
SSN/78.1

Starlink Project
Starlink System Note 78.1

Norman Gray, Peter W Draper, Mark B Taylor, Steven E Rankin

11 April 2005

Copyright 2004-5, Council for the Central Laboratory of the Research Councils
Copyright 2007, Particle Physics and Astronomy Research Council

Copyright 2007, Science and Technology Facilities Council

The Starlink Build System

SSN/78.1 —Abstract i

Abstract

This document provides an introduction to the Starlink build system. It describes how to use the
Starlink versions of the GNU autotools (autoconf, automake and libtool), how to build the software set
from a checkout, how to add and configure new components, and acts as a reference manual for the
Starlink-specific autoconf macros and Starlink automake features.

It does not describe the management of the CVS repository in detail, nor any other source maintainance
patterns.

It should be read in conjunction with the detailed build instructions in the README file at the top of the
source tree (which takes precedence over any instructions in this document, though there should be no
major disagreements), and with sun248, which additionally includes platform-specific notes.

Copyright 2004-5, Council for the Central Laboratory of the Research Councils
Copyright 2007, Particle Physics and Astronomy Research Council
Copyright 2007, Science and Technology Facilities Council

http://www.starlink.ac.uk/cgi-bin/htxserver/SUN/248.htx/SUN/248.html?xref_

ii SSN/78.1—Contents

Contents

1 Introduction 1
1.1 Quick entry-points . 2

2 Tools 3
2.1 Overview of the Autotools . 3

2.1.1 Autoconf . 5
2.1.2 Automake . 9
2.1.3 Libtool . 13
2.1.4 Autoreconf: why you don’t need to know about aclocal 13
2.1.5 Running ./configure . 13

2.2 Starconf, and the Starlink autoconf macros . 15
2.2.1 STARCONF_DEFAULT_PREFIX and STARCONF_DEFAULT_STARLINK 16
2.2.2 Components . 17
2.2.3 File templates . 18
2.2.4 The format of the component.xml file . 18

2.3 Version numbers . 19
2.4 A few remarks on state . 20
2.5 Preprocessable Fortran . 22
2.6 Using the Starlink CVS repository . 23
2.7 CVS . 24

2.7.1 CVS and tagging . 24
2.7.2 CVS and recursion – checking out only a subtree . 25

3 Building applications and libraries 26
3.1 The top-level Makefile . 26
3.2 Bootstrapping and building the entire tree . 27
3.3 Building a single component . 28
3.4 Building monoliths . 30
3.5 Bootstrapping without building: configuring starconf and the autotools 31

4 Incorporating a package into the Starlink build system 32
4.1 Autoconfing a library . 33
4.2 The build system ‘interface’ . 37
4.3 Distribution of components . 37

4.3.1 Making a distribution . 39
4.4 Regression tests . 41
4.5 Importing third-party sources . 42

4.5.1 Configuring m4 . 43
4.5.2 Configuring CFITSIO . 45
4.5.3 Configuring tcl . 47
4.5.4 Time order of third-party sources . 49

4.6 Documentation . 49
4.6.1 Components containing only documentation . 50

4.7 Adding components: the final step . 51

SSN/78.1 —Contents iii

5 FAQs 53
5.1 General FAQs . 53
5.2 Installation FAQs . 55
5.3 State FAQs . 56

6 Miscellaneous hints and tips 59
6.1 Forcing automake’s choice of linking language . 59
6.2 Conditionally building components, I . 59
6.3 Conditionally Building Components, II . 60
6.4 Manipulating compiler and linker flags . 61

A The Starconf macros and variables 62
A.1 AC_FC_CHECK_HEADERS . 62
A.2 AC_FC_CHECK_INTRINSICS . 62
A.3 AC_FC_HAVE_BOZ . 63
A.4 AC_FC_HAVE_OLD_TYPELESS_BOZ . 63
A.5 AC_FC_HAVE_PERCENTLOC . 63
A.6 AC_FC_HAVE_PERCENTVAL . 63
A.7 AC_FC_HAVE_TYPELESS_BOZ . 63
A.8 AC_FC_HAVE_VOLATILE . 64
A.9 AC_FC_LITERAL_BACKSLASH . 64
A.10 AC_FC_OPEN_SPECIFIERS . 64
A.11 AC_FC_RECL_UNIT . 65
A.12 AC_PROG_FC . 65
A.13 AC_PROG_FPP . 65
A.14 STAR_CHECK_PROGS . 67
A.15 STAR_CNF_BLANK_COMMON . 68
A.16 STAR_CNF_COMPATIBLE_SYMBOLS . 68
A.17 STAR_DECLARE_DEPENDENCIES . 68
A.18 STAR_DEFAULTS . 70
A.19 STAR_INITIALISE_FORTRAN_RTL . 71
A.20 STAR_LARGEFILE_SUPPORT . 71
A.21 STAR_LATEX_DOCUMENTATION . 71
A.22 Variable STAR_MANIFEST_DIR . 72
A.23 STAR_MESSGEN . 73
A.24 STAR_MONOLITHS . 74
A.25 STAR_PATH_TCLTK . 74
A.26 STAR_PLATFORM_SOURCES . 75
A.27 STAR_PREDIST_SOURCES . 75
A.28 STAR_PRM_COMPATIBLE_SYMBOLS . 76
A.29 STAR_SPECIAL_INSTALL_COMMAND . 76
A.30 STAR_SUPPRESS_BUILD_IF . 76
A.31 STAR_XML_DOCUMENTATION . 77
A.32 starxxx_DATA – special installation directories . 78
A.33 Obsolete macros . 78

A.33.1 AC_F77_HAVE_OPEN_READONLY . 78
A.33.2 STAR_DOCS_FILES and friends . 78
A.33.3 STAR_FC_LIBRARY_LDFLAGS . 78
A.33.4 STAR_HAVE_FC_OPEN_READONLY . 78

B The relationship with the GNU autotools 79

C Possible future changes 81

1 SSN/78.1—Introduction

Chapter 1
Introduction

The Starlink build system consists of

• the Starlink CVS repository;

• build tools, consisting of modified versions of the GNU autotools autoconf automake and libtool;

• configuration and bootstrap code, consisting of the starconf system and the scripts at the top level
of the Starlink source tree; and

• the conventions for branching and tagging which are at present only documented in the wiki,
on the pages http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/BranchingPolicy and
http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/CvsTagging (you will currently need
a wiki account to see these pages).

The repository is on the machine cvs.starlink.ac.uk – see Sec. 2.6 for further details.

The build system is intended to cover two main cases. Firstly, it covers the problem of building code
directly from the CVS repository, both when building the entire software set from scratch (as during the
nightly test build for example), and when working on a development version of a particular component,
within the context of an otherwise built software set. This includes the problem of abiding by long-
standing Starlink conventions on documentation, auxiliary tools and installation locations. The build
system at present is concerned primarily with the ‘classic’ applications, which are the large volume of
legacy Starlink code which, though it is no longer being developed, must still be maintained and be
buildable by the community. It has no contact with the large volume of Java code, apart from having
the same tagging and branching conventions, since the building of the Java applications is currently
completely handled by the ant system.

Each component in the CVS repository is intended to be built separately, as opposed to being built only
by a make running at the top of the tree. Many components require other components to be installed,
and the role of the top-level makefile is to manage these dependencies, when it is necessary to build the
entire tree from scratch. After a fresh CVS checkout, and presuming that any dependencies are in place,
each component in the tree should be built with the sequence of commands

% ./bootstrap
% ./configure
% make
% make install

The ‘install’ target generated by Starlink automake installs the component as usual, but additionally cre-
ates a manifest file which is then installed in the manifests/ subdirectory under the Starlink installation
directory. The building of the whole tree from scratch is described in Sec. 3.2, and the procedure to build
a single component, though little more complicated than described here, is discussed in more detail in
Sec. 3.3. You should read both of these sections before trying the commands above.

Secondly, the build system handles the construction of portable source-code sets – distribution tarballs –
so that individual components can be built by users, from source, as straightforwardly as possible. Since
we are using the GNU autotools, much of this functionality comes for free, and we simply have to do the
relatively small amount of configuration work required to ensure that the source set is complete (rather
than requiring non-distributed build tools) and has clearly expressed dependencies between packages. It
is an absolute requirement that the build process for users must consist of no more than

http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/BranchingPolicy
http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/CvsTagging

SSN/78.1 —Introduction 2

% ./configure
% make
% make install

with the usual options available for ./configure and the usual relocations available for GNU-style
makefiles. This document does not discuss building from a distribution tarball in any more detail than
this, since there is really very little more detail to discuss.

The system does not cover the precise mechanism by which these tarballs are distributed to users, nor the
means by which they are informed of, or helped to satisfy, the dependencies between components; but
in generating manifests and assembling the component dependency graph, it provides the information
which such a distribution portal would need.

In other sections of this document, we discuss the tools used to support developing within the CVS tree,
including the specific starconf tools and an overview of the GNU autotools autoconf, automake and
libtool (Sec. 2); we discuss the procedure for building applications within the repository (Sec. 3); and we
describe the process of adapting a currently working package to the build system’s conventions (Sec. 4).

1.1 Quick entry-points

The build system is intended to be a fairly integrated whole, and so this document is intended to be
read straight through, rather than act purely as a reference manual. However it should be fairly well
cross-referenced, and so depending on your motivations for reading this document, there is more than
one reasonable entry-point.

• If you want to build and install a distributed source tarball, then you are probably reading the wrong
manual, since this one contains rather more information than you need. To build the distribution
you should not need to do more than ./configure; make; make install – if you do need more
than that, that’s either a bug, or there’s a readme you didn’t read. If you need to know more about
the options to ./configure, then ./configure –help should provide that. And if you really want
or need the gory details, then Sec. 2.1.5 has them all.

• If you want to start building and using software from the repository, then start with Sec. 2.6 or
Sec. 3.3 and work outwards from there.

• If you want to add another component to the repository, then you are probably going to have to
read quite a lot of the document, but Sec. 4.1 and Sec. 4.5 (and indeed most of Sec. 4) are good places
to start.

• There are some FAQs in Sec. 5.

• There is a reference for the Starlink autoconf macros in Sec. A.

3 SSN/78.1—Tools

Chapter 2
Tools

This section is concerned with the tools which make up the Starlink build system. There are generally
very few adjustments you need to make to the program source code (though the autotools can help you
manage such things as installation directories and platform dependencies), and the changes you will
make are to the auxiliary files which manage the build, most prominently the configure.ac file which
organises the configuration, and the Makefile.am file which controls generating the makefile which does
the work.

The build system as a whole consists of a number of components:

The Starlink autotools These consist of versions of the GNU autotools, which are part of the Starlink
CVS repository, and which are built and installed as part of the top-level bootstrap. They should be
installed in /star/buildsupport/bin, or its equivalent if you have installed a set of tools in a tree
other than /star. Since they have been extended and customised, they are essential; you cannot
build the Starlink collection without them. There is an introduction to the autotools in Sec. 2.1,
covering their interrelationships and basic usage.

We use (at the time of writing) an unmodified libtool, a moderately extended autoconf, and an
extended and customised automake. The description below explains the use of these tools as
modified; see Sec. B for details of the differences from the stock autotools.

The Starlink autoconf macros There is an extensive set of autoconf macros which support building
Starlink applications. You use these as you would any of the standard autoconf macros, by invoking
them within the configure.ac file.

The macros are described in detail in Sec. A.

