SG/5.2

Starlink Project
Starlink Guide 5.2

J A Bailey[]
A] Chipperfield

9th June 1998

ICL

The Interactive Command Language
for ADAM
Version 1.5-6
User’s Guide

! Anglo-Australian Observatory

SG/5.2 —Abstract ii

Abstract

ICL is a language designed to provide a programmable user interface to an astronomical data reduction
or data acquisition system. It is the primary user interface for the ADAM software environment.

This document is a re-formatted version of SG/5.1 — the text has not changed. For information on ICL for
Unix, ICL help is more reliable.

iii SG/5.2—Contents

Contents

I[_Introduction to ICL 1
(I Introduction 2
L1 WhatisICL?o 2
[2_ICL Documentation] 2
... 2
(1.4 History and Support| 2

2 Getting Started| 4
DI DirectModel 4
2.2 Entering Commands| 4
2.3 The Immediate Statement! e 4

2.4 'The Assignment Statement|. L L L 5

.5 Expressions| 5
251 WValuesl 5

252 Constantsl 5

253 Variables 6

2.5.4 Operators| e 6

2.5.5 Functions| 7

2.6 Formatting Numbers ForOutputf 7

2.7 mmandsl. 7
271 Command Formatl e 8

[2.7.2 Summary of Rules for Command Parameters|. 8

B8__ICL Procedures| 10
3.1 Direct Entry of Procedures| 10

3.2 RunningaProcedure| 10

3.3 Listing Procedures| 11

3.4 Editing Procedures| o 11

3.5 Direct Commands During Procedure Entry| 12

3.6 Saving and Loading Procedures|. L o oL L 12
3.7 Control Structures|. e e e 13
B.71 ThelFstructurel 13

B.72 ThelOOPStructurel 14

3.8 Prompting for Procedure Parameters|. o o0 L. 15
39 Variablesin Procedures|. 16
3.10 Tracing Procedure Execution| 16
3.11 Running ICLasaBatchjJob| 17

@ Input/Output| 19
Bl TerminalI/Of. 19
B2 TextFilel/Ol e 19
B3 ScreenModel 20

SG/5.2 —Contents

b__Access to DCLI
B.1 The$SCommand|.
52 The SPAWN Command|
5.3 Changing the Default Directory|
5.4 Allocating and Mounting Tape Drives|

[6__Errors and Exceptions|
6.1 TCLEXCEPHONS| e

6.2 ExceptionHandlers|. o
0.3 Keyboard Aborts|

7 Extending IC
71 Loginfiles]

2 The DEFSTRING Command|. e e e
7.3 Hi n Pr TeSl . . . e

.5 Detining Additional Help Topics|
.6 Other Ways of Defining Commands|

[10_ Writing ADAM tasks|
[[0.1 Introductionl o

|10.2 Compilingand Linking|. L

EOA SIATUSand error handling|

10.5 Returning valuesto ICL]
0.6 Graphicswith ADAM|
[[0.7 Accessing Data]

[11_ADAM as a Data Acquisition Environment
11.1 Instrumentation Tasksl e

11.3 Task Loading|. e
114 Killing Tasks| o
11.5 The ADAM messagesystem|.
1.6 AnExamplel
[T61 The L-fask Interface Fild

iv

23
23
23
24
24

26
26
27
29
29

30
30
31
31
31
31
32

5G /5.2 —Contents

|11.6.5 MISSIH% Parameterﬁl 50
..................................... 51

11.6.7 The OBEY mmand| e e 51
[11.6.8 Multiple Concurrent Actions| 51
[A_ICT. Functionsl 53
B_ICL Commands| 58
.. 58
B.2 ALOADI . . . e e e e 58
5.3 APPENDI o e e 58
B4 _CHECKTASK] . . . o ot e e e e e e s e e 59
BE _CLEAR . . . o o oot e e e 59
B.6 CLOSEH] . . . e e e e 59
BZ CREATE oot e e e e e e e e e e 59
B8 CREATEGLOBATL. o oo e e e e e e e e s s s s 59
B $(CL) oot 60
BI0O DEATTOT o o o et e e e e e e e e e e e 60
B.11 DEEAULTL o e e e e 60
B.12 DEEHELPl e e 60
BIZDEFINE] o oot e e e e e 61
.. 61
b. 15 DEESHARE] . . . 0 e e 62
... 62
B.17 DEFTASKI] . . . o e e e 62
B.18 DEFUSERI e 63
BIODELETE o o ot e e e e e 63
5.20 DISMOUNT e e e 63
B.21 DUMPTASK] e e 64
B.22 EDII . . o e e e e 64
B.23 ENDOBEY] e e e 64
64

B5.20 GEIl . . . o e e 64
B.26 GETGLOBALl o e 65
... 65
B.28 GETPARI . . . e e e 65
B2ZOHELD o oot 65
.. 66
B3TINPUTI o oo e e e e e e e e e e e e e 66
B32ZINPUTI o oo e e e e e e e e e 66
... 66
B3EEKEYl. . o o oo e 67
.. 67
5.36 KEYUSER| o e e e 67
B37KILL . . . o oot e e e 67
B.38 KILLDCH . .« . o e e e e e 68
.. 68
BATTISTI. . . . o o o e e e e e e 68
B.A1 LOADI. . o o e e e 68
B.42 LOADDI e e e 68
... 69
B.44 MOUNTI e e e e 69
B.45 NOREDP] e e e e e 69
BA6 OBEYWI. . . . o o oot e e e e 69

SG/5.2 —Contents vi

BASPRINTI . . . o o o oo e e e e e e 70
.. 70
B0 PUTNBY . . . o o oo e e e e e e e 70
BETREAD] . . . o o o oot e e e e 70
BEZREADI . . o o o oottt e 71
B3 READL] . . . o o o oo e e e 71
BOA READR . . . o o o oo et 71
... 71
... 72
BE7 SAVE] . o o o oo e e e 72
B8 SAVEINDPUT . . . o o o v e e e e e e e e 72
... 72
B0 SET] . . o o o e e e e 73
..................................... 73
[B.:60.2 SET AUTOLOAD, SET NOAUTOLOAD] o oo 73
[B.60.3 SET CHECKPARS, SET NOCHECKPARS o 73
.. 73
B.60.5 SET HELPFILE 74
[B.:60.6 SET MESSAGES, SET NOMESSAGES| i 74
...................................... 74
B608 SETPROMPT . . . o o v o e e e e e e e e e e e 74
[B.60.9 SETSAVE, SETNOSAVE| o o s s s s s s 74
[B.60.T0SET SCREEN, SET NOSCREEN] o v oo e e s 74
[B.60.TISET TRACE, SET NOTRACE] s s 74
... 75
BAZ SETPAR] . . o o o o oot e e 75
B3 SIGNATL . . . o o e e e e e e e e 75
B6A SPAWNI . . . o o o e e e e 76
B.65 STARTOBEY 76
B66 TASKTl . o o o e e e e e 76
BA7 VART . . o o o o e e 76
B8 WATT] . .« o o v o e e e e e e e e e 76
B.60 WRITEl . . o o o e e e e e e e e e e e 77
|C ICL Exceptions| 78

D _ICL Syntax 81

5G/5.2—

Part I

Introduction to ICL

SG/5.2—Introduction 2

Chapter 1
Introduction

1.1 Whatis ICL?

The Interactive Command Language (ICL) is a language designed to provide a programmable user
interface to an astronomical data reduction or data acquisition system. It is the primary user interface for
the ADAM software environment and its use with ADAM is described in Part II.

ICL is in some ways similar to a high level programming language such as Fortran or Pascal, but it has
some important differences.

e It is a command language. One of its main uses is to enable the typing of commands with few
restrictions on the possible command format For example ICL can be used to run the FIGARO data
reduction system and it is possible to type FIGARO commands in exactly the same format as was
previously used from DCL.

e It is an interactive language. ICL provides a complete environment for entering, editing and
debugging programs, rather than relying on external editors, linkers efc.

e ICL can be used as a programming language, but it is intended for writing relatively simple and
straightforward programs. It's requirements are different from those of most modern programming
languages, which are designed for the needs of big software projects such as writing operating
systems or controlling missiles. ICL is designed to make simple programs easy to write.

1.2 ICL Documentation

This users’ guide provides an introduction to ICL for beginners, and should provide the information
needed to get started with it. The various appendices give further details on many aspects of the language.

ICL also provides an on-line help system. Simply type HELP and a list of topics will be displayed (it
works in exactly the same way as the DCL help system).

1.3 ICL and FORTRAN

The reader of this manual is assumed to be familiar with programming in FORTRAN, and the manual
will compare ICL features with the corresponding features of FORTRAN where appropriate.

1.4 History and Support

ICL was written by Jeremy Bailey, working at the Anglo-Australian Observatory and subsequently at the
Joint Astronomy Centre, Hilo. Responsibility for support has now passed to the ADAM Support Group,

3 S5G /5.2 —Introduction

part of the Science and Engineering Research Council’s Starlink Project at the Rutherford Appleton
Laboratory.

5G/5.2—Getting Started 4

Chapter 2
Getting Started

2.1 Direct Mode

In this section we describe how to run ICL in direct mode and use its variables, expressions etc. which
enable us to use the VAX as a very expensive electronic calculator. In direct mode we type in commands
and they are executed immediately. The alternative to direct mode is the use of procedures, in which the
commands are entered into a procedure, and subsequently executed by running the procedure.

ICL is started up by using the command ICL. After a short delay ICL will respond by displaying any
startup messages which have been set, followed by the prompt ICL>, meaning it is now ready to accept a
command.

$ ICL
Interactive Command Language - Version 1.5-6
- Type HELP [command] for help on ICL and its commands

ICL>

2.2 Entering Commands

When entering commands in ICL all the normal command line editing facilities available in DCL may be
used. The Up arrow or CTRL/B key may be used to recall previous commands and the Down arrow key
will step to the next command. Any command back to the start of the ICL session may be recalled.

A command may take more than one line. A tilde ~ symbol at the end of a line is used to indicate that the
command continues on the next line.

2.3 The Immediate Statement

The first ICL statement we will introduce is the immediate statement. This is used to make ICL do simple
calculations. It simply consists of an equals sign (=) followed by an expression, and causes the value of
the expression to be printed on the terminal.

ICL> =1+ 2 + 3

6
ICL> = SQRT(2)
1.414214
ICL>

ICL arithmetic expressions are very similar to expressions in FORTRAN, and will be discussed in more
detail later.

5 5G/5.2 —Getting Started

24 The Assignment Statement

The other commonly used statement is the assignment statement, which is exactly the same as the
FORTRAN assignment statement, and is used to assign a value to a variable.

ICL> PI = 3.1415926
ICL> = 2 * pi
6.283185

ICL>

Note that the case of letters doesn’t matter. PI and pi are the same variable.

2.5 Expressions

Expressions are built up by operating on values using operators. The values can be represented by either
constants or variables or can be the result of a function operating on another expression.

2.5.1 Values

ICL operates on values of four different types:

o Integer
e Real
e Logical
e String
The integer, real and logical types are the same as their FORTRAN equivalents (the ICL real type is strictly

equivalent to FORTRAN's double precision being stored with about 16 decimal digits of precision. The
String type represents strings of characters and is similar to the FORTRAN CHARACTER*n type.

2.5.2 Constants

Values of all four types can be represented by appropriate constants. Integer and real constants are
represented by numbers written in the same formats that are accepted in FORTRAN. Integer constants
may also be entered in binary, octal or hexadecimal format by preceding the value with %B, %0 or %X.

Logical constants are typed as TRUE or FALSE. Note that they are not delimited by decimal points as in
FORTRAN.

String constants consist of any sequence of characters enclosed in either single or double quotes. Two
consecutive quote symbols in a string are used to represent a single quote. String constants are the one
place in ICL where the case of letters is significant.

Some examples of constants:

Real 1.234E-5 3.14159
Integer 123 %B100110 %0377 WXELEE
Logical TRUE FALSE

String ’This is a string’ "So is this" »

5G/5.2 —Getting Started 6

The last example defines a string of zero length (valid in ICL but not in FORTRAN).

2.5.3 Variables

Variables in ICL are represented by names composed of characters which may be letters, digits or the
underscore character (_). The first character must be a letter. The first 15 characters of a variable name are
significant (i.e. two variable names which are the same in the first 15 characters, but differ in subsequent
characters refer to the same variable).

An important difference between ICL and FORTRAN is in the handling of variable types. In FORTRAN
each variable name has a unique type associated with it, which is either derived implicitly from the first
letter of the name, or is explicitly specified in a declaration.

In ICL names do not have types, only values have types. A variables gains a type when it is assigned a
value. This type can change when a new value is assigned to it. Thus we can have the following sequence
of assignments making the variable X an integer, real, logical and string in sequence.

ICL> X = 123
ICL> X = 123.456
ICL> X = TRUE
ICL> X = ’String’

This approach to variable types means we do not have to declare the variables we use which helps to
keep programs simpleE]

2.5.4 Operators

The operators which are used to build up expressions are listed in the following table.

Priority
1 (highest) *k
2 * /
3 + -
4 = > < >= <= <>
5 (lowest) NOT AND OR &

The order of evaluation of expressions is determined by the priority of the operators. The rules are the
same as those in FORTRAI\E] with arithmetic operators having the highest priority, and logical operators
the lowest. This means that a condition such as 0 < X +Y < 1 can be expressed in ICL as follows

X+Y > 0 AND X+Y <=1

without requiring any parentheses. In general however, it is good practice to use parentheses to clarify
any situation in which the order of evaluation is in doubt.

In evaluating expressions ICL will freely apply type conversion to its operands in order to make sense of
them. This means not only that integers will be converted to reals when required, but also that strings
will be converted to numbers when possible. A string can be converted to a numeric value if the value
of the string is itself a valid ICL expression. For example the string ’1.2345° has a numeric value. The
string *X+1° has a numeric value if X is currently a numeric variable (or if X is a string which has a
numeric value).

The operator & performs string concatenation — operands with numeric values will be converted to
strings. The : operator is used for formatting numbers into character strings as described below.

IThe disadvantage is that ICL cannot usually spot cases where we accidentally mistype the name of a variable, as can languages
which enforce declaration of variables (such as FORTRAN with the IMPLICIT NONE directive). This is not thought to be a serious
problem for the relatively simple programs for which ICL is intended.

2But different from those in Pascal

7 5G/5.2 —Getting Started

2.5.5 Functions

ICL provides a variety of standard functions. Functions are written in exactly the same way in ICL as in
FORTRAN, and all the standard FORTRAN 77 generic functions which are relevant to the ICL data types
are provided in ICL with the same names as in FORTRAN. Thus SIN, COS, TAN, ASIN, ACOS, ATAN,
ATAN2, LOG, LOG10, EXP, SQRT and ABS are all valid functions. A more complete list of functions is
given in Appendix A.

2.6 Formatting Numbers For Output

While FORTRAN regards formatting of numbers for output as part of an output operation, ICL performs
formatting using an operator (:), which produces a string result from a numeric operand. Thus if [is an
integer variable the expression I:5 has as its value the string which is produced by converting I with
a field width of 5 characters. Thus it is equivalent to an I5 format in FORTRAN. Similarly if X is a real
variable the expression X:10:4 produces the value of X formatted in a FORTRAN F10.4 format (i.e. a field
width of 10 characters, and four decimal places). The ICL formatting is not precisely equivalent to the
FORTRAN form because ICL will extend the field width if a number is too large to fit in the requested
width.

ICL> = 1.234567:5:2

1.23
ICL> = 12.34567:5:2
12.35
ICL> = 123.4567:5:2
123.46
ICL> = 123456.7:5:2
123456.70

Integers can also be formatted in binary, octal, decimal or hexadecimal formats using the functions
BIN, OCT, DEC and HEX. These have the form HEX (X,n,m) which would return a string of n characters
containing the number X with m significant digits. n and m may be omitted in which case they default to
the number of digits needed to represent a full 32 bit word. Using these forms together with constants in
various bases, ICL can be used to perform conversions between various bases.

