixed separation (> 1 arcmin) from the
main object field for accurate background subtraction. Details of the IFU itself can be found at
http://www.gemini.edu/sciops/instruments/gmos/gmosIFU.html.

Data-reduction facilities for the instrument are provided in the Gemini IRAF package.

3.6 CIRPASS data

CIRPASS is a near-infrared spectrograph with a 499-element, lens and fibre, integral-field unit
to collect the light from the target object. CIRPASS is available as a visitor instrument on the
Gemini telescopes. Users of CIRPASS are strongly encouraged to collaborate fully with the
instrument team in Cambridge to get the most out of their Gemini time.

The data-reduction and analysis software for CIRPASS runs under IRAF. There is a cookbook
available at http://www.ast.cam.ac.uk/~optics/cirpass/datared/cookbook_sn1987a.php.

The final data product for the science data is an x,y,λ data cube (see Section 4.3), which can be
visualised as a cube where the z-axis is wavelength and each plane is a picture of what the IFU
observed at that wavelength.

The first version of the data-reduction package will deal separately with the different types
of data (e.g. dome flats, sky flats, arc lamps, flux standards and target observations). For each
type of data there are one or more pipeline scripts to reduce the data, with each pipeline script
running a series of IRAF tasks.

Links to more information on the ongoing development of the reduction software can be found
on the web at http://www.ast.cam.ac.uk/~optics/cirpass/docs.html.

http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/
http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/Reduc/
http://www.strw.leidenuniv.nl/sauron/
http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/Reduc/
http://www.strw.leidenuniv.nl/sauron/
http://www.gemini.edu/sciops/instruments/gmos/gmosIndex.html
http://www.gemini.edu/sciops/instruments/gmos/gmosIFU.html
http://www.gemini.edu/sciops/instruments/gmos/gmosDataRed.html
http://iraf.noao.edu/iraf-homepage.html
http://www.ast.cam.ac.uk/~optics/cirpass/
http://www.ast.cam.ac.uk/~optics/cirpass/docs/install_cirp_software.html
http://iraf.noao.edu/iraf-homepage.html
http://www.ast.cam.ac.uk/~optics/cirpass/datared/cookbook_sn1987a.php
http://www.ast.cam.ac.uk/~optics/cirpass/datared/cookbook_sn1987a.php
http://www.ast.cam.ac.uk/~optics/cirpass/docs/soft_spec.html
http://www.ast.cam.ac.uk/~optics/cirpass/docs.html

SC/16.2 —Data reduction 6

3.7 SMIRFS data

SMIRFS was constructed by the Durham group as a technology demonstrator for the more am-
bitious integral-field units which Durham has producing and continues to develop for the WHT
and Gemini (e.g. GMOS). The IFU works with CGS4 on UKIRT to provide IFS for the near infrared
(1–2 µm in the J and H bands). The SMIRFS IFU is available for use in collaboration with the
SMIRFS-IFU team, please contact Jeremy Allington-Smith (J.R.Allington-Smith@durham.ac.uk).

More information on the technical specifications of the SMIRFS instrument, and the science that
can be done with it, can be found at http://star-www.dur.ac.uk/~jra/ukirt_ifu.html.

3.8 TEIFU data

TEIFU is a system for integral-field spectroscopy using adaptively corrected images produced by
the ELECTRA and NAOMI AO systems on the WHT. It is also able to operate in a stand-alone
mode without an adaptive-optics system.

Data-reduction facilities will be provided by the IMSPEC IRAF package which is under develop-
ment at Durham. No detailed information is available at this time.

3.9 UIST data

UIST is a general-purpose imager and spectrometer operating in the 1–5 µm range at UKIRT,
It was commissioned in 2002 October, replacing all spectroscopy functions of CGS4 except for
echelle spectroscopy, all imaging functions of IRCAM/TUFTI and all imaging functions of UFTI
except the Fabry-Perot filter. It also includes a deployable image slicing IFU mounted in the slit
wheel. Slicing mirrors are used to reformat a 6.0× 3.3-arcsec region of the sky into fourteen
slices (the IFU contains eighteen slicing mirrors but four are currently not usable), each fifty
pixels long, offset from one another along their length. This produces a staggered column on
slitlets (as shown in Figure 1) which is used as the input for the spectrometer in place of the long
slit.

Data acquisition, reduction and control software is provided by the JAC ORAC system. The
data-reduction part of the system, ORAC-DR, is provided by JAC and distributed by Starlink,
and consists of a fully automated perl-based pipelining software (Economouet al. 1999) sitting
on top of the Starlink software collection. A general introduction to the ORAC-DR system can be
found in SUN/230. The data-reduction recipes are documented in SUN/246 and at the UKIRT
web site. An arc spectrum (Ar or Kr from the UIST calibration unit) is used to straighten the
staggered slitlets (which correspond to a wavelength displacement from one slice to another)
and apply a wavelength calibration to the image. The individual slice images will then be copied
to form y-λ planes of an x,y,λ data cube. Recipes are also provided to carry out tasks such as
flat-fielding and flux-calibration. Many of the recipes have specific requirements in terms of, for
instance, darks and flats fields which must be acquired before a target observation is obtained
and reduced on-line.

3.10 VIMOS data

VIMOS has been developed in fast track under ESO contract by the VIRMOS consortium, headed
by the Laboratoire d’Astrophysique de Marseille. In IFU mode the field of view is between
13×13 arcsec2 and 54×54 arcsec2 at 0.33 or 0.67 arcsec fibre−1.

http://star-www.dur.ac.uk/~jra/ukirt_ifu.html
http://www.ukirt.hawaii.edu/instruments/cgs4/cgs4.html
http://www.ukirt.hawaii.edu/
mailto:J.R.Allington-Smith@durham.ac.uk
http://star-www.dur.ac.uk/~jra/ukirt_ifu.html
http://star-www.dur.ac.uk/~jra/teifu.html
http://www.cfai.dur.ac.uk/fix/adaptive-optics/area_main_ao.html
http://www.ing.iac.es/Astronomy/instruments/naomi/
http://www.ukirt.hawaii.edu/
http://www.oracdr.org
http://monet.astro.uiuc.edu/adass98/Proceedings/economouf/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun230.htx/sun230.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun246.htx/sun246.html?xref_
http://www.ukirt.hawaii.edu/instruments/uist/ifu/uistoracdr.html
http://www.ukirt.hawaii.edu/instruments/uist/ifu/uistoracdr.html
http://www.eso.org/instruments/vimos/

7 SC/16.2 —Data reduction

Figure 1: The UIST staggered slitlets.

Data-reduction software (DRS) will be made available by ESO, with the procedures available as
standalone packages, or under the VIMOS pipeline-reduction software.

http://www.oamp.fr/virmos/virmos_publications.htm contains links to various publications.
Two papers are scheduled for the 2005 November Astronomical Journal.

3.11 Other IFU instruments

Since the list of instruments was compiled for the original version of this cookbook, many new
Integral Field Units and area-spectroscopy instruments have come online, such as SINFONI and
FLAMES at the VLT, GNIRS-IFU at Gemini-S, FISICA, SNIFS; and several are being designed,
for instance KMOS-1, MUSE, and FRIDA.

http://www.oamp.fr/virmos/virmos_publications.htm
http://www.eso.org/instruments/sinfoni/
http://www.eso.org/instruments/flames/
http://www.gemini.edu/sciops/instruments/nirs/nirsIndex.html
http://www.ctio.noao.edu/diroff/TALKS_PDF/Eikenberry_fisica_ctio05.pdf
http://www.cfai.dur.ac.uk/fix/projects/kmos1/kmos_main.html
http://www.cfai.dur.ac.uk/fix/projects/muse/muse.html

SC/16.2 —File formats 8

4 File formats

There are two main file format for IFS final data products, and one further prospective format.
The first of these file formats is a MOS style multi-extension FITS file, and is being put forward
by the GEMINI group (see Section 4.1). The other main format is an xyλ—data cube which is
used by the Durham group (i.e. for SMIRFS and TEIFU data) (see Section 4.3).

Of these two formats the more natural for data analysis is the TEIFU style data cube, it has
therefore been adopted as the standard format by the major IFS groups in the UK, Durham
(SMIRFS and TEIFU), Cambridge (CIRPASS) and the ATC (UIST). Conversion between the
GMOS/CIRPASS MEF and UK standard data cube formats(see Section 4.4) will therefore need
to be implemented before these instruments are brought into general use. The EOS VIMOS
instrument will provide its final data product in both MEF and data-cube formats.

The final IFS format is still in draft, and is the new IRAF spectroscopic file format (see Section 4.2).
The specification is intended to provide a general description for two-dimensional spectroscopic
image data, and should be able to represent long-slit, multi-object (MOS), integral-field unit
(IFU) and slitless spectroscopy. Conversion between this format and the standard data-cube
format will be implemented if the standard is adopted.

4.1 The GMOS working format

Currently the final data product of the GMOS and CIRPASS data-reduction software is a multi-
extension FITS (MEF) file. However, this format may be replaced by the new IRAF spectral
format (see Section 4.2) which is currently in development by the IRAF group at NOAO. The
MEF is similar to the standard NIRI format now used with GEMINI, and has a binary FITS table
with separate data, variance and quality planes.

No. Type Name Format BITPIX INH

0 ifs_data.fits 16

1 BINTABLE TAB 16×num. of fibres 8

2 IMAGE SCI λ×num. of fibres −32 F

3 IMAGE VAR λ×num. of fibres −32 F

4 IMAGE DQ λ×num. of fibres 16 F

Table 1: GEMINI MEF file format

The first extension is a binary FITS table with columns: ID, RA, DEC, and SKY. This table would
hold information specific to individual lenslets/fibres like relative fibre positions on the sky
(RA, DEC), whether the fibre is a sky or object spectrum (SKY), etc.

The three image planes are like the IRAF multispec format; each row is a separate spectrum.
This is a compact and efficient way of storing the extracted spectra, avoiding having multiple
extensions for each individual spectra. From IRAF, ONEDSPEC tasks like splot can be used on
individual planes, and ldisplay should be able to work directly on the MEF.

http://fits.gsfc.nasa.gov/
http://fits.gsfc.nasa.gov/
http://iraf.noao.edu/iraf/docs/specwcs.ps.Z

9 SC/16.2 —File formats

4.2 The new IRAF spectral format

A draft document has been written by the NOAO describing the new IRAF spectroscopic file
format. This may, eventually, replace the GMOS working format as the final science data
product for GMOS and CIRPASS observations. An example header block is shown below for
the CIRPASS instrument.

OBJECT = ’CIRPASS: m51 V 600s’ / Observation title
OBJNAME = ’M 51 ’ / Target object
OBJRA = ’13:29:24.00’ / Right ascension of object (hr)
OBJDEC = ’47:15:34.00’ / Declination of object (deg)
OBJEPOCH= 2000.1 / Epoch of object coordinates (yr)
EQUINOX = 2000.0 / Default coordinate equinox (yr)
RADECSYS= ’FK5 ’ / Default coordinate system
RAUNIT = ’hr ’ / Right ascension unit
DECUNIT = ’deg ’ / Declination unit
APERTURE= ’CIRPASS IFU’ / Aperture identification
APTYPE = ’hexlens+fiber’ / Aperture type
APERDIA = 0.36 / Aperture diameter (arcsec)
APERPA = 90.0 / Hexagon angle (deg)
APUNIT = ’arcsec ’ / Aperture dimension unit
APPAUNIT= ’deg ’ / Aperture position angle unit
APEPOCH = 2000.1 / Aperture coordinate epoch (yr)
CRVAL1 = 1.1 / Spectrum dispersion center (um)
CRVAL2 = 0. / Spectrum cross-dispersion center (pixel)
CRPIX1 = 1024.0 / Spectrum center (pixel)
CRPIX2 = 1024.0 / Spectrum center (pixel)
CMIN1 = 0.9 / Spectrum dispersion limit (um)
CMAX1 = 1.3 / Spectrum dispersion limit (um)
CMIN2 = -1.5 / Spectrum cross-dispersion limit (pixel)
CMAX2 = 1.5 / Spectrum cross-dispersion limit (pixel)
CTYPE1 = ’WAVE-WAV’ / Spectrum coordinate type
CTYPE2 = ’LINEAR ’ / Spectrum coordinate type
CUNIT1 = ’um’ / Spectrum coordinate unit
CUNIT2 = ’pixel’ / Spectrum coordinate unit
CD1_1 = 0.00022 / Spec coord matrix (um/pixel)
CD1_2 = 0.0 / Spec coord matrix (um/pixel)
CD2_1 = 0.0 / Spec coord matrix (pixel/pixel)
CD2_2 = 1.0 / Spec coord matrix (pixel/pixel)
SPECFWHM= 2.0 / Fiber FWHM (pixel)
ARA0001 = ’13:29:24.00’ / Aperture right ascension (hr)
ADEC0001= ’47:15:34.00’ / Aperture declination (deg)
CRP20001= 500.0 / Spectrum center (pixel)
ARA0002 = ’13:29:24.00’ / Aperture right ascension (hr)
ADEC0002= ’47:15:34.36’ / Aperture declination (deg)
CRP20002= 504.0 / Spectrum center (pixel)

The aperture identification, APERTURE, specifies the IFU. The aperture type APTYPE, aperture
diameter APERDIA, and aperture position angle APERPA are the same for each spectrum. This
information can be used to construct a data cube (see Section 4.4) or spatial/dispersion displays
in conjunction with the aperture centres. The position angle is for one of the hexagonal edges
and would orient the hexagons (IFU lenslets) when reconstructing a spatial display or data cube.

http://iraf.noao.edu/iraf-homepage.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/spec2d.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/spec2d.html

SC/16.2 —File formats 10

For a purely fibre IFU (such as SAURON) much the same description would be used except the
position angle would be eliminated.

