
SSN/4.14

Starlink Project
Starlink System Note 4.14

P.C.T. Rees
A.J. Chipperfield

P.W. Draper

31 Jul 2008

Copyright c© 2001 Council for the Central Laboratory of the Research Councils
Copyright c© 2008 Science and Technology Facilities Council

EMS
Error Message Service

Version 2.2-0
Programmer’s Manual

SSN/4.14 —Abstract ii

Abstract

This document describes the Error Message Service, EMS, and its use in system software. The
purpose of EMS is to provide facilities for constructing and storing error messages for future
delivery to the user – usually via the Starlink Error Reporting System, ERR (see SUN/104). EMS
can be regarded as a simplified version of ERR without the binding to any software environment
(e.g. for message output or access to the parameter and data systems). The routines in this
library conform to the error reporting conventions described in SUN/104. A knowledge of these
conventions, and of the ADAM system (see SG/4), is assumed in what follows.

This document is intended for Starlink systems programmers and can safely be ignored by
applications programmers and users.

Copyright c© 2001 Council for the Central Laboratory of the Research Councils
Copyright c© 2008 Science and Technology Facilities Council

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_err_error_reporting_system
http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_

iii SSN/4.14—Contents

Contents

1 Introduction 1

2 When to Use the Error Message Service 1

3 Reporting Errors 2

4 Message Tokens 2

5 Reporting Status, Fortran I/O and Operating System Errors 3

6 Message Output 4
6.1 No EMS_FLUSH . 4
6.2 EMS without an environment . 4
6.3 EMS within an environment . 4

7 Intercepting Messages 5

8 C Language Interface 6

9 Compiling and Linking with the Error Message Service 7

10 References 8

A Justification for EMS 9

B Using EMS together with POSIX threads 10

C Using EMS within ADAM system software 12
C.1 Overview . 12
C.2 Message parameters . 12
C.3 Parameter references . 12
C.4 Reserved tokens . 12
C.5 Synchronising message output . 12
C.6 Routines specific to the ADAM fixed part . 13

ERR_CLEAR . 14
ERR_START . 15
ERR_STOP . 16

D Portability 18
D.1 Porting prerequisites . 18
D.2 Operating system specific routines . 18

E Include Files 19

F Fortran Subroutine List 20

G C Interface Function Prototypes 22

H Fortran Subroutine Specifications 24

SSN/4.14 —Contents iv

EMS_ANNUL . 25
EMS_BEGIN . 26
EMS_ELOAD . 27
EMS_END . 28
EMS_EXPND . 29
EMS_FACER . 30
EMS_FIOER . 31
EMS_GTUNE . 32
EMS_LEVEL . 33
EMS_MARK . 34
EMS_MLOAD . 35
EMS_RENEW . 36
EMS_REP . 37
EMS_RLSE . 38
EMS_SETx . 39
EMS_STAT . 40
EMS_SYSER . 41
EMS_TUNE . 42

v SSN/4.14—List of Figures

List of Figures

1 The relationship between MSG, ERR and EMS . 1
2 Overview of an application . 9

1 SSN/4.14 —When to Use the Error Message Service

1 Introduction

The Error Message Service is an implementation of the error reporting conventions discussed in
SUN/104 which is not dependent on any particular software environment and can therefore be
used in ‘stand-alone’ programs and for implementing components of software environments.
In order to allow its use in environment system software, EMS provides no callable facility for
delivering these messages to the user. It just provides facilities for constructing and storing
reported error messages. In doing so, it also provides many of the facilities required by MSG and
ERR. Indeed, in many cases the MSG and ERR routines are implemented as straight-through
calls to EMS routines.

EMS can also be used in the threaded parts of applications and libraries when compiled with
POSIX threads support, see Appendix B.

The hierarchical relationship between MSG, ERR and EMS is illustrated in Figure 1.

Message Reporting System Error Reporting System

Error Message Service

Figure 1: The relationship between MSG, ERR and EMS

EMS was originally written in Fortran and a C interface provided but since Version 2.0 it is
written in C and a Fortran interface provided. This document concentrates on the Fortran
interface. The C interface is described briefly – the way it is used can be inferred from the use of
the Fortran interface.

2 When to Use the Error Message Service

At the level of applications code the Error Reporting System, ERR, exclusively should be used
for error reporting. Within environment subroutine libraries the rule is to use calls to EMS unless
it is necessary to deliver error messages to the user (i.e. by calls to ERR_FLUSH). A subroutine
library must use one or other of these error reporting libraries exclusively: i.e. if EMS calls are
used within a subroutine library, they must be used exclusively throughout the library – no
calls to ERR routines are allowed. Furthermore, if ERR calls are used to report errors within a
subroutine library, say because calls to ERR_FLUSH are required during interaction with the user,
then it must be understood that this subroutine library exists at a hierarchical level above the
environment system software. This subroutine library cannot then be called from other libraries

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_err_error_reporting_system
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_FLUSH

SSN/4.14 —Message Tokens 2

purporting to exist at lower levels within the subroutine hierarchy – to do so could result in
unpredictable behaviour when an error occurs.

An exception to the above is when working with a threaded application. For these EMS should
be used in the threaded portions and in general any error reporting via ERR should be deferred
until the threaded sections complete. This avoids problems with global variable access in the
ERR and ADAM libraries. See Appendix B.

3 Reporting Errors

The subroutine used to report errors is EMS_REP. It has a calling sequence analogous to that of
ERR_REP, i.e.

CALL EMS_REP(PARAM, TEXT, STATUS)

The argument PARAM is the error message name, TEXT is the error message text and STATUS is the
inherited status. The TEXT and STATUS arguments are the same as those used in calls to ERR_REP
and are discussed fully in SUN/104.

On exit from EMS_REP the status argument remains unchanged, with two exceptions:

• If STATUS set to SAI__OK on entry, STATUS is returned set to EMS__BADOK.

• If an output error occurs, STATUS is returned set to EMS__OPTER.

Appendix E lists the symbolic constants for all the possible EMS errors.

The deferral of error reporting can be controlled within EMS: EMS_MARK and EMS_RLSE respec-
tively mark and release error reporting contexts; EMS_ANNUL annuls all error reports pending
output in a given error context; EMS_BEGIN and EMS_END respectively begin and end error re-
porting environments. The behaviour of these subroutines is analogous to ERR_MARK, ERR_RLSE,
ERR_ANNUL, ERR_BEGIN and ERR_END provided by the Error Reporting System (see SUN/104).
EMS does not provide an analogue to ERR_FLUSH.