ICL> = %Xffff

65535
ICL> = hex(65535)
OOOOFFFF
ICL> = OCT(%XFF,5,5)
00377

2.7 Commands

We have now met two of the three statement types available in direct mode, the immediate and assignment
statements. We now introduce the third and most important one, the command. Commands are used for
three purposes.

o To provide features of the ICL system itself — These are commands such as PRINT, EDIT, LIST etc.
e To call procedures written in ICL.

e To provide the commands of the system ICL is being used to run — In this case ADAM.

5G/5.2 —Getting Started 8

2.71 Command Format

An ICL command consists of a command name, which is formed using exactly the same rules as we
described earlier for variable names, followed by optionally, one or more parameters. Parameters can
take three forms:

e An expression or variable name enclosed in parentheses.
e A string enclosed in quotes.

e Any sequence of characters not including a space, quote, comma or left parenthesis.

The parameters may be separated by commas, or by one or more spaces.

The first form of the parameter is used when we want to pass the value of an expression to the command,
or we want to give the command a variable into which it will return a value. The other two forms both
pass a string.

We can illustrate these various cases by using the PRINT command, which prints its parameters on the
terminal.

ICL> X=1.234
ICL> PRINT (X)
1.23400

ICL> PRINT ’HELLO’
HELLO

ICL> PRINT HELLO
HELLO

In most cases therefore we do not need to use the quoted form of string parameters because the simpler
form will work. We need the quoted form of strings for those cases in which we need to include a left
parenthesis, or spaces in the string. Here is an example with several parameters.

ICL> X=2
ICL> PRINT The Square Root of (X) is (SQRT(X))
The Square Root of 2 is 1.414214

What is happening here is that, since spaces are parameter separators, >The’, ’Square’, *Root’ and
>of? are all received by PRINT as independent parameters. However PRINT simply concatenates all its
parameters, with a space between each pair, and thus the result is the string just as we typed it. Many
other ICL commands which accept strings work in this way. This means that strings with single spaces do
not usually need quotes when used as command parameters.

2.7.2 Summary of Rules for Command Parameters
The rules for specifying command parameters can be summarized as follows.

e To pass the value of an expression (which might be just a single number), or the name of a variable,
the expression or variable should be placed in parentheses.

¢ Anything not in parentheses is passed as a string, or as a sequence of strings if it contains spaces or
commas.

e Any string which does not fit these restrictions, can be passed by placing it in quotes.
FORTRAN programmers may find it useful to note that the parenthesized form of the command parame-

ters is exactly equivalent to the normal FORTRAN method of passing parameters to a subroutine. Thus
the ICL command

9 5G/5.2 —Getting Started

COMMAND (A) (B) (C)
is equivalent to the FORTRAN
CALL COMMAND (A, B, C)

Any parameter can always be passed in this way. The other forms of parameter simply provide a
convenient way of handling the common case of passing a string constant.

These rules may appear somewhat confusing specified in this way, but what they achieve is to allow us to
type many familiar commands in the way we are used to. Thus the following are valid ICL commands:

ICL> $DIR/SIZE/DATE/SINCE=TODAY

ICL> SPLOT MYSPECT LOW=10 HIGH=100 \

SG/5.2—ICL Procedures 10

Chapter 3
ICL Procedures

An ICL Procedure is essentially the equivalent of a Subroutine in FORTRAN. It allows us to write a
sequence of ICL statements which can be run with a single command. The procedure may have a number
of parameters which are used to pass values to the procedure, and return values from it.

3.1 Direct Entry of Procedures

To enter an ICL procedure we type a PROC command which specifies the name of the procedure, and the
names of any of its parameters. ICL then returns a new prompt using the name of the procedure rather
than ICL> to show that we are in procedure entry mode. The statements that make up the procedure are
then entered, followed by an END PROC or ENDPROC to mark the end of the procedure.

ICL> PROC SQUARE_ROOT X

SQUARE_ROOT> { An ICL procedure to print the square root of a number }
SQUARE_ROOT> PRINT The Square Root of (X) is (SQRT(X))

SQUARE_ROOT> END PROC

ICL>

The line beginning with { is a comment which will be ignored by ICL when executing the procedure. The
closing } is not necessary but looks neater.

3.2 Running a Procedure

To run the procedure we have entered we use the command format described earlier, using the procedure
name as the command, and adding any parameters required.

ICL> SQUARE_ROOT (2)
The Square Root of 2 is 1.414214

But we can also specify the parameter without parentheses:

ICL> SQUARE_ROOT 2
The Square Root of 2 is 1.414214

What has happened here is that instead of the numeric value 2, we have passed the string 2" as the
parameter. However, the SQRT function requires a numeric argument, so converts this string to a number.
Thus, the free approach to type conversion, means that in many cases the rules for command parameters
described in the Section[2.7.2]can be relaxed.

ICL> Y=3
ICL> SQUARE_ROOT Y
The Square Root of Y is 1.732051

In this case the parameter passed was the string "Y’, but once again this was converted to a numeric value
for the SQRT function.

11 SG /5.2 —ICL Procedures

3.3 Listing Procedures

The LIST command can be used to list a procedure on the terminal. Just type LIST followed by the name
of the procedure you want to list.

ICL> LIST SQUARE_ROOT

PROC SQUARE_ROOT X

{ An ICL procedure to print the square root of a number }
PRINT The Square Root of (X) is (SQRT(X))

END PROC

ICL>
To find the names of all the current procedures use the command PROCS.

ICL> PROCS
SQUARE_ROOT

ICL>

3.4 Editing Procedures

Entering procedures directly is fine for very simple procedures, but for anything more complex it is likely
that some mistakes will be made in entering the procedures. When this happens it will be necessary to
edit the procedure. Editing is accomplished from within ICL using standard editors. For example the
command

ICL> EDIT SQUARE_ROOT

would be used to edit the SQUARE_ROOT procedure. By default the TPU editor is used. It is also
possible to select the EDT or LSE editors using the SET EDITOR command. All these editors are described
in DEC’s documentation.

When editing a procedure there are two possible options.

e We can leave the name of the procedure unchanged, but edit the code. In this case we create a new
version of the procedure, which replaces the old one when we exit from the editing session.

e We can change the name of the procedure by editing the PROC statement at the start of the
procedure. This creates a new procedure with the new name, and leaves the old procedure
unchanged.

It is possible to enter procedures completely using the editors. However it is recommended that proce-
dures be entered originally using direct entry. The advantage is that during direct entry, any errors will
be detected immediately. Thus if we mistype the PRINT line in the above example we get the following
error message:

SG /5.2 —ICL Procedures 12

SQUARE_ROOT> PRINT The Square Root of (X is (SQRT(X))
PRINT The Square Root of (X is (SQRT(X))

Right parenthesis expected

The error message consists of the line in which the error was detected. A pointer which indicates where
in the line ICL had got to when it found something was wrong, and a message indicating what was
wrong. In this case it found the ’is’ string when a right parenthesis was expected.

Following such an error message we can use the command line editing facility to correct the line and
reenter it. If the same error occurred during procedure entry using an editor, the error message would
only be generated at the time of exit from the editing session, and it would be necessary to EDIT the
procedure again to correct it.

3.5 Direct Commands During Procedure Entry
It is sometimes useful to have a command directly executed while entering a procedure. When using the
direct entry method this can be done by prefixing the command with a % character. For example:

ICL> PROC SQUARE_ROOT X
SQUARE_ROOT> YHELP

would give us on-line help information we might need to complete the procedure. If the % was omitted
the HELP command would be included as part of the procedure.

3.6 Saving and Loading Procedures

Procedures created in the above way will only exist for the duration of an ICL session. If we need to keep
them longer they need to be saved in a disk file. This is achieved by means of the SAVE command. To
save our SQUARE_ROOT procedure on disk we would use:

ICL> SAVE SQUARE_ROOT
To load it again, probably in a subsequent ICL session we would use the LOAD command.

ICL> LOAD SQUARE_ROQT

The SAVE command causes the procedure to be saved in a file with name SQUARE_ROOT.ICL in the
current default directory. LOAD will load the procedure from the same file, also in the default directory.
With LOAD however it is possible to specify an alternative directory if required:

ICL> LOAD DISK$USER: [ABC]SQUARE_ROOT

If you have many procedures you may not want to save and load them all individually. It is possible to
save all the current procedures using the command:

ICL> SAVE ALL

This saves all the current procedures in a single file with the name SAVE.ICL. These procedures may then
be reloaded by the command:

13 SG /5.2 —ICL Procedures

ICL> LOAD SAVE

The SAVE ALL command is rarely used however, because this command is executed automatically
whenever you exit from ICL. This ensures that ICL procedures do not get accidentally lost because you
forget to save them.

3.7 Control Structures

The ICL control structures provide a means of controlling the flow of execution within a procedure.
Unlike the statements we have met so far these can only be used within a procedure and are not accepted
in direct mode. There are two types of control structure:

e The IF or conditional structure.

e The LOOP structure.

3.7.1 The IF structure
The IF structure is essentially the same as the block IF of FORTRAN. It has the following general form:

IF expression
statements
ELSE IF expression
statements
ELSE IF expression
statements

ELSE
statements
END IF

The expressions (which must give logical values) are evaluated in turn until one is found to be true, and
the following statements are then executed. If none of the expressions are true the statements following
ELSE are executed.

Every IF structure must begin with IF and end with END IF (or ENDIF). The ELSE IF (ELSEIF) and ELSE
clauses are optional, so the simplest IF structure would have the form:

IF expression
statements
ENDIF

The following example illustrates the use of the IF structure, and shows how one IF structure may be
nested within another.

PROC QUADRATIC A,B,C

{ A Procedure to find the roots of the quadratic equation }
{ A* X2 +B*xX+C=0 }

IF A=0 AND B=0

PRINT The equation is degenerate
ELSE IF A=0

PRINT Single Root is (-C/B)

SG /5.2 —ICL Procedures 14

ELSE IF C=0
PRINT The roots are (-B/A) and O
ELSE
RE = -B/(2%A)
DISCRIMINANT = B*B - 4*A*C
IM = SQRT(ABS(DISCRIMINANT)) / (2%*A)
IF DISCRIMINANT >= 0O
PRINT The Roots are (RE + IM) and (RE - IM)
ELSE
PRINT The Roots are complex
PRINT (RE) +I* (IM) and
PRINT (RE) -Ix (IM)
ENDIF
ENDIF
END PROC

3.7.2 The LOOP Structure

The LOOP structure is used to repeatedly execute a group of statements. It has three different forms, the
simplest being as follows:

LOOP
statements
END LOOP

This form sets up an infinite loop, but an additional statement, BREAK, may be used to terminate the
loop. BREAK would, of course, normally have to be inside an IF structure.

PROC COUNT
{ A procedure to print the numbers from 1 to 10 }
I=1
LOOP
PRINT (I)
I =1I+1
IF I > 10
BREAK
ENDIF
ENDLOOP
ENDPROC

As it is frequently required to loop over a sequential range of numbers in this way, a special form of the
LOOP statement is provided for this purpose. It has the following form:

LOOP FOR variable = expressionl TO expression2 [STEP expression3]
statements
END LOOP

This form is essentially equivalent to the DO loop in FORTRAN. The expressions specifying the range of
values for the control variable are rounded to the nearest integer so that the variable always has integer
values. Using this form of the LOOP statement we can simplify the previous example as follows:

PROC COUNT
{ A procedure to print the numbers from 1 to 10 3}
LOOP FOR I = 1 TO 10
PRINT (I)
ENDLOOP
ENDPROC

15 SG /5.2 —ICL Procedures

Note that there is an optional STEP clause in the LOOP FOR statement. If this is not specified a STEP of 1
is assumed. The STEP clause can be used to specify a different value. A step of -1 must be specified to get
a loop which counts down from a high value to a lower value. For example:

LOOP FOR I = 10 TO 1 STEP -1

will count down from 10 to 1.

The third form of the LOOP structure allows the setting up of loops which terminate on any general
condition. It has the form:

LOOP WHILE expression
statements
END LOOP

The expression is evaluated each time round the loop, and if it has the logical value TRUE the statements
which form the body of the loop are executed. If it has the value FALSE execution continues with the
statement following END LOOP.

Using this form we can write yet another version of the COUNT procedure:

PROC COUNT
{ A procedure to print the numbers from 1 to 10 3}
I=1
LOOP WHILE I <= 10
PRINT (I)
I=1I+1
ENDLOOP
ENDPROC

In the above case the LOOP WHILE form is more complicated than the LOOP FOR form. However LOOP
WHILE can be used to express more general forms of loop where the termination condition is something
derived inside the loop. An example is a program which prompts the user for an answer to a question
(e.g. yes or no) and has to keep repeating the prompt until a valid answer is received.

FINISHED = FALSE
LOOP WHILE NOT FINISHED

INPUT Enter YES or NO: (ANSWER)

FINISHED = ANSWER = ’YES’ OR ANSWER = ’NO’
END LOOP

3.8 Prompting for Procedure Parameters

Normally a procedure will not be obeyed unless the required number of parameters is provided — the
TOOFEWPARS exception is signalled. However, this check can be switched off using the NOCHECKPARS
command. Then the procedure will be executed with the parameter being undefined. This fact can be
used to write a procedure which will prompt for an undefined parameter, e.g.:

PROC SQUARE_ROOT X
{ An ICL procedure to print the square root of a number, }
{ prompting if the number is not given on the command line }
IF UNDEFINED (X)
INPUT °Give the value of X: ’ (X)
ENDIF
PRINT The Square Root of (X) is (SQRT(X))
END PROC

Note that only trailing parameters may be omitted

SG /5.2 —ICL Procedures 16

3.9 Variables in Procedures

Any variable used within a procedure is completely distinct from a variable of the same name used
outside the procedure, or within a different procedure, as can be seen in the following example:

ICL> X =1
ICL> PROC FRED
FRED> X = 1.2345
FRED> =X
FRED> END PROC
ICL> FRED
1.2345
ICL> =X

1
ICL>

When we run the procedure FRED we get the value of the variable X in the procedure. Then typing
=X gives the value of X outside the procedure which has remained unchanged during execution of the
procedure. This feature has the consequence that we can use procedures freely without having to worry
about any possible side effects of the procedure on variables outside it.

The situation is exactly the same as that in FORTRAN where variables in a subroutine are local to the
subroutine in which they are used. In FORTRAN the COMMON statement is provided for use in cases
where it is required to extend the scope of a variable over more than one routine. ICL does not have a
COMMON facility but does provide an alternative mechanism for accessing variables outside their scope
using the command VARS and the function VARIABLE.

The command VARS is used to list all the variables of a procedure. It has one parameter, which is the
name of the procedure. If the parameter is omitted, then the outer level variables, i.e. those that are not
part of any procedure are listed. Thus in the previous example:

ICL> VARS FRED

X REAL 1.23450E+00
ICL> VARS

X INTEGER 1
ICL>

VARIABLE is a function whose result is the value of a given variable in a given procedure:

ICL> = VARIABLE(FRED,X)
1.234500
ICL>

and thus allows a variable belonging to a procedure to be accessed outside that procedure.

Note that the variables belonging to a procedure continue to exist after a procedure finishes execution,
and if the procedure is executed a second time, they will retain their values from the first time through
the procedure.

3.10 Tracing Procedure Execution

The commands SET TRACE and SET NOTRACE switch ICL in and out of trace mode. When in trace
mode each statement executed will be listed on the terminal. Trace mode is very useful for debugging

17 SG /5.2 —ICL Procedures

procedures. The commands can either be issued from direct mode to turn on tracing for the entire
execution of a procedure, or inserted in the procedure itself, making it possible to trace just part of its
execution.