The centre of each spectrum in world co-ordinates is given by the CRVAL keywords. In this
example each spectrum is centred at about 1.1 µm in the dispersion direction (CRVAL1) and
zero pixels in the cross-dispersion direction (CRVAL2). The cross-dispersion co-ordinates are
defined as pixels from the centre of the fibre profile, since there is no real spatial information.
The region the spectra cover in world co-ordinates are given by the CMIN and CMAX keywords.
In this example the spectra cover the range 0.9 to 1.3 µm along the dispersion and −1.5 to 1.5
pixels relative to the fibre profile centre.

The CD keywords define the conversion between world co-ordinates and pixels on the detector.
They also define any possible tilt of the dispersion path relative to the detector pixels. In this
example the dispersion is 0.22 nm per pixel along the first image axis (detector rows) and there
is no tilt.

The CRP keywords override the CRPIX keyword and provide the positions of the fibre spectra on
the detector.

The fibre full width at half maximum (SPECFWHM) gives the fibre profile FWHM at the detector in
the units of the spatial WCS, in this case pixels. This is used to guide the tracing and extraction
of blended fibre profiles.

The ARA and ADEC keywords give the centre positions of each lenslet element or fibre. While it
is desirable for the absolute co-ordinates to be accurate it is more important that the relative
positions be fairly precise. It is these keywords that determine the reconstructed field and gives
the IFU sampling pattern and orientation. The relative positions of the lenslets or fibres on the
sky is something that should be well-known for each IFU instrument.

4.3 The UK data-cube format

The MOS-style MEF format, which is the end product of the GMOS and CIRPASS data-reduction
software, is not particularly natural way of handling IFS data. Indeed, under the longslit
paradigm (used to reduce TEIFU data) these files cannot be generated. The TEIFU-style data
cube format has therefore been adopted as the standard UK IFS file format and will be used in
the analysis stages for both CIRPASS and UIST. This adoption allows the use of many of the
generic applications within the SSC, which due to the adoption of NDF as the standard file
interchange format for Starlink applications, has many tasks that can process N-dimensional
data.

A conversion program for GMOS and CIRPASS data to a more easily analysed data cube, which
will involve re-binning the input spectra on to a rectangular array, is therefore desirable (see
Section 4.4).

In the case of this format the IFU geometry information is no longer needed, as the input spectra
have already been rebinned, but it is likely that (in the finalised file format) such information
will be included as a FITS binary table.

An example of the FITS header block from a TEIFU data cube is shown below.

SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 3 / number of data axes

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://fits.gsfc.nasa.gov/

11 SC/16.2 —File formats

No. Type Name Format BITPIX Comment

0 ifs_data.fits

1 IMAGE SCI x× y× λ −32 3-D science array

2 IMAGE VAR x× y× λ −32 3-D variance array

3 IMAGE DQ x× y× λ 16 3-D data-quality array

Table 2: TEIFU data-cube format

NAXIS1 = 59 / length of data axis 1
NAXIS2 = 110 / length of data axis 2
NAXIS3 = 961 / length of data axis 3
EXTEND = T / FITS dataset may contain extensions
OBJECT = ’T/S MOVING field ’ / Title of the dataset
DATE = ’2000-10-05T17:50:52’/ file creation date (YYYY-MM-DDThh:mm:ss UTC)
BSCALE = 3.126180E-02 / True_value = BSCALE * FITS_value + BZERO
BZERO = 6.089249E+02 / True_value = BSCALE * FITS_value + BZERO
BLANK = -32768 / Bad value
CD1_1 = 0.0625 / Axis rotation and scaling matrix
CD2_2 = 0.0625 / Axis rotation and scaling matrix
CD3_3 = 5.795317000000068219 / Axis rotation and scaling matrix
CRVAL1 = -0.03125 / Axis 1 reference value
CRVAL2 = -0.03125 / Axis 2 reference value
CRVAL3 = 7302.291864499999065 / Axis 3 reference value
CRPIX1 = 29.5 / Axis 1 pixel value
CRPIX2 = 55.0 / Axis 2 pixel value
CRPIX3 = 480.5 / Axis 3 pixel value
WCSDIM = 3
CTYPE1 = ’LINEAR ’ / Quantity represented by axis 1
CTYPE2 = ’LINEAR ’ / Quantity represented by axis 2
CTYPE3 = ’LAMBDA ’ / Quantity represented by axis 3
CD1_2 = 0.0 / Axis rotation and scaling matrix
CD1_3 = 0.0 / Axis rotation and scaling matrix
CD2_1 = 0.0 / Axis rotation and scaling matrix
CD2_3 = 0.0 / Axis rotation and scaling matrix
CD3_1 = 0.0 / Axis rotation and scaling matrix
CD3_2 = 0.0 / Axis rotation and scaling matrix
LTV3 = -39.0
LTM1_1 = 1.0
LTM2_2 = 1.0
LTM3_3 = 1.0
WAT0_001= ’system=image’
END

Here the the number and size of the cube dimensions is specified by the NAXIS keywords, and as
with the IRAF spectral format the CD keywords define the conversion between world co-ordinates
and pixels on the detector, along with the tilt of the dispersion path relative to the detector pixels.
While the CRVAL keywords defines the central value of each axis in world co-ordinates, e.g. in
the case the spectral axis is centred on ∼7302 Å (CRVAL3).

SC/16.2 —File formats 12

A full dictionary defining FITS header keywords which can be generated by the data-acquisition
system is provided on the web by the National Optical Astronomy Observatories (NOAO) at
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html.

4.4 MEF to data-cube format

In the Gemini IRAF package the command gfcube converts the GMOS working format, which
is currently being used as the science end product file format for the GMOS and CIRPASS
instruments, to a UK standard x,y,λ data cube in FITS format.

4.5 Format conversion

The Starlink CONVERT package (see SUN/55) can be used to convert to and from the Starlink
NDF format. On-the-fly conversion of supported file formats (such as FITS and IRAF) can also
be done by most Starlink applications if the CONVERT package has been initialised.

4.5.1 GMOS MEF to NDF

The CONVERT package handles the GMOS/CIRPASS MEF working format without complaint,
as in the following example.

% fits2ndf
IN - Input FITS file(s) > gmos.fits
1 file selected.
OUT - Output NDF data structure(s) > out
%

Converting the MEF to a Starlink standard NDF, the FITS binary table is converted into a normal
NDF extension. An example of a resulting NDF is illustrated below. The < > indicate the
data type of a component. Those beginning with an underscore are primitive types; others are
structures.

IFS_FILE <NDF>

DATA_ARRAY <ARRAY>
ORIGIN(2) <_INTEGER>
DATA(2010,750) <_REAL>

MORE <EXT>
FITS_EXT_1 <TABLE>

NROWS <_INTEGER>
COLUMNS <COLUMNS>

ID <COLUMN>
DATA(750) <_INTEGER>

RA <COLUMN>
COMMENT <_CHAR*19>
DATA(750) <_REAL>

DEC <COLUMN>

http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://fits.gsfc.nasa.gov/

13 SC/16.2 —File formats

COMMENT <_CHAR*19>
DATA(750) <_REAL>

SKY <COLUMN>
COMMENT <_CHAR*19>
DATA(750) <_INTEGER>

FITS(790) <_CHAR*80>

VARIANCE <ARRAY>
DATA(2010,750) <_REAL>
ORIGIN(2) <_INTEGER>

QUALITY <QUALITY>
QUALITY <ARRAY>

DATA(2010,750) <_UBYTE>
ORIGIN(2) <_INTEGER>

Here the right ascension and declination position of each fibre is preserved in the FITS_EXT_1
NDF extension along with and array indicating whether the fibre is ‘on sky’.

4.5.2 TEIFU FITS to NDF

The CONVERT package also handles the UK standard data cube format (i.e. TEIFU style data)
without complaint, such as in the example below.

% fits2ndf
IN - Input FITS file(s) > teifu.fits
1 file selected.
OUT - Output NDF data structure(s) > out
%

The FITS file is be converted it into a three-dimensional NDF which, as discussed earlier (see
Section 4.3) can be read by many existing applications in the software collection.

IFS_FILE <NDF>

DATA_ARRAY <ARRAY>
ORIGIN(3) <_INTEGER>
DATA(59,110,961) <_DOUBLE>
BAD_PIXEL <_LOGICAL>

MORE <EXT>
FITS(45) <_CHAR*80>

TITLE <_CHAR*18>
WCS <WCS>

DATA(99) <_CHAR*32>

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SC/16.2 —File formats 14

4.6 GMOS vs. TEIFU format

While both GMOS (MOS style) and TEIFU (data cube) representations of IFS data are perfectly
valid, there are several advantages to using the data-cube format in preference to other options.
First, and perhaps most importantly, for ‘longslit’ paradigm instruments such as TEIFU (and
perhaps also CIRPASS) a MOS style data reduction is not possible and therefore it is impossible
to produce the first file type without major problems. Additionally a data-cube format is
considered, by most people, to be intrinsically easier to visualise. Both these reasons were taken
under consideration when the data-cube format was adopted, with consultation of Durham,
Cambridge and the ATC, as the UK standard format for this data.

4.7 FITS header manipulation

Due to the still developing nature of the IFU file formats it is possible that your data may have
missing FITS header keywords, or keywords which contain incorrect information. If this is the
case you may need to manually edit your FITS file headers.

4.7.1 Native FITS files

A good package to use for FITS header (and data) manipulation is the FTOOLS software, which is
released along with XANADU, as part of the HEASOFT package from GSFC. Further information
about HEASOFT, along with detailed installation instructions, user manuals and a development
guide, can be found at http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/.

4.7.2 The NDF FITS extension

When a FITS file is converted to an NDF a FITS extension—sometimes called the ‘airlock’ to
avoid confusion with extensions within FITS files—is created. This comprises a one-dimensional
array of character strings containing the imported FITS header information. On exporting a file
from NDF format back to FITS using ndf2fits the airlock contents will be propagated back to
the FITS file. However, since the FITS extension is not updated when an NDF is manipulated,
any information that can be derived directly from the NDF structure such as dimensionality,
units and axis information will replace any equivalent information held in the FITS extension
when it is exported.

The KAPPA package provides tools that allow you to read from, and write to, an NDF FITS exten-
sion. Example code using some of these tools is shown later in this document (see Section 6.5),
and detailed documentation on these tasks is available in SUN/95.

4.8 FITS I/O with IDL

FITS I/O with IDL can be accomplished using the IDL Astronomy Library from the GSFC.
The IDL Astronomy Library contains four different sets of procedures for reading, writing,
and modifying FITS files. The reason for having four different methods of FITS I/O with
IDL is partly historical, as different groups developed the software independently. However,
each method also has its own strengths and weakness for any particular task. For example,
the procedure MRDFITS()—which can read a FITS table into an IDL structure—is the easiest
procedure for analyzing FITS files at the IDL prompt level (provided that one is comfortable

http://fits.gsfc.nasa.gov/
http://fits.gsfc.nasa.gov/
 http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/ftools/
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/xanadu/
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2FITS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_fitsairlock
http://idlastro.gsfc.nasa.gov/fitsio.html
http://idlastro.gsfc.nasa.gov/homepage.html
http://fits.gsfc.nasa.gov/

15 SC/16.2 —File formats

with IDL structures). But mapping a table into an IDL structure includes extra overhead, so
that when performing FITS I/O at the procedure level, it may be desirable to use more efficient
procedures such as FITS_READ and FTAB_EXT.

For example a data cube can be read into an IDL array using the FXREAD method.

; Read the FITS file
fxread, ’ifu_file.fit’, DATA, HEADER

; Determine the size of the image
SIZEX=fxpar(header, ’NAXIS1’)
SIZEY=fxpar(header, ’NAXIS2’)
SIZEZ=fxpar(header, ’NAXIS3’)

; Find the data type being read
DTYPE=fxpar(header, ’BITPIX’)

As can be seen, various values contained within the FITS header of the original file can be
obtained using the FXPAR procedure.

Alternatively the MRDFITS procedure can be used, as in this example.

; Read the FITS file
data = mrdfits(’ifu_file.fit’,0,header)

In both examples the image data is read into an IDL array called DATA, while the FITS header
information is read into another array, of TYPE STRING, called HEADER.

In addition FITS files can be read into IDL using the CONVERT package’s on-the-fly file conver-
sion ability (see SUN/55 for more details) and the READ_NDF IDL function.

4.9 NDF I/O with IDL

There are several methods for reading an NDF file into IDL. First the NDF can be converted to a
FITS file using the ndf2fits application in the CONVERT package,

% ndf2fits comp=D
IN - Input NDF data structure(s) /@section/ >
1 NDF selected.
OUT - Output FITS file(s) /@out/ > section.fit
%

and then read into IDL using the IDL Astronomy Library (as in Section 4.8). However, there are
several other approaches that can be taken.