4 Message Tokens

The facility to use message tokens to embed the values of program variables within the message
text is available in EMS. As in MSG and ERR, these message tokens are indicated by prefixing
the token name with an up-arrow, “^”, escape character within message text, e.g.

CALL EMS_REP(’EMS_ROUTN_TOKEN’, ’Error text: ^TOKEN’, STATUS)

Message tokens can be set to the most concise character encoding of a given variable’s value
with the routines EMS_SETx , e.g.

CALL EMS_SETC(’TOKEN’, ’A token’)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_REP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_reporting_errors
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_deferred_error_reporting
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_FLUSH

3 SSN/4.14 —Reporting Status, Fortran I/O and Operating System Errors

For the EMS_SETx routines, x corresponds to one of five standard Fortran 77 data types:

x Fortran Type

D DOUBLE PRECISION

R REAL

I INTEGER

L LOGICAL

C CHARACTER

These routines are analogous to the subroutines MSG_SETx provided by the Message Reporting
System (see SUN/104). As for the MSG routines, if the token has already been set, the new
string will be appended to the existing one. All defined message tokens are annulled by a call
to EMS_ANNUL, EMS_ELOAD, EMS_EXPND, EMS_REP or EMS_MLOAD1. They may be renewed to their
previous defined values by a call to EMS_RENEW provided that no new tokens have been defined
in the meantime.

5 Reporting Status, Fortran I/O and Operating System Errors

Three subroutines are provided by the Error Message Service to enable a message token to be
built from the error flag value returned from standard Starlink library routines, system routines
or Fortran I/O operations. (For C programmers, emsErrno is also provided, see Section 8.) It is
important that the correct routine is called, otherwise the wrong message or, at best, only an
error number will be obtained.

It should be noted that the messages returned using these subroutines will depend upon the
operating system in use. The error messages returned by operating systems vary considerably in
their clarity and so should not be relied upon as the sole source of information in error reports.

The subroutines are:

EMS_FACER(TOKEN, STATUS)

where STATUS is a standard Starlink facility status value,

EMS_FIOER(TOKEN, IOSTAT)

where IOSTAT is a Fortran I/O status code, and

EMS_SYSER(TOKEN, SYSTAT)

where SYSTAT is a status value returned from a system routine.

In each case the message associated with the given error code is assigned to the specified message
token. On completion, each of these subroutines returns its second argument unchanged.

1EMS_MLOAD is now deprecated, EMS_EXPND should be used instead

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_message_tokens

SSN/4.14 —Message Output 4

6 Message Output

6.1 No EMS_FLUSH

At the risk of belabouring the point, the Error Message Service provides no callable facility for
delivering messages to the user, i.e. there is no analogue to ERR_FLUSH provided by EMS for the
programmer. This is a direct result of the binding of ERR to the particular software environment
being used. In the Error Message Service no such binding can be used reliably. EMS is only able
to stack and annul error messages and to control error deferral using the same error table as the
ERR subroutine library. Responsibility for the delivery of error messages to the user therefore
rests at a higher level, ultimately with the application programmer.

Message delivery will usually be achieved by calling ERR_FLUSH at a higher level, or by ‘Message
Interception’ (see Section 7) but EMS has another feature which can be helpful in ‘stand-alone’
programs, i.e. without an environment present.

6.2 EMS without an environment

Outside any environment EMS has to have some reliable mechanism for ultimately delivering
any reported error messages to the user, since it cannot be guaranteed that the ERR library
is being used at the level of the application. This is achieved by the having the initial error
context level of EMS deliver any reported error message immediately to the user using a C
printf statement: i.e. if all an application does is call EMS_REP, then all error messages are
immediately delivered to the user when they are reported. Any higher error context level, set
with a call to EMS_MARK or EMS_BEGIN, will have the effect of deferring message output until the
error reporting context is returned to its initial level with calls to EMS_RLSE or EMS_END. Any
deferred error messages will then be delivered to the user and any further error messages
reported in this context will again be delivered immediately to the user.

The behaviour of EMS without an environment present means that it is essential for error
reporting contexts to be properly nested within a package and for a subroutine library using
EMS not to exit at a context level other than the one at which it was invoked. If context levels
are incorrectly nested within a package it can lead to EMS failing to deliver reported error
messages when an application goes wrong. Because the nested use of EMS_MARK and EMS_RLSE
(or EMS_BEGIN and EMS_END) is normally confined within the same routine, incorrect nesting
of context levels will normally result from simple programming errors which can be easily
traced. However, there is no simple safeguard against the incorrect nesting of error context
levels provided by EMS: thorough testing is the most effective approach.

N.B. On some systems, C and Fortran output cannot be reliably interspersed. This fallback
output at the EMS initial context level should therefore not be used in programs which also
use Fortran WRITE statements.

6.3 EMS within an environment

When using EMS from within an environment, the environment should ensure that the delivery
of any reported error messages within the environment is deferred and that any undelivered

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_FLUSH

5 SSN/4.14 —Intercepting Messages

messages are output to the user when the application has finished. There are three routines
(actually part of the ERR library), exclusively for the use of environment implementors, which
facilitate this task – they are discussed in Appendix C.

7 Intercepting Messages

Although there is no callable provision for message output directly from EMS, the output of
messages at this level in the ADAM subroutine hierarchy is still possible. It can be done by
intercepting any pending error messages within the current error context (or informational
messages) using subroutines EMS_ELOAD or EMS_EXPND, which return the message in a character
variable, and then using a private package-related mechanism to output the message. Here, the
mechanism used to output the message, e.g. to a log file, and its resilience to failure must be the
responsibility of the subroutine library calling EMS. The use of private package equivalents to
MSG_OUT or ERR_FLUSH must be fully justified and the justification presented in the documentation
for the subroutine library concerned.

EMS_ELOAD returns error message pending in the current error context, one by one in a series of
calls; it has the calling sequence:

CALL EMS_ELOAD(PARAM, PARLEN, OPSTR, OPLEN, STATUS)

On the first call of this routine, the error table for the current context is copied into a holding
area, the current error context is annulled and the first message in the holding area is returned.
Thereafter, each time the routine is called, the next message from the holding area is returned.
The argument PARAM is the returned message name and PARLEN the length of the message name
in PARAM. OPSTR is the returned error message text and OPLEN is the length of the error message
in OPSTR.

