
SGP/16.10

Starlink Project
Starlink General Paper 16.10

P. T. Wallace

23rd March 1992

Starlink Application Programming
Standard

SGP/16.10—Contents ii

Contents

1 PREFACE 1

2 INTRODUCTION 2

3 GENERAL CODING STANDARD 4
3.1 Language . 4
3.2 Design . 11
3.3 Quality . 14
3.4 Presentation . 17

4 GRAPHICS 22

5 THE ADAM SOFTWARE ENVIRONMENT 24
5.1 Introduction . 24
5.2 Rules for programming ADAM applications . 24

6 WRITING PORTABLE PROGRAMS 27
6.1 Meaning of Portability . 27
6.2 Why Portability Matters . 28
6.3 Achieving Portability . 28

A Reserved Facility Names 33

1 SGP/16.10 —PREFACE

1 PREFACE

This Programming Standard should be read by all those who implement programs on Starlink
computers. The techniques described are requirements for Starlink-supported applications
software but are equally appropriate for private programming. The standard applies mainly to
the implementation of freestanding VAX/VMS and Unix applications, but also includes some
material specific to developing programs for the Starlink ADAM Software Environment.

Most of the recommendations made here have been available since the appearance of the first
edition in June 1981. Apart from a few additions in August 1984, Starlink’s advice on general
FORTRAN coding standards has not changed. Recent versions of this document have contained
additional material on use of graphics and on writing ADAM applications.

SGP/16.10 —INTRODUCTION 2

2 INTRODUCTION

This note offers advice on how to write applications programs for Starlink, so as to:

• maximize readability and comprehensibility

• encourage uniformity

• simplify maintenance

• eliminate ego

• assist portability

• promote reliability and fault tolerance

Programming standards like this one are apt to be treated with contempt by battle-hardened
user-programmers, at least those who have only ever used one sort of computer and have
never been faced with having to look after someone else’s code. Even experienced professional
programmers are sometimes reluctant to accept advice, in the confident belief that their own
style constitutes the ideal balance between discipline and pragmatism. However, the lamentable
standards of programming generally and Starlink’s objective of software sharing make some
restrictions necessary and desirable. The requirement that a program should work is merely the
beginning; the effort expended in distributing and supporting even the best software is well
known to be much greater than that required to write it in the first place.

Several existing standards were consulted before the Starlink standard was drawn up. Compared
with most standards, the Starlink one is rather liberal, omitting many of the rules in these others
while adding comparatively few of its own.

The ‘rules’ in this standard are of variable importance, and range from mere stylistic suggestions
to firm requirements. The relative importance of each rule is indicated by the following coding:

. Suggestion
! Strong recommendation
!! Rule which can sometimes be waived
!!! Firm rule

Any program submitted to Starlink (whether written by a Starlink programmer or a generous
user) may be vetted for conformity with this standard, and any violations taken into account
when deciding whether Starlink is to undertake distribution and support. Major violations will
only be acceptable if there are good reasons. For example (a) the program may be of an interim
nature and not require long-term support, (b) it may be so urgently required that this has to
override all other factors, (c) while departing from the standard in detail, it is so disciplined and
consistent that it can be accepted for support on its own terms.

Of course, this document does not pretend to be an exhaustive specification for writing Starlink
application programs. More information on, respectively, the Fortran 77 language and general
program design and coding, can be found in the following two books:

3 SGP/16.10 —INTRODUCTION

• PROGRAMMING IN STANDARD FORTRAN 77 by A.Balfour and D.H.Marwick, pub-
lished by Heinemann. This is a good reference for the language, and also contains some
sound programming advice. Note that certain extensions to the published US standard
are permitted in the Starlink programming standard; these are not included in Balfour and
Marwick.

• THE ELEMENTS OF PROGRAMMING STYLE by B.W.Kernighan and P.J.Plauger, pub-
lished by McGraw-Hill. Every Starlink programmer should read this classic work and
follow its recommendations except in those rare instances where the Starlink standard
differs.

SGP/16.10 —GENERAL CODING STANDARD 4

3 GENERAL CODING STANDARD

The rules and guidelines in this section apply to all applications programming irrespective of
what ‘software environment’ they run under. They fall into four groups – language, design,
quality and presentation.

3.1 Language

Fortran only !!! 1

For the time being, writers of Starlink application programs are urged to use Fortran exclusively.
Increasing amounts of Starlink systems code are being written in ANSI C (SGP/4 is the present
document’s counterpart for the C language), but use of C is discouraged for applications code.
A few pieces of Starlink system software use various dialects of assembler and Pascal, but these
are being eliminated. There may conceivably be future interest in ADA.

The only permitted dialect of Fortran is ANSI X3.9-1978 (known as Fortran 77) plus certain US
Department of Defense extensions and – in a few cases only – some extensions provided in DEC
and several other proprietary Fortrans.

Discriminating Fortran users were disappointed with the 1978 standard, which failed to contain
many expected improvements. Experience with preprocessors (RATFOR for example) had
shown the feasibility of turning Fortran into a much better language with a minimum of
disruption; unfortunately, many features which could easily have been added to the language
weren’t. DEC Fortran, however, does have a few of these features, and it was decided that certain
of these should be permitted within the Starlink standard. The rationale was (i) it would not be
hard to eliminate these extensions manually if necessary, (ii) they have become almost universal,
and (iii) similar facilities will be part of later Fortran standards. Note that anyone wishing
to adhere more rigidly to the Fortran 77 standard is permitted to do so. The latest version of
Fortran, called Fortran 90, contains many improvements over Fortran 77 and almost eliminates
the need to use any platform-specific features. Extra facilities not available in existing Fortran 77
implementations (for example the processing of whole arrays as primitive data items) are also
available. The Fortran 90 standard identifies certain features as ‘deprecated’ or ‘obsolescent’,
candidates for deletion in future standards; almost all of these are already prohibited by the
Starlink standard. Fortran 90 compilers are not presently provided on Starlink but will be in
due course.

The following extensions to the Fortran 77 standard are permitted within Starlink:

IMPLICIT NONE encouraged
END DO permitted
DO WHILE permitted but worth avoiding
INCLUDE encouraged

IMPLICIT NONE, END DO, DO WHILE and INCLUDE are all in Fortran 90. See Section 5,
Writing Portable Programs, for detailed advice on INCLUDE statements.

Here are some examples of features which are part of neither the Fortran 77 standard nor the
Starlink standard, and are to be avoided:

5 SGP/16.10 —GENERAL CODING STANDARD

INTEGER*4, REAL*4, REAL*8, LOGICAL*1 etc. (see note 1, below)
Names > 6 characters (note 2)
More than 19 continuation lines
Data initialization in a type declaration
Departures from Fortran 77 permitted statement order
Overlapping character substrings on both sides of an assignment
Data structures
Bit handling functions (note 3)
VMS specific OPEN keywords (note 4)
$, O, Q, or Z edit descriptors in FORMAT statements (note 5)
%VAL, %REF, %DESCR (note 6)

Certain other non-standard features are dealt with later sections. The DEC Fortran manual
has all extensions to the ANSI standard printed in blue, and these features should be avoided
unless expressly sanctioned in the Starlink standard. If an extension has to be used for any
reason (because the required result simply cannot be obtained any other way) this should be
highlighted with comments. If you are unsure about whether your program conforms to the
Fortran 77 standard, try compiling it with the /STANDARD qualifier (on VMS systems).

Notes:

(1) INTEGER*2 and BYTE data types may be used where they are essential to deal with input
data sets containing 8 or 16 bit values.

(2) Many programmers refuse point-blank to stick to 6 character names, and some even like
using whole sentences with underscores between the words. Opinions vary on whether
long names help readability all that much, but what is certain is that several computer
systems of considerable potential importance to UK astronomers do not support long
names (for example some mainframes, certain attached processors, some workstations).
Some computers accept names longer than 6 characters but only a little longer; others
accept long names but ignore all but the first n characters.