The autoconf program which is used is not itself customised for Starlink use. Instead, the macros
are installed using the standard autoconf extension mechanism, which uses the application aclocal.
This is discussed in passing in Sec. 2.1, and we mention it only in passing here.

starconf This is the program which handles installing required macros, and configuring your directory
ready to use the build system. Associated with starconf is the starconf-validate program which checks
that your directory is configured correctly, and the program ./starconf.status, which unpacks required
files, and allows you to make the link back to the configuration used to build the software. All these
are described in detail in Sec. 2.2.

2.1 Overview of the Autotools

The autotools as a group help you create software distributions which will build reliably on a large variety
of platforms. They are most obviously associated with unix systems, but in fact support the larger class
of POSIX systems which have an implementation of /bin/sh available – a class which includes Windows
machines, through the cygwin environment.

The minimum required contact with the autotools is to generate the files which will let you configure
a freshly checked-out directory before working on it, since these configuration files are not checked in
to the repository. The ./bootstrap script (see Sec. 2.2) will do this for you, but it can only do this if the
autotools are installed (see Sec. 3.5).

http://www.cygwin.com/"

SSN/78.1 —Tools 4

The aim of the notes below is to give you an overview of autoconf and automake functionality, enough
to make it possible for you to roughly understand the existing configuration files, and to make it easier
to approach the full autoconf and automake documentation. We start off with a broad overview, and
provide a few further details in the subsections which follow.

The two most obvious and important files are configure.ac and Makefile.am. The first tells autoconf
how to make the ./configure script which does the actual configuration work, and which will be dis-
tributed with your package, the second (assuming you’re using automake rather than hand-maintaining
the input Makefile) tells automake how to create the template makefile Makefile.in, which is also
distributed with your package, and which is edited by the ./configure script to (finally!) produce the
Makefile which (finally!) builds the code on the user’s system.

It’s useful to illustrate the inputs and outputs of the various tools. First are autoconf and automake:

Figure 2.1: Inputs to, and outputs from, autoconf

Figure 2.2: Inputs to, and outputs from, automake

As you can see, although configure.ac is most associated with autoconf, automake reads it, too, to
discover for example whether you have invoked AC_PROG_LIBTOOL or STAR_MONOLITHS, and so whether
it needs to add the appropriate support in the generated Makefile.in.

Once the ./configure script is created, it is able to interrogate the system (the user’s system, that is, not
the developer’s), and based on that edit the various .in files to produce their corresponding outputs.

Figure 2.3: Inputs and outputs to configure

This diagram for ./configure shows a file config.h.in being edited. This file – which we will have
more to say about in Sec. 2.1.1 – is a template list of C preprocessor definitions, which can be #included
in a C source file, and so used to configure the use of functions and definitions there. Like any of the
other .in files, it is possible to maintain this by hand, but it is more reliable to maintain it using another
application autoheader, which looks as follows.

The other file we have not mentioned yet is starconf.m4. This file contains macros (in the implementation
language of autoconf, m4) which are used to extend autoconf’s functionality, supplying the Starlink-
specific autoconf support. You will not typically have anything to do with this file, and we mention it
only to indicate schematically where (some of) the Starlink magic comes from. This file is not in your

SSN/78.1 —Tools 5

Figure 2.4: Inputs and outputs to autoheader

working directory, but is installed in the place the autotools expect to find it, by the starconf application
described in Sec. 2.2. You may also notice a file aclocal.m4 in your directory. This is a cache of autoconf
macros, maintained by the autoreconf program; it should not be checked in.

Of the applications mentioned above, automake, autoconf and (usually implicitly) autoheader are run
on the developer’s machine before or while making a distribution; thus the products of these programs,
./configure, config.h.in and Makefile.in, are included in the distribution, and the .in files edited
by the ./configure script into the config.h and Makefile which actually control the build.

We have elided some details here, for simplicity, and we could possibly have elided more, since you
generally don’t have to concern yourself with autoheader or aclocal.m4. You don’t even have to worry
about the dependencies between these files and applications, since the Makefile.in which automake
generates knows about these dependencies and will generally keep things up to date for you. If you wish
to be sure things are up to date, then you can simply run application autoreconf (see Sec. 2.1.4), which
knows enough about the relationships between them to run each of the required ones in the correct order.
This is likely the only one of the autotools commands which you will run yourself.

For more details on the relationships between these applications, and fuller diagrams, see the online
copy of the book ‘GNU Autoconf, Automake, and Libtool’, and in particular Appendix C of that book,
‘Generated file dependencies’.

Comprehensive details of the autotools are to be found in their respective manuals, which are available
online at

• http://www.gnu.org/software/autoconf/manual/autoconf-2.57/autoconf.html

• http://www.gnu.org/software/automake/manual/

• http://www.gnu.org/software/libtool/manual.html

The autoconf manual is relatively clear, once you have a basic idea of what it’s trying to do, but it’s more
effective as a reference manual than as a tutorial. The automake manual should be regarded as a reference
manual only: you might not guess from the manual, that automake will make your life simpler, rather
than full of anguish, suffering and confusion. It doesn’t really matter how good or bad the libtool manual
is, since if you discover you have to look at it, you already know your future holds pain, and the manual
isn’t going to make things better or worse.

It’s also worth looking at the ‘Release Process’ section of the GNU Coding Standards document. Though
we are not necessarily following these standards, this section both describes what is conventional
packaging in the open-source world, and outlines the conventions which the autotools are designed to
support.

2.1.1 Autoconf

We use a slightly extended version of autoconf. See autoconf –version for the base version number.

The goal of autoconf is to help you make your program portable, by allowing you, at build time, to adapt
the program to the facilities available on the machine on which the program is being built.

You control this through a script called configure.ac (which was called configure.in in older versions
of autoconf). The autoconf program produces from this a very portable /bin/sh script called configure,

http://sources.redhat.com/autobook/
http://sources.redhat.com/autobook/autobook/autobook_276.html
http://sources.redhat.com/autobook/autobook/autobook_276.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/autoconf.html
http://www.gnu.org/software/automake/manual/
http://www.gnu.org/software/libtool/manual.html
http://www.gnu.org/prep/standards_48.html

SSN/78.1 —Tools 6

which is distributed as part of your package, and which the person building the package runs as the first
part of the ./configure; make; make install incantation.

The ./configure script probes the system it is running on, finding compilers, testing the behaviour of the
local unix system, testing whether specific include files exist or not, testing whether required functions
are available and working as expected, and managing some configuration by the user, such as allowing
them to specify where the package is to be installed.

This information is only useful if it can be communicated to your program in some way. This is done by
the configure script by editing the values of certain ‘substitution variables’ into a list of template files.

For example, you might have a version header file version.h.in, containing the line

const char version[] = "@PACKAGE_VERSION@";

The configure variable PACKAGE_VERSION is one of those substituted by default, and if this file were listed
as one of those to be substituted (by mentioning it in the autoconf macro AC_CONFIG_FILES(version.h)),
then a file version.h would be created containing the contents of the version.h.in file with the
@PACKAGE_VERSION@ substituted by the version number declared within the configure file.

Although this substitution process can be done for any template file, there are two template files which
are used particularly often.

The first is Makefile.in, which is a skeleton makefile which you might write by hand (though see the
discussion of automake in Sec. 2.1.2). There is an example of this at the top level of the Starlink build tree.
A typical Makefile.in might include lines like

LN_S = @LN_S@
CC = @CC@
myfile.o: myfile.c

$(CC) -o myfile.o myfile.c

That, combined with autoconf macros AC_PROG_CC and AC_PROG_LN_S, would allow you to produce a file
Makefile which was customised to use the C compiler appropriate to the local environment, and which
had, in the makefile variable {$(LN_S) a command which makes links between files if the local platform
supports that, or makes hard links or simple copies if that is all that is possible.

As well as configuring the makefile, you may also want to configure the source code, so that you can take
different actions in your code depending on whether certain functions or headers are available. That is is
most often done via a particular configured file, conventionally named config.h. This second way of
communicating with your source code has the config.h file substituted with a number of C preprocessor
#define statements. For example, if you included in your configure.ac file the lines:

AC_CHECK_HEADERS([sys/wait.h])
AC_CHECK_FUNCS([strchr])

then the configure script generated from that source would include a test of whether the sys/wait.h
header file was available, and whether the strchr function was available in the C library. If so, the
resulting config.h file would include the lines

#define HAVE_SYS_WAIT_H 1
#define HAVE_STRCHR 1

Whereas most configured files are substituted as a result of being mentioned in a AC_CONFIG_FILES()
macro, the config.h.in input file is configured through AC_CONFIG_HEADERS(config.h), which does its
configuration in a slightly different way.

After including this file into your source code with:

SSN/78.1 —Tools 7

#include <config.h>

you can adjust the compiled code with suitable #if preprocessor conditionals, such as

#if HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif

It is possible to maintain the config.h.in file by hand, but generally better to generate it by using
the autoheader application which is part of autoconf. This scans your configure.ac and extracts into
config.h.in mentions of all those preprocessor defines it finds. Autoheader knows about macros such
as AC_CHECK_HEADERS above; if you wish to add further switches to the config.h.in file, you should
do so by calling the autoconf macro AC_DEFINE. See the section 7.1 Defining C Preprocessor Symbols in
the autoconf manual for further details. Autoheader is one of those applications run on your behalf by
autoreconf (see Sec. 2.1.4).

Note the angle brackets round config.h: this is preferred to double quotes, as it gives the makefile the
option of controlling where the source code is; in the simplest case this is handed by simply adding -I.
to the compile line. We don’t take take advantage of this particular flexibility, but it is a good habit to get
into.

An illustrative configure.ac might look like this (with line numbers inserted):

1 AC_INIT(mypack, 1.2, starlink@jiscmail.ac.uk)
2 AC_CONFIG_SRCDIR(src.c)
3 STAR_DEFAULTS
4 AC_PROG_CC
5 AC_PATH_PROG(PERL, perl)
6 AC_CHECK_HEADERS([sys/time.h])
7 STAR_MESSGEN(mypack_err.msg)
8 AC_CONFIG_HEADERS(config.h)
9 AC_CONFIG_FILES(Makefile)
10 AC_CONFIG_FILES(myscript.pl, [chmod +x myscript.pl])
11 AC_OUTPUT

Line 1: This line is required. It declares the package name, version number, and bug-report address. Each
of these is available for substitution via the substitution variables PACKAGE_NAME, PACKAGE_VERSION and
PACKAGE_BUGREPORT.See autoconf 4.1 Initializing configure

Line 2: This is largely a sanity check, and produces an error if the named file (in this case src.c) is not in
the source directory. The source directory is typically the current directory, but you can specify a different
one using the –srcdir option to ./configure, if you have a good reason for doing that. See autoconf 4.3
Finding configure Input

Line 3: This macro is one of the Starlink extensions, and the only required Starlink macro. It sets up the
defaults required for building Starlink applications, and assures the starconf program that it’s being
run in the correct directory. See Sec. 2.2 for a description of the starconf application, and Sec. A for details
of the associated macros.

Line 4: This finds a working C compiler, and prepares to substitute it in the substitution variable CC.
Presumably the Makefile.in has a line CC=@CC@. See autoconf 5.10.3 C Compiler Characteristics

Line 5: Find a binary called perl in the current PATH and assign the substitution variable PERL the full
path to it. The most common way of using this would be for the file myscript.pl.in to start off with the
line

#! @PERL@ -w

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_82.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_16.html'
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_18.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_18.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_64.html

SSN/78.1 —Tools 8

so that the script ends up with the correct full path. See line 10 and autoconf 5.2.2
Generic Program and File Checks

Line 6: check that the system has an include file sys/time.h in the include path, and if it has, make sure
that the cpp variable HAVE_SYS_TIME_H is defined. If this were a real configure file, you would likely
have several other header tests here (in a space-separated list, surrounded by square brackets), and cpp
branching inside your source code to handle the various cases. See line 8 and autoconf 5.6.3 Generic
Header Checks.