The status associated with the returned message is returned in STATUS until there are no more
messages to return – then STATUS is set to SAI__OK, PARAM and OPSTR are set to blanks and
PARLEN and OPLEN to 1. If there are no messages pending on the first call, a warning message is
returned with STATUS set to EMS__NOMSG.

After STATUS has been returned SAI__OK, the whole process is repeated for subsequent calls.
This process is the same as for ERR_LOAD (see SUN/104) which just calls EMS_ELOAD.

EMS_EXPND has the calling sequence:

CALL EMS_EXPND(TEXT, OPSTR, OPLEN, STATUS)

TEXT is the message text, OPSTR is the returned message text, OPLEN is the length of the message
in OPSTR and STATUS is the inherited status.

The behaviour of EMS_EXPND is to expand any message tokens in the message text and return the
expanded message through the character variable OPSTR.

For both EMS_EXPND and EMS_ELOAD, if the message text is longer than the declared length of
OPSTR then the message is truncated with an ellipsis, i.e. “. . . ”, but no error results.

The symbolic constants EMS__SZPAR and EMS__SZMSG are provided for declaring the lengths
of character variables which are to receive message names and error messages in this way. These
constants are defined in the include file EMS_PAR (see Appendix E).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_MSG_OUT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_FLUSH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_ERR_LOAD

SSN/4.14 —C Language Interface 6

8 C Language Interface

To enable EMS to be used in C-only programs, without the need to link with Fortran libraries, it
has now been implemented entirely in C. A C function equivalent exists for each of the Fortran
EMS routines described in this document except EMS_FIOER which is specific to the Fortran
language and has therefore been omitted.

The current naming scheme for the C functions (emsAnnul etc.) replaces the earlier one (ems_annul_c
etc.), but the old names will still be recognised. There is no change to the argument lists. (See
Appendix G for more details.)

Additional functions are available for C programmers:

• emsErrno(char const *token, int errval) This will assign the message associated
with a C errno (errval) to the specified token. Note that this is logically different from
emsSyser; on UNIX they produce the same result but on other systems they may be
different.

• int emsGtune(char const *key, int *status) This returns the value of a tuning pa-
rameter. If differs from the Fortran version as the value is returned, not passed back by
reference.

• emsSetnc(char const *token, char const *string, int maxchar) This is similar
to emsSetc but will limit the token length to maxchar characters. It must be used if
string is not null-terminated. ems.h defines ems_setc_c to be equivalent to emsSetnc -
there is no Fortran interface for this function.

• int emsStune(char const *key, int value, int *status) This replaces the emsTune
function. It returns the old value of the given parameter so that it can be re-established
using another call to this function (this may be necessary for systems that do not share
tuning values).

A full list of the C function prototypes is provided in Appendix G.

The function emsExpnd has the argument maxlen, not found in its equivalent Fortran call se-
quence. This argument represents the maximum allowable string length for the expanded
message and is necessary for the use of returned C character strings where the declared length
cannot be determined. Normally, the argument maxlen is given the global constant value
EMS__SZMSG. There should be space for maxlen+1 characters in the output string.

The correspondence between ANSI Fortran 77 data types and ANSI C data types is not defined:
i.e. it is implementation dependent. However, the most likely correspondence can be assumed and
this has been coded into the C/Fortran interface. This correspondence is apparent from the C
interface function prologues provided in Appendix G and is summarised in the following table:

7 SSN/4.14 —Compiling and Linking with the Error Message Service

C Type Fortran Type

double DOUBLE PRECISION

float REAL

int INTEGER

int LOGICAL

char CHARACTER

Note that the interpretation of the int lvalue argument presented to the function emsSetl is
that defined by the ANSI C language.

9 Compiling and Linking with the Error Message Service

There are three Fortran include files available for use with the Error Message Service: SAE_PAR,
EMS_PAR and EMS_ERR (see Appendix E for details of the symbolic constants which they define).
The Starlink convention is that the name in upper case with no path or extension is specified
when including these files within Fortran code, e.g.:

* Global Constants:
INCLUDE ’SAE_PAR’
INCLUDE ’EMS_PAR’

Equivalent header files are installed in /star/include for use in C code which is calling EMS –
they are named sae_par.h, ems_par.h and ems_err.h. In addition, ems.h contains the function
prototypes for each of the C functions. The syntax

#include "sae_par.h"
#include "ems.h"

should be used within the C code, and the compiler option -I/star/include used when
compiling C and Fortran code.

The Error Message Service is included automatically when programs are linked using the ADAM
application linking commands, alink etc.

To link a non-ADAM Fortran program with the the Error Message Service, the command line
would be something like:

% f77 -I$STARLINK_DIR/include program.f -L$STARLINK_DIR/lib ‘ems_link‘ \
-o program.out

The command to compile and link a C program might be:

% cc -o program -I$STARLINK_DIR/include -L$STARLINK_DIR/lib program.c \
‘ems_link‘

SSN/4.14 —References 8

Note that the commands used to invoke the C and Fortran compilers vary from one UNIX
implementation to another (indeed, there may be more than compiler of each type on the same
machine).

If the C program makes no use of the EMS Fortran interface, the ‘ems_link‘ command may be
changed to ‘ems_link Conly‘. This will avoid the linker looking for the Starlink CNF library,
which may not be present at a non-Starlink site.

10 References

Note: Only the first author is listed here.

Lawden, M.D. SG/4 — ADAM – The Starlink Software Environment.

Rees, P.C.T. SUN/104 — MSG and ERR – Message and Error Reporting Systems.

Chipperfield, A.J. SUN/185 — MESSGEN – Starlink Facility Error Message Generation.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun209.htx/sun209.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun185.htx/sun185.html?xref_

9 SSN/4.14 —Justification for EMS

A Justification for EMS

The hierarchical structure of an application within a software environment is illustrated in
Figure 2.

APPLICATION

Parameter System Data System File I/O Magnetic Tapes Graphics Data Base

Environment Subroutine Libraries

OPERATING SYSTEM

Figure 2: Overview of an application

It can be seen from Figure 2 that between an application and the operating system any environ-
ment is realised as a number of subroutine libraries, providing a set of documented facilities for
the applications programmer to use. Between the user and an application, the environment will
normally also provide a user interface which controls the loading of specific applications, the
I/O to the user and the parameter system.