Though names internal to a Starlink program must be no more than 6 characters long, the
use of names of more than 6 characters is permissible (and indeed strongly encouraged)
in the case of program unit and labelled COMMON block names, in order to reduce the
chances of name clashes between different facilities (especially the C run-time library).
Such names should be constructed by prefixing the name proper, which must be no
more than 6 characters long, with a facility name of the form ‘FAC_’. An example is
SGS_OPEN: the facility name is SGS and the name of the routine OPEN. For the utmost
portability, it is wise to limit the name proper to 5 characters rather than the full 6; thus
SGS_ZSIZE can readily be preprocessed to SZSIZE (for example) if merely dropping the
SGS_ gives name clashes. Within a given package, the name proper should be unique even
if different facility names are being used. A further Starlink convention is that routines
called only internally within a package are given names prefixed with ‘FAC1_’ rather than
simply ‘FAC_’. Application programmers should never use existing facility names (see
Appendix A) unless contributing solicited and debugged software for inclusion in the
facility concerned.

Fortran 90 allows names of up to 32 characters.

SGP/16.10 —GENERAL CODING STANDARD 6

(3) Use of bit manipulation routines will be unavoidable in instrument specific processing
but is prohibited for general applications. (Note that Fortran 90 contains bit-manipulation
facilities.)

(4) Certain VAX extensions to the OPEN and INQUIRE statements overcome serious omis-
sions from the Fortran 77 standard and may be used if necessary:

• READONLY
• CARRIAGECONTROL=‘LIST’
• ACCESS=‘APPEND’ (worth avoiding)

Highlight these VAX-specific items with comments, and use them only in short routines
which can be re-coded for other platforms.

(5) In FORMAT statements, O (octal) and Z (hexadecimal) edit descriptors may be required
for the early stages of instrument specific processing, but must not be used otherwise.
Q (number of characters input) and $ (suppress carriage return) should be avoided.
Sometimes they have to be used, typically at just one place in an application, and when this
happens they should be prominently commented as VAX-specific and preferably isolated
inside a short routine which can be re-coded for other platforms.

(6) The DEC Fortran %VAL etc. may be required to interface to ‘software environment’
routines. (ADAM is one such software environment – see section 4.) They should not be
used for any other purpose.

Stick to the Fortran 77 character set !! 2

The Fortran 77 standard permits use of only the following characters (except in comments and
character strings):

0-9, A-Z, space, currency symbol, +-*/(),’.:

Though a few other characters are sufficiently common for trouble to be unlikely it is best to
avoid them even in comments as they may appear different on different terminals and printers –
hash and pounds sign are particular examples of this. Backslash is best avoided because it has a
special meaning in almost all Unix Fortrans. Applications should not depend on the presence of
nonstandard characters – stick to the Fortran 77 set.

An exception is made for lowercase letters a-z, which are (a) permitted in program source code,
and (b) encouraged in output messages. The recommended style is to use upper- and lowercase
freely in comments but to use uppercase in the Fortran proper. If you must use lowercase
characters in Fortran statements, it is important to be consistent, not just to make the code
easier to read, but also because the Fortran compilers on some Unix systems regard upper- and
lowercase characters as different (so N and n would be different entities for example).

The character set allowed by Fortran 90 includes _ ! " % & ; < > ? [].

Take care with collating sequence. The letters A-Z appear in the expected order, but you cannot
assume that they are contiguous in the collating sequence. Similar remarks apply to 0-9. Do not
assume that the numbers appear before the letters. Assume nothing about the collating sequence
of punctuation characters, except that blank comes before both the letters and the numbers.

7 SGP/16.10 —GENERAL CODING STANDARD

Input must not be case sensitive !!! 3

Applications must not distinguish between upper- and lowercase in data they receive.

Avoid end of line comments ! 4

End of line comments (preceded by ‘!’) are not in the Fortran 77 standard, and are best avoided,
though they are in Fortran 90 and are supported by many current compilers. There is some
justification for using them with data declarations. If used at all they must be neatly aligned by
means of spaces, not TAB characters (see the next rule).

Don’t use TABs !!! 5

The use of TAB characters is prohibited, both in source code and as required data input to a
program. Though their use in source code may give an illusion of good layout with a minimum
of effort, tab settings on different terminals and printers will in general be different and will not
reproduce what appeared on the screen when the program was being written. With most editors
it is easy to program rarely used keys or special function keys to produce multiple spaces – for
instance 3 and 6 – which will reduce the number of keystrokes when entering Fortran.

Arithmetic IF banned !!! 6

The use of the arithmetic IF:

IF (X) 10,10,20

is prohibited. It offers even more opportunity for unstructured programming than the discred-
ited GO TO and, moreover, doesn’t read naturally in English. (The arithmetic IF is a fossil of one
of the machine instructions on the computer for which Fortran was first devised, the IBM 704.)

Use the computed GO TO sparingly ! 7

Don’t use the computed GO TO unless you have to, and then only to implement a properly laid
out ‘case’ construct. In such instances, a good plan is to use comments to indicate the case for
each destination. For example:

* Switch according to command
GO TO (1000, 2000, 3000, 9000)

* Go Hold Stop Abort

ASSIGN banned !!! 8

The ASSIGN statement is prohibited. It offers endless opportunities for incomprehensible code,
and is a peculiar historical feature not found in other languages. Though it can be used in
conjunction with the assigned GO TO (also banned) to implement a sort of internal subroutine
call, the temptation to do clever things with saved or multiple return pointers etc. will prove too
great for some practitioners – so the feature is outlawed by Starlink. (See also rule 29.)

SGP/16.10 —GENERAL CODING STANDARD 8

Don’t use PAUSE !!! 9

PAUSE is prohibited. It produces different results on different sorts of computers and is sure to
interfere with whatever software environment you are using.

STOP, RETURN, ENTRY banned !!! 10

STOP, RETURN and ENTRY are all prohibited.

STOP produces a message that is usually uninformative and is incompatible with software
environments. It is also redundant – the main program’s END statement causes program
termination.

RETURN is redundant – a subprogram’s END statement returns to the caller.

The key reason for prohibiting STOP and RETURN is to force the programmer to have one exit
point only per routine, at the end, to aid debugging. This complements the ban on multiple entry
points (and hence on alternate RETURN) in satisfying structured programming requirements.

Note that the ban on ENTRY and RETURN means that multiple ENTRYs and RETURNs are
similarly prohibited.

Don’t use DIMENSION !!! 11

The DIMENSION statement should not be used; arrays must be given explicit type declarations.
For example:

REAL A(512,512)

must be used, rather than:

DIMENSION A(512,512)

Don’t try to overprint !!! 12

In FORMAT statements, the use of the printer control character ‘+’ is prohibited. Assume that
overprinting is not possible; this is almost always the case.

Don’t devise your own character handling mechanisms !!! 13

Characters must be handled only by the character string mechanisms of Fortran 77. Private
mechanisms (involving for example integer arrays) are banned.

Remember to use SAVE !!! 14

The SAVE statement must be used in all cases where subprograms assume that their local
variables retain their values between successive invocations. If you don’t do this, your programs

9 SGP/16.10 —GENERAL CODING STANDARD

will not run correctly on some computers even though they happen to work on VAX/VMS
and other compilers that allocate static storage by default. Note that SAVE is also required when
using labelled COMMON, unless the COMMON block is declared in at least one other program
unit in the calling chain (the main program for instance); in this case the SAVE specifies the
COMMON block itself rather than the individual variables. Avoid using the form of the SAVE
statement where the variable and COMMON block names are omitted.

The rules in the ANSI standard concerning SAVE are rather complex and no further attempt
will be made to summarize them here.

Statement labels on FORMAT and CONTINUE only !!! 15

Statement labels are permitted on FORMAT and CONTINUE statements only. They should be
less than 10000, increase monotonically through the routine, occupy columns 2-5 only and be
consistently justified, left or right.

Declare everything explicitly !!! 16

All variables, parametric constants and functions (except the Fortran 77 generic functions)
must be given explicit type declarations. To force this, it is strongly recommended that the
IMPLICIT NONE statement be used, with the additional advantage that undeclared arrays,
functions, etc., and many typing errors are exposed during debugging.

The use of a consistent naming scheme to indicate type, though unfashionable, is worth con-
sidering. The standard Fortran convention of an initial I-N can be used to highlight integers,
and where REAL and DOUBLE PRECISION variables are being mixed it can be helpful to
reserve initial D for the latter. CHARACTER, LOGICAL and COMPLEX entities are more rarely
confused and there is usually less need for naming conventions.