311 Running ICL as a Batch Job

It is sometimes useful to run one or more ICL procedures as a batch job. It is quite easy to set this up
using a parameter with the ICL command to specify a file from which commands will be taken.

$ ICL filename

This form of the command is equivalent to typing ICL and then typing

ICL> LOAD filename

Note, that as mentioned earlier, a LOAD file may include direct commands as well as procedures. In
order to create a Batch job we must set up a file which contains all the procedures we want, a command
(or commands) to run them and an EXIT command to terminate the job. Here is the file for a simple Batch
job to print a table of Square roots using our earlier example procedure.

PROC SQUARE_ROOT X

{ An ICL procedure to print the square root of a number }
PRINT The Square Root of (X) is (SQRT(X))

END PROC

PROC TABLE

{ A procedure to print a table of square roots of numbers 3}
{ from 1 to 100 }

LOOP FOR I=1 TO 100
SQUARE_ROOT (I)
END LOOP
END PROC

{ ©Next the command to run this procedure }
TABLE
{ And then an EXIT command to terminate the job 1}

EXIT

This file can be generated using the EDIT command from DCL. If the procedures have already been tested
from ICL, it is convenient to use a SAVE ALL command (or exit from ICL) to save them, and then edit the
SAVE.ICL file adding the additional direct commands. Supposing this file is called TABLE.ICL. To create
a batch job we also need a command file, which we could call TABLE.COM which would contain the
following:

$ ICL TABLE
$ EXIT

SG /5.2 —ICL Procedures 18

It might also need to contain a SET DEF command to set the appropriate directory, or a directory
specification on the TABLE file name if it is not in the top level directory.

To submit the job to the batch queue the following command is used

$ SUBMIT/KEEP TABLE

The /KEEP qualifier specifies that the output file for the batch job is to be kept. This file will appear
as TABLE.LOG in the top level directory and will contain the output from the batch job. A /OUTPUT
qualifier can be used to specify a different file name or directory for it.

19 5G/5.2—Input/Output

Chapter 4
Input/Output

41 Terminal I/O

We have already met the PRINT command for output to the terminal. The analogous commands for
terminal input are called INPUT, INPUTR, INPUTI and INPUTL. INPUT reads a line of text from the
terminal into a string variable and has the form:

ICL> INPUT Enter your name> (name)

The last parameter must specify a variable in which the input will be returned and must therefore be in
parentheses. The earlier parameters form a prompt string.

INPUTR, INPUTI and INPUTL are used to input real, integer or logical values. A single line of text may
be used to supply values for more than one variables so these commands have the form:

ICL> INPUTR Prompt (X) (Y) (2)

Only the first parameter is used to provide the prompt string, so if it has spaces in it the string must be
enclosed in quotes.

INPUTL will accept values of TRUE, FALSE, YES and NO in either upper or lower case, as well as
abbreviations.

4.2 Text File I/O

ICL can also read and write text files. In order to access files they must first be opened using one of the
commands CREATE, OPEN or APPEND.

CREATE MYFILE

will create a file called MYFILE and open it for output. MYFILE is the name used within ICL for the file.
The file will appear in your default VMS directory as MYFILE.DAT.

The VMS file name may be specified explicitly by adding a second parameter to the CREATE, OPEN or
APPEND command.

OPEN INFILE DISK$DATA:[ABC]FOR008.DAT

5G/5.2 —Input/Output 20

opens an existing file for input and the file is known internally as INFILE.

The APPEND command opens an existing file for output. Anything written to the file is appended to the
existing contents.

A line of text is written to a text file with the WRITE command. WRITE is similar to PRINT, the only
difference being that its first parameter specifies the internal name of the file to which the data will be
written.

Text is read from files with the commands READ, READR, READI and READL. These are analogous
to the INPUT commands for terminal input. The first parameter specifies the internal name of the file.
READ reads a line of text into a single string variable. The other commands read one or more real, integer
or logical values.

When a file is no longer required it may be closed using the CLOSE command which has a single
parameter, the internal name of the file.

The following example uses these procedures to read an input file containing three real numbers in free
format, and output the same numbers as a formatted table.

PROC REFORMAT
{ Open input file and create output file }

OPEN INFILE
CREATE OUTFILE

{ Loop copying lines from input to output }

LOOP

READR INFILE (R1) (R2) (R3)

WRITE OUTFILE (R1:10:2) (R2:10:2) (R3:10:2)
END LOOP

END PROC

Note that no specific test for completion of the loop is included. When an end of file condition is detected
on the input file the procedure will exit and return to the ICL> prompt with an appropriate message. EI

4.3 Screen Mode

ICL’s screen mode allows more control over the terminal screen than is possible in the normal mode.
It also allows more control over the use of the keyboard. Screen mode is implemented using the DEC
screen management (SMG$) routines of the run time library, and will work on any terminal compatible
with these routines.

Screen mode is selected by the SET SCREEN command. In screen mode the terminal screen is divided
into an upper fixed region and a lower scrolling region. The size of the scrolling region may be specified
by an optional parameter to SET SCREEN.

ICL> SET SCREEN 10

1 A tidier exit can be arranged by using an exception handler for the EOF exception.

21 5G/5.2 —Input/Output

will select 10 lines of scrolling region. The size of the scrolling region can be changed by further SET
SCREEN commands. SET NOSCREEN is used to leave screen mode and return to normal mode.

Standard terminal I/O operations work exactly as normal in the scrolling region of the screen. However,
an additional facility is the ability to examine text which has scrolled off the top of the scrolling region.
The Next Screen and Prev Screen keys on a V1200 (or CTRL/N, CTRL/P on other terminals) may be
used to move through the text. Any output since screen mode was started is available in this way.

To write to the fixed part of the screen the command LOCATE is used.

LOCATE 6 10 This text will be written starting at Row 6 Column 10

The first two parameters specify the row and column at which the text will start. The remaining
parameters form the text to be written.

The SET ATTRIBUTES command provides further control over text written with the LOCATE command.
This command has a parameter string composed of any combination of the letters R (Reverse Video),
B (Bold), U (Underlined), F (Flashing) and D (Double Size). These attributes apply to all LOCATE
commands until the next SET ATTRIBUTES command. SET ATTRIBUTES with no parameter gives
normal text.

The CLEAR command is used to clear all or part of the fixed region of the screen. For example:
CLEAR 6 10

clears lines 6 to 10 of the screen.

4.4 Keyboard Facilities in Screen Mode

The KEY command may be used to define an equivalence string for any key on the keyboard. For
example:

KEY PF1 PROCS#

defines the PF1 key so as to issue the PROCS command. The # character is used to indicate a Return
character in the equivalence string.

The name of a main keyboard key may be specified as a single character or as an integer representing the
ASCII code for the key. Keypad of Function keys are specified by names as follows:

Keypad keys — PF1, PF2, PF3, PF4, KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9, ENTER, MINUS,
COMMA, PERIOD.

Function Keys (VT200) — F6, F7, E8, F9, F10, F11, F12, F13, F14, HELP, DO, F17, F18, F19, F20.
Editing Keypad (VT200) — FIND, INSERT_HERE, REMOVE, SELECT, PREV_SCREEN, NEXT_SCREEN.
Cursor Keys — UP, DOWN, LEFT, RIGHT.

KEYTRAP and INKEY allow an ICL procedure to test for keyboard input during its execution, without
having to issue an INPUT command and thus wait for input to complete. KEYTRAP specifies the name
of a key to be trapped. INKEY is an integer function which returns zero if no key has been pressed or
the key value if a key has been pressed since the last call. The key value is the ASCII value for ASCII
characters, or a number between 256 and 511 for keypad and function keys. The KEYVAL function may
be used to obtain the value from the key name.

5G/5.2 —Input/Output

{ Trap ENTER and LEFT and RIGHT arrow keys
KEYTRAP ENTER
KEYTRAP LEFT
KEYTRAP RIGHT
LOoP

K = INKEY()
IF K = KEYVAL(’ENTER’) THEN

ﬁLSE IF K = KEYVAL(’LEFT’) THEN
ﬁLSE IF K = KEYVAL(’RIGHT’) THEN
ELSE
éNDIF

END LOOP

The command

KEYOFF keyname

may be used to turn off trapping of a key.

}

22

23 SG/5.2—Access to DCL

Chapter 5
Access to DCL

When working from ICL it is frequently useful to be able to access features of Digital’s command language
DCL. Typical operations we may want to do include listing directories, copying files, allocating tape
drives and mounting tapes.

51 The $ Command
The command $ allows any DCL command to be issued from inside ICL. It’s form is simply:
$ dcl_command

where dcl_command is any command we could issue from the DCL $ prompt. For example:

$ COPY *.DST DATADIR:*.DST
$ RUN MYPROGRAM

There is one restriction — we must use a complete DCL command. We couldn’t for example, just type $
COPY and let DCL prompt us for the two file specifications as we could from the DCL $ prompt. Apart
from this any command acceptable to DCL can be issued in this way:.

‘DCL’ may be used as an alternative to the $ command. Thus the above example could also have been
written as:

DCL COPY *.DST DATADIR:*.DST
DCL RUN MYPROGRAM

5.2 The SPAWN Command

There is also a way round the restriction mentioned above. This is to use the command SPAWN rather
than the $ command. For example:

ICL> SPAWN COPY
_From: *.DST
_To: DATADIR:*.DST

S5G/5.2 —Access to DCL 24

in which case we get the From: and To: prompts just as we do in normal DCL. The disadvantage of
SPAWN is that it is normally much slower. This is because SPAWN creates a new subprocess to issue
each command, whereas DCL creates a permanent subprocess in which all commands are issued.

SPAWN has another use — by just typing SPAWN we can get a DCL $ prompt from which a series of
DCL commands can be executed. LOGOUT is then used to return control to ICL.

5.3 Changing the Default Directory

It might seem that the above facilities provide all we need. Unfortunately things are not that simple.
The problem is that VMS only provides the facility to issue a DCL command in a subprocess, not in the
process we are actually running ICL in. Thus although we can issue any DCL command we cannot issue
DCL commands in the process we are running ICL in. In many cases this does not matter, the command
will have the same effect whatever process it is issued from.

However, this is not always the case. One example is changing the default directory — this can be done
using the ICL command $ SET DEFAULT. This will change the default directory of the DCL subprocess,
but not of the process running ICL.

Thus an additional ICL command DEFAULT (which may be abbreviated to DEF) has been provided. This
changes the default directory of both the process running ICL and the DCL subprocess (if one exists).
The format for specifying the directory is exactly the same as that accepted by the DCL SET DEFAULT
command.

5.4 Allocating and Mounting Tape Drives

Similar problems occur when allocating and mounting tape drives. $ ALLOCATE will allocate the device
to the DCL subprocess. This may be what you want, for example, if you are going to use another DCL
command (such as BACKUP) to read or write the tape. However if the tape is to be processed using a
FIGARO command it must be allocated to the process running ICL.

A set of commands has been provided for this purpose as follows:

command abbreviation function

ALLOC dev ALL allocate a device
MOUNT dev MOU mount a device
DISMOUNT dev DISMOU dismount a device
DEALLOC dev DEALL deallocate a device

Mount performs a MOUNT /FOREIGN at the tapes initialized density. It does not provide the many
qualifiers of the DCL command. There are several additional optional parameters for some of these
commands. ALLOC may specify a generic name, and the name of the device actually allocated will be
returned in the optional second parameter.

25 5G/5.2 —Access to DCL

ICL> ALL MT

_MTAO: Allocated
ICL> ALL MT (DEVICE)
_MTA1: Allocated
ICL> =DEVICE

_MTA1:

DISMOUNT has an optional parameter which is used to specify that the tape be dismounted without
unloading.

ICL> DISMOU MTA1 NOUNLOAD

5G/5.2—Errors and Exceptions

Chapter 6

Errors and Exceptions

6.1 ICL Exceptions

Error conditions and other unexpected events are referred to as Exceptions in ICL. When such a condition
is detected in direct mode a message is output. For example, if we enter a statement which results in an

error
ICL> =SQRT(
SQUROONEG
ICL>

We get a message consisting of the name of the exception (SQUROONEG) and a description of the nature
of the exception. A full list of ICL exceptions is given in appendix C.

If the error occurs within a procedure the message contains a little more information. As an example, if
we use our square root procedure of Section with an invalid value we get the following messages:

-1)

Square Root of Negative Number

ICL> SQUARE_ROOT (-1)
Square Root of Negative Number
e: SQUARE_ROOT

SQUROONEG
In Procedur

At Statement: PRINT The Square Root of (X) is (SQRT(X))

ICL>

If one procedure is called by another, the second procedure will also be listed in the error message. If we

run the following procedure

PROC TABLE

{ Print a table of Square roots from 5 down to -5 1}

LOOP FOR I = 5 TO -5 STEP -1
SQUARE_ROOT (I)

END LOOP
END PROC

we get

ICL> TABLE
The Square
The Square
The Square
The Square
The Square
The Square
SQUROONEG

At Statement: PRINT The Square Root of (X) is (SQRT(X))
Called by: TABLE

ICL>

Root
Root
Root
Root
Root
Root

of
of
of
of
of
of

Square
In Procedure: SQUARE_ROOT

is
is
is
is
is
is
Root

O = N Wb O,

2.236068

2

1.732051

1.414214

1

0

of Negative Number

27 5G/5.2 —Errors and Exceptions

6.2 Exception Handlers

It is often useful to be able to modify the default behaviour on an error condition. We may not want to
output an error message and return to the ICL> prompt, but rather to handle the condition in some other
way. This can be done by writing an exception handler. Here is an example of an exception handler in the
SQUARE_ROOT procedure.

PROC SQUARE_ROOT X
{ An ICL procedure to print the square root of a number }
PRINT The Square Root of (X) is (SQRT(X))

EXCEPTION SQUROONEG

{ Handle the imaginary case }

SQ = SQRT(ABS(X))

PRINT The Square Root of (X) is (SQ&’i’)
END EXCEPTION

END PROC

Now running the TABLE procedure gives

ICL> TABLE

The Square Root of 5 is 2.236068
The Square Root of 4 is 2

The Square Root of 3 is 1.732051
The Square Root of 2 is 1.414214
The Square Root of 1 is 1

The Square Root of 0 is O

The Square Root of -1 is 1i

The Square Root of -2 is 1.414214i
The Square Root of -3 is 1.732051i
The Square Root of -4 is 2i

The Square Root of -5 is 2.236068i
ICL>

The Exception handler has two effects. First the code contained in the exception handler is executed
when the exception occurs. Second, the procedure exits normally to its caller (in this case TABLE) rather
than aborting execution completely and returning to the ICL> prompt.

Exception handlers are included in a procedure following the normal code of the procedure but before
the END PROC statement. There may be any number of exception handlers in a procedure, each for
a different exception. The exception handler begins with an EXCEPTION statement specifying the
exception name, and finishes with an END EXCEPTION statement. Between these may be any ICL
statements, including calls to other procedures.

An exception handler does not have to be in the same procedure in which the exception occurred, but
could be in a procedure further up in the chain of calls. In our example we could put an exception handler
for SQUROONEG in TABLE rather than in SQUARE_ROQT.