The exclusion of any user-callable message delivery mechanism from the Error Message Service
allows EMS to be used for error reporting within software environment system routines without
the danger of recursion on error. Conversely, the Error and Message Reporting Systems, ERR
and MSG (see SUN/104), have bindings to specific software environments and thus the ability to
deliver error and informational messages to the user via the user interface of that environment.
The binding of ERR and MSG to a given software environment precludes their use for error
reporting from within the environment system software because the error reporting would rely
to some (probably unpredictable) extent upon the working state of that environment. Thus,
ERR and MSG act as interfaces for a given environment with EMS, to be used only within
applications software.

As an example, the ADAM versions of ERR and MSG are able to obtain the message text
associated with a given message parameter from the ADAM interface file and are also able to
include ADAM parameter keywords and references (i.e. file names, HDS object names or device
names) in the message text. These features are useful when reporting error and informational
messages from ADAM applications software. However, in order to provide these facilities,
MSG and ERR make calls to the ADAM parameter system, data system and user interface and
so depend upon the working state of these parts of the ADAM environment. These features
preclude the use of MSG and ERR in the development of any subroutine library used by the
parameter system, data system or user interface.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

SSN/4.14 —Using EMS together with POSIX threads 10

B Using EMS together with POSIX threads

When built using the –with-pthreads configuration option, which is the default on plat-
forms supporting POSIX threads, EMS can be used in a threaded application or library. The
only requirement is that the sections of the application that use threads are wrapped in
emsMark/emsRlse blocks, as in:

void *make_report(void *threadid)
{

int tid;
int status = SAI__ERROR;

tid = (int) threadid;
emsSeti("THREADID", tid);
emsRep("THREAD", "Oh no an error in thread ^THREADID", &status);
return NULL;

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
int t;
int status = SAI__OK;

emsMark();

for (t = 0; t < NUM_THREADS; t++) {
pthread_create(&threads[t], NULL, make_report, (void *)t);

}

/* Wait for threads to complete. */
for (t = 0; t < NUM_THREADS; t++) {

pthread_join(threads[t], NULL);
}

/* Check for the exit status */
emsStat(&status);

emsRlse();
}

The error messages can then be delivered or loaded as normal (when using ERR it is important
not to make any calls to it in the threaded section, as this may access unprotected global data).
The status return recovered by emsStat will be one from one of the threads, it is not possible
to find out the status from all threads using EMS. In a standalone program as shown the error
messages:

11 SSN/4.14 —Using EMS together with POSIX threads

!! Oh no an error in thread 1
! Oh no an error in thread 2
! Oh no an error in thread 3
! Oh no an error in thread 4

will be shown using the default delivery printf mechanism during the emsRlse call (since the
error stack context falls to the base level).

SSN/4.14 —Using EMS within ADAM system software 12

C Using EMS within ADAM system software

C.1 Overview

This document has so far discussed the use of EMS in a general context. In this section, specific
differences between EMS and the ADAM versions of the Message and Error Reporting Systems,
MSG and ERR, are presented.

C.2 Message parameters

In calls to the ADAM version of ERR_REP, the error message name PARAM is a globally unique
identifier for the error message text which corresponds to the message parameter of the error
message. The ADAM interface file can be used to associate this message parameter with an error
message, and only if this message parameter is not defined in the interface file is the argument
TEXT used in the error report. When using EMS_REP (or the deprecated EMS_MLOAD) within the
ADAM environment software, no access to the ADAM interface file exists and so the error
message given by the argument TEXT is always used. The use of a globally unique error message
name is still recommended for reported error messages to uniquely identify the error message
text to the programmer, using the convention outlined in SUN/104.

C.3 Parameter references

The ADAM versions of MSG and ERR allow reference to ADAM program parameters within the
message text. Reference can be made either to parameter-keyword associations or to the name
of an ADAM data system object, data file or device associated with a parameter. In message
text used in calls to MSG and ERR routines these parameter associations are indicated by the
percent, “%”, and dollar, “$”, escape characters respectively. EMS does not have access to the
ADAM parameter system and so cannot refer to ADAM parameters in the text of messages.
The escape characters “%” and “$” are therefore treated literally as part of the message text in
calls to EMS_REP and EMS_EXPND (or the deprecated EMS_MLOAD), as they are in the stand-alone
versions of MSG and ERR.

C.4 Reserved tokens

In the ADAM versions of MSG and ERR a reserved token, ‘STATUS’, can be used to insert the
message associated with a status value. In EMS, as in the stand-alone versions of MSG and ERR,
there are no reserved message tokens

C.5 Synchronising message output

Because there is no callable mechanism provided by EMS to deliver messages to the user, no
message synchronising mechanism is provided by EMS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_reporting_errors

13 SSN/4.14 —Using EMS within ADAM system software

C.6 Routines specific to the ADAM fixed part

There are three ERR routines which start up, clear and stop the Error Reporting System within
the ADAM fixed part to ensure that the delivery of any reported error messages is deferred
and that any messages pending output are delivered to the user when the application has
finished. These subroutines are ERR_START, ERR_CLEAR and ERR_STOP – they are discussed in this
document because they are purely for system programming and will affect the use of EMS as
well as ERR within ADAM.

ERR_START has the effect of marking a new EMS context and thus deferring the delivery of any
reported error messages to the user. The new context is known as the default context.

ERR_CLEAR has the effect of returning the current error context to the ‘default’ level set by
ERR_START and flushing any reported error messages to the user. Thus, the effect of any mis-
matched ‘mark’ and ‘release’ calls within an application is annulled.

ERR_STOP clears the error message table by calling ERR_CLEAR and then returns the error reporting
context to the initial context level, i.e. the level prior to the call to ERR_START.

The use of these three routines is entirely reserved for starting up, clearing and stopping error
reporting within the environment, e.g. the ADAM fixed part, and must not be used for any
other purpose.