Arrays appearing in COMMON must have their type and dimensions declared in separate
statements which precede the COMMON declaration. For example:

REAL ARRAY(512)
COMMON /fac_BLOCK/ ARRAY

The types of subprogram arguments must be specified explicitly.

Use CHARACTER∗(∗) !! 17

Dummy arguments of type character, and character functions, should be declared CHARAC-
TER*(*) in order to pass the length implicitly.

Keep I/O out of mainline code !! 18

Portability considerations make it desirable that all Fortran I/O (except to internal files) be
encapsulated within suitable primitive subroutines.

Avoid list-directed I/O, which may give different results on different machines. There are library
routines for input and output conversions (see sla_DFLTIN in SLALIB for example); use these.

SGP/16.10 —GENERAL CODING STANDARD 10

In many ‘software environments’ (ADAM for example – see section 4), Fortran I/O to the
terminal is not permitted, and any Fortran I/O to files should be done in accordance with any
special rules of the software environment concerned.

Don’t use literal I/O unit numbers !!! 19

The external unit identifiers (logical unit numbers) used in OPEN, READ, WRITE, etc. must not
be hardwired – the number itself should appear at a maximum of just one place in the program,
in a PARAMETER statement. Keep to the range 0-255.

The various ‘software environments’ usually have ways of supplying such logical unit numbers
from a pool, and this is recommended.

Don’t use mixed mode arithmetic !! 20

Avoid mixed mode arithmetic or change of type across an assignment statement. Use explicit
type conversions; for example:

X = REAL(N-1)

rather than:

X = N-1

Changing from one number format to another is a very significant event in an algorithm and
should be clearly expressed. Great circumspection should be employed when deciding where
such conversions should occur.

Data type must not change across a CALL !!! 21

Data types must not be mixed across a function reference or subroutine call, even in cases where
it appears to work on a VAX (between REAL and DOUBLE PRECISION for example).

LOGICAL and INTEGER are different !!! 22

LOGICAL and INTEGER usage must not be mixed. For example:

INTEGER JFLAG
:
:

IF (.NOT.JFLAG) ...

is not permitted.

Use only INTEGER DO-variables !! 23

Don’t use REAL or DOUBLE PRECISION DO-variables, just integers. The way the iteration
count is determined and the measures taken to avoid cumulative rounding errors are important
parts of the algorithm and should be spelt out.

11 SGP/16.10 —GENERAL CODING STANDARD

Don’t use EQUIVALENCE !! 24

EQUIVALENCE should only be used if there is a very good reason, and even then only in a
straightforward way. In particular:

• Do not use EQUIVALENCE to ‘extend’ an array.

• Do not EQUIVALENCE anything in COMMON.

• Do not EQUIVALENCE entities of different data types.

3.2 Design

Use Structured Programming !! 25

The principles of structured programming should be followed except in cases where this obscures
the program logic.

Programs written using structured programming techniques are built out of three basic elements:
(a) processing sequences, (b) decisions, and (c) loops. Each of these three elements has only
one entry point (at the top) and only one exit (at the bottom), and its relationship with the
data it uses is clearly defined. The whole program consists of a hierarchy of these elements. In
Fortran 77, (a) is just a series of statements, (b) is an IF THEN ELSE construct and (c) is one of
the DO constructs. The most conspicuous feature of structured programs is the absence of (or,
depending on the suitability of the programming language being used, the relative absence
of) GO TO statements. Such programs are incomparably easier to follow than ones containing
tangled GO TO logic, but may be harder to write, especially if you have not completely grasped
what you are trying to do before you start coding.

To conform to the Starlink standard, a program must not show signs of having been written
‘bottom-up’, or having ‘grown like Topsy’. It can be a good plan to begin by writing the program
in a ‘structured English’ pseudo-language; this can then become, as comments, part of the
program.

The SPAG utility (SUN/63) can re-arrange GOTO- and arithmetic-IF-infested code into block-
structured form, and this is a good first step when working up old code into a maintainable
form.

Keep program units small ! 26

Modules should be small wherever possible, ideally a page or less (not including prologue
comments). Programs which, despite being longer than this, are nevertheless not difficult to
follow – because they consist of a simple top-to-bottom flow or contain a single main loop with
a simple flow inside it — may be acceptable.

SGP/16.10 —GENERAL CODING STANDARD 12

Avoid the GO TO !! 27

The GO TO must not be used unnecessarily. Use the DO and IF structures unless they make the
program difficult to follow. There are cases where use of GO TO is justified by the need to jump
downwards in a program as the result of some exceptional condition, and use of IF . . . ELSE IF
together with indenting of code would give a less satisfactory appearance. If you have to form
structures using the GO TO, clarify what is going on by means of commenting and indenting.

If you are prepared to use the non-ANSI-standard DO WHILE, you can write a loop which
includes tests for exit and repeat conditions, without using the GO TO:

LOGICAL LOOP
:

LOOP = .TRUE.
DO WHILE (LOOP)

:
IF (‘exit’ condition) THEN

LOOP = .FALSE.
:

ELSE IF (‘next’ condition) THEN
:

END IF
END DO

Don’t loop using GO TO !! 28

Do not implement loops by jumping backwards using GO TO.

Don’t use GO TO to drive internal subroutines !!! 29

Internal subroutines driven by GO TO statements are prohibited, whether using the assigned
GO TO or not. (See also rules 8 and 28.)

FUNCTIONs must not have side effects !!! 30

FUNCTION subprograms must only be used when a single argument is returned and there are
no side-effects. All other procedures should be SUBROUTINE subprograms.

Minimize use of COMMON !!! 31

No unnecessary use of COMMON must be made. The use of COMMON can lead to code which
is difficult to maintain. It should not be used simply as a lazy way of passing arguments to
subprograms; when it is used for passing arguments there must be a good reason and every
item referenced must be mentioned in the prologue comments just as for formal arguments.

The names of entities in COMMON must not change from one program unit to another; the use
of dummies is discouraged.

13 SGP/16.10 —GENERAL CODING STANDARD

All COMMON block source should be stored in separate files from the rest of the source, and be
inserted using the INCLUDE statement.

Blank common must not be used – only labelled common (with a fac_ prefix to the name, as
described in rule 1 note 2).

Note that the Fortran 77 standard does not permit initialization of common blocks via DATA
statements in main programs or normal subprograms; BLOCK DATA must be used. (Avoid po-
tential linking difficulties when using BLOCK DATA by referring to the name of the BLOCK DATA
module in an EXTERNAL statement in at least one of the subprograms that makes use of the
relevant COMMON block.)

No garbage !!! 32

The following are prohibited:

unused statement labels
unused declarations
unused FORMAT statements
unreachable code

FORCHECK (see SUN/73) will detect all of these conditions.

Be device-independent !!! 33

Do not make unwarranted assumptions about the hardware being used, especially the properties
of terminals or printers. If your application requires use of special features, either include
mechanisms external to the program which can be configured to match the hardware available,
or have the user make explicit assertions. A common crime, for example, is to assume that
the terminal is ANSI standard (VT100 etc.) and to output escape sequences in order to control
scrolling or to output large characters etc.; these will have unpredictable effects on other types of
terminal. A solution is to include in your program’s repertoire of commands one which allows
the user to announce that he is on an ANSI terminal and only to output ANSI escape sequences
if that command has been invoked.

Be environment independent !!! 34

Be careful when specifying filenames or device names in application programs. There are,
unfortunately, no platform-independent ways of handling such names, but difficulties will in
practice be minimized if filenames (i) contain no uppercase letters, (ii) are no longer than eight
characters or eight plus a period and a further three, and (iii) contain only letters, numbers and
a maximum of one period.

When soliciting a file or device name from the user, make no assumptions about its format and
pass on the string received (to an OPEN statement typically) without altering it or trying to
deduce things from it.

SGP/16.10 —GENERAL CODING STANDARD 14

Be aware of floating-point limitations !!! 35

Programs must not rely on more than the following ranges and accuracies:

type range accuracy

REAL ±10±38 & zero 6 dp

DOUBLE PRECISION " 14 dp

Don’t access uninitialized variables !!! 36

Never access an uninitialized variable. Relying on variables being initially zero (usually the
case for VAX Fortran) is not permitted.