Line 7: Another Starlink extension. It declares that this package has a set of ERR messages in the given
file, and that autoconf should check the location of the messgen application. The argument is in fact
optional (it merely causes the files to be declared as pre-distribution files – see Sec. A.27; this line should
be partnered by a declaration of the variable include_MESSAGES in the corresponding Makefile.am. See
Sec. A.23 for fuller details.

Line 8: This is the macro that makes cpp configuration information available, by editing the header file
config.h.in (this file name is conventional, but not required). See autoconf 4.8 Configuration Header
Files. If you want to put extra information into this file, use the AC_DEFINE macro: a declaration like
AC_DEFINE(SPECIALCASE,1) would insert #define SPECIALCASE 1 into the config.h; autoheader also
spots this and puts a suitable template into config.h.in. See the autoconf manual, section Defining C
preprocessor symbols, for further details.

Line 9: This does the work of substituting the results of the various tests into the files being configured. For
each of the files named in the (space-separated list) argument, which most typically includes Makefile,
autoconf expects to find a file of the same name but with .in appended, and this is the file which has the
substitutions edited in. (Automake also looks at this line, and if it sees a Makefile mentioned here, it
looks to see if there is a corresponding Makefile.am already present, and if so, recurses)

Line 10: This is a variant of line 9. The AC_CONFIG_FILES macro takes a second argument consisting of
one or more lines of shell script to post-process the file in question, in this case making sure that the
generated file is executable.

Line 11: This is the line which really does the work.See 4.4 Outputting Files.

Of this script, it is lines 1, 2 and 11 which are absolutely required, along with something like line 9 to
make the configure script do something useful.

It is useful to think of the configure.ac file as being the template for the final ./configure script, with
the autoconf macros simply expanding to (large chunks of) shell script during translation by the autoconf
program. This isn’t the whole truth, but it suffices for almost all purposes. About the only place where this
view might deceive you is if you wished to modify a file after it was generated by AC_CONFIG_FILES for
example; if you did that immediately after the AC_CONFIG_FILES line it would fail, since the code which
generates the files is in a different place from the AC_CONFIG_FILES line – that is why AC_CONFIG_FILES
has its second argument. With this view it is natural that you can add any other shell scripting to your
configure.ac, adding any tests and switches you fancy. You communicate the results of your scripting
to the output files by making shell variables into substitution variables, and the way you do that is by
calling AC_SUBST on them. Thus, after

wibble=’’
... # lots of clever scripting
AC_SUBST(wibble)

any occurrences of the string @wibble@ in the substituted files will be replaced by the value of wibble at
the end of the ./configure script.

2.1.1.1 M4 syntax and traps

Autoconf does its work by running the configure.ac file through the text processor GNU m4, and this
can cause occasional surprises.

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_41.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_41.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_51.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_51.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_27.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_27.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_82.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_82.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_19.html

SSN/78.1 —Tools 9

M4 is a macro language, intended for very much the sort of rewriting that autoconf does. When m4
processes a file, anything at all that looks like an m4 macro is substituted, so that there is no macro
invocation character like the backslash in TEX;. Macros can take arguments, delimited by round brackets
and separated by commas, as illustrated above.

The first oddity is to do with comment characters. The default m4 comment character is #, but since this
is also the shell script and makefile comment character, autoconf makes it an ordinary character. Thus to
add comments to a configure.ac file which won’t make it into the ./configure file, you should prefix
them with the m4 macro dnl (which means ‘delete to next newline’), as in

dnl This is a comment
AC_INIT(...)

There’s no harm in including #-style comments in your configure.ac file and allowing these to be
passed through to the output file, since ‘got-here’ type comments can sometimes help you debug the
./configure script.

The default m4 quote characters are the left and right single quotes, but autoconf changes these to left and
right square brackets. You need to use these in two circumstances, firstly when you have a multi-word
argument to a macro, and particularly when that argument contains a comma, and secondly if a piece
of text looks like a current m4 macro. In general, if you need to care about m4 quoting rules, you’re in
trouble, but see section 8.1 M4 Quotation in the autoconf manual, for some advice.

2.1.2 Automake

The most typical use of autoconf is to configure a file Makefile.in. You can write this yourself, as
described in the discussion of autoconf, but since so much of a typical makefile is boilerplate, automake
exists to write this boilerplate for you. This has the additional advantage that we can support and enforce
Starlink-specific conventions with a customised installation of automake. We (currently) use an adapted
version of automake – see automake –version for the version number, and Sec. B for a summary of the
differences.

The file which controls automake is Makefile.am. Automake reads both this file and configure.ac, and
based on these emits a Makefile.in. It is this latter file which you distribute, and which is substituted at
build time by the ./configure script which autoconf generates in turn.

The resulting Makefile has rules to do all the required building and installation in a very portable fashion,
as well as targets to make distributions (make dist), do tests (make check), clean up (make clean, make
distclean and make maintainer-clean) and, in the case of Starlink automake, do an install along with
an installation manifest.

The Makefile.am script consists, in its simplest form, of a sequence of declarations of the relationships
between the source files in your distribution and the programs and libraries they are intended to produce.
For example, here is the Makefile.am for the PAR library, slightly edited:

Process this file with automake to produce Makefile.in

lib_LTLIBRARIES = libpar_adam.la
libpar_adam_la_SOURCES = $(F_ROUTINES)

include_HEADERS = $(PUBLIC_INCLUDES)

F_ROUTINES = \
par1_menu.f \
par_cancl.f \
[blah...]

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_90.html

SSN/78.1 —Tools 10

PUBLIC_INCLUDES = \
PAR_ERR \
PAR_PAR \
par.h \
parwrap.h \
par_err.h \
par_par.h

BUILT_SOURCES = PAR_ERR par_err.h

Overall, you can see that this automake source file is syntactically a makefile – the statements in this
example look like makefile variable settings, and it is possible to put makefile rules in the Makefile.am
file, though that is not illustrated here. This is slightly deceptive, however, and while it was useful to think,
above, of the configure.ac file as being the template of the eventual ./configure script, for automake
you should think of the match between the input syntax and the makefile as a happy coincidence. You
provide information to automake through the Makefile.am file, and based on that it then emits the
Makefile.in it thinks you want (or need, at least).

The first line is a conventional comment. It starts with a doubled hash mark ##, which causes automake
to discard the text after it; lines beginning with a single comment character are copied verbatim into the
generated Makefile.in.

The next stanza declares that there is to be a library libpar_adam.la, and that the sources for this file are
in the ‘makefile variable’ F_ROUTINES.

Though the variables F_ROUTINES and PUBLIC_INCLUDES are specific to this makefile, and arbitrary, the
other variable names have both structure and meaning for automake.

The variable lib_LTLIBRARIES consists of the ‘prefix’ lib and the ‘primary’ LTLIBRARIES. The primary
tells automake that you wish to build the libtool library libpar_adam.la, and the prefix indicates that
this is to be installed with the other libraries (the variable pkglib_LTLIBRARIES, for example, would tell
automake that you wanted to install the result in a package-specific library). For each of the libraries
listed in this variable, separated by spaces, there must be a corresponding _SOURCES variable, which has
the ‘primary’ SOURCES and a prefix formed from the library name, which lists the set of source files for
that library. The prefix must be canonicalised by replacing with underscores everything other than letters
and numbers. As well as declaring the files which are to be compiled into the library, this indicates to
automake that these source files are to be distributed as part of the final tarball, and that it must emit
makefile rules to install the library in the correct place, with the correct installation commands. For the list
of such associated primaries, see section Program and Library Variables of the automake documentation.

By default, libtool builds both static and shared libraries. You can control this if necessary with the
–enable-shared and –disable-shared options to ./configure, and with the AC_DISABLE_SHARED auto-
conf variable. For further details see the documentation for AC_PROG_LIBTOOL in the Libtool manual.

If we only wanted to build static libraries, we would replace this line with lib_LIBRARIES = libpar_adam.a,
and the given library would be built in the usual way, without involving libtool.

The LIBRARIES and LTLIBRARIES primaries can have any one of the prefixes libdir, pkglibdir, check or
noinst, with the latter indicating that the library should be built but not installed. Having non-installed
libraries can be useful when you are building a library conditionally, or in stages. Libtool refers to these as
‘convenience libraries’, and they are discussed in section Libtool Convenience Libraries of the automake
manual.

The other very important primary (not shown here) is PROGRAMS, which describes programs which are
to be built and installed (the special Starlink case of monoliths is described below). This can have the
prefixes bin, sbin, libexec, pkglib, check or noinst: check is for tests, and is described in Sec. 4.4;
noinst indicates that the program should be built but not installed, and is useful for programs which
are used during the build – for generating header files for example – but which are not part of the final
product. There is no single standard list of prefixes, since each primary supports only a subset of them

http://www.gnu.org/software/automake/manual/html_node/Program-and-Library-Variables.html
http://www.gnu.org/software/libtool/manual.html
http://www.gnu.org/software/automake/manual/html_node/Libtool-Convenience-Libraries.html

SSN/78.1 —Tools 11

(you cannot declare bin_LIBRARIES, for example), but several are mentioned in automake’s What Gets
Installed, and the directories in question are discussed in autoconf’s 4.7.2 Installation Directory Variables.

The include_HEADERS line is similar: it indicates that the listed files are to be distributed, and are to be
installed in the correct place for include files.

The final line which is significant to automake is the BUILT_SOURCES line. This says that, even though
PAR_ERR and par_err.h are to be installed and distributed, they are not actually genuine source files,
but must be built; adding the BUILT_SOURCES line forces automake to add a dependency for these files
at an artificially early stage. It is only rather rarely necessary to include a line like this. If one of the
source files were in this category, then it would naturally be built when it was required, without any
need to add it to BUILT_SOURCES. As it happens, there is no rule in this file for building these targets; that
is added automatically by automake when it spots that the STAR_MESSGEN macro has been used in the
configure.ac file which partners this Makefile.am. In a more general case, however, you would add a
make-style rule to the Makefile.am file to build these files from their (presumably undistributed) sources.
See also Built sources in the automake manual.

For a second example, we can look at the Makefile.am for the sst application (this is a non-distributed
application for building documentation).

Process this file with automake to produce Makefile.in

bin_SCRIPTS = start

bin_MONOLITHS = sst_mon
sst_mon_SOURCES = \

sst_mon.f \
$(sst_mon_TASKS:=.f) \
$(SUBSRC) \
$(SUBCSRC) \
$(PRIVATE_INCLUDES)

sst_mon_TASKS = forstats procvt prohlp prolat propak prohtml
sst_mon_LDADD = $(LDADD) ‘fio_link‘

SUBSRC = sst_clean.f sst_fwild.f sst_latex.f sst_puts.f sst_trcvt.f \
sst_cntac.f sst_get.f sst_latp.f sst_rdad1.f sst_trhlp.f \
[blah...]

SUBCSRC = find_file.c

PRIVATE_INCLUDES = SST_PAR SST_SCB

special installation directory (but see discussion below)
sstsupportdir = $(bindir)
sstsupport_DATA = sun.tex sst.tex layout.tex forstats.dat html.sty

The ‘start’ script needs to have installation locations edited into it
edit = sed \

-e ’s,@bindir\@,$(bindir),g’ \
-e ’s,@VERSION\@,$(VERSION),g’

start: start.in
rm -f start.tmp start
$(edit) \

-e ’s,@edited_input\@,start: produced from start.in by Makefile.am,’ \
$(srcdir)/start.in >start.tmp

mv start.tmp start

EXTRA_DIST = start.in $(sstsupport_DATA)

http://www.gnu.org/software/automake/manual/html_node/Install.html
http://www.gnu.org/software/automake/manual/html_node/Install.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_24.html
http://www.gnu.org/software/automake/manual/html_node/Sources.html

SSN/78.1 —Tools 12

This makefile configures and installs a script, builds and installs a monolith, and adds some supporting
data files in a non-standard place.