These routines exist only in the ADAM version of the ERR library and are linked using the
procedure given in SUN/104.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_compiling_and_linking_with_msg_and_err

SSN/4.14 —Using EMS within ADAM system software 14 ERR_CLEAR

ERR_CLEAR
Return the error table to the default context and flush its contents

Description:
The Error Reporting System is returned to its default context level and any pending messages are
flushed. This routine effectively resets the Error Reporting System:

• unlike ERR_FLUSH, no ‘faulty application’ error message is reported if it is called when there
are no error messages pending output, or if it is called with the status value set to SAI__OK;

• the error table is always annulled by a call to ERR_CLEAR, irrespective of any message output
errors which may occur.

On exit, the status is always returned as SAI__OK.

Invocation:
CALL ERR_CLEAR(STATUS)

Arguments:

STATUS = INTEGER (Returned)
The global status.

Implementation Notes :
This subroutine is for use only with the ADAM implementation of the Error Reporting System.

15 ERR_START SSN/4.14 —Using EMS within ADAM system software

ERR_START
Initialise the Error Reporting System

Description:
Initialise the Error Reporting System and set a new context level (the default level) to defer error
message delivery.

Invocation:
CALL ERR_START

Implementation Notes :
This subroutine is for use only with the ADAM implementation of the Error Reporting System.

SSN/4.14 —Using EMS within ADAM system software 16 ERR_STOP

ERR_STOP
Close the Error Reporting System

Description:
Flush any messages pending output and return the Error Reporting System to its initial state.

Invocation:
CALL ERR_STOP(STATUS)

Arguments:

STATUS = INTEGER (Given)
The global status.

Implementation Notes :
This subroutine is for use only with the ADAM implementation of the Error Reporting System.

17 SSN/4.14 —Using EMS within ADAM system software

SSN/4.14 —Portability 18

D Portability

D.1 Porting prerequisites

The Fortran interface to EMS makes use of the Starlink mixed language programming package,
CNF (see SUN/209), which must be available for building EMS and programs which use its
Fortran interface.

The correct operation of EMS_FACER (and emsFacer) also requires the necessary facility message
files to be installed (see ‘Operating system specific routines’ below).

D.2 Operating system specific routines

EMS is coded in ANSI C, according to the Starlink C coding conventions described in SGP/4.
However, the following routines have system-specific features and may need re-implementing
for new platforms. They may also produce differing results on different platforms.

EMS_FACER Assign the message associated with a Starlink status value to a token.

On UNIX this is implemented using the MESSGEN system (see SUN/185) and thus relies
on the required Starlink facility message files having been entered into the system.

When EMS_FACER is called to to obtain the message associated with a given STATUS value,
it first works out the facility number from the STATUS value. It then searches for a file with
the name fac_facnum_err (where facnum is the facility number). If environment variable
EMS_PATH is defined, it is taken to be a directory search path for the file; if not, a directory
search path of ../help relative to each of the directories on the user’s PATH is used.

If the file cannot be found along the selected search path, or a message cannot be associated
for any other reason, a ‘FACERR’ message is substituted giving as much information as
possible. For example:

ident, error 147358667 (fac=200,messid=121)

where the given status value is 147358667 and 200 and 121 are the facility number and
message number derived from it.

ident may be one of the following:

FACERR__BADARG – the given status value was not a valid Starlink status value.
FACERR__NOFAC – the required facility message file was not found.
FACERR__BADFIL – the facility message file was faulty.
FACERR__NOMSG – the required message number was not found in the facility message file.

EMS_FIOER Assign a Fortran I/O error message to a token.

This will generally need to be rewritten for each new target platform. Current versions
have the appropriate messages hardwired into the code.

EMS_SYSER Assign an operating system error message to a token.

This may need to be rewritten for a new target platform. At the moment UNIX platforms
use the same code which accesses sys_errlist.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun209.htx/sun209.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun185.htx/sun185.html?xref_

19 SSN/4.14 —Include Files

emsErrno Assign the message associated with a C errno to a token.

On UNIX platforms this accesses sys_errlist to obtain the message.

E Include Files

The symbolic constants defined by the three include files used with EMS are listed below. The
way in which these files are included within Fortran or C code is described in Section 9.

SAE_PAR (sae_par.h) Defines the non-specific status codes for Starlink.

SAI__ERROR – Error encountered.
SAI__OK – No error.
SAI__WARN – Warning.

EMS_PAR (ems_par.h) Defines the Error Message Service constants.

EMS__BASE – The base context number.
EMS__MXMSG – Maximum number of messages.
EMS__MXOUT – Maximum length of output text.
EMS__SZMSG – Maximum length of error message text.
EMS__SZPAR – Maximum length of error message name.
EMS__SZTOK – Maximum length of message token text.
EMS__TOKEC – Message token escape character.

EMS_ERR (ems_err.h) Defines the Error Message Service error codes.

EMS__BADOK – Status set to SAI__OK in call to EMS_REP (improper use of EMS_REP).
EMS__BDKEY – Invalid keyword will be ignored (improper use of EMS_TUNE or EMS_GTUNE).
EMS__BTUNE – Conflicting actions (improper use of EMS_TUNE).
EMS__CXOVF – Error context stack overflow (EMS fault).
EMS__EROVF – Error message stack overflow (EMS fault).
EMS__NOENV – Error encountered reading environment variable EMS_TUNE.
EMS__NOMSG – No error messages pending output.
EMS__NSTER – Error in nested calls to EMS_BEGIN and EMS_END (improper use of EMS).
EMS__OPTER – Error encountered during message output.
EMS__UNSET – No status associated with message (improper use of EMS_REP).

Notes:

(1) EMS__BADOK is the status returned if EMS_REP is called with status SAI__OK whereas
EMS__UNSET is the status associated with any messages reported in this way and may
therefore be returned by, for example, EMS_STAT.

(2) EMS__NOENV is provided for future developments – it is not used at the moment.

SSN/4.14 —Fortran Subroutine List 20

F Fortran Subroutine List

EMS_ANNUL (STATUS)
Annul the contents of the current error context.

EMS_BEGIN (STATUS)
Begin a new error reporting environment.

EMS_ELOAD (PARAM, PARLEN, OPSTR, OPLEN, STATUS)
Return messages from the current error context.

EMS_END (STATUS)
End the current error reporting environment.

EMS_EXPND (TEXT, OPSTR, OPLEN, STATUS)
Expand and return a message.

EMS_FACER (TOKEN, STATUS)
Assign the message associated with a Starlink status to a token.

EMS_FIOER (TOKEN, IOSTAT)
Assign the message associated with a Fortran I/O error to a token.