PROC TABLE
{ Print a table of Square roots from 5 down to -5 1}
LOOP FOR I = 5 TO -5 STEP -1
SQUARE_ROOT (I)
END LOOP

5G/5.2 —Errors and Exceptions 28

EXCEPTION SQUROONEG
PRINT ’Can’’t handle negative numbers - TABLE Aborting’
END EXCEPTION

END PROC

giving:
ICL> TABLE
The Square Root of 5 is 2.236068
The Square Root of 4 is 2
The Square Root of 3 is 1.732051
The Square Root of 2 is 1.414214
The Square Root of 1 is 1

The Square Root of 0 is O
Can’t handle negative numbers - TABLE aborting
ICL>

Below is an example of a pair of procedures which use an exception handler for floating point overflow
in order to locate the largest floating point number allowed on the system. Starting with a value of 1 this
is multiplied by 10 repeatedly until floating point overflow occurs. The highest value found in this way
is then multiplied by 1.1 repeatedly until overflow occurs. Then by 1.01 etc.

PROC LARGE START, FAC, L

{ Return in L the largest floating point number before }
{ overflow occurs when START is repeatedly multiplied by FAC 1}

L = START
LOOP

L =L x FAC
END LOOP

EXCEPTION FLTOVF
{ This exception handler doesn’t have any code - it just 2}
{ causes the procedure to exit normally on overflow }
END EXCEPTION

END PROC

PROC LARGEST

{ A Procedure to find the largest allowed floating point }
{ number on the system }

FAC = 10.0

LARGE 1.0, (FAC), (L)

LOOP WHILE FAC > 0.00000001
LARGE (L), (1.0+FAC), (L)
FAC = FAC/10.0

END LOOP

PRINT The largest floating point number allowed is (L)
END PROC

29 5G/5.2 —Errors and Exceptions

6.3 Keyboard Aborts

One exception which is commonly encountered is that which results when a Control-C is entered on
the terminal. This results in the exception CTRLC and may therefore be used to abort execution of a
procedure and return ICL to direct mode. However, an exception handler for CTRLC may be added to a
procedure to modify the behaviour when a control-C is typed.

6.4 SIGNAL command

The exceptions described up to now have all been generated internally by the ICL system, or in the case
of CTRLC are initiated by the user. It is also possible for ICL procedures to generate exceptions, which
may be used to indicate error conditions. This is done by using the SIGNAL command. This has the form

SIGNAL name text

where name is the name of the exception, and text is the message text associated with the exception. The
exception name may be any valid ICL identifier. Exceptions generated by SIGNAL work in exactly the
same way as the standard exceptions listed in appendix C. An exception handler will be executed if one
exists, otherwise an error message will be output and ICL will return to direct mode.

One use of the SIGNAL command is as a means of escaping from deeply nested loops. The BREAK
statement can be used to exit from a single loop but is not applicable if two or more loops are nested. In
these cases the following structure could be used

LOOP
LOOP
LOOP

IF FINISHED
SIGNAL ESCAPE
END IF

END LOOP
END LOOP
END LOOP

EXCEPTION ESCAPE
END EXCEPTION

where the exception handler again contains no statements, but simply exists to cause normal procedure
exit, rather than an error message when the exception is signalled.

5G/5.2—Extending ICL 30

Chapter 7
Extending ICL

If you use ICL frequently you will find it convenient to define your own commands. We have already
met one way of defining new commands. This is to write an ICL procedure as described in Chapter
There are several other ways of defining new commands which are described in this chapter. If you have
many commands which you want to use frequently it is convenient to put these into a login file which
will be automatically loaded each time ICL is started up.

7.1 Login files

An ICL login file works in exactly the same way as your DCL LOGIN.COM file. ICL uses the logical
name ICL_LOGIN to locate your login file so if you create a file called LOGIN.ICL in your top level
directory you can use use the following DCL DEFINE command (which you should put in your DCL
LOGIN.COM file).

$ DEFINE ICL_LOGIN DISK$USER: [ABC]LOGIN.ICL

where DISK$USER:[ABC] needs to be replaced by the actual directory used.

This file will then be loaded automatically whenever you start up ICL and can include procedures,
definitions of commands, or indeed, any valid ICL commands. Below is an example of a login file which
illustrates some of the facilities which may be used.

{ ICL Login File 1}

{ Define TYPE command }
DEFSTRING T(YPE) $ TYPE
{ Define EDIT command }

HIDDEN PROC EDIT name
IF INDEX(name,’.’) = 0
#EDIT (name)
ELSE
DCL EDIT (name)
ENDIF
END PROC

{ Login Message }
PRINT

PRINT Starting ICL at (TIME()) on (DATE())
PRINT

31 5G/5.2 —Extending ICL

7.2 The DEFSTRING Command

The first entry in the file defines the DCL TYPE command so that it is accessible directly from ICL
without having to do enter DCL TYPE. This is done using the DEFSTRING command which defines an
equivalence string for a command. In this case the command is TYPE and the equivalence string is DCL
TYPE. The notation T(YPE) specifies possible abbreviations for the TYPE command, indicating that we
could actually use T, TY or TYP instead of TYPE in full.

7.3 Hidden Procedures

The definition of the EDIT command is done in a different way. Since EDIT is used within ICL to edit
procedures, if we just used DEFSTRING to define EDIT as $ EDIT we would lose the ability to edit ICL
procedures. The EDIT command would always edit VMS files.

The procedure used to redefine EDIT gets round this by testing for the existence of a dot in the name to
be edited using the INDEX function. If a dot is present it assumes that a VMS file is being edited and
issues the command $ EDIT (name). If no dot is present it is assumed that an ICL procedure is being
edited, and the command #EDIT (name) is issued. The # character forces the internal definition of EDIT
to be used, rather than the definition currently being defined.

The procedure is written as a hidden procedure, indicated by the word HIDDEN preceding PROC. A
hidden procedure works in exactly the same way as a normal procedure, but it does not appear in
the listing of procedures produced by a PROCS statement, nor can it be edited, deleted or saved. It is
convenient to make all procedures in your login file hidden procedures so that they do not clutter your
directory of procedures, and cannot be accidentally deleted.

74 The DEFPROC Command

If you have many procedures of this type you may not wish to include them in full in your login file,
because this will require them all to be compiled when ICL starts up and may therefore slow down the
start up process. The DEFPROC command allows you to define commands which run ICL procedures,
but with the procedures only being compiled when they are required. For example if the EDIT procedure
described above was put in the source file EDIT.ICL we could put the following DEFPROC command in
the login file.

DEFPROC ED(IT) EDIT.ICL

This command specifies that the command EDIT (with minimum abbreviation ED) is to run the procedure
EDIT in source file EDIT.ICL.

The procedure will not be loaded and compiled until the first time the EDIT command is issued.

7.5 Defining Additional Help Topics

ICL includes a HELP command which provides on line documentation on ICL itself. Using the DEFHELP
command it is possible to extend the facility to access information on the commands you have added.

5G/5.2 —Extending ICL 32

In order to do this you need to create a help library in the normal format used by the VMS help system.
This is described in the VAX/VMS documentation for the librarian utility. You can then specify topics
from this library which will be available using the ICL HELP command using a command of the form

DEFHELP EDIT LIBRARY.HLB

This will cause a

HELP EDIT

command to return the information on EDIT in help library LIBRARY.HLB rather than in the standard
ICL library.

7.6 Other Ways of Defining Commands

The DEFUSER command allows an ICL command to be defined to call a FORTRAN subroutine. In order
to make this work you have to link the subroutine into a shareable image (The VAX/VMS linker manual
explains how to do this). The subroutine should have a single character string parameter in which it will
receive the command line parameters of the original ICL command (after substitution of any bracketed
expressions).

An easier way of achieving a similar result is to write your FORTRAN subroutine as an ADAM A-task,
and use the DEFINE command as described in the next section.

33

Part 11

ICL and ADAM

5G/5.2—

SG/5.2—Introduction to ADAM 34

Chapter 8
Introduction to ADAM

8.1 Whatis ADAM?

ADAM (Astronomical Data Acquisition Monitor) consists of a number of facilities which can be combined
in a toolkit approach to support a range of software, from simple applications to sophisticated, multi-
tasking, observing and data analysis systems. A typical ADAM system consists of a number of tasks
which communicate with each other following well defined protocols. (On VMS, each task is a separate
VMS process.) Tasks are written using a standard set of subroutine libraries which provide the ADAM
facilities. ADAM is often termed a software environment as, in a completely ADAM system, it is what the
user’s application code ‘sees’ around itself.

ADAM was originally developed by the Royal Greenwich Observatory to run on the Perkin-Elmer
computers of the INT and JKT on La Palma, for instrument control on these telescopes. The Royal
Observatory Edinburgh adapted ADAM to run on VAX/VMS systems to provide the instrument control
environment for UKIRT. In doing so they incorporated most features of the Starlink Software Environment
(SSE) so that SSE programs were equivalent to ADAM A-tasks. VAX ADAM has now been adopted as
the standard instrument control environment for the AAT, the WHT at La Palma and the JCMT on Mauna
Kea as well as UKIRT. ADAM has also been adopted by Starlink as its standard environment for data
reduction. Responsibility for support of ADAM now rests with the ADAM Support Group, which is part
of the Starlink project.

There are several references in the following chapters to Starlink User Notes (SUNs), Starlink System
Notes (SSNs) and Starlink Guides (SGs). On Starlink systems they will be found in a directory with
logical name DOCSDIR. Your site manager should be able to provide hardcopies.

8.2 The Role of the Command Language

The command language was originally conceived as playing a key role in the ADAM system by providing
the only user interface to the system. However, other user interfaces to ADAM have been developed, so
users of ADAM systems will not necessarily find themselves using ICL (or its predecessor ADAMCL)
when working with an ADAM system.

When using ADAM for data reduction the command language will probably be the standard means of
running ADAM. When ADAM is used for on line instrument control the command language can be used,
but this is generally done only in the testing phase of the instrument. In fully developed systems the
instrument will probably be controlled through a user interface which makes more sophisticated use of
the terminal. There are two such systems in current use.

At UKIRT, the instrument control software is using the screen management system (SMS). With SMS the
user is presented with menus from which selections are made using the cursor keys. The SMS menu
selections actually result in command language code being executed, but the user does not normally
interact with the command language directly.

At the AAT, the user interface for instrument control is currently by means of ADAM tasks known as
U-tasks. The user of a U-task sees a screen divided into a fixed region in which status information on the

35 5G /5.2 —Introduction to ADAM

instrument or observing process is displayed, and scrolling regions for message output and command
input. The command language is not normally involved, though it is always possible to use the command
language to control a U-task, which is equivalent in this respect to any other ADAM task.

5G/5.2—Using ADAM for Data Reduction 36

Chapter 9
Using ADAM for Data Reduction

9.1 A-tasks

When ADAM is used for data reduction, ICL is used to communicate with one or more A-tasks or
application tasks which contain the data reduction programs. Each of these tasks can be associated with
an ICL command by means of the DEFINE command. When the associated ICL command is issued the
A-task will be loaded and executed. If the same ICL command is issued a second time the task will not
normally need to be reloaded so that execution will be faster. However, if too many tasks are loaded
one of these tasks may have to be killed before another can be loaded. The maximum number of tasks
allowed to be loaded at one time has a default value of three, but may be adjusted, on a system basis, by
the system logical name ADAM_CACHLIMIT. The least recently used task is always selected for killing
when the limit is exceeded. This process is known as task caching and such tasks are referred to as cached
tasks.

9.2 Monoliths

To avoid frequent loading and killing of tasks, large data reduction packages are normally organized as
Monoliths or M-tasks. A monolith is a single task which contains a large number of independent programs
which would otherwise be separate A-tasks. Thus a monolith will have many commands associated with
it, whereas an A-task only has a single command. The monolith will be loaded when the first command
is issued and then any of the other monolith commands may be issued without requiring the task to be
reloaded.

9.3 Running KAPPA

An example of an ADAM monolith is the Starlink Kernel Applications Package (KAPPA). KAPPA is
described in more detail in the Starlink document SUN/95. To run KAPPA type:

$ ADAM KAPPA
This is actually a convenient way of combining the commandsﬂ

$ ADAMSTART
$ ICL
ICL> KAPPA

! n fact, any ICL command may be specified in place of KAPPA in the ADAM command.

37 5G/5.2 —Using ADAM for Data Reduction

To run any ADAM task from ICL it is necessary to have obeyed the command ADAMSTART in DCL before
running ICL. If you use ADAM tasks frequently, you may include this command in your LOGIN.COM
file. The ADAM procedure will not obey ADAMSTART again if it has already been obeyed, although it
wouldn’t matter if it did.

When the command KAPPA is obeyed in ICL, you will see

Help key KAPPA redefined

-- Initialized for KAPPA --
-- Version 0.8, 1991 August --

Type HELP KAPPA or KAPHELP for KAPPA help
ICL>

The KAPPA command causes all the individual commands of the KAPPA monolith to be defined and
then outputs its initialization message. It does not cause the KAPPA monolith itself to be loaded. This
occurs when the first KAPPA command is issued.

The simplest way of using KAPPA is to type just the command names. You will then be prompted for all
the required parameters. For example, to use the ADD command which adds two images just type ADD
and the following dialogue will result

ICL> ADD

Loading KAPPA_DIR:KAPPA into 0591KAPPA
IN1 - First input NDF> IM1

IN2 - Second input NDF> IM2

OUT - Output NDF> SUM

ICL>

The above command causes the images contained in HDS data files IM1.SDF and IM2.SDF to be added
and the result placed in a new file called SUM.SDEF.

Since this is the first KAPPA command the monolith needs to be loaded, and a loading messagEEI is output
which tells us the name of the task being created, in this case 0591KAPP

Each parameter prompt consists of three parts, the name of the parameter (e.g. IN1), a brief description
(First input NDH?), and in some cases a suggested value enclosed between / characters.

When responding to a parameter prompt the user has several options.

e Just hit the return key. The suggested value will be used.
e Type in a new value.

o Hit the TAB key. This causes the suggested value to be placed in the input buffer. It can then be
edited by the normal command line editing keys.

e Enter ! — the NULL value. The effect of doing this will depend upon the application but frequently
causes termination.

e Enter !! — by convention, this causes the program to be aborted.

2These loading messages can be turned off by the SET NOMESSAGES command, if desired

3The name is prefixed with a number (e.g. 0591) to make a unique process name, so that there is no conflict between your version
of KAPPA, and another version run at the same time by another user

* 'NDF stands for Extensible N-Dimensional Data Format. For more information see Section

5G/5.2 —Using ADAM for Data Reduction 38

e Enter ? or ?? — this causes the help system to be entered, giving further information on the
parameter and/or the application (assuming that such text has been provided by the application
implementorﬂ).

If the parameters of a command are known they can be placed on the command line itself. Thus the
above example would become:

ICL> ADD IM1 IM2 SUM

In this example it is important to get the parameters in the right order. If we are not sure about the order
of the parameters, but know their names we can specify the parameters by name on the command line.

ICL> ADD OUT=SUM IN1=IM1 IN2=IM2 TITLE=’Sum of 2 Images’

TITLE is an example of a parameter which can only be specified using the ‘name="syntax as it has not
been allocated a position in the order of parameters. If TITLE is not specified, a default value will be
used.

9.4 ADAM Parameter Format

ADAM task parameters can be of a number of different types as follows:

e Numbers — These can be Integer, Real or Double Precision and are entered in the usual format (e.g.
as in FORTRAN)

e Strings — These are represented in the usual ICL formats. Quotation marks may be omitted where
there is no ambiguity. In the above example they were necessary on ‘Sum of 2 images” when used
on the command line as the spaces would otherwise make it appear to be four different parameters.
However, they would not be needed for the same string in response to a single parameter prompt.

e Logical values — These can be represented by the words TRUE, FALSE, YES, NO, T, F, Y or N,
regardless of case.

e Arrays — arrays of any of the above items may be represented by a list of values enclosed in square
brackets, .. [1, 2, 3]. Two dimensional arrays may be represented as [[1, 2], [3, 4]] etc. The outer
brackets may be omitted when responding to a prompt.

e Names — These are the names of HDS (hierarchical data system) objects or files, or the names of
devices (graphics devices, tape drives etc.). Normally these names can be typed directly as MTAO,
ARGS etc, but there are a few cases of ambiguity. These cases can be resolved by prefixing the
name with an @ character. For example, if it is required to specify an HDS container file with a
name different from that of the object it contains, or with a specific generation number, the file
specification can be enclosed in quotes (e.g. "data.sdf;3"). However, this would be interpreted
as a character string unless prefixed with @. Suggested values in prompts are always displayed
prefixed with @.