The easiest approach is to use the READ_NDF IDL procedure available with the CONVERT package.
When CONVERT is installed, both the IDL procedures READ_NDF and WRITE_NDF are placed in
$CONVERT_DIR so, to make them available to IDL, that directory must be added to the IDL search
path. This will be done if the environment variable IDL_PATH has been set.

For example assuming we have a data cube called file.sdf which is of type _REAL

IDL> data_array = read_ndf(’file’)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_sect_auto
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_sect_auto
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_READ_NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2FITS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://idlastro.gsfc.nasa.gov/homepage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_READ_NDF

SC/16.2 —File formats 16

creates an IDL floating array, data_array, with the same dimensions as the NDF and containing
the values from its DATA component.

IDL> data_array = read_ndf(’file’, !values.f_nan)

As above except that any occurrence of a bad value (VAL__BADR as defined by the Starlink
PRIMDAT package) in the NDF will be replaced by NaN in the IDL array.

IDL> var_array = read_ndf(’file’,comp=’v’)

creates an IDL byte array from the VARIANCE component of the same NDF. Output of an
IDL array is achieved using the corresponding WRITE_NDF procedure, for example assuming
data_array is an IDL floating array then,

IDL> write_ndf, data_array, ’file’

creates the NDF file.sdf with the same dimensions as the IDL array data_array, and writes
the array to its DATA component (of type _REAL). No checks on bad values are made by default,
such checks can be carried out, e.g.

IDL> write_ndf, data_array, ’file’, !values.f_nan

Here any occurrence of the value NaN in the array will be replaced by the VAL__BADR value as
defined by the Starlink PRIMDAT package. While

IDL> write_ndf, var_array, ’file’, comp=’v’

writes the IDL array var_array to the VARIANCE component of the NDF created above. A check
is made that the size of the array corresponds with the size of the NDF.

There is yet another approach to read NDF data into IDL. Again we make use of the CONVERT

package, this time we use the ndf2ascii application to convert the NDF to a ASCII text file so that
we may use the IDL read_ascii procedure, after generating an associated data template using
the ascii_template GUI. For instance reading the file file.dat in the subdirectory ifu_data

IDL> data_file = filepath(’file.dat’, SUBDIR=’ifu_data’)
IDL> data_template = ascii_template(data_file)
IDL> data = read_ascii(data_file, TEMPLATE=data_template)

we create an associated data template using ascii_template GUI and read the data into the
IDL structure data.

We can similarly use the ndf2unf application to create a sequential unformatted binary file and
use the read_binary and assocaited binary_template GUI to read the data into IDL, e.g.

IDL> udata_file = filepath(’binary.dat’, SUBDIR=’ifu_data’)
IDL> udata_template = binary_template(udata_file)
IDL> udata = read_binary(udata_file, TEMPLATE=udata_template)

will return an IDL structure variable udata.

The alternative more-low-level approach to reading either the ASCII or binary unformated files
can be taken, allowing you to bypass the template GUIs. More details can be found in CONVERT

documentation (see SUN/55).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_WRITE_NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2ASCII
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2UNF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

17 SC/16.2 —Data-cube manipulation

5 Data-cube manipulation

While the initial data-reduction software for IFUs is highly instrument dependent, the data
analysis of the final science data product for all these instruments should be fairly generic. The
end product of the data reduction for IFS is, almost naturally, an x,y,λ data cube. For instruments
not working in the optical and infrared regimes, the third axis may also be in some other spectral
co-ordinate system, such as frequency. Once assembled, with associated variance and quality
arrays, scientifically interesting information can be extracted from the cube.

5.1 Existing software

For long-slit paradigm instruments a data cube is the only data product available, as overlapping
point-spread functions mean that the spectral data must be resampled. For MOS paradigm
data, while the individual spectra are available, data visualisation is often intrinisically more
intuitive if done on resampled data cubes. As such, this cookbook will (in the main) only deal
with applications that handle the data-cube format. If you have already sourced the Starlink
/star/etc/login and /star/etc/cshrc files1 then the commands kappa, figaro, and ccdpack
will set up access to the KAPPA, FIGARO, and CCDPACK tasks respectively, including most of the
following applications.

5.1.1 Arithmetic Operations

Some of the most fundamental operations you might wish to perform on a data cube are the
arithmetic operations of addition, subtraction, multiplication and division, both by scalars and
other data cubes. All these basic operations, and additional more complicated ones, can be
carried out using tasks from the KAPPA package. Detailed documentation for all of these tasks
can be found in SUN/95.

• add
Adds two NDF data structures

• cadd
Adds a scalar to an NDF data structure

• calc
Evaluates a mathematical expression

• cdiv
Divides an NDF by a scalar

• cmult
Multiplies an NDF by a scalar

• csub
Subtracts a scalar from an NDF data structure

1/star/etc/ is for a standard Starlink installation, but the Starlink software may be in a different directory tree
on your system.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_ADD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CADD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CALC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CDIV
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CMULT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CSUB

SC/16.2 —Data-cube manipulation 18

• div
Divides one NDF data structure by another

• maths
Evaluates mathematical expressions applied to NDF data structures

• mult
Multiplies two NDF data structures

• normalize
Normalises one NDF to a similar NDF by calculating a scale factor and zero-point differ-
ence

• pow
Takes the specified power of each pixel of a data array

• rift
Adds a scalar to a section of an NDF data structure to correct rift-valley defects

• sub
Subtracts one NDF data structure from another

• thresh
Edits an NDF such that array values below and above two thresholds take constant values

5.1.2 Cube manipulation

Slightly more complex is manipulation and resampling of the data cube itself. The most
important utilities available to do this within KAPPA are the collapse, chanmap, ndfcopy, and
pluck applications. collapse can produce white-light and passband images (see Section 5.8) and
velocity maps by the appropriate selection of statistic. chanmap creates a grid of passbands.
ndfcopy can extract a single spectrum (along pixel axes) or arbitrary cube sections (again see
Section 5.8 for details), while pluck uses interpolation to extract at arbitrary positions, such as a
spectrum at nominated equatorial co-ordinates, or an image at a given wavelength or frequency.
Some applications require the spectral axis to be the first or the third axis; permaxes allows
shuffling of the pixel axes.

• chanmap
Creates a channel map from a cube NDF by compressing slices along a nominated axis

• collapse
Reduces the number of axes in an N-dimensional NDF by compressing it along a nomi-
nated axis

• compadd
Reduces the size of an NDF by adding values in rectangular boxes

• compave
Reduces the size of an NDF by averaging values in rectangular boxes

• compick
Reduces the size of an NDF by picking equally spaced pixels

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DIV
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_MATHS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_MULT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NORMALIZE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_POW
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_RIFT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SUB
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_THRESH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COLLAPSE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CHANMAP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PLUCK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CHANMAP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COLLAPSE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COMPADD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COMPAVE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COMPICK

19 SC/16.2 —Data-cube manipulation

• flip
Reverses an NDF’s pixels along a specified dimension

• ndfcopy
Copies an NDF, or an NDF section, to a new location

• permaxes
Permutes an NDF’s pixel axes

• pixdupe
Expands an NDF by pixel duplication

• pluck
Plucks slices from an NDF at arbitrary positions

• regrid
Applies a geometrical transformation to an NDF

• segment
Copies polygonal segments from one NDF into another

• slide
Realigns an NDF using a translation.

5.1.3 Two-dimensional manipulation

While IFU data is intrinsically three dimensional there are times when it is necessary to deal with
two dimensional images during analysis (e.g. velocity maps). Some potentially useful KAPPA

applications which are restricted to handling two-dimensional files are

• look
Outputs the values of a sub-array of a two-dimensional data array to the screen or a text
file

• median
Smooths a two-dimensional data array using a weighted median filter

Some tasks operate in two dimensions, but apply processing to a series of planes in a cube. They
permit, for example, to smooth spatially while retaining the spectral resolution.

• block
Smooths an NDF using a one- or two-dimensional square or rectangular box filter

• gausmooth
Smooths a one- or two-dimensional NDF using a Gaussian filter

• rotate
Rotates two-dimensional NDF about its centre through any angle

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_FLIP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PERMAXES
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PIXDUPE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PLUCK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_REGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SEGMENT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SLIDE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LOOK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_MEDIAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_BLOCK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_GAUSMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_ROTATE

SC/16.2 —Data-cube manipulation 20

5.1.4 Pixel Operations

There are several applications which can carry out operations on individual pixels, the most
general of these is chpix which can replace the pixel value of a single, or region, of pixels with
an user defined value (including the bad magic value).

• chpix
Replaces the values of selected pixels in an NDF

• errclip
Removes pixels with large errors from an NDF

• fillbad
Removes regions of bad values from an NDF

• nomagic
Replaces all occurrences of magic value (see SUN/95 for details) pixels in an NDF array
with a new value

• numb
Counts the number of elements of an NDF with values or absolute values above or below
a threshold

• substitute
Replaces all occurrences of a given value in an NDF array with another value

5.1.5 Other tools and file manipulation

Building processing scripts from the Starlink applications can involve you manipulating or
querying information about structures within the NDF file itself, three useful KAPPA commands
to do this are listed below.

• ndftrace
Displays the attributes of an NDF data structure

• parget
Obtains the value or values of an application parameter

• stats
Computes simple statistics for an NDF’s pixels

In some cases NDF information must be modified after a processing step (e.g. the NDF title) or,
in the case of a newly created NDF (see Section 6.6), we must generate inital values. KAPPA

provides various tools to manipulate NDF extensions.

• axlabel
Sets a new label value for an axis within an NDF data structure

• axunits
Sets a new units value for an axis within an NDF data structure

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CHPIX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_masking
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CHPIX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_ERRCLIP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_FILLBAD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NOMAGIC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_masking
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NUMB
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SUBSTITUTE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFTRACE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PARGET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_STATS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_AXLABEL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_AXUNITS

21 SC/16.2 —Data-cube manipulation

• setaxis
Sets values for an axis array component within an NDF data structure

• setbad
Sets new bad-pixel flag values for an NDF

• setbb
Sets a new value for the quality bad-bits mask of an NDF

• setbound
Sets new bounds for an NDF

• setext
Manipulates the contents of a specified NDF extension

• setlabel
Sets a new label for an NDF data structure

• setmagic
Replaces all occurrences of a given value in an NDF array with the bad value

• setnorm
Sets a new value for one or all of an NDF’s axis-normalisation flags

• setorigin
Sets a new pixel origin for an NDF

• settitle
Sets a new title for an NDF data structure

• settype
Sets a new numeric type for the data and variance components of an NDF

• setunits
Sets a new units value for an NDF data structure

• setvar
Sets new values for the variance component of an NDF data structure

5.1.6 Visualisation

Combined with the graphics devices commands (see Section 5.3) the following applications,
especially clinplot, display, linplot and contour act as the backbone for image display, and
some complex effects can be generated using these elemental tasks.

• clinplot
Draws a spatial grid of line plots for an axis of a cube NDF

• contour
Contours a two-dimensional NDF

• cursor
Reports the co-ordinates of positions selected using the cursor

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETAXIS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETBAD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETBB
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETBOUND
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETEXT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETLABEL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETMAGIC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETNORM
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETORIGIN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETTITLE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETTYPE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETUNITS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETVAR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CLINPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CONTOUR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CURSOR

SC/16.2 —Data-cube manipulation 22

• display
Displays a one- or two-dimensional NDF

• drawsig
Draws +/-n standard-deviation lines on a line plot

• linplot
Draws a line plot of the data values in a one-dimensional NDF

• profile
Creates a one-dimensional profile through an N-dimensional NDF

5.1.7 Mosaics

Mosaicking multiple IFU data cubes together is something you may well wish to consider,
unfortuantely there are problems involved in doing so (see Section 5.9), however, the following
tasks from KAPPA may be useful

• wcsalign
Aligns a group of NDFs using World Co-ordinate System information

• wcsmosaic
Tiles a group of NDFs using World Co-ordinate System information

along with the following tasks from CCDPACK.

• makemos
Makes a mosaic by combining and (optionally) normalising a set of images

• drizzle
Resamples and mosaics using the drizzling algorithm

5.1.8 Spectral fitting

Some of the most useful applications available for spectral fitting and manipulation live inside
FIGARO as part of SPECDRE. Some of these applications work on individual spectra, however,
others read a whole cube at once and work on each row in turn. A possible problem at this
stage is that many of these applications expect the spectroscopic axis to be the first in the cube,
whereas for the current generation of IFU data cubes the spectral axis is typically the third axis
in the cube. KAPPA permaxes can reconfigure the cube as needed by the various packages. A
full list of SPECDRE applications can be found in SUN/86.

One of the fundamental building blocks of spectral analysis is gaussian fitting, amougst other
tools, FIGARO provides the fitgauss application (part of SPECDRE) to carry out this task.