Don’t use VAX system service or RTL calls !! 37

Any programs which call system services (QIO etc.) or Run-Time Library routines will clearly
be non-portable, and these techniques should not in general be used. This may not always
be possible, and where a VAX-specific call is required it should be kept separate from the
application proper by encapsulating it in a subprogram of its own. Occasional use in mainline
code is excusable if removing the call happens still to result in a runnable program (albeit of
reduced capability), and if prominent commenting is used to highlight the VAX-specific code.

3.3 Quality

Use meaningful names !! 38

Use sensible names which (within the 6-character limit) offer some indication of the meaning of
the entity concerned. The use of I, N, W, X, etc. for purely local and temporary use is permissible;
daft or misleading names are banned.

Don’t re-use variables !! 39

Use a variable for a specific purpose; use a different one if the meaning has changed.

Define sizes parametrically ! 40

In general, the sizes of tables, queues, buffers and work arrays should be defined parametrically.
For example:

15 SGP/16.10 —GENERAL CODING STANDARD

* Reference star positions
PARAMETER (NREFS=1000)
REAL REFS(2,NREFS)

If a size is required in more than one program unit, it should be declared in an INCLUDE file.

Minimize rounding errors !! 41

In cases where control over execution order within a statement is important in order to minimize
rounding, this can be achieved by means of otherwise redundant parentheses. For example,
if DELTA1 and DELTA2 are small compared with B, their sum could be computed without
avoidable loss of precision as follows:

A = B+(DELTA1+DELTA2)

Validate inputs !!! 42

Everything coming into the program from outside must be validated.

There are only two exemptions permitted:

• Subprograms called exclusively by programs which can guarantee to present valid argu-
ments.

• Subprograms which explicitly put the onus of validation onto the caller to achieve some
real efficiency advantage.

Don’t output error messages at too low a level ! 43

Subprograms will be more flexible if they do not output error messages themselves but instead
leave this to the caller by returning a status. (Using PAUSE and STOP is even worse – see rules 9
& 10.)

Applications running under a ‘software environment’ (for example ADAM – see Section 4)
should adopt the error reporting strategy provided by that environment. The ERR_ and MSG_
packages (SUN/104) provide error reporting that works both in ADAM-based and freestanding
programs. These packages enable subprograms to report errors in detail while still allowing
higher levels to decide whether or not messages will actually appear on the user’s screen.

Don’t terminate by count !!! 44

Terminate input by end-of-file or by a special end record, not by count.

Don’t test REALs for equality !!! 45

REAL or DOUBLE PRECISION variables must never be tested for equality against non-zero
numbers. Testing for zero is also frowned on by most experts but can be difficult to avoid.

(But see remarks about bad-pixel handling in ADAM applications – section 4.)

SGP/16.10 —GENERAL CODING STANDARD 16

Use the standard order for arguments !! 46

The order of arguments in subroutines should be as follows:

Given
Given and altered
Returned
Status return

Note that the Fortran 77 standard prohibits use of the same actual argument more than once
when calling a subprogram which gives one of the arguments concerned a new value. Thus a
subroutine P(A,B,R), which computes some function of A and B and finally returns it in R, must
not be called with arguments (X,Y,X) even though this technique happens usually to work in
VAX Fortran (for example).

Use generic names ! 47

Use the generic names of intrinsic functions, for example MAX(A,B) rather than AMAX1(A,B).

Don’t re-invent existing routines !! 48

Starlink library routines should be used whenever possible, rather than writing routines which
duplicate (or almost duplicate) the functions of existing Starlink routines. It is permissible to
adapt Starlink code where the required changes are substantial and the code uses only published
interfaces; the source must be seamlessly blended with the new application and be given a new
name.

Do not include in a package copies or slight variants of Starlink routines in an attempt to make
the package self-contained. Assume the availability of the required Starlink library, and if the
package has to be run on an installation which does not have the Starlink software collection
make proper arrangements with the Starlink Software Librarian to have the up-to-date libraries
sent there.

Avoid using the Run-Time-Library routines available on VAX/VMS and other platforms. Many
of the facilities included in these libraries are also provided by POSIX, an industry-standard
Portable Operating System Interface. Fortran-callable versions of many of these routines are
provided in the Starlink PSX library.

Many of the libraries which form part of the ADAM Software Environment (see Section 4)
are available in two forms: an ADAM version and a free-standing version. Programmers are
strongly recommended to use these libraries even where there is no immediate intention of
running under ADAM.

Don’t write clever code !! 49

Programs must not be obscure in the name of efficiency. The first version of the program should
be coded for clarity rather than efficiency (within reason). If there are found to be worthwhile
(i.e. obvious to the user) improvements in efficiency possible, at the expense of clarity, then

17 SGP/16.10 —GENERAL CODING STANDARD

changes can be made. The reduction in clarity must then be made good by extra comments –
perhaps including the original code. (If the changes do not reduce the clarity of the program,
then it was badly written in the first place.)

3.4 Presentation

Begin modules properly !! 50

The first statement in a program unit must be one of the following: PROGRAM, FUNCTION,
SUBROUTINE or BLOCK DATA. Preceding comments are discouraged, to avoid confusion
(either to the reader or to software) over where each new module begins in a concatenated
sequence of such modules. (Likewise, comments following an END statement are not allowed.)

All program units must have sensible and self explanatory names, as far as is possible given the
limitations imposed by the 6 character or fac_ + 5 character rule (see rule 1 note 2).

Include prologue comments !!! 51

There must be one or more blocks of comments at the beginning of every program unit, which
together form a ‘prologue’. The prologue must include the name of the program unit, a brief
description of what it does, and full details of its interactions with the calling environment. The
author, organization, and date should be given, expressed compactly.

To enable automatic recognition, each block of prologue comments must begin with a comment
which starts ∗+ and ends with a comment which starts ∗−. Elsewhere in the program, do not
have any statements with + or − in the second column.

Main programs must have a prologue which says what files will be read or written, and gives
the I/O unit identifiers used (numbers or symbols).

Subprogram prologues must list all the arguments, clearly describing their function, type (unless
obvious), units (where applicable) and any special properties (e.g. whether an array). The words
‘given’ and ‘returned’ are recommended for direction, rather than ‘input’, ‘output’, ‘source’,
‘destination’ and other possibly ambiguous terms. Access to COMMON blocks should be treated
similarly, with every item referenced fully described.

It is recommended that the names of all subprograms called (except the Fortran 77 intrinsic
functions) be given in the prologue. It is extremely important that all the information given in
the prologue is accurate and up to date. Prologues can be automatically extracted from source
held in text libraries by using the LIBPRE facility (see SUN/8).

Example:

SUBROUTINE sla_NUT (DATE, RMATN)
*+
* - - - -
* N U T
* - - - -
*
* Form the matrix of nutation for a given date (IAU 1980 theory).
*

SGP/16.10 —GENERAL CODING STANDARD 18

* (double precision)
*
* References:
* Final report of the IAU Working Group on Nutation,
* chairman P.K.Seidelmann, 1980.
* Kaplan,G.H., 1981, USNO circular no. 163, pA3-6.
*
* Given:
* DATE dp TDB (loosely ET) as Modified Julian Date
* (=JD-2400000.5)
* Returned:
* RMATN dp(3,3) nutation matrix
*
* The matrix is in the sense V(true) = RMATN * V(mean) .
*
* Called: sla_NUTC, sla_DEULER
*
* P.T.Wallace Starlink 10 May 1990
*-

Note, however, that much of the freedom implied by the above recommendations may not be
available to programs which conform to the documentation standards of a particular ‘software
environment’, especially if automatic documentation facilities are involved. For details of the
prologue requirements of the ADAM software environment, see section 4.

Begin comments with ∗. 52

The comment symbol ‘∗’ should be used in preference to the old-fashioned ‘C’.

Use blank lines to improve layout. 53

Blank lines should be used freely to break up code.

Make comments stand out from code !! 54

Comments must be clearly distinguished from code. The recommended style is begin the text
some fixed amount (1-3 characters) to the left of the code, and to follow the same indenting
scheme in comments and code alike. An alternative style, less likely to be spoiled by editors and
reformatters which change the code indentation, is to begin the comments always in column 3
or 4. Comments should use lowercase freely, but the code should be in uppercase.

Comments beginning in column 7 are strongly discouraged, even if preceded by C***** and the
like.