The SCRIPTS primary indicates to automake where and how to install the start script. The start script
must be generated, since it is to include the version number and installation location. Since it includes
the installation location, it should not be generated at configure time or install time, but instead at make
time, so that the user is free to specify one installation prefix at configure time (through ./configure
–prefix=www), override this with another prefix at build time (through make prefix=xxx) and specify a
different one – presumably a staging location or something similar – at installation time (through make
prefix=yyy install). It is the prefix at build time that is to be baked into the code, if any such baking
has to be done. This is one of the GNU conventions mentioned in Sec. 2.1, and is discussed in a little
more detail in section 4.7.2 Installation Directory Variables of the autoconf manual. This is why we have
to include a makefile-style rule for deriving the file start from its template start.in. This substitutes in
the values of the makefile variables bindir and VERSION; these get their values, in the resulting Makefile,
by having those values substituted in to the generated Makefile.in by the generated ./configure script;
the careful escaping of the @-signs in the sed command is to match the @...@ in start.in while not
matching this in Makefile.am or the resulting Makefile.in (yes, this can get a little confusing).

This Makefile.am also declares a single monolith (this and the TASKS primary below are obviously part
of the Starlink extensions to automake) and its associated SOURCES, along with its component tasks. For
fuller details of the monoliths support, see Sec. 3.4. This incidentally illustrates that automake allows
variable reuse and rewriting very similar to that supported by make.

When we are linking this monolith, we need to add a couple of link options, and we do this with a LDADD
primary associated with the sst_mon prefix. The extra link options we declare here are added to the
eventual link command, replacing the default set of option options $(LDADD), so we include that variable
in our version. We also add ‘fio_link‘, because this monolith needs to be linked against the FIO library
(automake constrains what can appear in the LDADD variable, and the ‘fio_link‘ is permissable only in
Starlink automake – see Sec. B for details).

The variables SUBSRC, SUBCSRC and PRIVATE_INCLUDES are purely user variables, with no special meaning
to automake.

The next bit of magic in this file is sstsupport_DATA. In this particular case, we want to install data files
in the same location as the binaries (why, and whether this is a good thing, is not for us to worry about
here). The obvious thing would be to say bin_DATA = sun.tex ..., but automake forbids that particular
combination of prefix and primary, precisely because it wouldn’t generally make sense (see Architecture-
independent data files in the automake manual). Instead, we can take advantage of an escape-hatch that
automake provides: a given prefix, such as sstsupport, is valid if you also define a variable of the same
name, but with dir appended. Thus we define sstsupport_DATA and sstsupportdir, and define the
latter to have the same value as the $(bindir) makefile variable, as eventually substituted (see section
The Uniform Naming Scheme in the automake manual).

If you look at the real sst component’s Makefile.am file, you will see that it does in fact use bin_DATA
rather than the sstsupport_DATA illustrated above. This is because the configure.ac in the sst compo-
nent declares the option STAR_DEFAULTS(per-package-dirs) (see Sec. A.18) which, amongst a couple of
other magic features, causes the variable bin_DATA to become legal.

This is a rather special case, and you should not have to do this sort of semi-licensed hacking very
often. In particular, you do not need to do it in the case of the Starlink standard directories /star/docs,
/star/etc, /star/examples and /star/help, since you can give these directories as prefixes to the DATA
primary. As an example, the HDS makefile installs a file containing the information it has determined
about the build machine’s floating point model, and this is declared there as follows:

noinst_PROGRAMS = hds_machine
starhelp_DATA = hds_machine.txt

hds_machine_SOURCES = hds_machine.f

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_24.html
http://www.gnu.org/software/automake/manual/html_node/Data.html
http://www.gnu.org/software/automake/manual/html_node/Data.html
http://www.gnu.org/software/automake/manual/html_node/Uniform.html

SSN/78.1 —Tools 13

hds_machine_LDADD = libhds.la ‘ems_link‘ ‘chr_link‘ ‘cnf_link‘

hds_machine.txt: hds_machine
./hds_machine >$@

This is enough to build the hds_machine application at install time, run it, and install the results in
/star/help (with the obvious changes for prefixes stardocs, staretc and starexamples).

The remaining magic in this file is the EXTRA_DIST variable. For all its cleverness, automake cannot work
out that the start.in source, nor any of the sstsupport_DATA files are to be distributed, and you need
to declare that explicitly by setting the EXTRA_DIST variable. Though it is of course deterministic (see
section What Goes in a Distribution of the manual), I find the most straightforward way to work out
whether anything needs to go here is to build a distribution and spot what was missed out.

2.1.3 Libtool

We are using unmodified Libtool. See libtool –version for the actual version.

Libtool contains the darkest magic of the autotools, so it is fortunate that we need barely concern
ourselves with it. This is because all of the technicalities of calling libtool are handled for us by the
makefile generated by automake.

The function of libtool is to build libraries. While this is generally straightforward for static libraries,
usually involving little more than working out whether ranlib is necessary, doing the same thing for
dynamic libraries is extremely platform dependent. Libtool consists of a large body of platform-dependent
code, ported to a broad range of operating systems, which implements a single platform-independent
interface.

For more details, see the libtool manual at http://www.gnu.org/software/libtool/manual.html.

Unfortunately, libtool’s library magic introduces a minor complication when you wish to run a program
under a debugger : plain gdb myprog won’t work, and you must instead use libtool –mode=execute
gdb myprog. See section ‘Debugging executables’ of the libtool manual for discussion.

2.1.4 Autoreconf: why you don’t need to know about aclocal

You don’t have to know anything very much about autoreconf, other than that, if you change one
of the autotools files Makefile.am or configure.ac., you should probably run autoreconf to bring
everything up to date. In fact, you probably don’t even need that, since the generated makefiles have
these dependencies explicit. The problem that autoreconf addresses is that when one of these files is
updated, there are several commands which might need to be re-run, including aclocal, autoheader,
libtoolize and others, and it’s a headache trying to remember which ones are which.

2.1.5 Running ./configure

Running the configure script is basically very simple: ./configure. There are, however, options and
arguments which can help you, or catch you out. You can see the full list of options with the command
./configure –help.

You set the place where the configured component will be installed with the –prefix option. This names
a directory which will end up with the standard directories bin, manifests and so on. The default is
reported by ./configure –help, and is ultimately controlled by starconf (see Sec. 3.5 and Sec. 2.4; or
Sec. 2.2.1 for a means of setting it to a per-directory default, which can be useful in certain circumstances).

Because configure’s tests potentially take quite a long time to run, it is possible to cache the results
between runs. If you add an option -C, then these results will be cached in a file config.cache in the
current directory. When you do the tree-wide configure from the top level, it is important to give this

http://www.gnu.org/software/automake/manual/html_node/Dist.html"
http://www.gnu.org/software/libtool/manual.html
http://www.gnu.org/software/libtool/manual.html#Debugging-executables

SSN/78.1 —Tools 14

option, otherwise the configure step takes an unconscionably long time. When this is happening, the
configure runs in subdirectories use the cache file in the top-level directory, and when you are running
configure in subdirectories, you can use this global cache, too. If you are in a directory two levels down
from the top (say), then you can configure slightly faster using the command

% ./configure --config-cache=../../config.cache

This reads and updates the given cache file. Sometimes, when things get a little confused, you might
need to delete this cache file – this is always safe.

The Starlink autoconf adds a couple of extra standard options.

–with-starlink[=location] If no location is provided, this does nothing. This is effectively the
default.

If a location is provided, it overrides the STARLINK environment variable which will be used.
Very rarely needed.

Option –without-starlink causes the STARLINK shell variable to be unset. Some packages might
with to configure themselves differently in this case.

–without-stardocs Controls whether documentation is built and installed. You might want to turn this
off, since it can take quite a long time. The default is –with-stardocs, and so you can disable this
with the configure option –without-stardocs.

A few components have extra options on the ./configure command. For example, the component
docs/ssn/078 (the component which holds this document) has a –with-pstoimg option, the value of
which must be the full path to a copy of the pstoimg program, to help in the cases where this cannot be
discovered automatically (this may be a temporary feature of this component).

All of the components have “Some influential environment variables” listed in the help message. This
will include at least STARLINK, and in the (very common!) case of components which include a compiler,
an environment variable such as CC or FC which allows you to override the compiler which the configure
script will find. This is useful if you want to avoid a default compiler and use a specific one instead. For
example, if you wished to use the Sun C++ compiler specifically (while on a Sun, obviously), you would
put /opt/SUNWspro/bin in your path, and set the CXX variable:

% export CXX=CC # best avoided
% ./configure

or

% env CXX=CC ./configure # best avoided

where the latter is probably preferable, inasmuch as it does not leave this important variable set, in such
a way that it can make a difference unexpectedly.

Better than either of these is

% ./configure CXX=CC

This doesn’t set CXX as an environment variable, but sets it in a similar-looking way as one of the
./configure arguments. This way is preferable to either of the above for two reasons: firstly, it does not
leave the variable set; secondly, this way ./configure ‘knows’ that the compiler has been overridden,
so that if you are using a configure cache, and you fail to do this when the directory is reconfigured,
./configure can warn you of this, in case this is not deliberate.

If you change one of these variables between runs, and are using a configure cache, then the ./configure
script will warn you like this:

SSN/78.1 —Tools 15

% ./configure -C
configure: loading cache config.cache
configure: error: ‘STARLINK’ has changed since the previous run:
configure: former value: /somewhere/else
configure: current value: /export3/sun
configure: error: changes in the environment can compromise the build
configure: error: run ‘make distclean’ and/or ‘rm config.cache’ and start over

To deal with this, simply remove the config.cache file, check that the environment variable is indeed set
as you wish, and rerun ./configure.

You can pass options to the compiler using environment variables, but you will not need to do this in
general, other than perhaps to set CFLAGS=-g to turn on debugging in the code you are building. The
variables CFLAGS and LDFLAGS are variables you might potentially set and export in the environment, for
example to point ./configure to software installed in non-standard places (perhaps you are on a Mac
and have installed Fink in /sw or OpenDarwin in /opt/local, or are on a Sun and have extra software in
/opt). In this case you might set CFLAGS=-I/opt/local/include and LDFLAGS=-L/opt/local/lib in the
environment to help configure and the compiler find libraries. Note that this is rather a blunt instrument,
and because you cannot really control where the respective flags appear in generated compiler commands,
you can end up picking up inconsistent versions of software. That is, this is a mechanism for getting
yourself out of a fix, not a recommended way of building the software.

The important point of this is that these environment variables do matter, and implicitly change the
behaviour of ./configure. You should not have them set in your environment if you don’t want this to
happen.

The values you set here act as defaults in the Makefile, and can be overriden at make time by giving
arguments to make:

% make ’CFLAGS=-g -I/somewhere/else’

2.2 Starconf, and the Starlink autoconf macros

The starconf application does some of the work of ensuring that your build directory is correctly organised.
It does the following:

• ensures that you have a ./bootstrap script;

• runs the starconf-validate application to check that your configure.ac and Makefile.am files look at
least plausible by checking, amongst other things, for the presence of a STAR_DEFAULTS invocation
in the former, and to check that the right files have been checked in to the repository;

• creates the script ./starconf.status, which allows you to inspect some of the starconf parameters.