FITGAUSS is especially well suited to automation inside a script. For example,

fitgauss \
in=${spectrum} mask1=${low_mask} mask2=${upp_mask} \
cont=${cont} peak=${peak} fwhm=${fwhm} reguess=no remask=no \
ncomp=1 cf=0 pf=0 wf=0 comp=${component} fitgood=yes \
centre=${position} logfil=${fitfile} device=xwin \
dialog=f

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DRAWSIG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LINPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PROFILE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSALIGN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSMOSAIC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEMOS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_DRIZZLE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PERMAXES
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_classifspecdre
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITGAUSS

23 SC/16.2 —Data-cube manipulation

we call the fitgauss routine here specifying all the necessary parameters, and suppressing user
interaction, to allow us to automatically fit a spectrum from inside a shell script. Here we have
specified an input file, ${spectrum} and the lower and upper boundaries of the fitting region,
${low_mask}, and ${upp_mask}, respectively. Various initial guesses for the fitting parameters
have also been specified: the continuum level ${cont}, peak height ${peak}, full-width half-
maximum ${fwhm} and the line centre ${position}. By specifying ncomp=1 cf=0 pf=0 wf=0
we have told the application that we want it to fit a single gaussian with the central line position,
peak height and FWHM being free to vary.

In addition we have turned off user interaction with the application, by setting the following
parameters, reguess=no, remask=no, dialog=f and fitgood=yes.

This allows fitgauss to go about the fit without further user intervention, displaying its resulting
fit in an X-display, logging the fit characteristics to a file (${fitfile}) and saving the fit in the
SPECDRE extension (see SUN/86 for details) of the NDF where it is available for future reference
and manipulation by other SPECDRE applications.

The velmap and peakmap scripts are based around the SPECDRE fitgauss application.

For data with a significantly varying continuum mfittrend is available in KAPPA to fit and
remove the continuum signal, thereby making fitgauss’s job easier.

5.2 Locating Features

The ability to identify and measure the properties of features can play an important role in
spectral-cube analysis. For example, you may wish to locate emission lines and obtain their
widths as initial guesses to spectral fitting, or to mask the lines in order to determine the baseline
or continuum. Extending to three dimensions you may want to identify and measure the
properties of clumps of comoving emission in a velocity cube. The CUPID package addresses
these needs.

The findclumps is the main command. It offers a choice of clump-finding algorithms with
detailed configuration control, and generates a catalogue in FITS format storing for each peak
its centre and centroid co-ordinates, its width, peak value, total flux and number of contributing
pixels. Information from the catalogue can be extracted into scripts using STILTS and in particular
its powerful tpipe command.

findclumps in=cube out=clumps outcat=cubeclump perspectrum \
config="^ClumpFind.par" accept

set peak = ‘stilts tpipe in=cubeclump.FIT cmd="select index==1" \
cmd=’keepcols Cen3’ omode=out ofmt=csv-nohead‘

Here we find the clumps in the three-dimensional NDF called cube using the configuration
stored in the text file ClumpFind.par that will specify things like the minimum number of pixels
in a clump, the instruments’s beam FWHM, and tuning of the particular clump-finding algorithm
chosen. The PERSPECTRUM parameter requests that the spectra be analysed independently. It
would be absent if you were looking for features in a velocity cube. The contents of output NDF
clumps is algorithm dependent, but in most cases its data array stores the index of the clump in
which each pixel resides, and all contain clump information and cut-outs of the original data
about each clump in an extension called CUPID; and its QUALITY array has flags to indicate if

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_extension
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_peakmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_MFITTREND
http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_FINDCLUMPS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun256.htx/sun256.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun256.htx/sun256.html?xref_

SC/16.2 —Data-cube manipulation 24

the pixel is part of a clump or background. The last is useful for masking and inspecting the
located clumps.

Some experimentation with findclumps algorithms and configuration to obtain a suitable
segmentation for your data’s characteristics is expected. That is why we have not listed any
configuration parameters or even chosen a clump-finding algorithm in the example.

Continuing with the example, the catalogue of clumps detected and passing any threshold
criteria are stored in cubeclump.FIT. (See the CUPID manual for details of all the column names.)
We then use tpipe to select the third axis centroid co-ordinate (Cen3) of the first clump (index==1)
and store the numerical value in shell variable peak. The commands cmd= are executed in the
order they appear.

This could be extended to keep other columns keepcols and return them in an array of the line
with most flux given in column Sum.

set parline = ‘stilts tpipe in=cubeclump.FIT cmd=’sort -down Sum’ \
cmd="select index==1" cmd=’keepcols "Cen3 Width3"’ \
omode=out ofmt=ascii‘

set centre = $parline[3]
set width = $parline[4]

Here tpipe sorts the fluxes, picks that clump, and writes an ASCII catalogue containing the
centroid and width along the third axis storing the one-line catalogue to shell variable parline.
In this format the names of the columns appear first, hence the required values are in the third
and fourth elements. We could have used the csv-nohead output format to give a comma-
separated list of values as in the previous example, and split these with awk.

tpipe has many command options that for example permit the selection, addition, and deletion
of columns; and the statistics of columns. The selections can be complex boolean expressions
involving many columns. There are even functions to compute angular distances on the sky, to
say select a spatial region. See the STILTS manual for many examples.

CUPID also includes a background-tracing and subtraction application findback. You may need
to run this or mfittrend to remove the background before feature detection. Note the if you
are applying findback to the spectra independently, the spectral axis must be first, even if this
demands a re-orient the cube.

$KAPPA_DIR/permaxes in=scube out=cubeperm perm=\[3,1,2\]
$CUPID_DIR/findback in=scubeperm sub=no out=backperm box=\[$box,1,1\] \

ilevel=0 rms=$noise $
$KAPPA_DIR/permaxes in=backperm out=back perm=\[2,3,1\]
$KAPPA_DIR/sub in1=cube in2=back out=cube_bs

In this example, the spectral axis is the third axis of NDF cube. findback removes structure
smaller than $box pixels along each spectrum independently. The resulting estimated back-
grounds for each spectrum are stored in NDF backperm, which is re-oriented to the original axis
permutation to allow subtraction from cube.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_FINDCLUMPS
http://www.starlink.ac.uk/cgi-bin/htxserver/sc4.htx/sc4.html?xref_sc4_se_string_split
http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_FINDBACK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_MFITTREND

25 SC/16.2 —Data-cube manipulation

5.3 Dealing with Graphical Devices

5.3.1 Devices and Globals

KAPPA and other Starlink applications using PGPLOT graphics have a single graphics device for
line and image graphics. These can be specified as either PGPLOT or Starlink device names. The
current device may be set using the gdset command as in the example below.

% gdset xwindows

You can use the gdnames command to query which graphics devices are available, and your
choice of device will remain in force, and can be inspected using the globals command, e.g.

% globals
The current data file is : /tmp/ifu_data
The current graphics device is : xwindows
The current lookup table file is : <undefined>
The current transformation is : <undefined>
The current interaction mode is : <undefined>

unless unset using the noglobals, or overriden using the DEVICE parameter option in a specific
application. Predicatably, the gdclear command can be used to clear the graphics device.

More information on these and other graphics topics can be found in SUN/95.

5.3.2 The Graphics Database

Each Starlink application which makes use of the standard Starlink graphics calls, which is most
of them, creates an entry in the graphics database. This allows the applications to interact, for
instance you can display an image to an X-Window display device using the display command,
and later query a pixel position using the cursor command.

The graphics database is referred to as the AGI database, after the name of the subroutine
library used to access its contents, and exists as a file stored in your home directory. In most
circumstances it will be named for the machine you are working on.

% ls ~/*.sdf
-rw-r--r-- 1 aa users 2083328 Jan 02 12:50 /home/aa/agi_pc10.sdf

An extensive introduction sprinkled with tutorial examples to making full use of the graphics
database can be found in the KAPPA manual (SUN/95) in the sections entitled The Graphics
Database in Action and Other Graphics Database Facilities. There is little point in repeating the
information here, however learning to manipulate the graphics database provides you with
powerful tools in visualising your IFU data, as well as letting you produce pretty publication
quality plots. For instance, the compare shell script make fairly trivial use of the graphics
database to produce multiple image and line plots on a single GWM graphics device.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://astro.caltech.edu/~{}tjp/pgplot/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_graphdev
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_selgradev
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_GDSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_GDNAMES
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_GLOBALS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NOGLOBALS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_GDCLEAR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun48.htx/sun48.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun48.htx/sun48.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_agitate
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_agitate
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_agiaction
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_agiaction
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_agiother
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_compare

SC/16.2 —Data-cube manipulation 26

5.3.3 Pseudo Colour and LUTs

The different display types, such as pseudo colour and true colour, are explained in detail in the
Graphics Cookbook (SC/15).

On pseudo-colour displays KAPPA uses a number of look-up tables (commonly refered to as
LUTs) to manipulate the colours of your display. For instance you may want to have your
images displayed in grey scale (lutgrey) or using a false colour ‘heat’ scale (lutheat). KAPPA has
many applications to deal with LUTs (see SUN/95), these applications can easily be identified
as they all start with “lut”, e.g. lutable, lutcol.

5.4 Dealing with WCS Information

World Co-ordinate System (i.e. real world co-ordinates) information is a complex topic, and one
that many people, including the author, find confusing at times.

Starlink applications usually deal with WCS information using the AST subroutine library (see
SUN/210 for Fortran and SUN/211 for C language bindings), although notably some parts of
FIGARO (such as SPECDRE) have legacy and totally independent methods of dealing with WCS
information. See Section 6.6 for an example of how to overcome this interoperability issue.

This general approach has an underlying effect on how Starlink applications look at co-ordinate
systems and your data in general.

Starlink applications therefore tend to deal with co-ordinate ‘Frames’. For instance, the PIXEL
Frame is the frame in which your data is considered in the physical pixels with a specified origin,
i.e. for a simple two-dimensional example, your data frame may have an x size of 100 pixels
and a y size of 150 pixels with the origin of the frame at the co-ordinates (20,30). Another frame
is the SKY frame, which positions your image in the real sky—normally right ascension and
declination but other sky co-ordinate systems are available and easily transformed. A ‘mapping’
between these two frames will exist, and will be described, inside the WCS extension of your
NDF. The KAPPA wcscopy application can be used to copy WCS component from one NDF
to another, optionally introducing a linear transformation of pixel co-ordinates in the process.
This can be used to add WCS information back into an NDF which has been stripped of WCS
information by non-WCS aware applications. Further details about WCS Frames are available
in SUN/95 Using World Co-ordinate Systems.

Why is this important? Well, for instance, the display command will automatically plot your
data with axes annotated with co-ordinates described by the current WCS frame, so if your data
contains a SKY frame it can (and much of the time will) be automatically be plotted annotaed
with the real sky co-ordinates, usyally right ascension and declination, of the observation. It is
also critical for mosaicking of data cubes, as explained later in Section 5.9.

Both KAPPA and CCDPACK contain commands to handle WCS NDF extensions. In KAPPA we
have the following applications.

• wcsadd
Adds a new co-ordinate Frame into the WCS component of an NDF

• wcsattrib
Manages attribute values associated with the WCS component of an NDF

http://www.starlink.ac.uk/cgi-bin/htxserver/sc15.htx/sc15.html?xref_sc15_pseudo
http://www.starlink.ac.uk/cgi-bin/htxserver/sc15.htx/sc15.html?xref_sc15_true
http://www.starlink.ac.uk/cgi-bin/htxserver/sc15.htx/sc15.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sc15.htx/sc15.html?xref_sc15_pseudo
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_lookuptables
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LUTGREY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LUTHEAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LUTABLE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_LUTCOL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_wcsuse
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/sun211.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_resdoms
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSADD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSATTRIB

27 SC/16.2 —Data-cube manipulation

• wcscopy
Copies WCS information from one NDF to another

• wcsframe
Changes the current co-ordinate Frame in the WCS component of an NDF

• wcsremove
Removes co-ordinate Frames from the WCS component of an NDF

• wcstran
Transforms a position from one NDF co-ordinate Frame to another

while CCDPACK has

• wcsedit
Modifies or examines image co-ordinate system information

which is a very useful utility for handling frames within the extension. For instance,

% wcsedit ifu_file

WCSEDIT
=======

1 NDF accessed using parameter IN
MODE - Action to perform (CURRENT,ADD,REMOVE,SET,SHOW) /’SHOW’/ >

Index Cur Domain Title
----- --- ------ -----

ifu_file:
1 GRID Data grid indices; first pixel at (1,1,1)
2 PIXEL Pixel coordinates; first pixel at (0.5,0...
3 * AXIS Axis coordinates; first pixel at (-1.812...

%

here we see that ifu_file.sdf has three WCS frames, the base GRID frame with origin (1,1,1), a
PIXEL frame with origin (0.5,0.5,0.5) and an AXIS frame with real world co-ordinate mapped on
to the PIXEL frame.

ndftrace also contains a useful option at this point: FULLFRAME. In the following example, most
of the ndftrace output is excised for clarity, denoted by a vertical ellipsis.

% ndftrace mms6_co fullframe

NDF structure /data/mjc/datacube/mms6_co:
.
.
.

Shape:
No. of dimensions: 3

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSFRAME
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSREMOVE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSTRAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFTRACE

SC/16.2 —Data-cube manipulation 28

Dimension size(s): 5 x 5 x 83
Pixel bounds : -2:2, -2:2, -54:28
Total pixels : 2075

.