EMS_GTUNE (KEY, VALUE, STATUS)
Inquire an EMS tuning parameter.

EMS_LEVEL (LEVEL)
Inquire the current error context level.

EMS_MARK
Start a new error context.

EMS_MLOAD (PARAM, TEXT, OPSTR, OPLEN, STATUS)
(Deprecated) Expand and return a message.

EMS_RENEW
Renew any annulled message tokens in the current context.

EMS_REP (PARAM, TEXT, STATUS)
Report an error message.

EMS_RLSE
Release (i.e. end) the current error context.

EMS_SETx (TOKEN, VALUE)
Concise encoding of a given value.

EMS_STAT (STATUS)
Inquire the last reported error status.

EMS_SYSER (TOKEN, SYSTAT)
Assign the message associated with an operating system error to a token.

21 SSN/4.14 —Fortran Subroutine List

EMS_TUNE (KEY, VALUE, STATUS)
Set an EMS tuning parameter.

SSN/4.14 —C Interface Function Prototypes 22

G C Interface Function Prototypes

void emsAnnul (int *status);
Annul the contents of the current error context.

void emsBegin (int *status);
Begin a new error reporting environment.

void emsEload (char *parstr, int *parlen, char *opstr, int *oplen, int *status);
Return messages from the current error context.

void emsEnd (int *status);
End the current error reporting environment.

void emsErrno (const char *token, int errval);
Assign the message associated with a C errno to a token.

void emsExpnd
(const char *text, char *opstr, const int maxlen, int *oplen, int *status);
Expand and return a message.

void emsFacer (const char *token, int facerr);
Assign the messages associated with a Starlink status value to a token.

int emsGtune (const char *key, int *status);
Get the value of a tuning parameter

void emsLevel (int *level);
Inquire the current error context level.

void emsMark (void);
Start a new error context.

void emsMload
(const char *param, const char *text, char *opstr, int *oplen, int *status);
(Deprecated) Expand and return a message.

void emsRenew (void);
Renew any annulled message tokens in the current context.

void emsRep (const char *param, const char *text, int *status);
Report an error message.

void emsRlse (void);
Release (i.e. end) the current error context.

void emsSetc (const char *token, const char *cvalue, ...);
Concise encoding of a given null-terminated string. String cvalue must be null-terminated. (For
historical reasons, additional arguments are permitted but have no effect.)

void emsSetnc (const char *token, const char *cvalue, int maxchar);
Concise encoding of a given CHARACTER value - maximum maxchar characters.

23 SSN/4.14 —C Interface Function Prototypes

void emsSetd (const char *token, double dvalue);
Concise encoding of a given DOUBLE PRECISION value.

void emsSeti (const char *token, int ivalue);
Concise encoding of a given INTEGER value.

void emsSetl (const char *token, int lvalue);
Concise encoding of a given LOGICAL value.

void emsSetr (const char *token, float fvalue);
Concise encoding of a given REAL value.

void emsStat (int *status);
Inquire the last reported error status.

int emsStune (const char *key, int value, int *status);
Set an EMS tuning parameter, returning previous value.

void emsSyser (const char *token, int systat);
Assign an operating system error message to a token.

void emsTune (const char *key, int value, int *status);
(Deprecated use emsStune) Set an EMS tuning parameter.

SSN/4.14 —Fortran Subroutine Specifications 24

H Fortran Subroutine Specifications

25 EMS_ANNUL SSN/4.14 —Fortran Subroutine Specifications

EMS_ANNUL
Annul the contents of the current error context

Description:
Any pending error messages for the current error context are annulled, i.e. deleted. The values of
any existing message tokens become undefined and the value of the status argument is reset to
SAI__OK.

Invocation:
CALL EMS_ANNUL(STATUS)

Arguments:

STATUS = INTEGER (Returned)
The global status: set to SAI__OK on return.

SSN/4.14 —Fortran Subroutine Specifications 26 EMS_BEGIN

EMS_BEGIN
Begin a new error reporting environment

Description:
Begin a new error reporting environment by marking a new error reporting context and then
resetting the status argument to SAI__OK. If EMS_BEGIN is called with the status argument set to an
error value, a check is made to determine if there are any messages pending output in the current
context: if there are none, then an error report to this effect will be made on behalf of the calling
application.

Invocation:
CALL EMS_BEGIN(STATUS)

Arguments:

STATUS = INTEGER (Given and Returned)
The global status: set to SAI__OK on return.

27 EMS_ELOAD SSN/4.14 —Fortran Subroutine Specifications

EMS_ELOAD
Return error messages from the current error context

Description:
On the first call of this routine, the error table for the current error context is copied into a holding
area, the current context is annulled and the first message in the holding area is returned. Thereafter,
each time the routine is called, the next message from the holding area is returned. The argument
PARAM is the returned message name and PARLEN the length of the message name. OPSTR is the
returned error message text and OPLEN is the length of the error message in OPSTR. If the message
text is longer than the declared length of OPSTR, then the message is truncated with an ellipsis, i.e.
“. . . ”, but no error results.
The status associated with the returned message is returned in STATUS until there are no more
messages to return – then STATUS is set to SAI__OK, PARAM and OPSTR are set to blanks and PARLEN
and OPLEN to 1. If there are no messages pending on the first call, a warning message is generated
and returned with STATUS set to EMS__NOMSG
After STATUS has been returned SAI__OK, the whole process is repeated for subsequent calls.

Invocation:
CALL EMS_ELOAD(PARAM, PARLEN, OPSTR, OPLEN, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Returned)
The error message name.

PARLEN = INTEGER (Returned)
The length of the error message name.

OPSTR = CHARACTER ∗ (∗) (Returned)
The error message – or blank if there are no more messages.

OPLEN = INTEGER (Returned)
The length of the error message.

STATUS = INTEGER (Returned)
The status associated with the returned error message: it is set to SAI__OK when there are no more
messages.

SSN/4.14 —Fortran Subroutine Specifications 28 EMS_END

EMS_END
End the current error reporting environment

Description:
Check if any error messages are pending output in the previous error reporting context. If so, then
annul and release the current context; if not, then just release the current context. Return the last
reported status value.

Invocation:
CALL EMS_END(STATUS)

Arguments:

STATUS = INTEGER (Returned)
The global status.