Be considerate !!! 55

Every effort must be made to present the program in the clearest and most agreeable way from
the point of view of the support programmer – who has a much more difficult job to do than

19 SGP/16.10 —GENERAL CODING STANDARD

the original author. The layout must be neat, clean and consistent, and there must be liberal
commenting, both at the start of each module and within the code.

The comments, which should in general precede the code they describe:

• must accurately reflect the behaviour of the program;

• must be detailed without merely stating the obvious;

• must not be cryptic – ‘clues’ are not enough;

• must be in English, without spelling or grammatical errors;

• must not contain attempts at humour, meretricious phraseology, catchwords, superfluous
pleasantries, private jargon and clever abbreviations.

Modifications must blend in !!! 56

When a program is changed, the modifications must be ‘invisibly mended’ into the coding; scars
are not permitted. The original style and conventions of the program must be preserved – which
will be much easier and more palatable if the program conformed to the Starlink standard in the
first place.

There should be no need for elaborate and unsightly ‘revision-flag’ schemes except, perhaps,
during debugging or where software that runs on more than one machine has machine specific
inclusions.

Fix bad code !!! 57

Bad code must be rewritten, not merely commented.

Use ‘:’ as the continuation character ! 58

Only one continuation character should be used, preferably ‘:’. (If you do choose something
else, remember it should be in the Fortran 77 character set. The dollar sign is a popular choice
because it has no syntactical function in ANSI Fortran outside a character string.

Using 1,2,3 . . . for successive lines is specifically discouraged as it leads to annoying editing
problems (and, after all, protection against shuffling is no more necessary than for any other
region of the program).

Lines longer than 72 characters are not allowed !!! 59

Program lines (including comments) must not be longer than the legal 72 character maximum
(even though compiler options such as /EXTEND_SOURCE on VAX/VMS can override this
maximum). A lengthy statement (that for some reason cannot be broken up into several shorter
statements) should be split at natural breakpoints and the pieces neatly aligned. Statements must
not be split between lines simply by exploiting the break at column 72. Take care with character
constants, where this can easily happen inadvertently – especially inside format specifications.

SGP/16.10 —GENERAL CODING STANDARD 20

Use spaces to improve readability. 60

Spaces should be used freely within Fortran statements to make them easier to read. A space
before and after the equals sign in an assignment statement is particularly recommended.

Use indenting to show structure !!! 61

It is essential that the structure of a program be reflected in a consistent and pleasing indentation
scheme.

A suggested scheme is as follows. The normal starting columns for comments and code should
be 5 and 7 respectively. For each block between a DO and END DO, or between IF, ELSE IF,
ELSE and END IF, both comments and code should be indented a further 3 columns. Blank lines
should be used freely to improve presentation further.

This scheme is used in the following example. This is, of course, only one acceptable layout, and
tastes vary.

* Reset bad pixel count
NBLEM = 0

* Look at all pixels except edge
DO IY = 2, NY-1

DO IX = 2, NX-1

* Reset blemish flag
IBLEM = 0

* Pick up pixel
PXV = A(IX,IY)

* Expected value = mean of surrounding eight
S = 0.0
DO J = IY-1, IY+1

DO I = IX-1, IX+1
S = S+A(I,J)

END DO
END DO
EV = (S-PXV)/8.0

* ’Blemish’ criterion
BLEM = SIGMAS*SQRT(ABS(EV))

* Decide whether in star or not
IF (EV.GT.STAR) THEN

* In star
IF (PXV.LT.EV/4.0-BLEM) IBLEM=1
IF (PXV.GT.4.0*EV+BLEM) IBLEM=2

ELSE

* Not in star

21 SGP/16.10 —GENERAL CODING STANDARD

D = PXV-EV
IF (D.LT.-BLEM) IBLEM=3
IF (D.GT.BLEM) IBLEM=4

END IF

* Override if negative or small
IF (PXV.LT.DIM) IBLEM=0
IF (PXV.LT.0.0) IBLEM=5

* If blemish, fix and report
IF (IBLEM.NE.0) THEN

B(IX,IY) = EV
NBLEM = NBLEM+1
WRITE (LINE,’(’’Blemish at (’’,’ //

: ’I4,’’,’’,I4,’’)’’,’ //
: ’G16.4,’’ changed to’’,’ //
: ’G16.4)’) IX-1,IY-1,PXV,EV

CALL WRUSER(LINE,JSTAT)
END IF

END DO
END DO

* Final report
WRITE (LINE,’(I6,’’ blemishes removed’’)’) NBLEM

Put FORMAT statements inline ! 62

FORMAT statements should be inline (following the appropriate READs or WRITEs) rather
than, for example, massed at the end of the program. When a given format specification is
required once only it can be incorporated into the READ or WRITE itself as a character constant,
unless the result is less clear (for example because of multiple apostrophes). When using this
technique, be sure the constant doesn’t continue through multiple lines (see rule 59, and the
example in the previous rule).

SGP/16.10 —GRAPHICS 22

4 GRAPHICS

Plot using an approved graphics package !!! 63

All graphics operations must be carried out, ultimately, by the GKS (SUN/83) and IDI (SUN/65)
libraries.

GKS: Direct use of raw GKS in applications is discouraged, in favour of using one of the
Starlink-supported higher-level packages as an intermediary. These include SGS, the NCAR
utilities (and the SNX routines), the NAG Graphical Supplement, and PGPLOT. (Though the
Starlink version of the proprietary package MONGO uses GKS, use of callable MONGO in
application programs is not encouraged in this standard as its functions are provided elsewhere.
MONGO is supplied by Starlink principally for interactive use, and is in any case being phased
out in favour of the Starlink PGPLOT-based PONGO package.)

SGS: Where only low-level facilities are required (lines, character strings, formatted numbers,
simple shapes, but not complete axes or whole graphs) the SGS package (SUN/85) is recom-
mended. SGS consists mainly of convenient packaging of GKS functions, including easy control
of plotting zone and a flexible workstation naming scheme, and can be used in conjunction with
direct GKS calls.

PGPLOT: In standalone applications where complete graphs are to be drawn and convenience is
more important than flexibility, the Caltech PGPLOT package (SUN/15) may be used. PGPLOT
was expressly designed to meet the requirements of astronomers, and is especially good at
publication-quality laserprinter output. PGPLOT exists in two forms, one using GKS and
the other with native low level and device driver layers, which gives it certain portability
advantages for astronomers wishing to send their applications overseas. The two forms are of
comparable performance except in greyscale output, where GKS is substantially faster. PGPLOT
is moderately flexible, and gives good access to colour and multiple text fonts. However, direct
access to GKS during use of PGPLOT is prohibited, limiting the package’s capabilities to those
explicitly provided by PGPLOT itself.

NAG: The NAG Graphical Supplement (currently available only at certain sites – see RAL LUN/45)
also draws complete graphs, in a number of useful though spartan formats. It has portability
advantages, however, especially for users of UK university computing facilities. Some direct
access to GKS is possible.

NCAR & SNX: The NCAR package, (SUN/88) supplied by the National Center for Atmo-
spheric Research, is widely available and runs on many different types of computer (n.b./ recent
versions are proprietary). The Starlink SNX routines (SUN/90) allow the NCAR routines to
be used in conjunction with SGS, and direct use of GKS facilities is also possible. The most
important of the NCAR utilities is AUTOGRAPH, which draws complete plots of one variable
against another. Great flexibility is available, and effects can be achieved which are impossible
with other packages of comparable level. For example numeric labels can be intercepted and
replaced; opposite axes can have different scales (including non-linear ones), lines can have
embedded captions, and so on.

IDI: The IDI package (SUN/65) differs in its objectives from all those mentioned so far, which
are mainly oriented towards line-drawing. IDI is a low-level interface for image display devices,
and supports concepts absent in GKS, for instance re-configurable pixel memory. Compared

23 SGP/16.10 —GRAPHICS

with the GKS-based packages, IDI’s drawing facilities are rather primitive, but IDI comes into
its own for highly interactive applications, involving special cursors, pan/zoom, blink etc.