.

.

World Coordinate Systems:
Number of coordinate Frames: 4

Current coordinate Frame (Frame 4):
Index : 4

Frame title : "Compound coordinates describing celes..."
Domain : SKY-SPECTRUM
First pixel centre : 5:36:52.8, -7:26:11, 345.7623

Axis 1:
Label: Right ascension
Units: hh:mm:ss.s

Axis 2:
Label: Declination
Units: ddd:mm:ss

Axis 3:
Label: Frequency (LSB)
Units: GHz

.

.

.

NDF Bounding Box:

Axis 1: 5:36:51.0 -> 5:36:53.0
Axis 2: -7:26:14 -> -7:25:44
Axis 3: 345.762 -> 345.8139

The important information here is the boundary of the image in the PIXEL and CURRENT frame
of the NDF, the CURRENT frame being the current ‘default’ frame which applications accessing
the NDF will report co-ordinates from (the CURRENT frame of the NDF can be changed using
the KAPPA wcsframe command and is usually the last accessed frame in the extension). In this
case we can see that the current frame is the SKY-SPECTRUM frame, with extent 5:36:51 to
5:36:53.0 in right ascension, −7:26:14 to −7:25:44 in declination, and 345.762 to 345.8139 Ghz in
frequency.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSFRAME

29 SC/16.2 —Data-cube manipulation

5.5 GAIA data visualisation

GAIA is a display and analysis tool widely used for two-dimensional data. For many years
the GAIA tool had little to offer for cube visualisation. At the appropriately named Version 3.0,
came a toolbox for cubes to permit inspection of planes individually, or as an animation, or as
a passband image by collapsing. Now at the time of writing, Version 4.2 GAIA offers further
facilities, such as rendering, for cube analysis. GAIA is also under active delevopment. Check the
$STARLINK_DIR/news/gaia.news file for the latest features extending upon those summarised
below.

5.5.1 Cube toolbox

If you start up GAIA with a cube

% gaia orion_mos_msk.sdf &

the cube toolbox appears (see Figure 2). In the upper portion you may choose the axis perpendic-
ular to the axes visible in the regular two-dimensional display; this will normally be the spectral
axis, and that is what is assumed this manual. You can select a plane to view in the main display
by giving its index or adjusting the slider.

Figure 2: The GAIA toolbox for displaying a cube.

The lower portion of the toolbox has a tabbed interface to a selection of methods. The controls
change for each method. Of particular note are the following methods.

Animation tab This steps through a range of planes automataically at a controlled rate. The
animation can be captured to a GIF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

SC/16.2 —Data-cube manipulation 30

Spectrum tab This extends the basic behaviour of the spectrum plot (see Section 5.5.2 including
defining the spectral limits. You can also define spatial regions graphically, and thereby
form a composite spectrum for an object.

Collapse tab This allows you collapse along the spectral axis over a defined range and offers a
wide selection of combination options. Most will form a ‘white-light’ image in some form,
but Iwc gives a form of velocity map, and Iwd estimates the line dispersions.

Chanmap tab This forms a channel map comprising a grid of passband tiles, each tile being the
result of collapsing a range of planes using one of the Collapse methods. You can inspect
the spectral co-ordinate of each plane and with the cursor mark equivalent positions in
every tile.

Rebin tab This allows you to increase the signal-to-noise by rebinning along one or more
dimensions.

Filter tab This controls smoothing of image planes.

If you need to access the Cube toolbox, go to the Open cube... option in the File menu of the
main display.

Once you have an image displayed, be it a plane, passband image or channel map, you can then
use GAIA’s wide selection of image-display facilities described in SUN/214 (also see SC/17)
to enhance the elements under investigation. There are also many analysis capabilities mostly
through the (Image-Analysis menu), including masking and flux measurement.

5.5.2 Spectral plot

One of the most useful facilities for cube analysis is a dynamic spectrum display. Once you
have a representative image displayed, click on the mouse over the image a line plot along the
spectral axis appears. As you drag the cursor holding down the first mouse button, the spectrum
display updates to dynamically to reflect the current spatial location while the data limits are
unchanged. If you click again the range will reset to the current spectrum. You can enforce
autoscaling as you drag too by enabling Options→Autoscale in the spectral plot’s control bar.
This is slower although it allows an intensity independent comparison of the spectra. The
Spectrum tab mentioned earlier also allows control of the plotting range along both axes. The
Reference: Set button lets you nominate the current spectrum as a reference spectrum. Then
as you subsequently drag the mouse you can compare any of the spectra with the reference
spectrum. See Figure 3.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_image_display_capabilities
http://www.starlink.ac.uk/cgi-bin/htxserver/sc17.htx/sc17.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_image_analysis_capabilities

31 SC/16.2 —Data-cube manipulation

Figure 3: GAIA displays a logarithmically scaled, collapsed cube, from which two spectra are
shown. The lighter reference spectrum is from the spatial position marked by the central cross,
and the other spectrum corresponds to the left cross.

The vertical red line shows the plane being displayed in the main viewer. You can drag that line
with the mouse to adjust the plane on view, say to inspect where emission at a chosen velocity
lies spatially.

Further features of the spectral viewer can be found in the online help.

5.5.3 Volume Visualisation

The View menu in the cube toolbox offers two interactive rendering functions that let you explore
your cube in three dimensions.

SC/16.2 —Data-cube manipulation 32

The first of these is iso-surface. It’s akin to contouring of an image extended to three dimensions.
Each coloured surface corresponds to a constant data value. In order to see inside a surface,
each surface should have an opacity that is less than 1.0. An example using the same Orion
dataset is in Figure 4.

Figure 4: Isophotal contours with various colours and opacities allows you to see different
depths.

Just as with the contouring in GAIA, there are different methods to generate iso-surface levels
authomatically, as well as manually.

You can adjust the viewing angle and zoom factor either with the mouse, or with the keyboard
for finer control. The online help lists the various controls. There are many options to control the
appearance, such as directional and annotated axes. GAIA can also display the current slice and
displayed spectrum. It is also possible to display two cubes simultaneously, say to compare data
from different wavelengths measuring different molecular species. GAIA provides a number of
alignment options in this regard.

The second function is volume rendering. It displays all the data within two data limits as a
single volume. You assign a colour and opacity to each limit. The controls and options are the
same as for the iso-surfaces. See Figure 5.

These visualisation functions place heavy demands on computer memory and CPU. Also a
modern graphics card with hardware support for OpenGL makes a huge difference in interactive
performance. So you will need a modern machine to get the best out of these tools. Of the two
tools, iso-surface is quicker to render and uses less memory.

33 SC/16.2 —Data-cube manipulation

Figure 5: Volume rendering of the Orion dataset. The colour transfer function is a simple
mapping between two selected colours between a supplied data range.

5.6 IDL and data visualisation

IDL has extensive visualisations capabilities and has many of the tools needed to analyse IFU
data cubes available ‘off the shelf’. Unfortunately, due to the large file sizes involved, some
of the more useful tools availble in IDL can be very slow on machines with small amounts
(< 512 Mb) of memory.

5.6.1 Display problems

Like many modern UNIX applications IDL suffers problems coping with pseudo and true colour
displays. When writing IDL scripts it is important to bear in mind the display type you are
using, for pseudo colour (8 bpp) displays you should set the X device type as follows

device, pseudo_color = 8

http://www.rsinc.com/

SC/16.2 —Data-cube manipulation 34

while for true-colour displays, commonly found on modern machines running Linux, you
should set the X device type to have the appropriate display depth, e.g. for a 24-bpp display.

device, true_color = 24

It should be noted that while the IDL Development Environment (IDLDE) will run in UNIX
on a 16 bpp display, only 8 bpp and 24 bpp display are supported for graphics output. If your
IDL script or procedure involves graphics display you must run IDL either under an 8-bpp
pseudo-colour display, or a 24-bpp true-colour display. Ask your system administrator if you are
in any doubt as to whether you machine is capable of producing a 24-bpp true-colour display.

Using a true-colour display if you wish to make use of the colour look-up tables (LUTs), and the
loadct procedure, you should also set the decomposed keyword to 0, e.g.

device, true_color = 24
device, decomposed = 0

or alteratively, if you wish to make of 24-bit colour rather than use the LUTs then you should
the decomposed keyword to 1, e.g.

device, true_color = 24
device, decomposed = 1

For more general information about this issue you should consult the Graphics Cookbook
(SC/15).

5.6.2 Slicer3

Slicer3 is a GUI widget based application to visualize three-dimensional data which comes with
the IDL environment, a simple script to read an IFU data cube into the GUI is shown below,

pro display_slicer

; Read in TEIFU data cube
ifu_data = read_ndf(’ifu_file’, !values.f_nan)

; create a pointer to the data array
ifu_ptr = ptr_new(ifu_data)

; run slicer3
slicer3, ifu_ptr

end

here we create a pointer to our data array and pass this pointer to the slicer3 procedure. The
Slicer3 GUI is shown in Figures 6 and 7. These display a projection of an IFU data cube and the
user operating on it with the cut and probe tools.

One of the interesting things about the Slicer3 GUI is that it is entirely implemented as an
IDL procedure and the code can therefore be modified by the user for specific tasks. More
information on Slicer3 can be found in the online help in IDL.

http://www.starlink.ac.uk/cgi-bin/htxserver/sc15.htx/sc15.html?xref_sc15_display
 http://www.astro.washington.edu/deutsch-bin/getpro/library07.html?SLICER3

35 SC/16.2 —Data-cube manipulation

Figure 6: The IDL Slicer3 GUI showing a projection of an NDF data cube, with a cut running in
the λ direction.

5.6.3 The IDL Astronomy Library

No discussion of astronomy data visualisation in IDL can be complete without reference to the
IDL Astronomy Library. This IDL procedure library, which is maintained by the GSFC, provides
most of the necessary tools to handle your data inside IDL. The library is quite extensive, and
fairly well documented. A list of the library routines, broken down by task, can be found at
http://idlastro.gsfc.nasa.gov/contents.html.

5.6.4 ATV Image Viewer

ATV is a frontend for the IDL tv procedure. Like the Slicer3 GUI discussed previously, ATV
is entirely implemented as an IDL procedure so it is simple to add new routines, buttons or
menus if additional functionality is needed. The interface, deliberately, resembles SAOimage so
that users can quickly start using it. Detailed usage instructions are available online at http:
//www.physics.uci.edu/~barth/atv/instructions.html. However, to display an a plane in
a data cube you can pass an array directly to atv as follows.

; display plane i in the data cube
atv, array(*,*,i)

http://idlastro.gsfc.nasa.gov/
http://idlastro.gsfc.nasa.gov/contents.html
http://idlastro.gsfc.nasa.gov/contents.html
http://www.physics.uci.edu/~barth/atv/
http://www.physics.uci.edu/~barth/atv/atv.pro
http://www.physics.uci.edu/~barth/atv/instructions.html
http://www.physics.uci.edu/~barth/atv/instructions.html
http://www.physics.uci.edu/~barth/atv/instructions.html

SC/16.2 —Data-cube manipulation 36

Figure 7: The IDL Slicer3 GUI showing a projection of and NDF data cube, along with the data
probe.

5.7 IRAF and the Starlink software

Most of the packages we have discussed, e.g. KAPPA, FIGARO, and CCDPACK, are available from
the IRAF command-line interface (up to the 2004 Spring release) and can be used just like normal
IRAF applications (see SUN/217 for details) and IRAF CL scripts can be built around them as you
would expect to allow you to analyse your IFU data cubes using their capabilities.

However, it should be noted that Starlink and IRAF applications use intrinsically different data
formats. When a Starlink application is run from the IRAF CL, the application will automati-
cally convert to and from the IRAF .imh format on input and output. This process should be
transparent, and you will only see native IRAF files. However, you should be aware, if you are
used to using the Starlink software, that the native NDF format is more capable than the IRAF
format and some information (such as quality and variance arrays) may be lost when running
the Starlink software from IRAF.

5.8 Visualisation using the DATACUBE scripts

The scripts shipped within the DATACUBE package are described in SUN/237. The example
dataset has a spectral axis in the wavelength system with units of Ångstrom, however DATACUBE

can handle other spectral systems and units, as supported by the FITS standard.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://iraf.noao.edu/iraf-homepage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun217.htx/sun217.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://fits.gsfc.nasa.gov/

37 SC/16.2 —Data-cube manipulation

Figure 8: The ATV viewer interface.

5.8.1 How do I create a white-light image?

You can make use of the DATACUBE squash shell script which is a user friendly interface to the
KAPPA collapse application allowing you to create both white-light and passband image, e.g.

% squash -p
NDF input file: ifu_file

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890
Wavelength bounds : 4526:10089.8

Lower Wavelength-axis bound : 4526
Upper Wavelength-axis bound : 10089.8

Collapsing:
White-light image: 59 x 110
Wavelength range: 4526--10089.8 Angstrom

NDF output file: out

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_squash
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COLLAPSE

SC/16.2 —Data-cube manipulation 38

Output NDF:
File: out.sdf

%

Figure 9: The squash script.

Here we make a white-light image from the input data file ifu_file.sdf, saving it as a two-
dimensional NDF file out.sdf as well as plotting it in a GWM window (see Figure 9). Alterna-
tively we can make use of scripts command-line options and specify the input and output files,
along with the wavelength bounds, on the command line, as in this example.