The ./bootstrap script is ‘owned’ by starconf, and you should not change it, since it will be overritten by
starconf if a newer release of starconf includes an updated bootstrap script. If you do have some pressing
reason to change it, then remove the word ‘original’ from the second line of the bootstrap file, which
signals to starconf that it should leave the file untouched. The standard bootstrap script:

• runs starconf, using ./starconf.status if necessary to find the path to the program;

• bootstraps any subdirectories named in the AC_CONFIG_SUBDIRS macro within configure.ac;

• runs autoreconf to regenerate configuration files if necessary.

SSN/78.1 —Tools 16

You need to run starconf explicitly only once, when you first prepare a directory for configuration. The
./bootstrap file which this creates itself runs starconf, so that each time you run the bootstrap script, you
run starconf also. This has no effect unless either the bootstrap script or the macro set has been updated
in the starconf installation, in which case starconf will propagate the updates to your directory. The
./starconf.status script should not be checked into the repository. The command starconf-validate
(which is invoked by starconf in passing but which may be invoked explicitly also) will tell you what
should and shouldn’t be checked in.

You might on other occasions run the ./starconf.status script. You will do this firstly to query
important locations, such as the location of the starconf templates:

% ./starconf.status --show buildsupportdata
/export3/sun/buildsupport/share

See ./starconf.status –show –all or ./starconf.status –help for the list of all the things which
you can show in this way (though be warned that this list is not yet completely stable, and may yet
change).

These variables are fixed for a particular installation of starconf (you can in principle have more than one
installation of starconf, and choose which one to invoke, but there is unlikely any need for that).

Two very important variables are STARCONF_DEFAULT_PREFIX and STARCONF_DEFAULT_STARLINK, dis-
cussed in Sec. 2.2.1 below.

A companion to the starconf application is the starconf-validate application. When run, this examines
the current directory, checking that all required files are present, and checking that you have the correct
files checked in to the repository. The command starconf-validate –help shows which files are in
which category. Note that this applies only to directories which are fully Starlink applications – those
in the libraries and applications directories; components in the thirdparty tree, on the other hand,
have some starconf features such as a component.xml file, but are not valid according to starconf-validate;
also ‘bundle’ directories such as libraries/pcs, which have no actual code in them, are not valid in this
sense.

There are templates available for the most important starconf files. See Sec. 2.2.3.

The final component of the starconf system is the file component.xml. This is an XML file containing
information about the particular component in the directory. The information in this file is redundant with
some of the information you specify in configure.ac, and so the best way to ensure the two are consistent
is to configure component.xml from configure.ac. To this end, there is a template component.xml.in
file in the starconf ‘buildsupportdata’ directory. When you are preparing a directory to be build with
the Starlink tools, copy this template-component.xml.in into the current directory under the name
component.xml.in, and fill in those field which are not configured. Remember to uncomment the
elements you fill in! See Sec. 2.2.4 for details. The files component.xml and component.xml.in should
both be checked in.

2.2.1 STARCONF_DEFAULT_PREFIX and STARCONF_DEFAULT_STARLINK

Two very important variables are STARCONF_DEFAULT_PREFIX and STARCONF_DEFAULT_STARLINK. The
first is the default installation prefix of the software you are building; the second is the location of a
currently built Starlink tree, which will be used for applications and include files if they are not found
under STARCONF_DEFAULT_PREFIX.

The value for each of these was frozen when starconf was itself built and installed, most typically at
the time of the tree-wide bootstrap, and you can see the values for these with the command starconf
–show STARCONF_DEFAULT_PREFIX for example. You can also see the results of this configuration in
the ./configure script itself, as the command ./configure –help indicates within its output where
material will be installed by default. It is not unreasonable to have more than one starconf installation,

SSN/78.1 —Tools 17

depending on your path, if you wish to have different frozen-in defaults here. The value of each of these
two variables is typically something like /star.

It is important to emphasise that these parameters are frozen when starconf is built, and their values are
ignored when a component is itself bootstrapped. If you need to change either value, then there are two
ways you can do this.

The first, much more common, way is to provide the –prefix option when you run ./configure in a
component (this overrides the frozen-in value of STARCONF_DEFAULT_PREFIX), or you can set the STARLINK
variable as a ./configure argument line (or less securely default it from the environment, see Sec. 2.1.5
for discussion), overriding the frozen-in value of STARCONF_DEFAULT_STARLINK.

Specifying –prefix or STARLINK each time you run ./configure might be troublesome when you are
working on a component’s configuration script, especially as doing this inconsistently would produce
very confusing results. You might want to do this if you are working on a repository branch, and so
want built material from the current directory to be installed in one branch-specific place, while using a
Starlink tree based on the trunk. You can default this on a per-directory basis by using a m4 back-door.
Create a file acinclude.m4 in the directory in question, and include in it a line like:

m4_define([OVERRIDE_PREFIX],[/my-branch/star])

(or OVERRIDE_STARLINK to override that variable). Then run ./bootstrap, which invokes ‘autoreconf’ in
turn, and the generated ./configure file will have the named directory as its default prefix. This method
is in principle fragile, and uses a partly-deprecated autoconf interface, and so is not guaranteed to work
for all time. It is at present adequately robust in practice, however, and so is a respectable technique as
long as you are aware that it is to some extent a rather special effect.

In general, however, we recommend that you do not adjust –prefix, and that you leave the STARLINK
variable unset. Also, since they are ignored at all times except when the whole tree is being configures, it
might be wise not to have the STARCONF_DEFAULT_... variables set, which could trick you into believing
that they are (not) having some effect.

2.2.2 Components

Throughout this documentation, the term ‘component’ is used rather than ‘package’. The distinction is
that the components are the units of organisation within the CVS tree, and the packages are the units
which are distributed as tarballs. These will generally overlap, but the mapping may not be one-to-one,
so that the components within the CVS tree might not be reflected in ultimately distributed packages.

A ‘component directory’ is a directory which has a component.xml.in file in it. All component directories
will have a manifest file created and installed in .../manifests; non-component directories will not
have manifest files. Everything that’s installed must be installed as part of some component or other.
This helps when you want to remove a component (a very primitive de-installer is therefore rm -f ‘sed
’1,/<;files>;/d;/<;files>;/,$d’ .../manifests/XXX‘), and packaging for distribution should be
easy.

The starconf ./bootstrap scripts, which are installed by the starconf application, recurse into the direc-
tories listed in a configure.ac file’s AC_CONFIG_SRCDIR macro, and will stop recursing when they find
a component.xml.in file. They’ll warn if they find a component.xml.in file in any AC_CONFIG_SUBDIRS
directory, but ignore it, and exit with an error if they do not find a component.xml.in file and there are
no AC_CONFIG_SUBDIRS directories in which to search further. That is, the tree of directories which the
top-level bootstrap traverses should have component.xml.in files at or above all its leaves.

This further implies that a component ‘owns’ all the tree beneath the component directory, and thus that
you cannot have one component located within another.

This means that bootstrap files only have to appear within component directories, but not their children,
and starconf/autoreconf and starconf-validate only have to be run in component directories. Macros

SSN/78.1 —Tools 18

like STAR_DEFAULTS are still usable in the subdirectories’ component.ac files (because auto(re)conf in the
parent handles those macros when it remakes the child configures).

Automake spots component.xml.in files and will only arrange to install a component manifest if it
does fine a component.xml.in file. It also demands that the STAR_SPECIAL_INSTALL_COMMAND macro (see
Sec. A.29) appear only in configure.ac files in a component directory (that macro is a sufficiently magic
blunt instrument that it shouldn’t be allowed to lurk where it can’t have an eye kept on it).

The starconf-validate script checks these various assertions. As usual, starconf-validate should be
regarded as pickily authoritative about how things are ideally configured, and if it objects to something,
that means either that the the directory in question is non-ideally configured (and should be fixed), or
the part of SSN/78 that suggested you set things up that way is out-of-date or unclear and should be
clarified.

2.2.3 File templates

There are three templates available as part of the starconf system. They are located in the starconf
‘buildsupportdir’: given that the starconf application is in your path, you can find this location with
starconf –show buildsupportdata, and if you have a starconf.status script in your local directory,
you can find this directory with ./starconf.status –show buildsupportdata.

The three templates present are template-Makefile.am, template-configure.ac and template-component.xml.in.

2.2.4 The format of the component.xml file

The meaning of the elements in the component.xml DTD is as follows.

component: attribute ‘id’ The ID for this component. This must match the package name in configure.ac,
and is the name under which the manifest file is installed. Let this remain under the control of
configure.ac

component: attribute ‘status’ The status of this component, which can be current (the default, and
assumed if no such attribute is present), or obsolete. When the Makefile.dependencies file is
regenerated, the program doing that will warn if any component depends on a component marked
obsolete.

version The version number of this component. This must match the version number in configure.ac.

path This is the path to this package within the CVS repository, without any leading slash. Make sure
this is correct, or else the top-level build will probably fail.

description A brief description of the component.

abstract A fuller description of the component.

dependencies This is the set of component IDs which this component depends on. This is managed by
the STAR_DECLARE_DEPENDENCIES macros, and should not be adjusted by hand.

developers This is a non-exhaustive list of those who have worked on this package. Little use is made
of this at present, but its use is likely to extend, for example to be the source of recipients for CVS
commit messages. The fields within it are <name>, which is the real name of the individual; <uname>,
which is the username of the developer on the CVS system; and <email>, which is the person’s
email address. The last two elements are not required.

documentation A list of SUNs and the like. At this stage the format of this element is not completely
finalised, and it is best to leave its maintenance to the STAR_LATEX_DOCUMENTATION macro.

bugreports The email address for bug reports.

SSN/78.1 —Tools 19

notes Any other notes that might be of interest or utility.

Note that, since this is an XML file, you will have to escape the ampersand, left- and right-angle-bracket
characters as &, < and > respectively (well, you don’t actually have to escape the right angle
bracket character, but it looks marginally neater if you do). There are no other entities defined in this
context.

The DTD for this file is included in the repository, at buildsupport/starconf/componentinfo.dtd, with
a RelaxNG version at buildsupport/starconf/componentinfo.rnc.

2.3 Version numbers

The only place where you should specify a version number is as the second argument to the AC_INIT
macro; if you need the version number anywhere else, such as a bit of code which reports the package
version number, you should put it there with the @PACKAGE_VERSION@ substitution variable, or one of the
variants of this defined by STAR_DEFAULTS (see Sec. A.18).

Starlink follows the usual practice of indicating release versions with a three-part version number,
major.minor-release. We have no particularly precise rules controlling these, but the major version number
is typically incremented for a release which contains a major change in functionality or implementation,
the minor is incremented for changes of functionality less significant than this, and the release number is
incremented for bugfix releases, involving no functionality changes at all.

If a component contains a shared library, then the maintainer may elect to maintain shared library
versioning information [XXX: should we make this a requirement for libraries?]. Since we use libtool, we
can use its -version-info interface to maintain library versions. This is documented in section ‘Updating
library version information’ of the libtool manual, but the explanation is repeated and elaborated below.

The crucial thing to remember is that the versioning information encoded in this -version-info option
is not the component version number, but instead an encoding of which interface versions a given shared
library implements, in the form of a triple current:revision:age. ’Current’ is the interface version, as a
monotonically increasing integer, and ’age’ is a statement of how many interfaces are compatible with it:
if a library has a triple c:r:a, then it implements all the interfaces between versions c-a and c, inclusive.
When you’re making a new release of a library which had the -version-info c:r:a,

(1) If the interface is unchanged, but the implementation has changed or been fixed, then increment r.

(2) Otherwise, increment c and zero r.

(a) If the interface has grown (that is, the new library is compatible with old code), increment a.

(b) If the interface has changed in an incompatible way (that is, functions have changed or been
removed), then zero a.

This is illustrated in Sec. 2.3.