SFor a detailed description of the parameter help system, see SUN/115.

39 5G/5.2 —Using ADAM for Data Reduction

9.5 KAPPA from Procedures

ICL becomes particularly useful when a series of KAPPA operations are to be performed on a sequence
of files. We can then use an ICL procedure for this purpose. In such cases we will probably want to use
an ICL variable or expression to specify at least one of the parameter names. This is perfectly acceptable
provided the expression is placed in parentheses so that it will be evaluated and not treated as a string,.
A frequent occurrence is that we want to process a sequence of files which have names such as RUN1,
RUN2, RUN3 etc. ICL therefore provides a function SNAME to generate such sequential names H It has
the form:

SNAME (string,n,m)

and produces a name which is the concatenation of the string with the integer n. An optional third
parameter m specifies a minimum number of digits for the numeric part of the name, leading zeros are
inserted if necessary to produce at least m digits.

SNAME (°@RUN’ , 3) has the value ’@RUN3’
SNAME(’@IPCS’,17,3) has the value ’QIPCS017°

The latter example being the format of name produced directly by the IPCS observing software at the
AAT. Using this way of specifying the name it is easy to write an ICL procedure to add a whole series of
images together using the KAPPA ADD command.

PROC KADD
{ Add images RUN1 to RUN20 to form SUM }

ADD RUN1 RUN2 SUM TITLE=’Sum of 2 images’
LOOP FOR I=3 TO 20

TITLE = ??’Sum of ’ & I:2 & ’ images’’’
ADD SUM (SNAME(’RUN’,I)) SUM TITLE=(TITLE)
END LOOP
END PROC

9.6 Error Reports

In the event of an error occurring in the task, error reports will be displayed. For example:

ICL> ADD

Loading KAPPA_DIR:KAPPA into O0591KAPPA

IN1 - First input NDF > !

!'! Null NDF structure specified for the IN1 parameter
! ADD: Error adding two NDF data structures

ADAMERR %PAR, Null parameter value

The first two messages are issued by the task. Such messages will usually indicate which ADAM
subsystem or routine generated them by a prefix (ADD: in the example).

The message starting ‘ADAMERR’ is issued by ICL on receiving a termination message containing a ‘bad’
status. ADAMERR is the name of an ICL exception — the %PAR following ADAMERR tells us that the
PAR subsystem within ADAM generated the bad status value.

®Note that for reasons explained in Section strings defining names to be used as ADAM task parameters are generally
prefixed with @.

5G/5.2—Writing ADAM tasks 40

Chapter 10
Writing ADAM tasks

10.1 Introduction

It is easy to write your own ADAM A-tasks which can be run from ICL in the same way as the KAPPA
programs. This is the easiest way of allowing ICL to run your own FORTRAN programﬂ A detailed
discussion of writing A-tasks can be found in SG/4 and SUN/101.

Here is a simple example of an ADAM A-task. Its source code consists of the FORTRAN source file
MYTASK.FOR containing the following:

SUBROUTINE MYTASK(STATUS)
IMPLICIT NONE
INTEGER STATUS

CALL MSG_OUT(’ ’,’Hello’,STATUS)

END

The example task consisted essentially of just one statement — the call of MSG_OUT. This routine is part
of a subroutine library which is provided for outputting information to the terminal. The MSG_ routines
should always be used for terminal output from ADAM tasks. FORTRAN PRINT and WRITE statements
must not be used for this purpose.

Every ADAM task also has an interface file. The interface file contains information on the parameters
of the task. Our task doesn’t have any parameters so its interface file is fairly simple. It consists of the
following in the file MYTASK.IFL.

INTERFACE MYTASK
ENDINTERFACE

10.2 Compiling and Linking

Before compiling and linking ADAM tasks we need to run the command ADAM_DEV which sets up
appropriate definitions. This in turn requires that the command ADAMSTART has been run.

$ ADAMSTART
$ ADAM_DEV

The task can then be compiled and linked using the following commands:

1The alternative way is by using the DEFUSER command

41 5G/5.2 —Writing ADAM tasks

$ FOR MYTASK
$ ALINK MYTASK

To run the task start up ICL and define a command to run the task using the ICL DEFINE command.

ICL> DEFINE TEST MYTASK

ICL> TEST

Loading MYTASK into 03BCMYTASK
Hello

ICL> TEST

Hello

ICL>

The DEFINE command defines the command TEST to run the A-task MYTASK. For this to work, MYTASK
has to be in the default directory. If it were somewhere else a directory specification could be included on
MYTASK in the DEFINE command.

TEST then causes the task to be loaded and executed. Typing TEST again causes it to be executed a second
time, but this time it doesn’t have to be loaded.

10.3 Tasks with Parameters

The following is an example of a task with a parameter. This task calculates the square of a number and
outputs its value on the terminal.

SUBROUTINE SQUARE(STATUS)

INTEGER STATUS

REAL R,RR

CALL PAR_GETOR(’VALUE’,R,STATUS)

RR = R+*R

CALL MSG_SETR(’RVAL’,R)

CALL MSG_SETR(’RSQUARED’,RR)

CALL MSG_OUT(’ ’,’The Square of ~“RVAL is ~RSQUARED’,STATUS)
END

This program uses the subroutine PAR_GETOR to get the value of the parameter VALUE (there are similar
routines for other types). Output of the numbers is done using the routine MSG_SETR to give values to
the tokens RVAL and RSQUARED which are then inserted into the MSG_OUT output string using the
~RVAL notation. The interface file for this example is given below.

INTERFACE SQUARE

PARAMETER VALUE

TYPE _REAL

POSITION 1

VPATH PROMPT

PPATH CURRENT

PROMPT ’Number to be squared’
ENDPARAMETER

ENDINTERFACE

5G/5.2 —Writing ADAM tasks 42

The interface file has an entry for the parameter VALUE. The TYPE field specifies the type of the parameter.
The underscore prefix on _REAL’ identifies it as a primitive type (i.e. a simple number or string, rather
than an HDS structure or Device name). The position field specifies the position that the parameter is
expected in if it appears on the command line.

The VPATH entry specifies how the parameter value is to be obtained if it not found on the command
line. In this case it is to be prompted for. The PPATH entry specifies how the default value that appears
in the parameter prompt is to be obtained. In this case the CURRENT value (i.e. the value the parameter
had at the end of the last execution of the command) is used. The PROMPT field gives the prompt string
to be used.

Interface files are described in more detail in SUN/115.

To run this example we would compile and link it as described above and then use the following ICL
commands:

ICL> DEFINE SQUARE SQUARE

ICL> SQUARE 12

Loading SQUARE into 03BCSQUARE

The Square of 12 is 144

ICL> SQUARE (SQRT(3))

The Square of 1.73205 is 3

ICL> SQUARE

VALUE - Number to be squared /0.173205E+01/ > 7
The Square of 7 is 49

ICL>

104 STATUS and error handling

Most ADAM subroutines have an integer parameter called STATUS. STATUS has a success value
(SAI__OK) which each routine will return if it completes successfully. If the routine fails for some
reason it will return an error code indicating the nature of the error. An ADAM A-task routine (such as
SQUARE) will be called with a STATUS of SAI__OK. If it returns a bad status value to its caller this will
result in an appropriate message being output.

There is a further important feature of the status convention. If an ADAM routine is called with its
STATUS argument having an error value on input, then the routine will do nothing and will return
immediately. This feature means that it is usually not necessary to check STATUS after each routine is
called. A series of ADAM routines can be called with the STATUS being passed from one to the next. If
an error occurs in one of them, the subsequent routines will do nothing and the final status will indicate
the error code from the routine that failed. If this STATUS value is then returned by the A-task main
routine to its caller an error message will result. Thus the error will be correctly processed with no special
code being added to check for errors.

It is important, however, to take care that code that does not consist of calls to ADAM routines does not
get executed after an error has occurred. For this reason our SQUARE example would be better written
as:

SUBROUTINE SQUARE(STATUS)

INTEGER STATUS

INCLUDE ’SAE_PAR’ ! This provides the ADAM status codes
REAL R,RR

CALL PAR_GETOR(’VALUE’,R,STATUS)

IF (STATUS .EQ. SAI__OK) THEN

43 5G/5.2 —Writing ADAM tasks

RR = R*R

CALL MSG_SETR(’RVAL’,R)

CALL MSG_SETR(’RSQUARED’,RR)

CALL MSG_QUT(® ’,’The Square of “RVAL is ~RSQUARED’,STATUS)
ENDIF
END

This ensures that if the STATUS from PAR_GETOR is bad the rest of the routine is not executed with an
undefined value of R. It is actually not necessary to include MSG_OUT in the IF block as this would not
execute if STATUS was bad.

More sophisticated error handling can be provided by using routines in the ERR_ package. These facilities
are fully described in SUN/104.

10.5 Returning values to ICL

We have already seen how ICL can be used to supply values for ADAM task parameters. It is also possible
for ADAM tasks to return values to ICL. The following modified version of SQUARE does not output its
result on the terminal, but returns it to the parameter VALUE using a call to the routine PAR_PUTOR
which is analogous to PAR_GETOR.

SUBROUTINE SQUARE(STATUS)
INTEGER STATUS

REAL R,RR

CALL PAR_GETOR(’VALUE’,R,STATUS)
IF (STATUS .EQ. SAI__0K) THEN

RR = R*R

CALL PAR_PUTOR(’VALUE’,RR,STATUS)
ENDIF
END

We could run this from ICL as follows (having done a DEFINE SQUARE SQUARE) to define the
command:

ICL> X=5

ICL> SQUARE (X)
ICL> =X

25

ICL>

In order for the ADAM task to return a value to ICL we must use a variable for the parameter and place
it on the command line. The variable name must be placed in parentheses, then the name of a temporary
HDS object is substituted by ICL.

A modification of this scheme is needed with character variables to allow the case where the contents
of the character variable is itself a device, file or object name. In such cases, the supplied name cannot
be replaced by some other name so, to indicate that they may not be replaced, name values in variables
must be preceded by @.

5G/5.2 —Writing ADAM tasks 44

10.6 Graphics with ADAM

All graphics in ADAM is based on the use of the GKS graphics system. Most users, however, will not
use the GKS routines directly but will use a higher level package such as SGS, NCAR or PGPLOT. The
following example uses SGS to draw a circle on a selected graphics device. (SGS is described in SUN/85,
and its use within ADAM in SUN/113.)

SUBROUTINE CIRCLE(STATUS)
IMPLICIT NONE
INTEGER STATUS

REAL RADIUS ! Radius of circle
INTEGER ZONE ! SGS Zone
INCLUDE °’SAE_PAR’ ! Adam Constants

* Get the radius of the circle
CALL PAR_GETOR(’RADIUS’,RADIUS,STATUS)

* Get the graphics device, and open SGS
CALL SGS_ASSOC(’DEVICE’,’WRITE’,Z0ONE,STATUS)

* Draw the circle
IF (STATUS .EQ. SAI__OK) THEN
CALL SGS_CIRCL(0.5,0.5,RADIUS)
ENDIF

* Close the graphics workstation
* and cancel the parameter
CALL SGS_CANCL (ZONE, STATUS)

* Close down SGS
CALL SGS_DEACT(STATUS)

END
The interface file for this example is as follows:

INTERFACE CIRCLE

PARAMETER RADIUS

TYPE _REAL

POSITION 1

VPATH PROMPT

PPATH CURRENT

PROMPT °’Radius of Circle’
ENDPARAMETER

PARAMETER DEVICE

PTYPE DEVICE

POSITION 2

VPATH PROMPT

PPATH CURRENT

PROMPT °’Graphics Device’
ENDPARAMETER

ENDINTERFACE

45 5G/5.2 —Writing ADAM tasks

When SGS is used from ADAM no calls to SGS_OPEN and SGS_CLOSE are made. Instead the routines
SGS_ASSOC and SGS_ANNUL are used. SGS_ASSOC makes the association between an ADAM
parameter (DEVICE) and an SGS zone whose zone identifier is returned to the program in the ZONE
parameter. When SGS plotting is finished SGS_ANNUL is called and given the same ZONE value.
SGS_ASSOC has an additional parameter, the access mode, which has possible values 'READ’, "WRITE’
and "UPDATE'.

There are a number of similar pairs of _ASSOC and _CANCL routines in ADAM which work in similar
ways. MAG_ASSOC and MAG_CANCL are used to handle magnetic tape devices, FIO_ASSOC and
FIO_CANCL to handle file I/O etc. Many of them also have an _ANNUL subroutine which frees the
associated resource but does not cancel the associated ADAM parameter.

To run CIRCLE from ICL we could either use:
ICL> CIRCLE 0.3 ARGS1
or let it prompt for the parameters:

ICL> CIRCLE

RADIUS - Radius of Circle /0.300000E+00/ > 0.2
DEVICE - Graphics Device /@ARGS1/ > PRINTRONIX
ICL> $ PRINT/NOFEED PRINTRONIX.BIT

ICL>

In the latter case the default values of the parameters are the values from the previous time (a result
of using PPATH CURRENT). With a hard copy graphics device such as PRINTRONIX, a file is created
which must then be sent to the device with a DCL PRINT command.

10.7 Accessing Data

The basic means of storing and accessing data for ADAM is the Hierarchical Data System (HDS). SUN /92
describes this system and the DAT_ package of routines that are used to access data in this form. In
HDS a data file contains a number of named components which can either be primitive items (numbers,
character strings or arrays) or can themselves be structures containing further components.

To simplify the exchange of data between different applications packages, Starlink have released a set of
standards for representing data within HDS. This is the Extensible N-Dimensional Data Format (NDF) — it is
described in SGP/38. A library of subroutines (the NDF library, described in SUN/33) is provided for
accessing these standard structures and will generally be used when writing applications.

Below is a simple example that calculates the mean value of the data in an NDF. For such data files the
data will be found in a component of the file, called .DATA.

SUBROUTINE MEAN(STATUS)
IMPLICIT NONE

INTEGER STATUS

INCLUDE ’SAE_PAR’

INTEGER NELM

CHARACTER* (DAT__SZLOC) LOC
INTEGER PNTR

REAL MN

Number of Data elements
HDS locator

Pointer to Data

Mean value of data

* Start an NDF context
CALL NDF_BEGIN

5G/5.2 —Writing ADAM tasks 46

* Get locator to parameter
CALL NDF_ASSOC(’INPUT’,’READ’,LOC,STATUS)

* Map the data array
CALL NDF_MAP(LOC, DATA’,’ _REAL’,’READ’ ,PNTR,NELM, STATUS)

* If everything OK calculate mean value of data array and output it
IF (STATUS .EQ. SAI__OK) THEN
CALL MEAN_SUB(NELM, %VAL (PNTR) ,MN)
CALL MSG_SETR(’MEAN’ ,MN)
CALL MSG_OUT(’> ’,’Mean Value of Array is ~MEAN’,STATUS)
ENDIF

* End the NDF context
CALL NDF_END(STATUS)

END

SUBROUTINE MEAN_SUB(NELM, ARRAY,MEAN)
* Subroutine to calculate the mean value of the array

IMPLICIT NONE
INTEGER NELM
REAL ARRAY (NELM)
REAL MEAN
INTEGER I

MEAN = 0.0
DO I=1,NELM
MEAN = MEAN + ARRAY(I)
ENDDO
MEAN = MEAN / NELM
END

There are a number of points to note about this example:

e The routine NDF_ASSOC is analogous to SGS_ASSOC as used in the previous example. It returns
an NDF identifier associated with an ADAM parameter (INPUT).

e The routine NDF_MAP returns a pointer (PNTR) to the data array. PNTR is an integer variable
which contains the memory address of the data. Mapping is used in applications of this type as an
alternative to reading the data into an array. The advantage of mapping is that we don’t have to
make a guess at the maximum size of array we expect, in order to know how big an array to declare.
NDF_MAP will return a pointer to a real array. If the original data is of a different type it will be
converted to real.

e The pointer concept is not supported in standard FORTRAN, but can be made use of in VAX
FORTRAN by passing the pointer to a subroutine using the %VAL(PNTR) construct. In the
subroutine (MEAN_SUB in this case) the corresponding parameter can then be treated as if we had
passed the actual array.

e The routine NDF_END is called to end the current NDF context and unmap the mapped data array.
For more information on NDF contexts see SUN/33.