% squash -i ifu_file -o out -l 4526 -u 10089.8 -p

Alternatively we can make direct use of the collapse application.

% collapse
IN - Input NDF /@/tmp/aa_squash_collapse/ > ifu_file
AXIS - The axis to be collapsed /’1’/ > 3

Collapsing pixel axis 3 from pixel 1 to pixel 961 inclusive...
OUT - Output NDF > out
%

Here we collapse the cube along the third (λ) axis.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_squash

39 SC/16.2 —Data-cube manipulation

5.8.2 How do I create a passband image?

The DATACUBE package offers two ways to create passband images: first we may use (as before)
the squash shell script, this time specify more restrictive λ limits, e.g.

% squash -i ifu_file -o out -l 5490 -u 5690 -p

would create a two-dimensional passband image, collapsing a 200 Å-wide section of the spectral
axis.

Figure 10: The passband script.

Alternatively, we may choose to generate our passband image interactively using the passband
shell script.

%passband
NDF input file: ifu_file

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_squash
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_passband

SC/16.2 —Data-cube manipulation 40

Collapsing:
White-light image: 59 x 110

Left click to extract spectrum.

Extracting:
(X,Y) pixel : 32,71

NDF array analysed : DATA

Pixel sum : 47734.279694
Pixel mean : 49.671466903226
Standard deviation : 62.703311643991
Minimum pixel value : -21.781915

At pixel : (31)
Co-ordinate : (4697.297)

Maximum pixel value : 916.4472266
At pixel : (174)
Co-ordinate : (5526.027)

Total number of pixels : 961
Number of pixels used : 961 (100.0%)

Zoom in (yes/no): yes

Left click on lower zoom boundary.
Left click on upper zoom boundary.

Zooming:
Lower Boundary: 5237.92
Upper Boundary: 5756.03

Left click on lower boundary.
Left click on upper boundary.

Passband:
Lower Boundary: 5498.83
Upper Boundary: 5561.82

Collapsing:
White-light image: 59 x 110
Wavelength range: 5498.83--5561.82 Angstrom

Plotting:
Left: White-light image.
Right: Passband image (5498.83--5561.82 Angstrom)

%

Here the script presents us with a white-light image and prompts us to click on it to select a good
signal-to-noise spectrum, it then asks us whether or not we want to zoom in on a certain part of
the spectrum. Let us zoom, and then the script allows us to interactively select a region to extract
to create a passband image. It then plots this next to the white-light image for comparison.

Alternatively we can again we can make direct use of the collapse application, upon which both
the squash and passband have been built, as shown below.

% collapse in=ifu_file out=out axis=3 low=5490 high=5560

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_squash
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_passband

41 SC/16.2 —Data-cube manipulation

5.8.3 How do I step through passband images?

Figure 11: A series of 500Å passband images of 3C 27 produced by the step shell script.

The DATACUBE package provides the step shell script to carry out this task.

% step
NDF input file: ifu_file

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 21 x 21 x 961
Pixel bounds : 20:40, 60:80, 1:961
Total pixels : 423801
Wavelength bounds : 4526:10089.8 Angstrom

Lower Wavelength-axis bound: 5000
Upper Wavelength-axis bound: 8000
Wavelength step size: 1000

Stepping:
Range: 5000--8000 Angstrom
Step: 1000

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_step

SC/16.2 —Data-cube manipulation 42

Collapsing:
White-light image: 21 x 21
Wavelength range: 5000--6000 Angstrom

Output NDF:
File: chunk_1.sdf
Title: Setting to 5000--6000

Collapsing:
White-light image: 21 x 21
Wavelength range: 6000--7000 Angstrom

Output NDF:
File: chunk_2.sdf
Title: Setting to 6000--7000 Angstrom

Collapsing:
White-light image: 21 x 21
Wavelength range: 7000--8000 Angstrom

Output NDF:
File: chunk_3.sdf
Title: Setting to 7000--8000 Angstrom

%

Here we are asked for the lower and upper bounds of the desired wavelength range, and a
step size. The script then generates a series of NDF two-dimensional passband images named
chunk_*.sdf.

Alternatively, a very simplistic IDL script to step through an TEIFU data cube (stored in an NDF
called ifu_file.sdf) is shown below.

pro step

; Read in TEIFU data cube
ifu_data = read_ndf(’ifu_file’, !values.f_nan)

; Create a window of the right size
window,xsize=236,ysize=440

; Step through the data in the lambda direction
for i = 0, 960 do begin

tvscl,congrid(ifu_data(*,*,i),236,440)
endfor

end

The script reads the NDF file in using the READ_NDF procedure, creates an IDL graphics window,
and steps through the data cube in the wavelength direction a pixel at a time.

There is now a KAPPA command chanmap task that forms an image of abutting channels or pass-
bands of equal depth. It is also available from the cube toolbox in GAIA. Once created you may
view the passband image with GAIA or display. To read off the three-dimensional co-ordinates
of features, in GAIA use Image-Analysis→Change Coordinates→Show All Coordinates...,
and in KAPPA run cursor.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CHANMAP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CURSOR

43 SC/16.2 —Data-cube manipulation

5.8.4 How do I extract individual spectra?

The ripper shell script in the DATACUBE package was designed as a user-friendly interface over
the KAPPA ndfcopy application.

Figure 12: The ripper script.

% ripper -p
NDF input file: ifu_file

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

Collapsing:
White-light image: 59 x 110

Left click to extract spectrum.

Extracting:
(X,Y) pixel: 31,73

NDF output file: out

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_ripper
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFCOPY

SC/16.2 —Data-cube manipulation 44

Output NDF:
File: out.sdf

Here we read in the data cube, ifu_file.sdf, and are prompted to click on a pixel to extract the
spectrum, see Figure 12.

Alternatively we can use ndfcopy directly as underneath.

% ndfcopy in="ifu_file(31,73,)" out=out trim trimwcs

Here we extract the same spectrum by using NDF sections to specify a region of interest, and
the TRIM and TRIMWCS parameters to reduce the dimensionality of the file to only one dimension.

5.8.5 How do I compare spectra?

The compare script was written to give you this capability. It allows you to continually select
spectra from different parts of the cube, plotting the two most recent to the right of a white-light
image of the cube. See Figure 13.

Figure 13: The compare script.

For instance,

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_NDFCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_ndfsect
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_compare

45 SC/16.2 —Data-cube manipulation

% compare
NDF input file: ifu_file

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

Collapsing:
White-light image: 59 x 110

Left click to extract a spectrum.
Right click to exit program.

Extracting:
(X,Y) pixel : 31,77

NDF array analysed : DATA

Pixel sum : 37022.3614004
Pixel mean : 38.524829761082
Standard deviation : 51.712134738114
Minimum pixel value : -11.8406626

At pixel : (7)
Co-ordinate : (4558.209)

Maximum pixel value : 927.2638094
At pixel : (174)
Co-ordinate : (5526.027)

Total number of pixels : 961
Number of pixels used : 961 (100.0%)

Left click to extract a spectrum.
Right click to exit program.

Extracting:
(X,Y) pixel : 40,36

NDF array analysed : DATA

Pixel sum : 7506.1577888
Pixel mean : 7.8107781361082
Standard deviation : 8.9202431481454
Minimum pixel value : -38.7883342

At pixel : (133)
Co-ordinate : (5288.419)

Maximum pixel value : 47.7443282
At pixel : (670)
Co-ordinate : (8400.505)

Total number of pixels : 961
Number of pixels used : 961 (100.0%)

Left click to extract a spectrum.
Right click to exit program.

SC/16.2 —Data-cube manipulation 46

%

Here the script presents us with a white-light image and asks us to click on a pixel. It then
extracts and displays the spectral axis associated with that pixel in the upper right of the display
window. We then have the opportunity to select another pixel, the corresponding spectrum
being displayed in the lower right of the display window. We extract only two spectra during
this run of the script (Figure 13), pressing the right-hand mouse button to terminate. However,
if we carried on and selected a further spectrum it would replace our original in the upper-right
panel of the display window. Selecting a further spectrum would replace the lower-right panel.
The location of each new spectrum plot alternates.

Also see how GAIAcompares spectra Section 5.5.2.

5.8.6 How do I plot stacked spectra?

The DATACUBE package provides two tasks to carry out this process, the stacker (see Figure 14)
and multistack shell scripts.

Figure 14: The stacker script.

A run of the stacker script is shown below.

% stacker
NDF input file: ifu_file

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_stacker
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_multistack

47 SC/16.2 —Data-cube manipulation

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

Collapsing:
White-light image: 59 x 110

Number of spectra: 3

Left click on pixel to be extracted.

Extracting:
(X,Y) pixel: 24,80

Left click on pixel to be extracted.

Extracting:
(X,Y) pixel: 30,71

Left click on pixel to be extracted.

Extracting:
(X,Y) pixel: 30,55

Offset: 200

Adding:
Adding 0 to spectrum 1
Adding 200 to spectrum 2
Adding 400 to spectrum 3

Plotting:
Spectrum: 3
Spectrum: 2
Spectrum: 1

Zoom in (yes/no): yes

Left click on lower zoom boundary.
Left click on upper zoom boundary.

Zooming:
Lower Boundary: 6792.26
Upper Boundary: 7745.58

Plotting:
Spectrum: 3
Spectrum: 2
Spectrum: 1

%

SC/16.2 —Data-cube manipulation 48

Here we extract three spectra by clicking on a white-light image of the data cube, and these are
then plotted with an offset of 200 counts between each spectrum. We then get the opportunity
to zoom into a region of interest, and the three spectra are then re-plotted.

The multistack script operates in a similar manner, however, here we are prompted for the
number of spectral groups required, and the number of spectra in each group. The mean
spectrum of for each ‘group’ of spectra is calculated, and then all the mean spectra are plotted in
a stack as before, as seen in the following example.

% multistacker
NDF input file: ifu_file

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

Collapsing:
White-light image: 59 x 110

Number of groups: 3

Number of spectra in group: 4

Left click on pixel to be extracted.
.
.
.

Here we request three groups of four spectra each, i.e. we’ll get three mean spectra plotted as a
stack in the final display.

5.8.7 How do I create a grid of spectra?

For an overview visual inspection of the spectra in a cube, it is useful to plot many spectra
simultaneously, albeit at a lower resolution, in their respective spatial locations. While KAPPA

provides the clinplot command to make such a grid, sometimes the sheer number of spatial
pixels can make the spectra unreadable and will take some time to plot. Therefore the DATACUBE

package offers the gridspec shell script. It has an option to average the spectra in the spatial
domain, thereby reducing the number of spectra plotted by several times, generating more
practical graphics quicker. See Figure 15. Below is an example. The -z option requests that the
white-light image be shown and a subset of the cube selected with the cursor. The -b option sets
the spatial blocking factor. Different factors may be given for x and y, the two values separated
by a comma.

% gridspec -b 4 -i ifu_file -z

Input NDF:
File: ifu_file.sdf

Shape:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CLINPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_gridspec

49 SC/16.2 —Data-cube manipulation

No. of dimensions: 3
Dimension size(s): 59 x 110 x 961
Pixel bounds : 1:59, 1:110, 1:961
Total pixels : 6236890

Collapsing:
White-light image: 59 x 110

Left click on lower zoom boundary.
Left click on upper zoom boundary.

Zooming:
Extracting:

Lower (X,Y): 20,61
Upper (X,Y): 42,82

Plotting:
Clinplot: Grid of spectra, averaged 4 x 4

Figure 15: The gridspec script, operating on a subset of the 3C 27 observation consisting of the
central core of the galaxy, averaging sixteen spectra in the cube for each spectrum plotted. The
exterior axes indicate the average spatial co-ordinates of each block of averaged spectra.

SC/16.2 —Data-cube manipulation 50

A useful strategy is to select a blocking factor that gives no more than ten plots2 along an
axis. Then focus on regions of interest—you either supply an NDF section or select from the
white-light image—by decreasing the blocking, and thus increasing both the spatial and spectral
plotting resolutions.

5.8.8 How do I create a velocity map?

The DATACUBE package provides the velmap and velmoment shell scripts to manage this fairly
complex task. velmap fits Gaussians to a selected line, and involves some graphical interaction
to select the template spectrum, and initial fitting parameters. For data well characterised by a
Gaussian, velmap can produce excellent results. However, it is an expensive algorithm to apply
to each spatial pixel. Also Gaussian fitting is not appropriate for all data.

The alternative offered velmoment collapses along the spectral axis by deriving the intensity-
weighted mean co-ordinate, and converts this to a velocity. This is turbo-charged compared
with fitting. The downside is that the results will not be as accurate as line fitting, and care must
be taken to select regions of the spectra populated by a single significant emission line.

By fitting

velmap allows you to select the highest signal-to-noise spectrum from a white-light image. You
can then interactively fit a line in this spectrum. The script will attempt to automatically fit the
same line in all the remaining spectra in the cube, calculate the Doppler velocity of this line from
a rest-frame co-ordinate you provide or is read from the NDF WCS, and create a velocity map of
that line in the cube. See Figure 16. Below is an example.