29 EMS_EXPND SSN/4.14 —Fortran Subroutine Specifications

EMS_EXPND
Expand and return a message

Description:
Any tokens in the supplied message are expanded and the result is returned in the character
variable supplied. If the status argument is not set to SAI__OK on entry, no action is taken except
that the values of any existing message tokens are always left undefined after a call to EMS_EXPND.
If the expanded message is longer than the length of the supplied character variable, the message
is terminated with an ellipsis.

Invocation:
CALL EMS_EXPND(MSG, OPSTR, OPLEN, STATUS)

Arguments:

MSG = CHARACTER ∗ (∗) (Given)
The raw message text.

OPSTR = CHARACTER ∗ (∗) (Returned)
The expanded message text.

OPLEN = INTEGER (Returned)
The length of the expanded message.

STATUS = INTEGER (Given)
The global status.

SSN/4.14 —Fortran Subroutine Specifications 30 EMS_FACER

EMS_FACER
Assign the message associated with a Starlink status value to a token

Description:
The text of the error message associated with the Starlink status value, STATUS, is assigned to the
named message token. This token may then be included in an error message. If the token is already
defined, the error message is appended to the existing token value.

Invocation:
CALL EMS_FACER(TOKEN, STATUS)

Arguments:

TOKEN = CHARACTER ∗ (∗) (Given)
The message token name.

STATUS = INTEGER (Given)
The Starlink status value.

System-specific :
The messages generated using this facility may vary slightly between systems. For more informa-
tion, see Appendix D.2.

31 EMS_FIOER SSN/4.14 —Fortran Subroutine Specifications

EMS_FIOER
Assign a Fortran I/O error message to a token

Description:
The text of the error message associated with the Fortran I/O status value, IOSTAT, is assigned to
the named message token. This token may then be included in an error message. If the token is
already defined, the error message is appended to the existing token value.

Invocation:
CALL EMS_FIOER(TOKEN, IOSTAT)

Arguments:

TOKEN = CHARACTER ∗ (∗) (Given)
The message token name.

IOSTAT = INTEGER (Given)
The Fortran I/O status value.

System-specific :
The messages generated using this facility will depend upon the computer system in use.

SSN/4.14 —Fortran Subroutine Specifications 32 EMS_GTUNE

EMS_GTUNE
Inquire an EMS tuning parameter

Description:
Return the value of an EMS tuning parameter. The possible tuning parameters are those defined in
EMS_TUNE.
The routine will attempt to execute regardless of the given value of STATUS. If the given value is
not SAI__OK, then it is left unchanged, even if the routine fails to complete. If STATUS is SAI__OK
on entry and the routine fails to complete, STATUS will be set and an error report made.

Invocation:
CALL EMS_TUNE(KEY, VALUE, STATUS)

Arguments:

KEY = CHARACTER ∗ (∗) (Given)
The tuning parameter keyword

VALUE = INTEGER (Returned)
The current value of the tuning parameter.

STATUS = INTEGER (Given and Returned)
The global status.

33 EMS_LEVEL SSN/4.14 —Fortran Subroutine Specifications

EMS_LEVEL
Inquire the current error context level

Description:
Return the number of context markers set in the error message table. Any returned value greater
than one indicates that the delivery of reported error messages is deferred.

Invocation:
CALL EMS_LEVEL(LEVEL)

Arguments:

LEVEL = INTEGER (Returned)
The error context level.

SSN/4.14 —Fortran Subroutine Specifications 34 EMS_MARK

EMS_MARK
Start a new error context

Description:
Begin a new error reporting context so that delivery of subsequently reported error messages is
deferred and the messages held in the error table. Calls to EMS_ANNUL or EMS_ELOAD will only
annul or return the contents of the error table within this new context.

Invocation:
CALL EMS_MARK

35 EMS_MLOAD SSN/4.14 —Fortran Subroutine Specifications

EMS_MLOAD
(Deprecated) Expand and return a message

Description:
Any tokens in the supplied message are expanded and the result is returned in the character
variable supplied. If the status argument is not set to SAI__OK on entry, no action is taken except
that the values of any existing message tokens are always left undefined after a call to EMS_MLOAD.
If the expanded message is longer than the declared length of the supplied character variable, the
message is terminated with an ellipsis.

Invocation:
CALL EMS_MLOAD(PARAM, MSG, OPSTR, OPLEN, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
The message name.

MSG = CHARACTER ∗ (∗) (Given)
The raw message text.

OPSTR = CHARACTER ∗ (∗) (Returned)
The expanded message text.

OPLEN = INTEGER (Returned)
The length of the expanded message.

STATUS = INTEGER (Given)
The global status.

Notes:
This routine is now deprecated as the PARAM argument is redundant and the C interface gives no
limit for the expanded string size. EMS_EXPND should be used instead.

SSN/4.14 —Fortran Subroutine Specifications 36 EMS_RENEW

EMS_RENEW
Renew any annulled message tokens in the current context

Description:
Any message tokens which have been annulled by a call to EMS_REP, EMS_EXPND, EMS_MLOAD,
EMS_ANNUL or EMS_ELOAD in the current context are renewed. If any new token value has been
defined since the previous tokens were annulled (e.g. using the EMS_SETx routines), no action is
taken. The intended use of EMS_RENEW is to renew all existing message tokens immediately after a
message has been issued so that they can be re-used in a subsequent message.

Invocation:
CALL EMS_RENEW

37 EMS_REP SSN/4.14 —Fortran Subroutine Specifications

EMS_REP
Report an error message

Description:
Report an error message. According to the error context, the error message is either sent to the user
or retained in the error table. The latter case allows the application to take further action before
deciding if the user should receive the message. The values associated with any existing message
tokens are left undefined. On successful completion, the global status is returned unchanged; if the
status argument is set to SAI__OK on entry, an error report to this effect is made on behalf of the
application and the status argument is returned set to EMS__BADOK; if an output error occurs,
the status argument is returned set to EMS__OPTER.

Invocation:
CALL EMS_REP(PARAM, TEXT, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
The error message name.

TEXT = CHARACTER ∗ (∗) (Given)
The error message text.

STATUS = INTEGER (Given and Returned)
The global status: this is left unchanged on successful completion, and is returned set to an EMS__
error if an internal error occurs.