The libtool documentation suggests starting the version-info specifications at 0:0:0, and this is the default
if no -version-info option is present. Since only some Starlink libraries have this versioning maintained,
it is best if you start the specification at 1:0:0, to distinguish this from those libraries which have no
version-info defined.

You add the -version-info specification to the libtool command using the library’s LDFLAGS variable, as
follows. First the Makefile.am (from the prm component):

http://cvsweb.starlink.ac.uk/cvsweb.cgi/buildsupport/starconf/componentinfo.dtd
http://cvsweb.starlink.ac.uk/cvsweb.cgi/buildsupport/starconf/componentinfo.rnc
http://www.gnu.org/software/libtool/manual.html#SEC35
http://www.gnu.org/software/libtool/manual.html#SEC35

SSN/78.1 —Tools 20

Figure 2.5: Updating -version-info specifications

libprm_la_SOURCES = \
$(F_ROUTINES)
$(PUBLIC_INCLUDES) \
$(PRIVATE_INCLUDES) \
PRM_PAR

libprm_la_LDFLAGS = -version-info $(libprm_la_version_info)

libprm_a_la_SOURCES = \
$(PLATFORM_C)

libprm_a_la_LDFLAGS = -version-info $(libprm_a_la_version_info)
[...]

and then the corresponding section from configure.ac:

AC_INIT(prm, 1.3-1, starlink@jiscmail.ac.uk)
Version-info specifications. See SSN/78 for guidelines, and update the table
below for ANY change of version number.
#
Release libprm.la libprm_a.la
1.3-1 1:0:0 1:0:0
AC_SUBST(libprm_la_version_info, 1:0:0)
AC_SUBST(libprm_a_la_version_info, 1:0:0)

[...]

There is no automake magic to the libprm_la_version_info variable name – it is just mnemonic, and
you are free to change it if you have a good reason to do so. Since there is no fixed relationship between
the component version number and the -version-info specification, it is important to maintain a simple
table of associations between the two, and the configure.ac file is a sensible place to do that.

2.4 A few remarks on state

There is quite a lot of state held within the starconf build tree. This section contains a few notes on where
this state is, and how to handle it.

Since most of the details here are rather intricate, you might save time by looking at the list of FAQs on
state in Sec. 5.3.

Autotool state: The most obvious state within the tree is the existence of the configure and Makefile.in
files which are the generated by autoconf and automake. Files config.h.in and aclocal.m4, are
also part of this process, inasmuch as they are generated by autoreconf: config.h.in is based on
the declarations within configure.ac; aclocal.m4 is a local cache of m4 macros, drawn from the

SSN/78.1 —Tools 21

starconf, autoconf, automake and libtool installations. Other objects generated by the autotools are the
cache directory autom4te.cache and the tool links config.guess, config.sub, depcomp, install-sh,
ltmain.sh, missing and stamp-h1. All of this can be happily blown away by hand, and a lot of it is
removed by make maintainer-clean, though this doesn’t remove things like config.h.in which are
required for ./configure to run. Most of this state is maintained reliably by the dependencies within
Makefile.in – for example if you update Makefile.am, then a simple make will remake Makefile.in
and regenerate Makefile before using the new Makefile to do the build. If you have removed this state
or suspect that it may be out of date, then autoreconf will always regenerate it – it’s always safe to rerun
autoreconf.

Configuration state: When ./configure runs, its most obvious effect is to transform the .in files into their
corresponding configured results. However at the same time, it creates a log file in config.log (which can
be handy to examine if a configure script fails or appears to give wrong answers), a cache in config.cache
if you ran ./configure with the -C option, it creates the directory-specific ./libtool script, and it creates
a file config.status. This last file holds most of ./configure’s state, and can be used to either regenerate
a particular file (./config.status Makefile) or else to update itself (./config.status –recheck has
the effect of rerunning ./configure with the same options such as –prefix which were given to the
./configure script last time). You won’t often have to run ./config.status yourself, but it’s reassuring
to know what it’s doing when the makefile runs it for you. It is always regenerated afresh by running
./configure.

Build state: The compiled files are obviously part of the build state, and can be removed by make clean
and regenerated with plain make. Less obviously part of this state are the directory .libs, which is
libtool’s’ workspace and holds different types of objects and libraries, and .deps, which holds depen-
dency information gleaned as part of the last build. Less obviously still are those (few) .in files which
are configured as part of the build. As mentioned in Sec. 2.1.2, so-called ‘installation directory vari-
ables’ should be substituted at make time rather than build time, with a hand-written makefile rule in
Makefile.am.

Starconf state: There is essentially no starconf state, since the starconf system’s only role is to manage the
bootstrap file and provide the extra autoconf macros (installed in the buildsupport part of the tree when
starconf itself is installed). The starconf.status file is purely a cache of starconf variables, and allows
you to locate the starconf installation which was used most recently. At one time, the starconf.status
file did hold state, and allowed you to manipulate it, and was even checked in; this is no longer the case.

Build tree and installation state: The last noteworthy state is that in the build tree as a whole. The
top-level makefile requires some state in order to manage its bootstrapping ‘make world’ build. This
build is organised by representing the build and link dependencies between components by makefile
dependencies between the components’ installed manifests, which are installed in the .../manifests
directory alongside, and at the same time, as the component is installed by the install Makefile target.
Thus this is state held outside of the build tree. If the ‘make world’ build sees that a manifest file is up-to-date
with respect to the dependencies expressed in Makefile.dependencies , it makes no attempt to build it,
even if the component itself has been updated and itself needs rebuilding and reinstalling. A slight
wrinkle here is that the ‘buildsupport’ tools – namely starconf and the autotools – are not explicitly listed
as being a dependency of anything, since they are in fact a dependency of everything. Since they are
rather a special case, these are built within the top-level bootstrap script, and the best way to run that ‘by
hand’ is via the command ./bootstrap –buildsupport, noting that the remarks about dependencies
above apply to this process also. Thus, if you update a component – including one of the buildsupport
components – and wish the top-level ‘make world’ build to notice this, the best way to do this is to first
delete that component’s manifest file from the installation tree. This process might change slightly with
starconf developments (see Sec. C).

CVS state: This isn’t really part of the build system as such, but this seems a good place to point out, or
reassure you, that all the state for a CVS checkout directory is in the files in the CVS subdirectory, and that
all the repository state for the directory is in the files in the corresponding directory within the repository.

SSN/78.1 —Tools 22

2.5 Preprocessable Fortran

The Starlink build system includes support for preprocessable Fortran, in both autoconf and automake.

As described in Sec. B, the installed version of autoconf is extended with support for preprocessable
Fortran, by adding the two macros AC_PROG_FC and AC_PROG_FPP.

You should use AC_PROG_FC in preference to the macro AC_PROG_F77 described in the autoconf manual,
since the ‘FC’ support in autoconf is more flexible and more developed than the ‘F77’ support, and the
older macro is likely to be deprecated in coming autoconf releases. However a potential problem with
the AC_PROG_FC macro is that it searches for Fortran 9x compilers before Fortran 77 ones. Fortran 9x
incorporates all of strict Fortran 77 as a subset, but no more, so if you have used any of the common
Fortran extensions (which is sometimes unavoidable), you might find the Fortran compiler objecting.
In this case, you should use the second optional argument to AC_PROG_FC to specify Fortran 77 as the
required dialect:

AC_PROG_FC([], 77)

See Sec. A.12 for full details.

Unlike C, there is no preprocessor defined as part of the Fortran standard, and this is inconvenient if you
wish to use a Fortran extension if it is available, but not have the compilation fail if it is absent. This most
commonly applies to the READONLY keyword on the Fortran OPEN statement. It is possible to use the C
preprocessor, cpp, with Fortran, though not completely reliably, since the underlying syntaxes of C and
Fortran are so different that cpp is capable of emitting invalid Fortran in some circumstances.

Both the Sun and GNU Fortran compilers can handle cpp-style preprocessor constructs in a Fortran file,
avoiding any separate preprocessing stage. Sun have produced a Fortran preprocessor, fpp, which is
available at http://www.netlib.org/fortran/: it’s freely available, but not open-source. And more
often than not we can in fact fall back on simple cpp, as long as we have confined ourselves to the
#include, #define and #if... constructs. If it comes to that, such simple preprocessing could be mostly
handled with a simple Perl script.

Starlink autoconf and automake between them add support for preprocessable Fortran. Autoconf
supplies the AC_PROG_FPP macro described in Sec. A.13, to investigate what compiler and preprocessor
are available, and automake works with the results of that test to add appropriate support to the generated
Makefile.in.

For example, you might have in your configure.ac file the lines

AC_PROG_FC
AC_PROG_FPP
AC_FC_OPEN_SPECIFIERS(readonly,[access=’sequential’,recl=1])

and have in your my_io.F the lines

#include <config.h>
SUBROUTINE MYIO(...)

* blah...

OPEN (UNIT = LUCON, FILE = IFCNAM, STATUS = ’OLD’,
#ifdef HAVE_FC_OPEN_READONLY

: READONLY,
#endif
#ifdef HAVE_FC_OPEN_ACCESSSEQUENTIALRECL1

: ACCESS=’SEQUENTIAL’,RECL=1,
#endif

: FORM = ’UNFORMATTED’, IOSTAT = ISTAT)

http://www.netlib.org/fortran/

SSN/78.1 —Tools 23

The file my_io.F is listed in the Makefile.am as one of the _SOURCES of whatever library or application it
contributes to, alongside the other Fortran files. If the compiler discovered by the ./configure script
can support preprocessor statements itself, then the .F file is treated like any other; if not, and a separate
preprocessing stage is required, then the Makefile handles this itself.

Note that we are using .F here as the file extension for preprocessable Fortran: see Sec. A.13 for discussion.

In those cases where you wish the preprocessing step alone, such as when you are generating an include
file from a template, you should name the input file with a .F extension also. You will need to include a
preprocessing rule in the makefile. The following idiom might be helpful:

Run a .F file through the fpp preprocessor, to produce a file with
no extension.
The following deals with case-insensitive filesystems, on which
foo.f and foo.F would be the same file. FPP_OUTPUT is
either "" (in which case the preprocessor writes to foo.f, and
the filesystem is presumably case-sensitive) or ">$@".
foo: foo.F

rm -f foo
$(FPP) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \

$(FPPFLAGS) $(CPPFLAGS) foo.F $(FPP_OUTPUT)
test -f foo || mv foo.f foo

or the following, for a suffix rule

SUFFIXES = .F
.F:

rm -f $@
$(FPP) $(DEFAULT_INCLUDES) $(FPPFLAGS) $(CPPFLAGS) $< $(FPP_OUTPUT)
test -f $@ || mv $(<:.F=.f) $@

In this second example, in which we have elided the useful comment, we have declared the .F suffix
(we wouldn’t have to do this if there were ‘real’ .F sources in this directory), and are using the $< and $@
magic variables.

In second example, we elided most of the flag variables we included in the first one, since we probably
don’t need them. In case of doubt, copy the .F.f: rule in one of the generated Makefile.in files.

There is a more elaborate example of this in the prm component.

2.6 Using the Starlink CVS repository

The Starlink source code is held in a CVS repository, which has public readonly access.

If you have an account on the repository machine, you have read and write access to the full source
set. When you are making a fresh checkout, or giving other commands not within the context of a local
check-out, you should refer to it as

% cvs -d :ext:\emph{username}@cvs.starlink.ac.uk:/cvs <cvs-command>

where username is your username on that system; you will need to set the environment variable CVS_RSH
to ssh to connect to the repository.