% velmap -v -p
NDF input file: section

Input NDF:
File: section.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 21 x 21 x 961
Pixel bounds : 20:40, 60:80, 1:961
Total pixels : 423801

Collapsing:
White-light image: 21 x 21

Left click on pixel to be extracted.

Extracting:
(X,Y) pixel: 31,72
Variances: Extension present.

Zoom in (yes/no): yes

Left click on lower zoom boundary.
Left click on upper zoom boundary.

2This is a guide figure. The limit will depend on your hardware and the size of your plotting window. It will be
more for a higher-resolution hardcopy.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmoment
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap

51 SC/16.2 —Data-cube manipulation

Figure 16: The velmap script, operating on a sub-cube of the 3C 27 observation consisting of
the central core of the galaxy.

Zooming:
Lower Boundary: 5289.73
Upper Boundary: 5714.58

Left click on the lower limit of the fitting region.
Left click on the upper limit of the fitting region.

Fit Mask:
Lower Mask Boundary: 5500.97
Upper Mask Boundary: 5649.73

Left click on your first estimate of the continuum.
Left click on your second estimate of the continuum.

Continuum:
First Estimate: 34.2915
Second Estimate: 10.2744
Average Value: 22.5659

Left click on the line peak.

SC/16.2 —Data-cube manipulation 52

Line Position:
Peak Position: 5526.29
Peak Height: 979.966

Left click on the left-hand edge of the FWHM.
Left click on the right-hand edge of the FWHM.

FWHM:
Lower Bound: 5518.38
Upper Bound: 5535.79
FWHM: 17.41

Rest Wavelength: 5007

Rest Wavelength:
Wavelength: 5007 Angstrom

Fitting:
Centre Position: 5527.768 +- 0.7394548E-01
Peak Height: 1020.167 +- 11.59994
FWHM: 13.28973 +- 0.1748629
Line integral: 14431.77 +- 163.9841

Fit okay (yes/no): yes

NDF output file: output
Fitting:

Spectrum at (20,60): 5530.940 +- 0.5387596
31392.451 +- 32.26783 km/s

Spectrum at (21,60): 5531.210 +- 0.5329667
31408.628 +- 31.94727 km/s

.

.

.
Spectrum at (39,80): 5526.000 +- 0.7465050E-01

31096.465 +- 4.475734 km/s
Spectrum at (40,80): 5526.596 +- 0.8262261E-01

31132.175 +- 4.943080 km/s

Output NDF:
Converting: Creating NDF from data.
Origin: Attaching origin (20,60).
Converting: Attaching VARIANCE array.
Axes: Attaching AXIS extensions.
WCS: Attaching WCS information.
Title: Setting title.

Plotting:
Display: Velocity map using percentile scaling.
Contour: White-light image with equally spaced contours.

Refit points (yes/no): no
%

53 SC/16.2 —Data-cube manipulation

As no automatic process is ever perfect the script allows you to manually refit spectra where it
had difficulties in obtaining a fit. If the script was unable to fit an (x,y) position this value will
be marked as VAL__BADD in the final velocity map. Should you choose to Refit points, clicking
on these (normally black) data points in the final output image will drop you into an interactive
fitting routine. However, you are not restricted to just refitting those points where the script was
unable to obtain a fit, you may manually refit any data point in the velocity map.

There is a -a option where you can review each fit at each spatial pixel. The fit parameters can
be logged to a Small Text List with the -l option.

By moments

The second script for generating a velocity map is velmoment. This first allows you to select
a region of interest. For large regions or noisy spectra you can also request spatial averaging
(-b option) to reduce the spatial dimensions by integer factors. If your dataset has a WCS
SPECTRUM or DSBSPECTRUM Domain, velmoment then switches co-ordinate system to one
of four velocities, such as optical or radio. It can also cope with NDFs in the UK data-cube
format too.

Then comes the heart of the script—the collapse task acting upon the spectral axis. It derives
the intensity-weighted velocity moment. For simple spectra, i.e. a single or dominant emission
line, collapse finds a representative velocity for the line.

The final stage is to display the map of the velocities. It uses a colour table that runs from blue
to red in order to give a visual clue of the relative motions. You may choose to superimpose
optional contours of the white-light image upon the velocity map.

Here is an example. Rather than supply a spatial subset as in the velmap example, we choose to
select the spatial region for analysis by interacting with a 2×2 spatially averaged (-b 2) ‘white-
light’ image that the script presents. The wavelength bounds in the NDF section 5300.:5750.
restricts the spectral compression to the range 5300 to 5750 Ångstrom and brackets the [OIII]
line. This means that the ’white-light’ image is effectively a map of the [OIII] emission. The
script converts the intensity-weighted wavelengths into velocities that it displays with a key and
suitable colour map. Finally it overlays a ten-level contour plot of [OIII] map on the velocity
map. See Figure 17. Below is an example.

% velmoment -b 2 -i ifu_file"(,,5300.:5750.)" -r 5007 -p -c 10

Input NDF:
File: ifu_file.sdf

Shape:
No. of dimensions: 3
Dimension size(s): 59 x 110 x 79
Pixel bounds : 1:59, 1:110, 135:213
Total pixels : 512710

Display white-light image to select subset (yes/no): y
Collapsing:

White-light image: 59 x 110

Left click on lower zoom boundary.
Left click on upper zoom boundary.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmoment
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_domains
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_COLLAPSE

SC/16.2 —Data-cube manipulation 54

Figure 17: The velmoment script, operating on a sub-cube of the 3C 27 observation consisting
of the central core of the galaxy.

Zooming:
Extracting:

Lower (X,Y): 14,56
Upper (X,Y): 46,97

Rest Wavelength :
Wavelength : 5007 Angstrom

NDF output file: moment

Collapsing:
Intensity-weighted co-ordinate image: 16 x 21

Plotting:
Display: Velocity map using percentile scaling.
Contour: White-light image with equally spaced contours.

5.8.9 How do I create line-strength map?

The DATACUBE peakmap script will generate a line-strength map. The interface to this script is
very similar to that of the velmap script discussed in Section 5.8.8, and it also generates final

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_peakmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap

55 SC/16.2 —Data-cube manipulation

output in a similar form, see Figure 18. Much like the velmap script the peakmap script allows
you to manually refit any spectrum that you think may have been poorly fitted by the automatic
process.

Figure 18: The peakmap script.

It should be noted that generating a passband image of a line region, and a line-strength map
using the peakmap script, should yield similar results. If you are worried about how accurately
the automatic fitting of gaussians is doing on a particularly noisy image, then generating a
line-strength map and making this comparison is an easy way of deciding a level of trust in
your velocity maps, as these are generated using the same fitting algorithms.

5.8.10 But they don’t handle blended lines!

No, neither peakmap nor velmap handle multiple gaussians or blended lines. While the FIGARO

fitgauss application on which these scripts are based can handle fitting blended lines—up to six
through the NCOMP parameter—automating this process reliably proved to be extremely difficult
and made the fitting routine very fragile to signal-to-noise problems.

5.8.11 How do I create line-ratio map?

Make a line-strength map of the both lines using peakmap or passband images using squash,
and then use the KAPPA div task to divide one by the other to create a ratio map. Here is an
example.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_passband
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_peakmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITGAUSS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_peakmap
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_squash
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DIV

SC/16.2 —Data-cube manipulation 56

% div out=ratio_map in1=image1 in2=image2 title="Ratio Map"

5.9 Mosaicking

Mosaicking IFU data cubes poses unique problems. Firstly the field of view of all the current
generation of instruments can be measured in arcseconds, far too small for the traditional
approach of image registration to allow the cubes to be matched up the x,y plane, additionally,
the wavelength calibration of the two cubes you wish to mosaic may be entirely different,
certainly the case for cubes coming from different instruments.

Figure 19: The white-light image of a mosaic of two data cubes created using makemos; a
dashed line has been drawn on to the image for clarity.

Unfortunately mosaicking therefore relies critically on WCS information provided in the cube
FITS headers. Currently the form this information takes varies between cubes from different
instruments; and sometimes where active development work is ongoing, between different
cubes produced by the same instrument. It is therefore very difficult to provide a ‘catch all’ script
or even recipe to allow you to mosaic two cubes together as yet. The agreement of a standard for
the spectroscopic world co-ordinates promulgated in FITS (Greisen et al., 2006, Representations of
spectral coordinates in FITS, Astronomy & Astrophysics 446,747) should diminish the problem. At
the time of writing the Starlink AST already supports spectral frames (these are used to compute
the velocities in velmap), and most features of this FITS standard.

http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

57 SC/16.2 —Data-cube manipulation

If the data cubes to be combined have valid WCS information, you should try the wcsmosaic
task. If your spectral co-ordinates are only present in an AXIS component, see the section
Converting an AXIS structure to a SpecFrame in SUN/95.

Without valid WCS information we offer a possible approach to the problem. If the two data
cubes have identical spectral-axis, e.g. wavelength, calibrations and, rather critically, the same
number of pixels along the spectral axis, (i.e. they are from the same instrument); then the
approach we take to the problem is to determine the right ascension and declination of the centre
of the x,y plane and work out the offset between the two frames in pixels. You can probably use
the AXIS frame to determine the arcsecond-to-pixel conversion factor, or this may be present in
the FITS headers.

Then make use of the CCDPACK wcsedit application to modify the origin of the PIXEL frame of
one of the cubes such that the two cubes are aligned in the PIXEL frame. Next we suggest you
change the current frame to the PIXEL frame (with wcsframe) and use makemos to mosaic the
cubes together (see Figure 19). It should be noted that makemos pays no attention to the WCS
information in the third axis (being designed for two-dimensional CCD frames) which is why
having an identical wavelength calibration over the same number of pixels is rather crucial.

Alternatively use can be made of the CCDPACK wcsreg application to align the cubes spatially.

Due to the differences in WCS content between instruments, if you want to mosaic cubes from
two different instruments together, the only additional advice we can currently offer you is
that you should carefully inspect the WCS information provided by the two cubes using (for
instance) wcsedit and try to find a way to map a frame in the first cube to a frame in the second.
It may then prove necessary to re-sample one of the cubes to provide a similar wavelength scale.
This may involve using KAPPA tasks wcsadd to define a mapping between frames, and regrid
to resample.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSMOSAIC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_wcsuse
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSFRAME
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEMOS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSREG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSADD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_REGRID

SC/16.2 —Writing csh scripts 58

6 Writing csh scripts

An excellent introduction to writing csh scripts can be found in the C-shell Cookbook (SC/4).

6.1 How do I get pixel positions using the cursor?

Seemingly a trivial problem with a simple solution this turns out to be slightly more complicated
than you would initially expect. Presuming we need an integer pixel position to give to another
application we are using in our script, we can use the following code block to do so.

Grab x,y position.
cursor showpixel=true style="Colour(marker)=3" plot=mark \

maxpos=1 marker=2 device=xwin frame="PIXEL" > /tmp/cursor_lock

Wait for cursor input.
while (! -e /tmp/cursor_lock)

sleep 1
end
rm -f /tmp/cursor_lock

Retrieve the position from the parameter file.
set pos = ‘parget lastpos cursor‘

Get the pixel co-ordinates and convert to grid indices. The
exterior NINT replaces the bug/feature -0 result with the desired 0.
set xpix = ‘calc exp="nint(nint($pos[1]+0.5))" prec=_REAL‘
set ypix = ‘calc exp="nint(nint($pos[2]+0.5))" prec=_REAL‘

Here we run the cursor application, requesting it to return co-ordinates in the PIXEL Frame,
creating a lock file to stop further execution of the script until the user has clicked on the
graphics display window. We then delete the lock file and retrieve the cursor position using
parget. cursor returns each co-ordinates as a floating-point value, whereas we require an integer
pixel index. We therefore use calc to convert from co-ordinates to indices by adding 0.5 and
finding the nearest integer.

This functionality has been encapsulated within the script $DATACUBE_DIR/getcurpos.csh.

6.2 How do I get real world co-ordinate positions using the cursor?

A similar, but slightly easier, problem is to grab real world co-ordinates from a cursor click on a
graphics display window.

Grab one position.
cursor showpixel=true style="Colour(marker)=3" plot=mark \

maxpos=1 marker=2 device=xwin > /tmp/cursor_lock

Wait for cursor input.
while (! -e /tmp/cursor_lock)

sleep 1

http://www.starlink.ac.uk/cgi-bin/htxserver/sc4.htx/sc4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CURSOR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_wcsuse
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PARGET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CALC

59 SC/16.2 —Writing csh scripts

end
rm -f /tmp/cursor_lock

Retrieve WCS co-ordinates.
set pos = ‘parget lastpos cursor‘
set x = $pos[1]
set y = $pos[2]

Here we run the cursor application, again creating a lock file to stop further execution of the
script. We then delete the lock file and retrieve the cursor position using parget.

This functionality has been encapsulated within the script $DATACUBE_DIR/getcurpos.csh.

6.3 How do I overplot contours from one image on to another?

The following code will overplot the contours of one dataset on to the greyscale image of another
of the same spatial size using the KAPPA display and contour tasks.

Display greyscale image.
display in=file1 device=xwin mode=per percentiles=[15,98] \

axes=yes lut=$KAPPA_DIR/grey_lut margin=!

plot contours
contour ndf=file2 device=xwin clear=no mode=equi axes=no \

ncont=${numcont} pens=’colour=2’ margin=!