SSN/4.14 —Fortran Subroutine Specifications 38 EMS_RLSE

EMS_RLSE
Release (end) an error context

Description:
Release a “mark” in the error message table, returning the Error Message Service to the previous
error context. Note that any error messages pending output will be passed to this previous context,
not annulled. When the context level reaches the base level, all pending messages will be delivered
to the user.

Invocation:
CALL EMS_RLSE

39 EMS_SETx SSN/4.14 —Fortran Subroutine Specifications

EMS_SETx
Assign a value to a message token (concise)

Description:
A given value is encoded using a concise format and the result assigned to the named message
token. If the token is already defined, the result is appended to the existing token value. The given
value may be one of the following Fortran 77 data types and there is one routine provided for each
data type:

x Fortran Type

D DOUBLE PRECISION

R REAL

I INTEGER

L LOGICAL

C CHARACTER

If these subroutines fail, it will usually be apparent in any messages which refer to this token.

Invocation:
CALL EMS_SETx(TOKEN, VALUE)

Arguments:

TOKEN = CHARACTER ∗ (∗) (Given)
The message token name.

VALUE = Fortran 77 Type (Given)
The value to be assigned to the message token.

System-specific :
The precise effect of failures will depend upon the computer system being used.

SSN/4.14 —Fortran Subroutine Specifications 40 EMS_STAT

EMS_STAT
Inquire the last reported error status

Description:
The current error context is checked for any error messages reported since the context was created
or last annulled. If none exist, STATUS is returned set to SAI__OK. If there are any such messages,
STATUS is returned set to the status value associated with the last reported error message.

Invocation:
CALL EMS_STAT(STATUS)

Arguments:

STATUS = INTEGER (Returned)
The last reported error status within the current error context.

41 EMS_SYSER SSN/4.14 —Fortran Subroutine Specifications

EMS_SYSER
Assign an operating system error message to a token

Description:
The text of the error message associated with the operating system status value, SYSTAT, is assigned
to the named message token. This token may then be included in an error message. If the token is
already defined, the error message is appended to the existing token value.

Invocation:
CALL EMS_SYSER(TOKEN, SYSTAT)

Arguments:

TOKEN = CHARACTER ∗ (∗) (Given)
The message token name.

SYSTAT = INTEGER (Given)
The operating system status value.

System-specific :
The messages generated using this facility will depend upon the computer system in use.

SSN/4.14 —Fortran Subroutine Specifications 42 EMS_TUNE

EMS_TUNE
Set an EMS tuning parameter

Description:
The value of the EMS tuning parameter is set appropriately, according to the value given. EMS_TUNE
may be called multiple times for the same parameter. The following keywords and values are
permitted:

’SZOUT’ Specifies a maximum line length to be used in the line wrapping process. By default the
message to be output is split into chunks of no more than the maximum line length, and each
chunk is written on a new line. The split is made at word boundaries if possible. The default
maximum line length is 79 characters.
If VALUE is set to 0, no wrapping will occur. If it is set greater than 6, it specifies the maximum
output line length. Note that the minimum VALUE is 7, to allow for exclamation marks and
indentation.

’MSGDEF’ Specifies the default error reporting level. That is a level below which EMS_RLSE will
not go. It can therefore be used by environments such as ADAM to prevent any output by
EMS due to unmatched marks and releases. This keyword should not be used in other cases.

’STREAM’ Specifies whether or not ERR should treat its output unintelligently as a stream of
characters. If VALUE is set to 0 (the default) all non-printing characters are replaced by blanks,
and line wrapping occurs (subject to SZOUT). If VALUE is set to 1, no cleaning or line wrapping
occurs.

’REVEAL’ Allows the user to display all error messages cancelled when EMS_ANNUL is called. This
is a diagnostic tool which enables the programmer to see all error reports, even those ’handled’
by the program. If VALUE is set to 0 (the default) annulling occurs in the normal way. If VALUE
is set to 1, the message will be displayed.

The routine will attempt to execute regardless of the given value of STATUS. If the given value is
not SAI__OK, then it is left unchanged, even if the routine fails to complete. If STATUS is SAI__OK
on entry and the routine fails to complete, STATUS will be set and an error report made.

Invocation:
CALL EMS_TUNE(KEY, VALUE, STATUS)

Arguments:

KEY = CHARACTER ∗ (∗) (Given)
The tuning parameter keyword

VALUE = INTEGER (Given)
The value to be assigned (see Description)

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

(1) SZOUT applies to the case where EMS does its own output - i.e. when messages are reported
or impending when EMS is at its base level. Normally output will be from the ERR package
and is tuned by ERR_TUNE.

(2) Some aspects of output for both ERR and MSG are controlled by EMS and its tuning parame-
ters therefore ERR_TUNE and MSG_TUNE call this subroutine to set the EMS tuning parameters
appropriately. This may result in interference.

43 EMS_TUNE SSN/4.14 —Fortran Subroutine Specifications

(3) The use of SZOUT and STREAM may be affected by the message delivery system in use.
For example there may be a limit on the the size of a line output by a Fortran WRITE and
automatic line wrapping may occur. In particular, a NULL character will terminate a message
delivered by the ADAM message system.

	Introduction
	When to Use the Error Message Service
	Reporting Errors
	Message Tokens
	Reporting Status, Fortran I/O and Operating System Errors
	Message Output
	No EMS_FLUSH
	EMS without an environment
	EMS within an environment

	Intercepting Messages
	C Language Interface
	Compiling and Linking with the Error Message Service
	References
	Justification for EMS
	Using EMS together with POSIX threads
	Using EMS within ADAM system software
	Overview
	Message parameters
	Parameter references
	Reserved tokens
	Synchronising message output
	Routines specific to the ADAM fixed part
	ERR_CLEAR
	ERR_START
	ERR_STOP

	Portability
	Porting prerequisites
	 Operating system specific routines

	Include Files
	Fortran Subroutine List
	C Interface Function Prototypes
	Fortran Subroutine Specifications
	EMS_ANNUL
	EMS_BEGIN
	EMS_ELOAD
	EMS_END
	EMS_EXPND
	EMS_FACER
	EMS_FIOER
	EMS_GTUNE
	EMS_LEVEL
	EMS_MARK
	EMS_MLOAD
	EMS_RENEW
	EMS_REP
	EMS_RLSE
	EMS_SETx
	EMS_STAT
	EMS_SYSER
	EMS_TUNE