There is also anonymous CVS access to the repository. Use

SSN/78.1 —Tools 24

% cvs -d :pserver:anonymous@cvs.starlink.ac.uk:/cvs login
password starlink
% cvs -d :pserver:anonymous@cvs.starlink.ac.uk:/cvs <cvs-command>

There is also anonymous web-based access to the repository at http://cvsweb.starlink.ac.uk. See
http://dev.starlink.ac.uk/ for news.

There are a few more details about CVS, including a link to a CVS Primer, in Sec. 2.7.

Part of the point of the Starlink CVS repository is to give users ready access to the fully up-to-date
sources so that more sophisticated users can build the most recent application versions for themselves
and even, if they find a bug, offer fixes. Anyone who finds a bug is invited to report it through the
Project’s bug-reporting system at http://dev.starlink.ac.uk/bugzilla/, but if this report comes with
fixes, it will be particularly welcome.

If you do have bugfixes to offer, then you should get in touch with the ‘owner’ of the component to
discuss how to give them to the project. You will find the owner of a component by looking at the file
component.xml in the component’s checkout directory; this should list those who have worked on the
component, along with someone nominated as the component’s ‘owner’.

If you make quite a few fixes, then it might be best to give you committer access to the repository, by
giving you an account on the repository machine. Talk to someone from the project about setting that up.

2.7 CVS

There is a compact CVS Primer on the web at http://purl.org/nxg/note/cvsprimer, and that includes
pointers to fuller documentation. This section includes a few tips on using CVS which go beyond that
document, or which are more specific to the Starlink CVS repository.

2.7.1 CVS and tagging

Tagging is very important, as it is through tagging that you create branches, and mark certain sets
of files as a set, so that they can be recovered as a set in future. The current tagging policy is at
http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/CvsTagging.

You make a tag with the cvs tag command, while you are in a directory with a part of the repository
checked out:

cvs tag <tag-name>

This applies the tag to the repository versions indicated by the files in the current directory. In the
most common case, you have just finished preparing the set of files for a release, so all the files in the
directory are as you want them to be, and committed. There’s a slight trap here: if there are any files
which are not committed, then it is the repository version which corresponds to the modified file which is
tagged, not the modified file itself (this is never useful; it is simply a warning to use the tag command
only in a fully-committed directory). If you tag a set of files which are on a branch, then it is (probably
unsurprisingly) the branched files which are tagged.

There is also a cvs rtag command which is similar, but operates only on the repository. You won’t need
to use rtag; don’t confuse the two.

http://cvsweb.starlink.ac.uk
http://dev.starlink.ac.uk/
http://dev.starlink.ac.uk/bugzilla/
http://purl.org/nxg/note/cvsprimer
http://wiki.starlink.ac.uk/twiki/bin/view/Starlink/CvsTagging

SSN/78.1 —Tools 25

2.7.2 CVS and recursion – checking out only a subtree

There are two traps in the way that CVS recurses into subdirectories. The first is that if a subdirectory is
present in the repository but not in your checkout (most commonly because it has been recently added to
the repository by someone else), then CVS will not by default add that subdirectory when you do an
update, and will give no indication that it is there. It is not clear to me why this is a sensible default, but
it is the case nonetheless. Only if the -d option is present on the cvs update command will the ‘missing’
directory appear.

The other ‘trap’ is that CVS does recurse by default when you do a checkout. This is almost always the
right thing, but it can be inconvenient when you want just the top level of the repository. If you wanted to
check out only the top level, or only the buildsupport tools, then the command cvs -d ??? checkout
. would not be the right thing, since it would check out the top level and everything underneath it. A
better set of commands would be

cvs -d username@cvs.starlink.ac.uk:/cvs co -l .
cvs -d username@cvs.starlink.ac.uk:/cvs co buildsupport
cvs -d username@cvs.starlink.ac.uk:/cvs co thirdparty/fsf

The first line checks out the top level directory but, because of the -l (‘local’) flag, does not recurse and
check out the complete repository. The following lines check out particular directories, usefully recursing
into their children.

If you want to check out just the applications directory, but none of its children, use

cvs -d username@cvs.starlink.ac.uk:/cvs co -l applications

while in the top-level directory. Don’t do ... co -l . in the applications directory – you’ll get the
top-level directory again.

26 SSN/78.1—Building applications and libraries

Chapter 3
Building applications and libraries

This section applies only to building code which has been checked out of the CVS repository. It does not
apply to building a distribution tarball: that process is nothing more than the usual:

% ./configure
% make
% make install

with the usual options for the ./configure script, of which the most important is –prefix to control the
installation location of the code. The default location is typically /star, though a particular distribution
might have a different value (see ./configure –help for more details).

Recall that the make install, above, installs a manifest listing the files actually installed, in the di-
rectory /star/manifests (depending on the value of –prefix, which defaults to the value shown by
./starconf.status –show STARCONF_DEFAULT_PREFIX).

Most users of this document will likely be concerned only with the details of building a particular
component, and thus concerned primarily with Sec. 3.3.

Only rather few users are concerned with building the entire tree, for example for the nightly build: this
is dealt with in Sec. 3.2.

Note: In all cases, you should not have the INSTALL environment variable defined. In old-style Starlink
makefiles this indicated the install location; in the new-style build system, this location is indicated by
the ‘prefix’ described above abd elsewhere, and the generated Makefiles take the INSTALL variable to be
the name of a program to use to perform the actual installation.

3.1 The top-level Makefile

The important targets in the top-level makefile are:

make world This target builds the whole tree, in an order which respects the dependencies between com-
ponents. It builds all the targets listed in the variable ALL_TARGETS within the top-level Makefile.in.
Those targets are install manifests, in the default manifest directory (/local/star/manifests in
the example below), so that make world both builds and installs the entire software set.

The bootstrap that this is part of is described in more detail in the next section.

make <manifest-file> As an alternative to make world, you may specify a single manifest file. This
builds and installs the corresponding component, and all of its dependencies. Note that this does
nothing if the given manifest file is up-to-date with respect to its dependencies on other manifest
files. If you have just updated a component, then you can rebuild and reinstall it by deleting the
component’s manifest file and remaking it.

make or make all This recurses into each of the directories listed in AC_CONFIG_SUBDIRS within the
top-level configure.ac, and invokes make all there. This target brings the tree up-to-date after a
CVS update, but it does so without respecting the dependencies between components. This target
is present for the sake of consistency, and as a convenience for bringing the local tree up-to-date
after a CVS update, and you should not use it as a shorthand or alternative for make world above.

SSN/78.1 —Building applications and libraries 27

make clean The targets clean, distclean and maintainer-clean simply recurse into the children and
invoke the corresponding target there.

make install This targets does nothing, and is also present largely for the sake of consistency. De-
pending on the context, you should use make world or, if you have just updated and rebuild a
particular component, then either delete and remake its manifest file (as mentioned above), or go to
the component’s directory and use make install.

Note that the building above presumes that all the required code is checked out of the repository – it
does not handle the checkouts for you, and if you do not have a required component checked out, it will
simply fail.

3.2 Bootstrapping and building the entire tree

If you wish to build the entire tree after a fresh checkout, you do so at the top level, using the ./bootstrap
script and Makefile.in located there. Neither of these is a ‘standard’ one, as installed by starconf or
Starlink automake.

These instructions are echoed in the file README in the top-level directory.

The complete procedure for a full build is as shown below, for an installation into the notional directory
/local/star; explanations follow.

1% cvs -d :ext:username@cvs.starlink.ac.uk:/cvs checkout .
2% unset STARLINK INSTALL
3% export STARCONF_DEFAULT_STARLINK=/local/star
4% export STARCONF_DEFAULT_PREFIX=/local/star
5% rm -Rf /local/star
6% PATH=/local/star/bin:/local/star/buildsupport/bin:...??? # see note
7% ./bootstrap
... a few harmless warnings, and miscellaneous other chatter
... takes quite a while
8% make configure-deps
... builds some programs needed before configure
9% ./configure -C
... mucho blah-blah-blah
10% make world
... etc
11% ls /local/star/manifests
adam automake ems hlp messgen par sae star2html task
ams chr fio lex messys parsecon sla starconf
atimer cnf hds libtool misc pcs sock string
autoconf dtask hdspar mers msp psx sst subpar

Line 1: check out the entire collection from the repository. See Sec. 2.7.2 for hints on how to be more
discriminating, which may be desirable, since not everything in the repository is controlled by this
bootstrapping build, most notably the contents of the java directory.

Lines 2-4: unset the STARLINK and INSTALL variables, and set the two starconf variables as shown. For
a whole-tree build, these two should have the same value, to ensure that the build uses only tools and
libraries which have been built at an earlier point in the build. For fuller details of these variables, and
more information about controlling the bootstrapping process, see Sec. 3.5. This example shows sh-style
commands for manipulating the environment; you will of course use the csh-style setenv and unsetenv
if you’re using that shell.

SSN/78.1 —Building applications and libraries 28

Also at this point you should review any other environment variables that might affect the build. For
example, the variables F77, FC and CC will force the build system to use the specified compilers. In
particular, the default IRAF installation sets the F77 variable to be a script which works happily in most
cases, but which will not work with libtool, and will cause the build to fail with opaque error messages
about being ‘unable to infer tagged configuration’. Unless you do wish to force certain compilers to be
used, it is probably better to unset these variables before building the software. Try ./configure –help
for a list of ‘some influential environment variables’, and Sec. 2.1.5 for more discussion of this issue.

Line 5: the directory where the components are to be installed can be empty, and need not exist at the
start. It doesn’t matter if this is not empty in fact, since most of the installation tree is not examined by
the build. The only exception is /local/star/manifests, since the files in this directory control what is
actually built – see the notes for line 9.

Line 6: put /local/star/bin and /local/star/buildsupport/bin in the path. Make sure that there are
no Starlink binary directories elsewhere in the path: running which messgen (for example) at this point
should find nothing.

Line 7: run the ./bootstrap script. This configures, builds and installs the ‘buildsupport’ tools – the
autotools plus the starconf application – then recursively runs the bootstrap code in a selection of the
directories beneath this one. The directories the bootstrap recurses into, in this directory and its children,
are those listed in a AC_CONFIG_SUBDIRS macro in configure.ac. After this, you should be able to do

% which autoconf
/local/star/buildsupport/bin/autoconf
% autoconf --version
autoconf (GNU Autoconf) 2.59
...
%

to verify that the correct tools have indeed been installed in the correct place.

Line 8: configure the entire tree (the -C option indicates that configure should cache its results, speeding up
the process). This configures this directory and recurses into the children named in AC_CONFIG_SUBDIRS
in this configure.ac and those below it.

If you will need to give ./configure some help to find include files and libraries, you might try setting
the CFLAGS or LDFLAGS variables in the environment, in the manner described in Sec. 2.1.5. Note, however,
that this is not a recommended practice.

Line 9: build the entire tree, using the make world target described in Sec. 3.1. The make builds all the
components in an order which ensures that each component is build after the components it depends on,
as declared in STAR_DECLARE_DEPENDENCIES invocations in those components’ configure.ac files. The
set of dependencies can be examined (if you’re interested) in the file componentset.xml, which is built
up from the various directories’ component.xml files, as reprocessed into Makefile.dependencies .

Note that the dependencies are expressed as dependencies of components’ manifest files on each other,
and the top-level makefile is written so that each component is built with the pair of commands make;
make install, which builds the component then installs both it and its manifest. Thus, if you need to
ask for a particular component, foo, to be built, you can do so from the top-level directory with make
/local/star/manifests/foo.

Line 10: after the make, a manifest is installed for each of the built components.

3.3 Building a single component

In Sec. 3.2 we saw how you would bootstrap and build the entire tree, building each component’s
dependencies before building the component itself.