This is useful in many circumstances, for instance, plotting the contours of a white-light image
over a passband image, or velocity map.

6.4 How do I use scientific notation in bc?

If you want to make use of the bc utility to carry out floating-point calculations in csh scripts
you may come across a problem with scientific notation. In many cases applications return
scientific notation in the form 3.0E+08, or 3.0E-0.8, while bc requires these numbers to be of
the form 3.0*10^08, or 3.0*10^-08. The following example segment of code takes two numbers
in the first format and passes them to bc in the correct manner so that it can do some arithmetic
with them. bc will return a floating-point number (not in scientific notation).

first number
set num1 = ‘echo ${num1} | sed ’s/E/*10\\^/’ | sed ’s/+//’‘

second number
set num2 = ‘echo ${num2} | sed ’s/E/*10\\^/’ | sed ’s/+//’‘

answer
set num3 = ‘echo "scale = 15; ${num1}-${num2}" | bc‘

The scale specifies the number of decimal places.

An alternative to using bc inside your scripts is the KAPPA calc command which can evaluate
many arbitrary mathematical expressions, as in this extract.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CURSOR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_PARGET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_DISPLAY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CONTOUR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_CALC

SC/16.2 —Writing csh scripts 60

calculate velocity
set delta_lambda = \

‘calc exp="’${centre_fit} - ${line_centre}’" prec=_double‘

set velocity = \
‘calc exp="’${delta_lambda}/${line_centre}’" prec=_double‘

set velocity = \
‘calc exp="’${velocity}*3.0E+08’" prec=_double‘

here we evaluate the Doppler velocity of an emission line using three calls to calc, although the
velocity could have been derived in a single expression.

6.5 My file has been converted to NDF. How do I access FITS header keywords?

You may need to access information that was contained in the FITS header to carry out your
data analysis, having converted your data to NDF format to make use of the Starlink software
the FITS header keywords are still accessible as part of an NDF extension. KAPPA has a number
of tools specifically written to handle FITS keywords (see SUN/95 for details).

The recommended way to find the value of a FITS header keyword is by using the fitsval
application. For instance, you could obtain the value of the FITS keyword CRVAL3 (see Section 4.3)
as follows.

% fitsval ifu_file CRVAL3
7302.2918645
%

This could be used in a script to take appropriate action along with other KAPPA FITS manipula-
tion tools.

Get the input file name.
echo -n "NDF input file: "
set infile = $<

Check to see if the CTYPE3 keyword exists.
set status = ‘fitsexist ${infile} CTYPE3‘

If the keyword exists...
if (${status} == "TRUE") then

get the value of CTYPE3.
set ctype3 = ‘fitsval ${infile} CTYPE3‘

Warn the user if its value is not LAMBDA.
if (${ctype3} != "LAMBDA") then

echo "Warning: Axis 3 not type LAMBDA"
endif

The keyword does not exist.
else

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_fitsairlock
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_FITSVAL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_fitsairlock
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_fitsairlock

61 SC/16.2 —Writing csh scripts

Warn the user that the keyword is missing.
echo "Warning: Axis 3 type keyword missing"

endif

Here we use KAPPA fitsexist comtmnd to check that the the keyword we are interested in exists,
then the fitsval command to query its value and act on the information.

6.6 How do I create an NDF file from an ASCII file?

If it possible to build an NDF file from a flat ASCII text file using the CONVERT application
ascii2ndf and then use KAPPA and DATACUBE applications to modify the structure and contents
of the NDF extensions until it has the correct specifications.

Create a basic NDF from an ASCII file.
ascii2ndf in=${datfile} out=${tmpfile} shape=[${dims[1]},${dims[2]}] \

maxlen=1024 type=’_double’

Set bad pixels to the magic value VAL__BADD.
setmagic in=${tmpfile} out=${outfile} repval=-9999.99
rm -f "${tmpfile}.sdf"

Set the origin of the output file.
setorigin ndf=${outfile} origin=[${lbnd[1]},${lbnd[2]}]

Attach the variance array.
ascii2ndf in=${varfile} comp="Variance" out=${outfile} \

shape=[${dims[1]},${dims[2]}] maxlen=1024 type=’_double’

We have a similar shaped NDF from which we want to clone the WCS
and AXIS information and attach to our newly created ${outfile}.

Clone the AXIS information from an similar shaped NDF.
setaxis ndf=${outfile} like=${likefile}

Clone the WCS information. This will be done incorrectly if the
AXIS structures does not exits before the WCS extension is cloned
wcscopy ndf=${outfile} like=${likefile}

Here we take a flat ASCII data file $datfile and create an NDF of dimensions $dims[1] ×
$dims[2], with data type _DOUBLE, using ascii2ndf. We then cal upon setmagic to flag all
pixels that have the value −9999.99 in the NDF with the standard bad ‘magic’ value, in this
case VAL__BADD. setorigin sets the pixel origin to ($lbnd[1],$lbnd[2]). We then use ascii2ndf
again to attach a variance array, from the ASCII flat file $varfile, to our newly created NDF.

For both invocations of ascii2ndf we make use of the MAXLEN parameter. This is the maximum
record length (in bytes) of the records within the input text file, the default value being 512. If
you attempt to generate an NDF from a file where many of the entries are double-precision
numbers, it might be necessary to set this value higher than the default value otherwise some
records (lines) may become truncated leading to ‘stepping’ effects within your output NDF.

After including our variance array, we attach AXIS information using the setaxis application,
and incorporate WCS information with wcscopy application, both from KAPPA. We clone this

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_FITSEXIST
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_ASCII2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETMAGIC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_masking
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETORIGIN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETAXIS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSCOPY

SC/16.2 —Writing csh scripts 62

information from an NDF whose world co-ordinate information is the same as our newly created
NDF. If we wanted to avoid copying the AXIS information (or if the NDF from where we were
cloning had no WCS information) we could make use of the wcscopy command’s TR parameter
to provide a transformation matrix.

Alternatively, we could make use of the KAPPA setaxis command to create an AXIS structure
within the NDF being cloned obtained from its existing WCS extension via the $likefile
parameter. setaxis should be invoked for each axis. Then we copying the AXIS and WCS
structures to our new NDF.

Create an AXIS structure from a WCS extension
setaxis ndf=${likefile} mode=wcs comp=Centre dim=1
setaxis ndf=${likefile} mode=wcs comp=Centre dim=2

Copy the AXIS structure to our new NDF.
setaxis ndf=${outfile} like=${likefile}

Copy the WCS extension to our new NDF
wcscopy ndf=${outfile} like=${likefile}

The above usage of setaxis is sometimes needed when including non-WCS compliant legacy
applications, such as fitgauss, in scripts, as these legacy tasks do recognise the AXIS structure.

6.7 How to make a simple GUI

The Xdialog program is designed as a drop-in replacement for the dialog and cdialog programs.
It can convert a simple terminal based script into a program with an X-Windows (GUI) interface.
The requirements to install XDialog is that you must have the X11 libraries and GTK+ libraries
(version 1.2.×) installed on your machine. GTK+ comes installed by default with most recent
Linux distributions (being necessary to run the GNOME desktop), however, it can be compiled
under both Solaris and Tru64 UNIX, and with the adoption of GNOME as the standard SUN
desktop will increasing come installed by default on platforms other than Linux.

Most shell scripts are easily converted to use Xdialog, for example we quickly modified the
velmap script to use it, see Figures 20 and 21. More information about XDialog can be found at
http://xdialog.dyns.net/.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_WCSCOPY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITGAUSS
http://xdialog.dyns.net/
http://www.gtk.org
http://www.starlink.ac.uk/cgi-bin/htxserver/sun237.htx/sun237.html?xref_velmap
http://xdialog.dyns.net/

63 SC/16.2 —Instrument information sources

Figure 20: An XDialog script based on velmap; here it asks for an input file.

7 Instrument information sources

• CIRPASS
http://www.ast.cam.ac.uk/∼optics/cirpass/

• GMOS
http://www.gemini.edu/sciops/instruments/gmos/gmosIndex.html

• INTEGRAL
http://andromeda.roque.ing.iac.es/∼astrosw/InstSoft/integral/integral-0.3.tar.gz
http://andromeda.roque.ing.iac.es/∼astrosw/InstSoft/integral/manual_de_reducciones.ps.gz

• OASIS
http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/

• SAURON
http://www.strw.leidenuniv.nl/sauron/

• SMIRFS
http://star-www.dur.ac.uk/∼jra/ukirt_ifu.html

• TEIFU
http://star-www.dur.ac.uk/∼jra/teifu.html

http://www.ast.cam.ac.uk/~optics/cirpass/
http://www.gemini.edu/sciops/instruments/gmos/gmosIndex.html
http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/integral-0.3.tar.gz
http://andromeda.roque.ing.iac.es/~astrosw/InstSoft/integral/manual_de_reducciones.ps.gz
http://www.cfht.hawaii.edu/Instruments/Spectroscopy/OASIS/
http://www.strw.leidenuniv.nl/sauron/
http://star-www.dur.ac.uk/~jra/ukirt_ifu.html
http://star-www.dur.ac.uk/~jra/teifu.html

SC/16.2 —Other information sources 64

Figure 21: The same XDialog script later in the run; here we are prompted for the central
wavelength of the line.

• UIST
http://www.roe.ac.uk/ukatc/projects/uist/
http://www.ukirt.hawaii.edu/instruments/uist/ifu/uistoracdr.html

8 Other information sources

• ATV Image Viewer
http://www.physics.uci.edu/ barth/atv/

• IDL Astronomy Library
http://idlastro.gsfc.nasa.gov/homepage.html

• HEASOFT
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/

• XDialog
http://xdialog.free.fr/

• GTK+
http://www.gtk.org/

http://www.roe.ac.uk/ukatc/projects/uist/
http://www.ukirt.hawaii.edu/instruments/uist/ifu/uistoracdr.html
http://www.physics.uci.edu/~barth/atv/
http://idlastro.gsfc.nasa.gov/homepage.html
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
http://xdialog.free.fr/
http://www.gtk.org/

65 SC/16.2 —Other information sources

References
Economou F., Bridger A., Wright G.S., Jenness T., Currie M.J., Adamson A., Astronomical Data

Analysis Software and Systems VIII, Mehringer D.M., Plante R.L., Roberts D.A. (eds.), 1999,
p.p. 11, ASP Conf. Ser., Vol. 172

Acknowledgments

In compiling this document I (AA) have again leant heavily on already available material, and
the help of many people in the IFS community. However, special thanks should go to Rachel
Johnston, Jeremy Allington-Smith, James Turner and Frank Valdes for their co-operation and
contributions.

Up-to-date information about UIST data reduction was provided by Stephen Todd who wrote
the original ORAC-DR IFU recipes for the instrument.

http://www.ast.cam.ac.uk/~raj/
http://www.ast.cam.ac.uk/~raj/
http://star-www.dur.ac.uk:80/~jra/
mailto:J.E.H.Turner@durham.ac.uk
http://www.noao.edu/noao/scistaff/valdes.html
http://intra.roe.ac.uk/ifa/people/spt.html

	Introduction
	The Datacube Package
	Data reduction
	Reduction paradigms
	INTEGRAL data
	OASIS data
	SAURON data
	GMOS data
	CIRPASS data
	SMIRFS data
	TEIFU data
	UIST data
	VIMOS data
	Other IFU instruments

	File formats
	The GMOS working format
	The new IRAF spectral format
	The UK data-cube format
	MEF to data-cube format
	Format conversion
	GMOS MEF to NDF
	TEIFU FITS to NDF

	GMOS vs. TEIFU format
	FITS header manipulation
	Native FITS files
	The NDF FITS extension

	FITS I/O with IDL
	NDF I/O with IDL

	Data-cube manipulation
	Existing software
	Arithmetic Operations
	Cube manipulation
	Two-dimensional manipulation
	Pixel Operations
	Other tools and file manipulation
	Visualisation
	Mosaics
	Spectral fitting

	Locating Features
	Dealing with Graphical Devices
	Devices and Globals
	The Graphics Database
	Pseudo Colour and LUTs

	Dealing with WCS Information
	GAIA data visualisation
	Cube toolbox
	Spectral plot
	Volume Visualisation

	IDL and data visualisation
	Display problems
	Slicer3
	The IDL Astronomy Library
	ATV Image Viewer

	IRAF and the Starlink software
	Visualisation using the DATACUBE scripts
	How do I create a white-light image?
	How do I create a passband image?
	How do I step through passband images?
	How do I extract individual spectra?
	How do I compare spectra?
	How do I plot stacked spectra?
	How do I create a grid of spectra?
	How do I create a velocity map?
	How do I create line-strength map?
	But they don't handle blended lines!
	How do I create line-ratio map?

	Mosaicking

	Writing csh scripts
	How do I get pixel positions using the cursor?
	How do I get real world co-ordinate positions using the cursor?
	How do I overplot contours from one image on to another?
	How do I use scientific notation in bc?
	My file has been converted to NDF. How do I access FITS header keywords?
	How do I create an NDF file from an ASCII file?
	How to make a simple GUI

	Instrument information sources
	Other information sources