AGI & GNS: Two supporting packages are the Graphics Database library AGI (SUN/48) and
the Graphics Name Service library GNS (SUN/57). AGI remembers what has been plotted
where and allows one applications to access the plotting of another. GNS is a unified naming
scheme which is supported across all the Starlink graphics packages. Application programmers
should be fully aware of what these packages do, should make full use of these facilities, and
should not duplicate their functions in application code.

Mixtures: With care, several of the plotting packages can be used in conjunction with one
another. The various packages interrelate with each other and with applications in ways which
are unfortunately too complicated and varied to permit a simple diagram to be drawn or a simple
set of rules to be laid down. The techniques available depend on the particular combination
of packages involved, and guidance should be sought from the documents describing those
packages. The SGS, SNX, NCAR and GKS packages are more miscible than some of the others.
It is normally safe to use the packages sequentially; the dangers lie in calls to one package
deranging the context of one of the others. The difficulties and complications of this area are a
direct result of offering the utmost flexibility. Those who prefer safety and simplicity would be
well advised to stick to a single package (for example PGPLOT) used in a straightforward way.

Don’t interpret graphics device names or numbers !!! 64

Do not examine in applications the GKS/SGS/GNS workstation type or name in order to
control the behaviour of the program. For example, you are not allowed to say “the GKS
workstation type is 3200, therefore this is an Ikon image display, therefore colour is available".
This information must be obtained by calling the appropriate GKS, SGS, PGPLOT or GNS
enquiry routines; if the property you are interested in is not available through such enquiries
then devise some mechanism external to the program, or solicit information from the user.

SGP/16.10 —THE ADAM SOFTWARE ENVIRONMENT 24

5 THE ADAM SOFTWARE ENVIRONMENT

5.1 Introduction

Applications running under Starlink’s recommended software environment ADAM should
in most respects be programmed according to the rules given so far. However, ADAM has
a number of special requirements which may mean that one of the general rules has to be
reinterpreted – in some cases strengthened, in others relaxed. There are, in addition, several new
rules which do not have to be obeyed when writing non-ADAM applications.

Programming standards for ADAM applications written outside Starlink may, of course, differ
from those laid down by Starlink.

5.2 Rules for programming ADAM applications

Initialize variables !!! 65

It is essential that variables are initialized. Even the VAX’s initialization to 0 cannot be relied
upon as the task may or may not be reloaded between invocations. DATA statements must only
be used to initialize data which will not change. (Emphasizes rule 36.)

Use the ADAM standard prologue !! 66

ADAM standard prologues differ in some respects from the Starlink standard, allowing less
freedom but giving more opportunity for the automatic production of documentation and help
files. For details, see SUN/105 and SUN/110. (Modification of rule 51.)

Output messages via the MSG_ routines !!! 67

Message output must be done using the ADAM message system MSG_ subroutines. The ADAM
message system is described in SUN/104. A stand-alone version of the MSG_ package exists.
(Supplements rule 18.)

Don’t use $, %, ^ in messages ! 68

The non-Fortran 77 characters $, % and ^ are used as escape characters in the ADAM message
system, and special methods have to be employed if they are to be included in messages (see
SUN/104). In general, it is better to avoid using them. (Reinforces rule 2.)

Report errors via the ERR_ routines !!! 69

Error reporting must be done using the ADAM error system ERR_ subroutines and the ADAM
error strategy should be employed. The ADAM error system is described in SUN/104. A
stand-alone version of the ERR_ package exists. (Reinforces rule 43.)

25 SGP/16.10 —THE ADAM SOFTWARE ENVIRONMENT

Set STATUS on failure !!! 70

All applications which fail must return to the environment with an error status value set. This is
to enable the environment to detect the failure so that users can write procedures which take
appropriate action. (Supplements rule 43.)

When setting STATUS, generate a message !! 71

If a subroutine is entered with STATUS=SAI__OK but, during execution, sets the STATUS (other
than by calling another ADAM routine), an appropriate error message must be generated using
ERR_REP (see SUN/104).

Some routines have > 6 character names. 72

Some of the ADAM environment package subroutines have names and prefixes greater than 6
characters. Where it is necessary to call these, rule 1 note 2 must be relaxed.

Get parameters with the PAR_ routines etc. !!! 73

All program parameters must be obtained using the parameter system PAR_ or pkg_ASSOC
subroutines. (Reinforces and supplements rule 18.)

Use symbols when testing for bad pixels !!! 74

A REAL or DOUBLE PRECISION variable may be equated to its corresponding bad-pixel value,
though explicit bad-pixel values, e.g. −32768, are banned. The parameters VAL__BADx (see
SUN/39), where x corresponds to the data type, must be used. (Relaxation of rule 45 for this
special case.)

Avoid Fortran input/output !!! 75

Use the environment facility packages MAG, FIO etc. wherever possible. (Reinforces rule 18.)

If it is necessary to use Fortran I/O, obtain and release logical unit numbers using FIO_GUNIT
and FIO_PUNIT. (Supplements rule 19.)

Use symbolic names !!! 76

Status values and package constants are given symbolic names such as PAR__NULL and
DAT__SZLOC by INCLUDE files for each package. These symbolic names should be used
on every occasion that the constant is required. Follow these conventions when developing
your own INCLUDE files, and use file names in the INCLUDE statements which conform to
the convention fac_err for error codes and fac_par for other symbolic constants, where fac is the
facility name. Further advice on INCLUDE statements can be found in Section 5, Writing Portable
Programs.

SGP/16.10 —THE ADAM SOFTWARE ENVIRONMENT 26

RETURN is permissible when testing status. 77

The RETURN statement is allowed in the form:

IF (STATUS.NE.SAI__OK) RETURN

as the first executable statement in a subroutine. This avoids an extra, unhelpful IF clause and
indentation. Alternatively, use a GO TO n, where line n is a CONTINUE statement immediately
preceeding the END statement. (Relaxation of rule 10.)

In generic routines use only the standard tokens !! 78

The preprocessor for generic routines supports special tokens used by the ASTERIX package
(SUN/98), as well as ones for general use. Use only the standard tokens.

PAR__ABORT status (!!) must abort the application !!! 79

An application must terminate if the abort response (!!) is made when a parameter has been
requested. Note that this rule does not mean that the application has to test for the abort status
after every parameter is obtained; the inherited status will look after that. What matters is the
appearance to the user of the application, who should:

• not be re-prompted for the parameter,

• not be prompted for further parameters, and

• not receive additional error messages merely because the status was not OK.

An abort does not absolve the programmer from ensuring that the application closes down in
an orderly fashion.

27 SGP/16.10 —WRITING PORTABLE PROGRAMS

6 WRITING PORTABLE PROGRAMS

One of the key reasons for having a Starlink programming standard is to promote software
portability. What is meant by this term, and why is it important?

6.1 Meaning of Portability

Other things being equal, it is clearly desirable for applications to be usable on different comput-
ers rather than be limited to just one type. Equally clearly, there may be a tradeoff between the
extra trouble of ensuring that application code is highly machine-independent and the work
of modifying or rewriting programs from time to time. The Starlink Application Program-
ming Standard recognizes this tradeoff and allows the programmer to choose what degree of
portability is appropriate, taking into account:

• the type of software;

• its life expectancy;

• who will support it long-term; and

• the extent to which the programmer is prepared to rely on infrastructure software provided
by others.

To put the recommendations of the Starlink Standard in context, consider four degrees of
portability, called here Absolute Portability, Portable Fortran, Adaptable Fortran and Laissez-Faire.

ABSOLUTE PORTABILITY is where application source code compiles and runs on all types of
computer without any alterations whatsoever. Once the programmer has completed work on an
application, the code need never again be touched. To achieve this result, the programmer must
be fully insulated from the facilities offered by the platform. Because the Fortran 77 standard
does not include all those things which applications need to do, and in any case compilers vary
in their compliance with and interpretation of the standard or have bugs, it is not possible to rely
on pure standard Fortran. (Similar arguments apply to other languages.) The classic solution
is to write applications in a private programming language, and to accommodate differences
between computers, compilers and operating systems by providing different versions of the
language interpreter software. This approach has the benefit that for any new platform, once a
new version of the system software has been written, unlimited quantities of application code
will run. However, having to use the systems’s own programming language provokes scepticism
among users, introduces extra training needs, produces code which can only run within the
system, and reduces the convenience and effectiveness of online source code debuggers. These
drawbacks led Starlink to reject this approach.