The interface file for this example could be as follows:

47 5G/5.2 —Writing ADAM tasks

INTERFACE MEAN

PARAMETER INPUT

TYPE NDF

POSITION 1

VPATH PROMPT

PPATH CURRENT

PROMPT °’NDF to calculate Mean Value from’
ENDPARAMETER

ENDINTERFACE

The above example shows how to handle the case where an NDF file is used for input. Where output to
an NDF file is involved it is usually necessary to create a new HDS file when the application runs. This
can be achieved using routine NDF_CREAT or NDF_CREP. For details of their usage, see SUN/33.

5G/5.2—ADAM as a Data Acquisition Environment 48

Chapter 11
ADAM as a Data Acquisition Environment

11.1 Instrumentation Tasks

When used for data acquisition, ICL is used to control one or more ‘instrumentation tasks’ (I-tasks). A
I-task is used to control an individual instrument or other hardware component of the system. An I-task
can respond to a number of different commands (referred to as Actions) rather than the single command
of an A-task; they also have the ability to perform two or more actions concurrently.

Multiple I-tasks may be involved when several instruments are used in combination and sometimes
it is convenient to have another I-task controlling the individual instrument I-tasks. In this case, ICL
would be used to control the controlling task which would relay to ICL any messages or prompts from
the subsidiary I-tasks intended for the operator.

Instrumentation tasks are fully described in SUN/134.

11.2 D-tasks and C-tasks

Instrumentation tasks combine the functions of Device (D) task and Control (C or CD) tasks which were
used with ADAM V1. These old-style tasks are now considered ‘unfashionable’ but they continue to
work with ICL and it will be some time before they are replaced in all systems.

11.3 Task Loading

In a data acquisition situation the task caching scheme described in the previous section is usually
inappropriate. We don’t want tasks to be killed when the caching limit is exceeded, and we may not want
a task to be killed when ICL exits (as happens with cached tasks). Also the unique process names created
for cached tasks are undesirable as many different tasks may want to communicate with a given task,
and therefore need to know its name.

Therefore I-tasks are normally loaded as uncached tasks, and this is achieved by explicitly loading them
using one of the three ICL load commands.

ALOAD — Loads a task into a subprocess without waiting for completion.
LOADW — Loads a task into a subprocess and waits for completion.

LOADD — Loads a task into a detached process and waits for completion.

49 5G/5.2 —ADAM as a Data Acquisition Environment

114 Killing Tasks

Uncached tasks remain loaded until explicitly killed, or until the creating process is logged out. They
remain loaded when ICL exits. Thus it is possible to use ICL to load a task, then exit from ICL, and
subsequently communicate with the task from a second invocation of ICL (which might be started on a
different terminal).

Tasks are killed using the KILL or KILLW commands.

KILL — Kills a task without waiting for completion

KILLW — Kills a task and waits for completion

11.5 The ADAM message system

Communication between ADAM tasks, and between ICL and tasks, makes use of the ADAM message
system. The message system is involved in the communication between ICL and A-tasks described in the
last chapter (§10), but in this case its details are largely hidden from the user. In the data acquisition case
the use of the message system by the command language is usually more explicit.

ICL can send four types of messages to tasks, which are distinguished by a context which is one of GET,
SET, OBEY or CANCEL.

The ICL command to send a message to a task is SEND.

11.6 An Example

As an example we will consider a I-task called PHOTOM which controls a simple optical photometer.
The photometer includes a filter wheel with five positions.

11.6.1 The I-task Interface File

The I-task has a parameter FILTER_DEMAND which specifies the required filter and an action FILTER
which moves the filter wheel to the required position. These are specified in the interface file for the task
as follows:

PARAMETER FILTER_DEMAND
TYPE ’_CHAR’
VPATH ’>INTERNAL’
IN 7U7,)B7’7V7’7R7’7I7
ENDPARAMETER

ACTION FILTER
OBEY
NEEDS FILTER_DEMAND
ENDOBEY
CANCEL
ENDCANCEL
ENDACTION

5G/5.2 —ADAM as a Data Acquisition Environment 50

Many I-task parameters have VPATH specified as INTERNAL’ - this means that the parameter value is
stored in memory for speed of access. The IN field specifies the valid values for the parameter (it is also
possible to use a RANGE specification to restrict the values of a parameter).

The action entry specifies that the action FILTER may be obeyed and cancelled, and that they OBEY
action needs the parameter FILTER_DEMAND which may be specified as the first (only) parameter on
the command line.

11.6.2 Running PHOTOM

The I-task could be used as follows:

ICL> LOADW PHOTOM

Loading PHOTOM into PHOTOM

ICL> SEND PHOTOM SET FILTER_DEMAND V
ICL> SEND PHOTOM GET FILTER_DEMAND

'

ICL> SEND PHOTOM OBEY FILTER

ICL>

The last command starts the FILTER action but does not wait for it to complete. ICL can accept and execute
other commands while the filter wheel is moving to its position. When the action finally completes the
I-task returns a completion message to ICL which will be output on the terminal.

ICL>
"obey" FILTER - action complete
11.6.3 Supplying Parameters in the Obey Message

A parameter in the NEEDS list for an action may be supplied along with the OBEY message rather than
set independently with a SET message. Thus we can use:

ICL> SEND PHOTOM OBEY FILTER B

11.6.4 Cancelling Actions

The CANCEL context enables us to cancel the FILTER action before it has completed by issuing the
following command:

ICL> SEND PHOTOM CANCEL FILTER

11.6.5 Missing Parameters

If we try to start the FILTER action without specifying a value for the FILTER_DEMAND parameter
(either by SEND SET or by specifying it on the command line), the parameter system will attempt to get a
value in the same way that it does for A-tasks (but note that INTERNAL’ parameters will not be prompted for
—a pseudo VPATH of 'DYNAMIC,DEFAULT’ is used and there is no implied PROMPT at the end.) Therefore,
as there is no DEFAULT value specified for FILTER_DEMAND, and assuming that no dynamic default
value is specified by the program, the null response is assumed.

51 5G/5.2 —ADAM as a Data Acquisition Environment

ICL> SEND PHOTOM OBEY FILTER

Bad status returned from task, meaning is :-
ICL>

%PAR-I-NULL, Null parameter value

ICL>

Note that old-style D-tasks always had parameters defined as INTERNAL’ and could not prompt for
missing parameters anyway.

11.6.6 The GET command

A SEND PHOTOM GET command causes the parameter value to be output on the terminal. It is often
more useful to put the value into an ICL variable. This can be accomplished using the GET command.

ICL> GET PHOTOM FILTER_DEMAND (F)
ICL> =F

B

ICL>

11.6.7 The OBEYW command

It is often more convenient to let ICL wait for an action to complete rather than have it proceed concur-
rently with other ICL commands. The OBEYW command is used for this purpose.

ICL> OBEYW PHOTOM FILTER I
ICL>

The OBEYW command waits until the action has completed before the ICL> prompt reappears and more
commands may be entered.

11.6.8 Multiple Concurrent Actions

I-tasks have the ability to perform more than one action concurrently. ICL includes two commands which
enable actions to be performed concurrently while waiting for all of the actions to complete. Suppose
our PHOTOM I-task has another action APERTURE which moves the aperture wheel to a required
position. The following is a procedure which would allow the filter and aperture wheels to be moved
simultaneously.

PROC SETUP F A
{ move filter to position F and aperture to position A }
{ Start both actions }

STARTOBEY (P1) (M1) PHOTOM FILTER (F)
STARTOBEY (P2) (M2) PHOTOM APERTURE (A)

{ Wait for the actions to complete }

ENDOBEY (P1) (M1)
ENDOBEY (P2) (M2)

END PROC

5G/5.2 —ADAM as a Data Acquisition Environment 52

STARTOBEY starts an action and returns the path and message identifier, which together uniquely identify
a given invocation of an action, into two ICL variables. ENDOBEY can then be used to wait for the
completion of such an action. The above procedure will therefore exit only when both actions are
complete.

53

Appendix A
ICL Functions

SG/5.2—ICL Functions

Where the type is given as ‘Real or Integer” the type of the result is the same as the type of the argument.

Name Type
ABS(X) Real or Integer
ASIN(X) Real
ASIND(X) Real
ACOS(X) Real
ACOSD(X) Real
ATAN(X) Real
ATAND(X) Real

ATAN2(X1,X2) Real

Definition

| x|

sin ! x where —1 < x <1

—t/2 <vresult < mw/2

sin~lx where —1 < x <1

—90 < result <90

cos lx where—1<x<1

0<vresult<m

cos lx where—1<x<1

0 < result <180

1

tan™ " x

—/2 <vresult < /2
tan—!

—90 < result <90

X

tan 1 (X1 /XZ)
—7t < result < 7 according to quadrant

in which point (xp, x1) lies

SG/5.2 —ICL Functions

Name

ATAN2D(X1,X2)

BIN(I,n,m)

CHAR(I)

COS(X)

COSD(X)

COSH(X)

DATE()

DEC(I,n,m)

DECL(S)

DEC2S(R,NDP,SEP)

DIM(X1,X2)

ELEMENT(I,DELIM,,S)

EXP(X)

FILE_EXISTS(S)

TT OOAT/(T\

Type

Real

String

String

Real

Real

Real

String

String

Real

String

Real or Integer

String

Real

Logical

A p P |

54

Definition
tan~1(x/x2)
—180 < result < 180 according to quadrant

in which point (x2, x1) lies

integer I formatted in binary

into an n char string with m significant digits

Character whose ASCII value is I

cos x (x in radians)

cos x (x in degrees)

cosh x

The Current Date

integer I formatted in decimal

into an n char string with m significant digits

A Declination in Radians

from a string in degrees, minutes, seconds
String in DMS from
Dec in radians. NDP decimal places on

seconds. Character SEP separates fields

Positive difference

x1 — min(xq,x7)

Ith element of delimited string, I > 0

TRUE if file S exists

Terntrnvnw T ~~evnvcrmsdd 24 vwnnl

55

Name

HEX(I,n,m)

IAND(I1,12)

ICHAR(S)

IEOR(I1,12)

IFIX(X)

INDEX(S1,52)

INKEY()

INOT(I)

INT(X)

INTEGER(X)

IOR(I1,12)

KEYVAL(S)

LEN(S)

LGE(S1,92)

LGT(S1,52)

LLE(S1,52)

Type

String

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Logical

Logical

Logical

S5G/5.2 —ICL Functions

Definition

integer I formatted in hexadecimal

into an n char string with m significant digits

Bitwise AND of two integers

ASCII value of first character of String

Bitwise exclusive OR of two integers

Real to Integer by Truncation

Equivalent to INT

Position of first occurrence

of Pattern S2 in string S1 (Zero if not found)

Key value of last trapped key pressed

Only works in screen mode

Bitwise Complement of Integer

Real to Integer by Truncation

The value of X converted to an integer

Equivalent to NINT

Bitwise OR of two integers

Value of key with name S

Length of String S

True if S1 > S2 (ASCII collating sequence)

True if S1 > S2 (ASCII collating sequence)

True if S1 < S2 (ASCII collating sequence)

SG/5.2 —ICL Functions

Name

LOG10(X)

LOGICAL(X)

MAX(X1,X2, ...)

MIN(X1,X2, ...)

MOD(X1,X2)

NINT(X)

OCT(In,m)

OK(stat)

RA(S)

RA2S(R,NDP,SEP)

RANDOM(I)

REAL(X)

SIGN(X1,X2)

SIN(X)

SIND(X)

SINH(X)

Type

Real

Logical

Real or Integer

Real or Integer

Real or Integer

Integer

String

Logical

Real

String

Real

Real

Real or Integer

Real

Real

Real

Definition

log;o x

The value of X converted to logical

Maximum of two or more arguments

Minimum of two or more arguments

x1 —int(x1/x2) X x2

Nearest integer to X

integer I formatted in octal

into an n char string with m significant digits

True if VMS Status OK

Right Ascension in Radians

from a string in hours, minutes, seconds
String in HMS from
RA in radians. NDP decimal places on

seconds. Character SEP separates fields

Random number between 0 and 1 from seed I

I must be a variable

The value of X converted to real

x1 with sign of xp

sin x (x in radians)

sin x (x in degrees)

sinh x

56

57

Name Type
STRING(X) Logical
SQRT(X) Real
SUBSTR(S,n,m) String
TAN(X) Real
TAND(X) Real
TANH(X) Real
TIME() String
TYPE(X) String

UNDEFINED(X) Logical

UPCASE(S) String

VARIABLE(proc,X) Any

S5G/5.2 —ICL Functions

Definition

The value of X converted to a string

JE

Substring of S beginning at n (> 1) of length m

tan x (x in radians)

tan x (x in degrees)

tanh x

The current time

The Type of Variable X

‘REAL’, INTEGER’, ‘LOGICAL’,

‘STRING’ or ‘UNDEFINED’

TRUE if X is undefined

String S converted to Upper case

Returns value of variable X of procedure proc

S5G/5.2—ICL Commands 58

Appendix B
ICL Commands

B.1 ALLOC

ALLOC dev [(actdev)] [(status)]

Allocate a device:

dev - The name of the device to be allocated This may be a generic name in which case the first available
device will be allocated.

actdev - (optional) A variable in which the name of the device actually allocated will be returned.

status - (optional) A variable in which the status of the allocate request will be returned. The success of
the request may be tested using the function OK(status).

ALLOC should be used in preference to the $ ALLOCATE command when the device is to be used by an
ICL procedure. For example to allocate a tape drive used by a FIGARO input command.

ALLOC may be abbreviated to ALL
e.g.

ALLOC MT (DEVICE) (STATUS)

B.2 ALOAD

ALOAD exename [taskname]
Load an ADAM task into a subprocess:

exename - The name of the executable image file to be used for the task.

taskname - (optional) The name of the task to be created. If omitted it defaults to the file name part of
exename.

B.3 APPEND

APPEND intname [filename]
Open an existing text file for output. Output will be appended to the existing text.

intname - The internal name by which the file will be known within ICL.

filename - The VMS file name of the file. If omitted the file name will be inthame.DAT.

59 5G/5.2 —ICL Commands

B.4 CHECKTASK
CHECKTASK taskname (loaded)
Check whether an ADAM task is currently loaded.

taskname - The name of the task.

loaded - An ICL variable which will be set to the logical value TRUE if the task is loaded, FALSE
otherwise.

B.5 CLEAR

CLEAR first last

In screen mode the range of lines on the screen between first and last are cleared.

B.6 CLOSE
CLOSE intname
Close a text file previously opened with CREATE, OPEN or APPEND.

intname - The internal name of the file.

B.7 CREATE

CREATE intname [filename]

Create a text file and open it for output.

intname - The internal name by which the file will be known within ICL.

filename - The VMS file name of the file. If omitted the file name will be inthame.DAT.