PORTABLE FORTRAN, Starlink’s recommendation, is to write applications in an industry-
standard language – Fortran 77 – with controlled use of certain platform-dependent features as
sanctioned by Sections 2 and 4 of the present document. Significant departures from standard
Fortran (for example the use of %VAL) should be present in only a small minority of modules,
with most routines in de facto standard Fortran. These departures can, if and when necessary,
easily be edited using simple preprocessors like forconv or even by hand. Furthermore, the
programs can be understood and modified by non-specialists.

SGP/16.10 —WRITING PORTABLE PROGRAMS 28

ADAPTABLE FORTRAN, also embraced by the Starlink Standard, differs from Portable Fortran
in the degree to which departures from ANSI Fortran are tolerated. While gratuitous use of
platform-specific features is frowned upon, it is accepted that some use of such features will
be convenient and relatively harmless. Programs of this general level of portability are easy to
write and to adapt manually for new platforms as required.

LAISSEZ-FAIRE programming is where programmers can use whatever the current machine’s
Fortran compiler accepts – the objective is simply to have a program that works. If a new
computer is introduced, authors can decide whether to adapt, rewrite or scrap their applications.
This style of programming lies outside the Starlink Standard and is deprecated for anything
more than a casual one-off.

The Absolute Portability and Portable Fortran categories presuppose substantial quantities of
infrastructure software, libraries and utilities which leave the programmer free to concentrate on
the application itself rather than worrying about user interfaces, error handling, input/output
and so on. At the lowest levels within the infrastructure there is a small platform-specific
kernel, which has to be rewritten for each new machine. The Adaptable Fortran and Laissez-Faire
categories allow programmers to provide their own infrastructure if they wish.

Starlink’s recommendation is to base programs on the various standard tools and libraries,
and to aim for the PORTABLE FORTRAN level in applications code.

6.2 Why Portability Matters

Despite the fact that for its first decade Starlink supported just one platform – VAX/VMS – the
importance of avoiding platform-specific software has been stressed from the beginning. There
are two main reasons for this. Firstly, there were and are collaborating astronomical institutions
using non-Starlink types of computer – Data General, Fujitsu, Perkin-Elmer, CDC, Cray and
various Unix platforms – and it is useful if they can run Starlink applications, and programs
written by Starlink users. The second reason is to enable existing software to run on different
sorts of Starlink equipment – currently Sun and DECstation as well as VAX/VMS. Quite apart
from further Unix-based platforms, it is also possible that fast specialized processors will be
added to the existing Starlink systems, and there is interest in using various types of Personal
Computer. Attention to software portability – which means resisting the temptation to use Sun
and DECstation features now just as much as avoiding VAX dependency in the past – means
great benefits in the long term.

6.3 Achieving Portability

Programmers who have followed the recommendations given earlier in Section 2 are likely
to encounter fewer difficulties in adapting their code to run on new and multiple platforms
than programmers who have not. Of those recommendations, the key one is to work only
with ANSI Standard Fortran 77 and only to use a VAX extension or an extension available on
some other platform when it is essential, or safe, to do so. This advice should be borne in mind
when reading the following notes, many of which refer to problems that afflict code where
non-standard Fortran extensions have been used. The notes concentrate on the specific problem
of adapting VAX/VMS applications to run on Unix platforms but also serve to illustrate more
general portability issues.

29 SGP/16.10 —WRITING PORTABLE PROGRAMS

• ANSI FORTRAN 77 STANDARD: There are a number of violations of the Fortran standard
that are allowed by the VMS compiler that will cause problems on a UNIX system; some
are rejected by the compilers but others cannot be detected at compile time and will cause
programs to fail.

– Overlapping character substrings: The character strings on either size of an assignment
statement must not overlap. If not detected at compile time, such an overlap will
produce incorrect results on Unix platforms.

– Illegal string concatenation: The concatenation operator // cannot be used in circum-
stances that would require the allocation of arbitrary amounts of dynamic memory at
run-time. For example, a CHARACTER*(*) dummy argument of a subroutine cannot
be concatenated with another character string in the argument list of a subroutine
or function call. (The ANSI standard puts it thus: a passed-length character dummy
argument may only be the operand of a concatenation operator within an assignment
statement.)

– Mixing character and numeric data in a COMMON block: Separate COMMON blocks
are required for character data on the one hand, and numeric and logical data on the
other. (Similarly, it is illegal to EQUIVALENCE character data with anything else.)

• INPUT/OUTPUT: The Fortran I/O system is not tightly enough specified to avoid
problems with different implementations:

– Most compilers have their own set of non-standard I/O keywords, especially in
OPEN statements. If use of such keywords is unavoidable they must only appear in
explicitly platform-dependent routines, not in the middle of large programs.

– Compilers vary in their tolerance of illegal combinations of keywords, which must be
avoided.

– I/O unit numbers: On Unix platforms the I/O unit numbers 0, 5 and 6 refer to
the standard error, input and output channels respectively and cannot be used for
anything else. Furthermore, only those unit numbers can usefully be used for reading
from and writing to the terminal; other logical units are buffered in a way that is
inappropriate for terminal I/O.

– Version numbers: The Unix file system does not have file versions; opening a file with
STATUS=’NEW’ when the file already exists will either destroy the contents of the file
or fail depending on the system.

– READONLY: On the DECstation, the non-standard keyword READONLY is required in
order to open a file that you do not have write access to. The Sun compiler issues a
warning message if READONLY is used.

– RECORDTYPE: On Unix platforms, opening an existing file with the non-standard
keyword RECORDTYPE=’FIXED’ requires that the RECL keyword is used as well be-
cause unlike on VMS the file system does not store the record length in the file
header.

– Unformatted direct-access files: In the OPEN statement for direct-access files the
Fortran standard requires the record length to be specified, by means of the RECL
keyword. In the case of a formatted file, the length is in characters; however, the
Fortran standard does not specify the units of length for an unformatted file. For
unformatted files the Sun uses bytes, whereas the VAX and DECstation use numeric
storage units (the space required to store a REAL or INTEGER value).

SGP/16.10 —WRITING PORTABLE PROGRAMS 30

– Printer control codes: In the OPEN statement, CARRIAGECONTROL=’LIST’ is non-
standard and is not supported by some platforms. There is no machine-independent
way of specifying whether a text file contains Fortran printer control codes or not, and
the effect of typing out text files produced by Fortran programs or of reading such
files into a text editor cannot be predicted. This problem must be handled through
per-platform code variations or by using per-platform utilities for processing the files
(for example the fpr command on the DECstation and Sun).

– Prompt strings: There is no portable way of suppressing CR/LF after a message has
been output, though the VAX, DECstation and Sun all use the non-standard ‘$’ edit
descriptor. Provision must be made for per-platform variations at this point in an
application.

– Status: The I/O status values returned by OPEN, CLOSE, READ and WRITE are
non-portable and application code should avoid using them in anything more than a
general way (or should use the ERR_FIOERR routine – see SUN/104). Unfortunately,
it is not even possible to map the numbers from the different platforms onto a single
adopted set of values since the conditions that each platform reports as errors are
different.

– End-of-File: A READ or WRITE statement which includes the ERR= specifier behaves
differently on different platforms when end-of-file is encountered. The condition is
treated as an error on the VAX and DECstation but not on the Sun. To comply with
the ANSI standard, all platforms return an IOSTAT value of −1.

• DATA STORAGE ALIGNMENT: The VAX is unusual in imposing no restriction on the
addresses of data; many architectures generate a hardware error if, for example, a floating
point operand has an odd rather than an even address. Both the Sun and the DECstation
do this and although both operating systems handle the error successfully and allow the
program to continue, it is at the expense of both a huge execution time overhead and a
mysterious message being output. COMMON blocks should therefore be arranged such
that the longer data types always appear before shorter data types.

• THE BACKSLASH CHARACTER: Unix compilers treat the backslash character as an
escape character (so that for example \t is translated into a tab character) and to insert
a true backslash character the source must have two backslash characters (i.e. \ on VMS
must be converted to \\ on Unix). The forconv tool (SUN/111) can be used to insert the
extra backslash character when converting source code.

Some compilers have a switch that turns off the special meaning of the backslash character
but using this is unwise – see the remarks on compiler switches later.

• THINGS THAT WORK BY ACCIDENT ON VAX: There are a number of bugs that can go
unnoticed on VMS but will cause programs to fail on other systems:

– Argument mismatches across subroutine and function calls: For example a DOUBLE PRE-
CISION argument passed to a subroutine expecting a REAL happens to work on
VMS but is a bug.

– Uninitialized variables: On a VAX uninitialized variables will be set to zero; on Suns
and DECstations they will not (see section 2, rule 36).

– Missing SAVE statements: On VMS the values of variables local to a subroutine are
retained between calls to the subroutine. On other systems they may not be; on the
DECstation, for example, it depends on compiler switches. (See section 2, rule 14.)

31 SGP/16.10 —WRITING PORTABLE PROGRAMS

• THINGS THAT WORK BY ACCIDENT ON UNIX: Similarly, there are bugs that go
undetected on many Unix systems which will cause problems on VAX/VMS. For example,
if a CHARACTER*n argument is not declared as such in a subprogram, it is often possible
to get away with this on Unix systems but not on VMS.

• UNUSED VARIABLES: The Unix compilers always complain about declared but unused
variables. (See section 2, rule 32.)

• INCLUDES: INCLUDE statements, by their very nature, cannot avoid involvement
with the syntax of file names which makes writing source code that will run on many
machines with absolutely no change of source code difficult if not impossible. However,
the following scheme keeps the changes to a minimum and allows what changes that may
be necessary to be automated.

– On the VAX call your INCLUDE files xxxx.for where xxxx is some name of your
own choosing.

– Include them with statement like:
INCLUDE ’xxxx’

– Either compile your code in the same directory as the included files are stored or
define xxxx as a logical name.

– On Unix call the INCLUDE file xxxx (with no file extension) and compile your code
in the same directory.

The INCLUDE files that are used when calling Starlink subroutine libraries have logical
names defined on the VAXs so that, for example, SAE_PAR.FOR is included with the
statement:

INCLUDE ’SAE_PAR’

On Unix the corresponding file is called sae_par and is stored in /star/include along
with all the other Starlink INCLUDE files so that the INCLUDE statement must be changed
to:

INCLUDE ’/star/include/sae_par’

The forconv program described in SUN/111 will accomplish the conversion from VMS to
Unix. The reverse operation can be done with a simple edit script.

It is also possible, though not at present the recommended technique, to set up a soft link
file pointing to the required INCLUDE file and to specify the name of the soft link file in
the INCLUDE statement.

• ONE MODULE PER SOURCE FILE: Code that is going to be inserted into a subroutine
library (a Unix archive) must have just one routine per source file before it is compiled.
This is because the Unix equivalent (ar) of the VMS librarian does not split object files into
separate modules when it inserts them into a library. The Unix command fsplit will split
a Fortran source file into separate files.

• COMPILER SWITCHES: It is unwise to do anything requiring use of special compiler
switches. There are sure to be problems in the future when someone – not the original
author – compiles the program, in good faith, without the switch. Examples are the

SGP/16.10 —WRITING PORTABLE PROGRAMS 32

switches that allow code to extend beyond column 72 (see section 2, rule 59) and to disable
the special meaning of the backslash character.

• WHEN ALL ELSE FAILS: Unavoidable per-machine variations can be handled either by
using the forconv preprocessor (SUN/111) or by using separate files. Where the latter
technique is used, a code identifying the platform should be appended to the name:

suffix platform

_vax VAX/VMS
_sun4 Sun SPARCstation etc.
_mips DECstation etc.
_pcm PC/Microsoft
_ind platform-independent substitute

and the file extension should identify the language in the normal way:

extension language

.f FORTRAN

.c C

Thus, different versions of a Fortran routine fsub for, respectively, VAX and Sun, would be
fsub_vax.f and fsub_sun4.f. Care must be taken not to exceed 15 characters or ar will
truncate the file name.

33 SGP/16.10 —Reserved Facility Names

A Reserved Facility Names

The following is a list of packages used by existing Starlink software. Software written by
others than those actually responsible for developing or maintaining these packages must not
use existing package names, even if the new routines resemble or complement the official set.
Programmers may wish to submit their own package names for inclusion in the following lists.

ADAM ADAM interface file handling

ADAMCL ADAM Command Language

ADC Astronomical Data Catalogues

AG* AGI + interfaces to graphics packages

AIF Auxiliary ADAM interface routines

ANT ADAM networking

ARGS ARGSLIB

ARY ARRAY-structure access

AST Asterix

CHA CHART part of SCAR

CHI Catalogue Handling Interface

CHP Character Handling “Plus”

CHR Character handling

CHT CHART

CLV ADAM command language variable system

CMP HDS component handling

CNF C ’n’ Fortran

CNV Figaro data-conversion

CON CONVERT package routines

CTASK ADAM Ctasks

CTM Colour-Table Management

DAT HDS and extensions to it

DAU HDS internal routines

DCV Data conversion

DIA DIAGRAM

DIP Internal system for DIAGRAM

DSA Figaro data-structure access

DSK Disc output for PGPLOT

DTA Figaro data-structure access

DTASK ADAM Dtasks

DYN Figaro dynamic memory routines

SGP/16.10 —Reserved Facility Names 34

EMS Error Message Service

ENG ADAM Engineering interface

EOS Extendable Object System

ERR Error reporting system

EXC HDS internal routines

FIG Figaro general purpose

FIO File I/O

FIT FITS processing (including Figaro FITS)

FTS KAPPA FITS library

GEN General utility routines

GKD Graphics dialogue routines

GKS Graphics Kernel System

GNS Graphics Name System

GWM Graphics Window Manager

HDS Hierarchical Data System

HELPSYS ADAM help system

HLP Starlink portable help system

ICH ICL real-to-character conversion

ICL Interactive Command Language

IDI Image display interface to ADAM

IMG Simple Image Interface

IOC Low-level C magtape routines

IRA–IRZ IRAS software

KPE KAPPA environment packaging

KPG KAPPA general routines

KPS KAPPA specific routines

LEX ADAM command line parsing

LOCK ADAM file sharing system

LOG ADAM logging system

MAG Magnetic tape handling high level

MCH Machine-dependent constants etc.

MESSYS ADAM message system implementation

MGO MONGO routines

MIO Magnetic tape handling low level

MON ADAM monitor parameter system

MSG Message reporting system

MSP Message System Primitives

NBS NoticeBoard System

35 SGP/16.10 —Reserved Facility Names

NDF NDF access

NUM Primitive data arithmetic

PAR ADAM parameter system interface

PARSECON ADAM interface file parsing

PRM PRIMDAT

PSX POSIX interface

REC HDS internal routines

REF HDS reference handling

RIO Random-access I/O

REPORT ADAM reporting system

SLA Subprograms mainly concerned with positional astronomy

SGS Simple Graphics System

SMS ADAM Screen Management System

SNX NCAR/SGS integration

SST Simple Software Tools

STRING String handling

SUBPAR ADAM parameter system implementation level

TAP Theoretical astrophysics library

TASK ADAM task control

TCV ICL type conversion

TEL UKIRT clock handling

TPT TPOINT

TRA Trace

TRN TRANSFORM coordinate transformation facility

UFACE ADAM User Interface

UNI Unit conversion utilities

UTIL ADAM/VMS utility

VAL Primitive data arithmetic

VAR Figaro user variable routines

VEC Primitive vector arithmetic

VIO VDU I/O (Used by SCAR)

In addition to the above, the following blocks of facility names are reserved by Starlink:

DSx x = 0-9,A-Z

SLx x = 0-9,A-Z

SGP/16.10 —Reserved Facility Names 36

Though not strictly facility names, the following prefixes are used internally within ADAM
facilities and should be avoided:

ACT ADAM task activation errors

ADM ADAM general errors

PARSE PARSECON errors

SAI Starlink Applications Interface errors

USER Error values available for users

VAL Special values

	PREFACE
	INTRODUCTION
	GENERAL CODING STANDARD
	Language
	Design
	Quality
	Presentation

	GRAPHICS
	THE ADAM SOFTWARE ENVIRONMENT
	Introduction
	Rules for programming ADAM applications

	WRITING PORTABLE PROGRAMS
	Meaning of Portability
	Why Portability Matters
	Achieving Portability

	Reserved Facility Names