B.8 CREATEGLOBAL

CREATEGLOBAL parname type
Create an ADAM global parameter.

parname - The name of the global parameter to be created. If a parameter of this name already exists it
will be deleted.

type - The type of the parameter to be created. Must be one of _REAL, INTEGER, _DOUBLE, _LOGI-
CAL, or _CHAR*n (where n is an integer).

5G/5.2 —ICL Commands 60

B.9 $(DCL)

$ command

The parameters of the $ command are concatenated to form a command which is executed by the
underlying operating system’s command language. ‘DCL’ may be used as an alternative to ‘$’.

If the underlying command language is DCL, the specified command is obeyed within a permanent DCL
subprocess which is created on the first call to DCL.

Because the commands are executed in the DCL subprocess rather than in the process running ICL,
some commands may not have the expected effect. e.g. $ SET DEF will set the default directory for
the subprocess but not for the process running ICL. Use the ICL DEFAULT (DEF) command instead.
Furthermore, $ ALLOCATE will allocate a device to the subprocess and not to the process running ICL.
Use the ICL command ALLOC for this purpose.

Control-C may be used to abort a DCL command running in the subprocess.

B.10 DEALLOC

DEALLOC dev
Deallocate a device previously allocated using the ICL ALLOC command.
DEALLOC may be abbreviated to DEALL.

B.11 DEFAULT

DEFAULT directory

Set the default directory for both the process running ICL, and for the DCL subprocess. The directory may
be specified in any of the forms accepted by the DCL SET DEF command. DEFAULT with no parameter
displays the current default directory.

DEFAULT should be used in preference to DCL SET DEF which will only set the default directory for the
DCL subprocess.

DEFAULT may be abbreviated to DEF.
e.g.

DEF [-]
DEF DISK$DATA: [ABC.DATA]

B.12 DEFHELP

DEFHELP name help_library [topic...]

Allows the ICL HELP command to be able to access information in other help libraries.

61 5G/5.2 —ICL Commands

name - The Help name to be defined.
help_library - The Help library to be used.

topic... - An optional list of keywords specifying the path within help_library to the required information.
If omitted, topic defaults to name.

After name has been defined in this way

ICL> HELP name

will return the topic information in help_library.

B.13 DEFINE

DEFINE command taskname [action]

Define a command which issues an OBEYW to an ADAM task

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.

taskname - The task which will execute the OBEYW.
action - (optional) The action to be executed. If omitted it defaults to command.
Once a command has been defined then
ICL> command . . .
is equivalent to typing
ICL> OBEYW taskname action . . .

with any parameters of command being appended to the OBEYW as the VALUE string sent to the task.

B.14 DEFPROC

DEFPROC command file [procedure]

Define a command which runs a procedure from a source file.

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.

file - The source file containing the procedure.

procedure - (optional) The procedure to be executed. If omitted it defaults to command.

When command is issued, file.ICL is loaded and compiled (if it is not already loaded) and the procedure is
called. Any parameters specified with the original command are passed to the procedure.

5G/5.2 —ICL Commands 62

B.15 DEFSHARE

DEFSHARE command image [action]

Define a command which issues an OBEYW to an ADAM shareable image monolith

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.

image - The logical name of the shareable image monolith which will execute the OBEYW.

action - (optional) The action to be executed. If omitted it defaults to command.
Once a command has been defined with DEFSHARE then

ICL> command . . .
is equivalent to typing

ICL> OBEYW taskname action . . .

with any parameters of command being appended to the OBEYW as the VALUE string sent to the task.
The task must be linked into a shareable image monolith rather than a normal executable task.

B.16 DEFSTRING

DEFSTRING command equivalence_string

Associate a command with an equivalence string.

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.
equivalence_string - The equivalence string for the command.

Issuing the command is equivalent to typing the equivalence string. Any parameters of the command are
appended to the equivalence string.

B.17 DEFTASK

DEFTASK command [taskname]
Define a command which issues a SEND to an ADAM task

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.

taskname - (optional) The task which will receive the SEND. If omitted it defaults to command.

63 5G/5.2 —ICL Commands

Once a command has been defined using DEFTASK then
ICL> command . . .

is equivalent to typing
ICL> SEND action . . .

the parameters of command must supply the CONTEXT (GET, SET, OBEY, CANCEL) and the parameter
or action name to be sent to the task.

B.18 DEFUSER

DEFUSER command image [routine]

Define a command which calls a user written subroutine in a shareable image.

command - The command to be defined. An abbreviation may be specified in the form COM(MAND)
where COM is the minimum acceptable abbreviation.

image - The name of the shareable image containing the routine. This must be a logical name if the
image is not in SYS$SHARE.

routine - (optional) The name of the subroutine to be called. This must be a universal symbol of the
shareable image. If omitted it defaults to command.

The subroutine should have a single character string parameter in which it will receive the ICL command
line parameter string. The string is received as typed, except for the substitution of bracketed expressions.

Typing command causes the shareable image to be activated dynamically (if it is not already loaded), and
the subroutine to be called. The subroutine can return an error message to ICL by signalling a VMS
condition. This will result in the ICL exception USERERR. The exception text will contain the message
associated with the VMS status returned.

B.19 DELETE

DELETE proc

Delete procedure proc from the procedure table.

B.20 DISMOUNT

DISMOUNT dev [NOUNLOAD]

Dismount a tape previously mounted using the ICL MOUNT command. The NOUNLOAD parameter if
specified means that the tape will be dismounted without unloading.

DISMOUNT may be abbreviated to DISMOU

5G/5.2 —ICL Commands 64

B.21 DUMPTASK

DUMPTASK taskname

This command causes the ADAM task of name faskname to output a stack dump on the terminal from
which it was loaded. For this command to be effective, the task must include a call to DTASK_SETDUMP(STATUS).

B.22 EDIT

EDIT proc

Edit procedure ‘proc’ using the selected editor. If the name of the procedure is unchanged during the
editing session the new version replaces the old one. If the name is changed a new procedure is created
and the old version of ‘proc’ remains unchanged. By default the TPU editor is used. The editor may be
changed to EDT or LSE using the SET EDITOR command.

To edit a file use the command:
DCL EDIT filename

B.23 ENDOBEY
ENDOBEY (path) (messid)
Wait for completion of an ADAM I-task action initiated by STARTOBEY

path - The path associated with the action.

messid - The message identifier associated with the action.

B.24 EXIT

EXIT

EXIT from ICL and return control to DCL. On exiting from ICL a copy of all the current procedures is
saved in the file SAVE.ICL

B.25 GET

GET taskname parameter (variable)

Get a parameter of an ADAM I-task and put the value into an ICL variable.

taskname - The name of the I-task.
parameter - The name of the parameter to be got.

variable - The ICL variable into which the value will be put.

65 5G/5.2 —ICL Commands

B.26 GETGLOBAL

GETGLOBAL parameter (variable)
Get the value of a ADAM global parameter

parameter - The name of the global parameter to be got.

variable - An ICL variable to receive the result.

B.27 GETNBS

GETNBS nbsname (variable)

Get the value of a noticeboard item

nbsname - The name of the noticeboard item to be got.
variable - An ICL variable to receive the result.
The noticeboard name must correspond to a primitive item with one of the standard HDS types (e.g.

_INTEGER). A dot notation is used to specify structure components (¢.g. NOTICEBOARD.ITEM1.ITEM2).
If the primitive item is an array only the first component is accessed.

B.28 GETPAR

GETPAR command parameter (variable)

Get the value of a parameter from the task’s parameter file. This will only be relevant for parameters
which are not internal.

command - A command name associated with an ADAM task by means of a DEFINE command. The
task will usually be an A-task or monolith.
parameter - The name of the parameter to be got.

variable - An ICL variable to receive the result.

B.29 HELP

HELP [topic...]

Provide on line documentation on some aspect of ICL, or on some other topic which has been made
available using the DEFHELP command.

topic... - An optional list of keywords specifying the path within the help library to the required informa-
tion. The first keyword may be the name specified in a DEFHELP command.

5G/5.2 —ICL Commands 66

B.30 INPUT

INPUT [prompt] (string)

Input a string from the terminal.

prompt - (optional) A prompt string to be output on the terminal

string - A variable into which the input string will be read.

B.31 INPUTI

INPUTI prompt (1) G) .-

Input integers from the terminal

prompt - A prompt string to be output on the terminal.

i,j etc - The variables into which integers will be read.

B.32 INPUTL

INPUTL prompt 4] (m)

Input logical values from the terminal

prompt - A prompt string to be output on the terminal.

I,m etc - The variables into which logical values will be read.

The logical values may be input as YES, NO, TRUE, FALSE or any abbreviation of these, in either upper
or lower case.

B.33 INPUTR

INPUTR prompt (x) y) -

Input real numbers from the terminal

prompt - A prompt string to be output on the terminal.

x,y etc - The variables into which the numbers will be read.

67 5G/5.2 —ICL Commands

B.34 KEY

KEY keyname equivalence_string

Define an equivalence string for a key

keyname - The name of the key

equivalence_string - The equivalence string for the key. A # character may be used to indicate a RETURN
character terminating the string.

The KEY command may be used at any time but the definition is only effective when screen mode is in
use (however, the first SET SCREEN call in a session clears all key definitions).

B.35 KEYTRAP

KEYTRAP keyname
Specify trapping of a key

keyname - The name of the key

The KEYTRAP command may be used at any time but the definition is only effective when screen mode
is in use (however, the first SET SCREEN call in a session clears all key definitions). The INKEY function
is used to test for the pressing of a trapped key.

B.36 KEYUSER

KEYUSER keyname image routine

Associate key with a user written subroutine in a shareable image

keyname - The name of the key
image -logical name of the shareable image

routine - name of the subroutine to be called. This must be a universal symbol of the shareable image.
The KEYUSER command may be used at any time but the definition is only effective when screen mode
is in use (however, the first SET SCREEN call in a session clears all key definitions). KEYUSER causes

the specified routine to be called at AST level immediately the key is pressed. If necessary the shareable
image is activated dynamically

B.37 KILL

KILL taskname
Kill an ADAM task

taskname - The name of the task to be killed.

SG/5.2 —ICL Commands 68

KILLDCL
Kill the DCL subprocess

KILLW taskname
Kill an ADAM task and wait for it to die.

taskname - The name of the task to be killed.

LIST proc

List procedure ‘proc’ on the terminal

LOAD file
Accept commands from ‘file.ICL’ rather than from the terminal.

‘file’ may specify a procedure previously saved using the SAVE command.

LOADD exename [taskname] [priority]
Load an ADAM task into a detached process and wait for loading to complete.

exename - The name of the executable image file to be used for the task.

taskname - (optional) The name of the task to be created. If omitted it defaults to the file name part of
exename.

priority - (optional) The priority for the created task.

69 5G/5.2 —ICL Commands

B.43 LOADW

LOADW exename [taskname]

Load an ADAM task into a subprocess and wait for loading to complete:

exename - The name of the executable image file to be used for the task.

taskname - (optional) The name of the task to be created. If omitted it defaults to the file name part of
exename.

B.44 MOUNT

MOUNT dev [(status)]

Mount a tape - equivalent to the DCL MOUNT/FOREIGN command. The tape is mounted as a foreign
tape at its initialized density.

The optional parameter status is a variable in which the status of the mount operation will be returned.
The success of the operation may be tested using the function OK(status).

MOUNT may be abbreviated to MOU.

B.45 NOREP

NOREP
Turn off reporting. Reporting is turned on by the REPORT command.

B.46 OBEYW

OBEYW taskname action. ..
Send an OBEY message to an ADAM task and wait for it to complete. Load the task as as a cached task if

necessary.
taskname - The name of the task to which the obey message will be sent.
action - The action name to be obeyed.

. .. - Any parameters for the action.

5G/5.2 —ICL Commands 70

B.47 OPEN

OPEN inthame [filename]

Open an existing text file for input.

intname - The internal name by which the file will be known within ICL.

filename - The VMS file name of the file. If omitted the file name will be intname.DAT.

B.48 PRINT

PRINT pl p2..

The parameters of PRINT are concatenated and printed on the terminal.

B.49 PROCS

PROCS

List the names of all current procedures.

B.50 PUTNBS

PUTNBS nbsname value

Write the value of a noticeboard item

nbsname - The name of the noticeboard item to be written.

value - The new value for the item.

The noticeboard name must correspond to a primitive item with one of the standard HDS types (e.g.
_INTEGER). A dot notation is used to specify structure components (e.g. NOTICEBOARD.ITEM1.ITEM2).
If the primitive item is an array, only the first component is accessed.

B.51 READ

READ intname (string)

Read a line from a text file.

intname - The internal name of the text file. The file must have been opened with the OPEN command.

string - A variable into which the input string will be read.

71 5G/5.2 —ICL Commands

B.52 READI

READI intname (i) G) -

Read a line of integers from a text file.

intname - The internal name of the text file. The file must have been opened with the OPEN command.

i,j etc - The variables into which integers will be read.

B.53 READL
READL prompt) (m)
Read a line of logical values from a text file.

intname - The internal name of the text file. The file must have been opened with the OPEN command.

I,m etc - The variables into which logical values will be read.

The logical values may be input as YES, NO, TRUE, FALSE or any abbreviation of these, in either upper
or lower case.

B.54 READR

READR intname %) y) -

Read a line of real numbers from a text file

intname - The internal name of the text file. The file must have been opened with the OPEN command.

x,y etc - The variables into which the numbers will be read.

B.55 REPFILE

REPFILE [logfile] [DTNS]

Examine a logfile

logfile - Name of the logfile to be examined - defaults to ADAM_LOGFILE

DTNS - Four character string specifying which items in each log record are displayed. D = Date, T =
Time, N = Name, S = String. Replace the item letter by anything else to stop the display of that item.
DTNS is case independent.

5G/5.2 —ICL Commands 72

B.56 REPORT

REPORT [logfile]

Turn on reporting. After reporting has been turned on, a log of input/output and ADAM message
system traffic is written to the file specified by logfile. If the parameter is omitted the logical name
ADAM_LOGFILE is used. If the file already exists, the log is appended to it.

The logfile may be examined using the REPFILE command or by the ADAM task, LISTLOG. LISTLOG is
found along the ADAM_EXE search path and provides a means of obtaining readable hardcopy of the
log. A DCL symbol LISTLOG is defined by ADAMSTART to run this task from DCL.

The command NOREP turns off reporting.

B.57 SAVE

SAVE proc

Save procedure ‘proc’ in the file “proc.ICL".
SAVE ALL

Save all procedures in file ‘SAVE.ICL'.

Procedures save in this way may be reloaded using LOAD.

B.58 SAVEINPUT

SAVEINPUT lines filename

Save previous input lines in a text file. ‘lines’ specifies the number of lines to be saved, and ‘filename’
is the file in which they are saved. If ‘filename’ is omitted it defaults to SAVEINPUT.ICL in the default
directory. If ‘lines’ is omitted the entire input buffer is saved.

B.59 SEND

SEND taskname context

Send a GET, SET, OBEY or CANCEL message to an ADAM task. Load the task as as a cached task if
necessary.

taskname - The name of the task to which the message will be sent. It must correspond with taskname
in the ALOAD, LOADW or DEFINE command and include any directory specification given there.

context - The context (GET, SET, OBEY or CANCEL).

... - The remainder of the message. This will depend upon context.

SET parameter value

73 5G/5.2 —ICL Commands

parameter - The name of the parameter whose value is to be set.
value - The value to be set. Type conversion will be done where necessary.

GET parameter
parameter - The name of the parameter. Its value will be displayed.
OBEY action parameters

action - The name of the action to be obeyed.
parameters - the parameter string for action.

CANCEL action parameters

action - The name of the action to be cancelled.
parameters - the parameter string for action.

OBEY, SET and GET contexts may be used with A-task monoliths. In that case, action is replaced by
atask and parameter by atask:parameter where atask is the name of the individual A-task within the
monolith.

B.60 SET

The SET command is used to control various features of the state of ICL.

B.60.1 SET ATTRIBUTES

SET ATTRIBUTES attributes

Sets the attributes for text written with the LOCATE command. attributes is a string containing any
combination of the letters D (double size), B (bold), R (Reverse video), U (underlined) and F (flashing).

B.60.2 SET AUTOLOAD, SET NOAUTOLOAD

SET AUTOLOAD
SET NOAUTOLOAD

Switches on/off the automatic loading of tasks in response to an invocation. ICL's default is AUTOLOAD.
If AUTOLOAD is not selected, tasks must be loaded explicitly with command ALOAD or LOADW.

B.60.3 SET CHECKPARS, SET NOCHECKPARS

SET CHECKPARS
SET NOCHECKPARS

Switches on/off the checking of parameters supplied to ICL procedures. ICL’s default is CHECKPARS
- in that case a procedure will not be executed unless the correct number of parameters is supplied.
NOCHECKPARS allows the procedure to use the UNDEFINED function to test if the parameter was
supplied and prompt if not. Note that only trailing parameters may be omitted.

B.60.4 SET EDITOR

SET EDITOR name

Sets the editor to be used for editing of ICL procedures. name must be one of TPU, EDT or LSE. (LSE may
not be available on all systems). The default editor is TPU.

5G/5.2 —ICL Commands 74

B.60.5 SET HELPFILE

SET HELPFILE library

Specifies a help library to be used by the ICL HELP system for topics other than those specified by a
DEFHELP command. The library specification library should include a directory specification.

The default help library is ICLDIR:ICLHELP.

B.60.6 SET MESSAGES, SET NOMESSAGES

SET MESSAGES
SET NOMESSAGES

These commands control whether or not loading messages are output when ADAM tasks are loaded. By
default loading messages are output.

B.60.7 SET PRECISION

SET PRECISION digits

Set the number of decimal digits precision for unformatted conversions of real values to strings. The
default value is 6 and may be set to any value between 1 and 16.

B.60.8 SET PROMPT

SET PROMPT string
This command can be used to specify a prompt string to replace the default ICL> prompt.

B.60.9 SET SAVE, SET NOSAVE

SET SAVE
SET NOSAVE

This command controls whether ICL procedures are saved in a SAVE.ICL file when ICL exits. By default
a SAVE.ICL file is created if there are any procedures to save.

B.60.10 SET SCREEN, SET NOSCREEN

SET SCREEN n
SET NOSCREEN

These commands select screen I/O mode or normal I/O mode. On the SET SCREEN mode the parameter
n specifies the number of lines in the scrolling region. If n is omitted eight lines of scrolling region are
allocated.

B.60.11 SET TRACE, SET NOTRACE

SET TRACE
SET NOTRACE

These commands turn on and off the tracing of procedure execution. By default tracing is off. When
tracing is on, each line of the procedure is output on the terminal before execution.

75 5G/5.2 —ICL Commands

B.61 SETGLOBAL

SETGLOBAL parameter value
Set the value of a ADAM global parameter

parameter - The name of the global parameter to be set.
value - The value for the parameter. It should not be enclosed in quotes unless the quotes are required as

part of the global parameter value.

If the global parameter does not exist, one of type _CHAR*132 is created. This is usually OK but could
give problems with _LOGICAL parameters. The CREATEGLOBAL command can be used to create
global parameter storage of a specific type.

B.62 SETPAR

SETPAR command parameter value

Set the value of a parameter into the task’s parameter file. This will only be relevant for parameters which
are not internal.

command - A command name associated with an ADAM task by means of a DEFINE command. The
task will usually be an A-task or monolith.

parameter - The name of the parameter to be set.

value - The value for the parameter.

If the parameter value is an HDS object name or device name it must be prefixed by @. SETPAR sets the

current value of the parameter. Thus the VPATH or PPATH must include CURRENT for SETPAR to have

any effect on subsequent execution of the command. Note that if the task is loaded, it will probably have
its parameter file open and locked against ICL writing into it.

B.63 SIGNAL

SIGNAL name [text]
Signal an ICL exception

name - The exception name — any valid ICL identifier.

text - A message text associated with the exception.

Following SIGNAL an exception handler will be executed if one exists for the exception. Otherwise a
message will be output, and control will return to direct mode.

5G/5.2 —ICL Commands 76

B.64 SPAWN

SPAWN [dcl_command]

SPAWN with parameters concatenates the parameters to form a DCL command. creates a subprocess,
and executes the DCL command in the subprocess.

SPAWN with no parameters creates a subprocess in which a series of DCL commands may be executed.
Use LOGOUT to return to ICL.

In most cases DCL is a faster alternative to SPAWN as the subprocess does not have to be created for each
new command. However SPAWN will do a few things which are not possible under DCL. SPAWNed
commands will prompt for their parameters, for example, whereas commands issued using DCL will not.

B.65 STARTOBEY

STARTOBEY (path) (messid) task action value

Send an OBEY message to an ADAM task and return the path and message-id. Used in conjunction with
ENDOBEY to set up multiple concurrent actions in a I-task.

path - An ICL variable to receive the path associated with the action.

messid - An ICL variable to receive the message identifier associated with the action.
task - The task to which the OBEY message will be sent.

action - The action to be executed.

value - Any parameters associated with the action.

B.66 TASKS

TASKS
List all loaded ADAM tasks.

B.67 VARS

VARS [proc]

Lists the variables of procedure ‘proc” with their current types and values. VARS with no parameters lists
the variables at direct mode.

B.68 WAIT

WAIT interval

Wait for a specified interval expressed in seconds.

77 5G/5.2 —ICL Commands

B.69 WRITE

WRITE inthame p2 p3...

The parameters of WRITE are concatenated and written to the text file of name intname. This file must
have been previously opened with an APPEND or CREATE command.

5G/5.2—ICL Exceptions

Appendix C

ICL Exceptions

name

ADAMERR

ASSNOTVAR

CLOSEERR

CONVERR

CTRLC

DEVERR

EDITERR

EOF

FIGERR

FLTDIV

FLTOVF

description

An Error has occurred in an ADAM task.

An associated message will give further information.

An Assignment has been made to a procedure formal parameter

which does not correspond to a variable in the procedure call.

Error closing text file.

Error converting RA or Dec to string or vice versa

A Control-C has been entered on the terminal.

Error allocating or mounting device.

Attempt to use the LSE editor on a system on which LSE is

not available, or an attempt to use TPU when the TPU shareable

image is not accessible.

End of file encountered on text file operation.

Error in a FIGARO program, or an attempt to use a FIGARO

command when the FIGARO shareable image is not accessible.

Floating point division by zero.

Floating point overflow.

78

79

name

IFERR

INTOVF

INVARGMAT

INVSET

LOGZERNEG

NBSERR

OPENERR

OPNOTLOG

OPNOTNUM

PROCERR

READERR

RECCALL

SCREENERR

SQUROONEG

STKOVFLOW

STKUNDFLOW

5G/5.2 —ICL Exceptions

description

The expression in an IF or ELSE IF statement does not

evaluate to a logical value.

Integer Overflow.

Invalid argument to a mathematical function.

Invalid SET command.

Logarithm of zero or negative number.

Error in GETNBS or PUTNBS.

Error opening text file.

Operands of a logical operator (AND, OR etc.) are

not logical values.

Operands of a formatting operation (:) are not

numeric.

Unrecognized procedure or command name.

Error reading from text file.

Attempt to make a recursive call of a procedure.

Error in screen mode I/0.

Square root of negative number.

ICL’s stack has overflowed.

ICL stack underflow — If this occurs it indicates

an internal error in ICL — Please report the circumstances.

5G/5.2 —ICL Exceptions

name

TOOMANYPARS

UNDEFVAR

UNDEXP

USERERR

WHILEERR

WRITERR

description

Too many parameters for a procedure or command.

Attempt to use an undefined variable —i.e. one

that has not yet had a value assigned.

Undefined Exponentiation.

Error accessing a routine defined using DEFUSER, or

error during such a routine.

The expression in a WHILE statement does not

evaluate to a logical value.

Error writing to text file.

80

81

5G/5.2—ICL Syntax

Appendix D
ICL Syntax

The following gives a formal definition of the syntax of ICL. Note that there are in effect two levels to the
ICL Syntax. One level describes how statements (strictly simple_statements as defined below) are built
up, while a second level describes how statements (normally one per line) are combined to form control
structures and procedures. The definitions of if_block, loop_block and procedure below form the second
level syntax, and in these cases items on different lines in the definition, must appear on separate lines.
The notation is as follows.

e Lower case words denote non terminal symbols of the grammar. i.e. symbols which are defined in

terms of other symbols.

Upper case words or other characters are terminal symbols. i.e. the basic lexical elements out of
which the language is built.

The constructiona | b denotes a choice between two options.
The construction [a] implies that a is optional.

The construction { a } implies that the symbol a may be repeated zero or more times.

Both spaces and layout are significant. Spaces may not appear within identifiers, or numbers. Spaces
may be used as separators in parameter lists. layout is currently restricted to one statement per line. Thus
the end of line character is effectively a statement separator.

letter = any of the letters A to Z or a to z
digit = o0l 112131415161 718129
binary_digit = 0 | 1
octal digit = 0| 112131451617
hex_digit = digit | A|B|IC|IDIE|[FlalblcldleltfHt
comment = ; anything |
{ anything
unquoted_string = any sequence of characters not including a space,

comma or left parenthesis
string_delimiter = > | "
open_string = any sequence of characters not including a string delimiter

string = string_delimiter open_string string delimiter
{ string_delimiter open_string string delimiter }

identifier = letter { 1letter | digit | _ 1}

5G/5.2 —ICL Syntax

(certain identifiers have a special meaning within the language
and are not available for general use

these are AND, OR, NOT, LOOP, WHILE, FOR, IF, ELSE, END, PROC,
TRUE, FALSE, BREAK, ENDIF, ELSEIF, ENDPROC, ENDLOOP,
EXCEPTION, ENDEXCEPTION.

In identifiers a letter in upper or lower case is considered
to be the same)

integer = digit { digit 2
binary_integer = ¥B binary_digit { binary_digit 1}
octal_integer = U0 octal_digit { octal_digit 1}
hex_integer = %X hex_digit { hex_digit 1}
scale_factor = E integer |
E + integer |
E - integer
real = integer . { digit } |
integer scale_factor |
integer . { digit } scale_factor
number = real | integer | binary_integer | octal_integer | hex_integer
multiplication_operator = * | /
addition_operator = + | -
relational_operator = = | < | > | >]<=]<
logical_operator = AND | OR
function_call = identifier ([expression { , expression }])
primary = identifier | number | string | function_call
TRUE | FALSE | (expression)
factor = primary { #** primary }
term = factor { multiplication_operator factor }
simple_expression = [addition operator] term

{ addition_operator term }

relation = simple_expression |
simple_expression relational_operator simple_expression |
simple_expression : simple_expression [: simple_expression]

expression = relation |
NOT relation |
relation { logical_operator relation } |
relation { & relation 1}

parameter = unquoted_string | string | (expression)

5G/5.2 —ICL Syntax

simple_statement = = expression |
identifier = expression |
comment |
simple_statement comment

command = identifier [parameter { [,] parameter } 1]

statement = simple_statement | command | if_block |
loop_block | BREAK

if_block = IF expression

{ statement }

[ELSE IF expression
{ statement }]

[ELSE
{ statement }]

END IF

loop_clause = WHILE expression |
FOR identifier = expression TO expression [STEP expression]

loop_block = LOOP [loop_clause]
{ statement }
END LOOP
procedure = PROC identifier [identifier { [,] identifier }]

{ statement }

{ EXCEPTION identifier
{ statement }
END EXCEPTION }

END PROC

	I Introduction to ICL
	Introduction
	What is ICL?
	ICL Documentation
	ICL and FORTRAN
	History and Support

	Getting Started
	Direct Mode
	Entering Commands
	The Immediate Statement
	The Assignment Statement
	Expressions
	Values
	Constants
	Variables
	Operators
	Functions

	Formatting Numbers For Output
	Commands
	Command Format
	Summary of Rules for Command Parameters

	ICL Procedures
	Direct Entry of Procedures
	Running a Procedure
	Listing Procedures
	Editing Procedures
	Direct Commands During Procedure Entry
	Saving and Loading Procedures
	Control Structures
	The IF structure
	The LOOP Structure

	Prompting for Procedure Parameters
	Variables in Procedures
	Tracing Procedure Execution
	Running ICL as a Batch Job

	Input/Output
	Terminal I/O
	Text File I/O
	Screen Mode
	Keyboard Facilities in Screen Mode

	Access to DCL
	The $ Command
	The SPAWN Command
	Changing the Default Directory
	Allocating and Mounting Tape Drives

	Errors and Exceptions
	ICL Exceptions
	Exception Handlers
	Keyboard Aborts
	SIGNAL command

	Extending ICL
	Login files
	The DEFSTRING Command
	Hidden Procedures
	The DEFPROC Command
	Defining Additional Help Topics
	Other Ways of Defining Commands

	II ICL and ADAM
	Introduction to ADAM
	What is ADAM?
	The Role of the Command Language

	Using ADAM for Data Reduction
	A-tasks
	Monoliths
	Running KAPPA
	ADAM Parameter Format
	KAPPA from Procedures
	Error Reports

	Writing ADAM tasks
	Introduction
	Compiling and Linking
	Tasks with Parameters
	STATUS and error handling
	Returning values to ICL
	Graphics with ADAM
	Accessing Data

	ADAM as a Data Acquisition Environment
	Instrumentation Tasks
	D-tasks and C-tasks
	Task Loading
	Killing Tasks
	The ADAM message system
	An Example
	The I-task Interface File
	Running PHOTOM
	Supplying Parameters in the Obey Message
	Cancelling Actions
	Missing Parameters
	The GET command
	The OBEYW command
	Multiple Concurrent Actions

	ICL Functions
	ICL Commands
	ALLOC
	ALOAD
	APPEND
	CHECKTASK
	CLEAR
	CLOSE
	CREATE
	CREATEGLOBAL
	$ (DCL)
	DEALLOC
	DEFAULT
	DEFHELP
	DEFINE
	DEFPROC
	DEFSHARE
	DEFSTRING
	DEFTASK
	DEFUSER
	DELETE
	DISMOUNT
	DUMPTASK
	EDIT
	ENDOBEY
	EXIT
	GET
	GETGLOBAL
	GETNBS
	GETPAR
	HELP
	INPUT
	INPUTI
	INPUTL
	INPUTR
	KEY
	KEYTRAP
	KEYUSER
	KILL
	KILLDCL
	KILLW
	LIST
	LOAD
	LOADD
	LOADW
	MOUNT
	NOREP
	OBEYW
	OPEN
	PRINT
	PROCS
	PUTNBS
	READ
	READI
	READL
	READR
	REPFILE
	REPORT
	SAVE
	SAVEINPUT
	SEND
	SET
	SET ATTRIBUTES
	SET AUTOLOAD, SET NOAUTOLOAD
	SET CHECKPARS, SET NOCHECKPARS
	SET EDITOR
	SET HELPFILE
	SET MESSAGES, SET NOMESSAGES
	SET PRECISION
	SET PROMPT
	SET SAVE, SET NOSAVE
	SET SCREEN, SET NOSCREEN
	SET TRACE, SET NOTRACE

	SETGLOBAL
	SETPAR
	SIGNAL
	SPAWN
	STARTOBEY
	TASKS
	VARS
	WAIT
	WRITE

	ICL Exceptions
	ICL Syntax