SSN/78.1 —Building applications and libraries 29

If, on the other hand, you wish to build only one component, because you wish to install the latest and
greatest version of some application, or because you want to work on the CVS version, then you can do
that without, in principle, building the entire code collection.

The component directories are organised so that you can build a component from a CVS checkout by
moving to the component’s directory and giving the sequence of commands:

% ./bootstrap
% ./configure
% make
% make install

Before you can do this, however, you will have to do a little preparation, and there are two cases.

One of the functions of the ./bootstrap script is to regenerate the ./configure script if necessary, since
it is not checked in to the repository. This requires that the Starlink-specific autotools are in your path,
and so you must first install these ‘buildsupport’ tools if they are not installed already. Instructions for
that are below

There are two cases next. The first is where you currently have a built and installed Starlink system which
you either built yourself earlier, or which you installed from a Starlink distribution (note: a Starlink CD
distribution dating before 2005 doesn’t count here – though the applications and libraries are essentially
the same, the distribution and building arrangements changed radically). The second case is where you
are only interested in one component, but are starting from scratch, without a pre-existing distribution
(of course, once you successfully complete the second case, you are in the situation where the first case
applies).

Case 1 – pre-built Starlink system: This is the easy one. You need check out only the component of
interest (see Sec. 2.7.2 for notes on that).

• Change to the component’s directory.

• Define the environment variable STARCONF_DEFAULT_STARLINK to point to the top of the existing
tree, which might be /star or its equivalent.

• Define STARCONF_DEFAULT_PREFIX to point to the same place if you want to install your new
versions there, or to a different location if you want to install them separately.

At this point you can run ./bootstrap as above, and have these locations baked in to the configuration
as the defaults.

Alternatively, you can control these two locations at configure time, after you have run ./bootstrap.
You control the installation location with the –prefix option and the location of the Starlink tree either
with the STARLINK environment variable or, better, with the –with-starlink option. Although the
use of the STARLINK variable is supported, it involves less (easily forgettable) defaulting if you use the
–with-starlink option instead. See Sec. 2.1.5 for details. Having said this, setting the STARCONF_DEFAULT...
variables is probably preferable, since you don’t then have to remember to supply the options if you run
./configure again.

Case 2 – building from scratch: This isn’t actually much more complicated, but does take a little longer.
You need to check out all of the components that your component depends on; since there is (currently)
no automatic way to discover what this set of components is, in practice you might as well check out
the whole repository. Since you don’t have a pre-built Starlink directory available, then you will have to
build all or most of the tree, before the component you’re interested in can be built. In this case, follow the
instructions in Sec. 3.2 – which include setting the STARCONF_DEFAULT_... variables to suitable values –
but instead of finishing with make world in step 9, do make /mystar/manifests/cpt, where /mystar is
the location you have chosen for the installation tree (as specified in STARCONF_DEFAULT_STARLINK), and
cpt is the component you are interested in. This will build and install in turn each of your component’s
dependencies, and then the component itself.

SSN/78.1 —Building applications and libraries 30

If you are doing this because you want the latest and greatest version of a particular component, then
you are finished.

If you are doing this because you want to do development work on the component, then you might well
want to keep the functioning version separate from your development version. In this case, you need
to go through this procedure once with STARCONF_DEFAULT_STARLINK and ..._PREFIX having the same
values, as above. Next, you change to the component’s directory, and either bootstrap your development
component a second time, with STARCONF_DEFAULT_PREFIX set to a separate installation location (you
are now in the situation where case 1 applies, above, and you can give the comments ./bootstrap;
./configure; make); or else re-run ./configure with its –prefix option set to point to that alternative
location (the first mechanism simply sets the default for the second, and is probably preferable for the
reasons mentioned above).

Note that part of the function of the ./configure script is to find the location of important files and
freeze them in to the Makefile. Thus the STARLINK variable is ignored after configure-time, so that you
cannot, in general, change the STARLINK variable or change your path, and have new binaries picked up.

3.4 Building monoliths

As illustrated in Sec. 2.1.2, you can build monoliths in an analogous way to the way you build programs,
by declaring the monoliths as the value of the bin_MONOLITHS variable.

Along with the bin_MONOLITHS variable, a Makefile must also declare a set of tasks using the TASKS
primary, and this set will be empty if the monolith is an ATASK. If a monolith foo has a set of tasks a and
b, then this declaration will look like this:

bin_MONOLITHS = foo
foo_TASKS = a b

That is, the tasks are listed without any .ifl extension.

The foo_TASKS primary indicates to automake that there will be .ifl files in the local directory corre-
sponding to each of the tasks in the monolith, that these .ifl files should be distributed, and that the
appropriate extra links should be made, in the binary directory, when the monolith is installed. The tasks
variable might also be used in the foo_SOURCES variable to declare the dependence of the monolith on
the Fortran files corresponding to the tasks (it would be possible to automake to have inferred this last
step, but it seems clearer overall to have this dependency at least made explicit). Automake permits the
usual Makefile variable rewritings, so that if you have a Fortran file corresponding to each task, then this
set is $(foo_TASKS:=.f)which might be useful.

The generated Makefile.in will install each of the task .ifc files, plus the monolith .ifc file. The mono-
lith .ifl file is constructed by appending each of the task .ifl files, wrapped in begin monolith and
end monolith, and this generated .ifl file should not be included in the repository or the distribution.

If you are building an ATASK, then the task is the same name as the program. Indicate this by omitting
the ..._TASKS variable:

bin_MONOLITHS = foo
no variable foo_TASKS, since foo is an ATASK

(the extra comment is useful to help document the slightly non-obvious construction here). In this case,
the only .ifl file is that for the ATASK. The makefile makes sure that this .ifl file is distributed, so the
file should either exist, or have a rule in the Makefile.am.

The MONOLITH primary allows the prefixes bin, check and noinst, rather like PROGRAMS.

In order to use the monolith support, you must request this by including the declaration STAR_MONOLITHS
in the configure.ac file, most rationally near the AC_PROG_CC-style declarations.

SSN/78.1 —Building applications and libraries 31

3.5 Bootstrapping without building: configuring starconf and the
autotools

If you intend to work only on a single component, then you can configure and build it as described in the
previous section. As described there, the bootstrapping procedure requires that the ‘buildsupport’ tools –
starconf plus Starlink-specific autotools – be installed and in your path.

You must install the autotools which are part of the CVS repository, since these have been extended and
customised specially for the Starlink build tree (for the details of the differences, see Sec. B). The standard
autotools will not work.

The way to do this is to make sure you have the required components checked out (see Sec. 2.7.2), then
go to the top of the tree and give the command

% ./bootstrap --buildsupport

This builds and installs the ‘buildsupport’ tools – namely the autotools plus starconf – but does not
go on to bootstrap the rest of the tree. The functions of the variables STARCONF_DEFAULT_PREFIX and
STARCONF_DEFAULT_STARLINK were described in Sec. 2.2: in order to configure starconf at this stage, you
must define these two variables as environment variables before running the ./bootstrap script. This
will cause the tools to be installed in the directory $STARCONF_DEFAULT_PREFIX/buildsupport/bin, and
the configured starconf to configure components, when it is itself invoked, so that the default value of
STARCONF_DEFAULT_PREFIX is the value given here, as described in the previous section.

You must use this method of configuring starconf and the three autotools – autoconf, automake and
libtool.

After that, you should put the .../buildsupport/bin directory in your path, and start work.

See also Sec. 2.2.1 for how to make a version of the buildsupport tools which has a default installation
prefix different from the buildsupport installation location.

32 SSN/78.1—Incorporating a package into the Starlink build system

Chapter 4
Incorporating a package into the Starlink build
system

The process of adding a package to the build system, and autoconfing it, is reasonably mechanical. The
main differences from the traditional build system are as follows.

There is now no ./mk file, and so no platform configuration using the $SYSTEM environment variable.
Instead, all platform dependencies should be discovered by the configuration process. It is only in rather
extreme cases that you will need to resort to platform-specific code, and that should be handled by the
starconf macro STAR_PLATFORM_SOURCES.

You should try to avoid mentioning or referring to any specific platform when configuring. Test for
features, working with those you find, and working around those you don’t; don’t test for platforms and
believe you can reliably then deduce what features are available.

Traditional Starlink makefiles had two phases, ‘build’ and ‘install’ (plus the various export targets). These
makefiles often did on-the-fly editing of scripts as they were being installed, to edit in version numbers,
or the correct path to Perl, for example. There was also implicit configuration done in the ./mk script,
which specified platform-specific compiler flags, or versions of ‘tar’.

GNU-style projects, on the other hand, have three phases, ‘configure’, ‘build’ and ‘install’, and source file
editing happens only in the first two – installation consists only of the installation of static files. Most
configuration editing happens at configure time, when .in files are substituted with static information,
such as the absolute paths to programs, determined as part of configuration. In the case where the
substitution involves installation directory variables, GNU (and thus general) conventions demand that
this be done at build time, since these directories involve the $(prefix) makefile variable, and it is
deemed legitimate for the user to specify a different value at build time (make prefix=xxx) from that
specified or implied at configuration time. The user may then specify a different prefix again at install
time (make prefix=yyy install) for the purposes of relocating or staging the install, but this must not
invalidate the value of $(prefix) which may have been compiled into applications. This is discussed in
some detail in section 4.7.2 Installation Directory Variables of the autoconf manual, but you generally
do not have to worry about it, since it is rather rare in practice that you have to compile installation
directories into the applications and libraries that you build.

In general, whereas traditional Starlink makefiles quite often performed spectacular gymnastics at install
time, GNU-style makefiles generally do nothing at install time, other than occasionally adding extra
material to the install via one of the installation hooks supplied by automake (see section What gets
installed of the automake manual).

In the traditional build system, the master source was regarded as rather private to the developer who
‘owned’ the code, who was free to use whatever occult means they desired to produce the sources
which were put into the three distribution objects, ‘export_source’ (just the source), ‘export_run’ (just
the executable) and ‘export’ (both). Now, everything should be put into the CVS repository, including
any code-generation tools either as separate packages or as local scripts, and it is this source set which is
used for nightly builds and the like. If you need tools to generate some of the distributed sources, and
they cannot be included in the package for some reason, they should be checked in, and your component
should declare a ‘sourceset’ dependency on the required tool (see Sec. A.17).

With these remarks out of the way, the following is a description of the steps involved in bringing first an
application into the new fold, and then a third-party component.

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_24.html
http://www.gnu.org/software/automake/manual/html_node/Install.html
http://www.gnu.org/software/automake/manual/html_node/Install.html

SSN/78.1 —Incorporating a package into the Starlink build system 33

4.1 Autoconfing a library

The example here shows the autoconfing of the adam library, chosen simply because it’s relatively simple.

Make a directory to hold the package, and add it to the repository

% pwd
<cvs-checkout>/libraries/pcs
% mkdir adam
% cvs add adam
Directory /cvs/libraries/pcs/adam added to the repository
% cd adam

Get the complete set of source files, and check them in to the repository. This means unpacking all the
files in adam_source.tar, which you can find in /star/sources/pcs/adam (as it happens).

In this case, the adam_source.tar distribution tarball is a suitable set of sources. This is not always true,
since some Starlink distributions – especially some of the larger libraries and applications – do quite
elaborate processing of their sources in the process of creating this ‘source’ tarball; in these cases, you
should attempt to obtain a more fundamental set of sources from the package’s developer (if that is not
you).

The ideal source for new code is a CVS or RCS repository. A CVS repository is easy to import – you just
tar it up and unpack it into the correct place within the Starlink repository. An RCS repository is barely
harder, with the only difference being that you have to create the Starlink repository directory structure
by hand, and copy the RCS files into place within it. The only gotcha with this route is that you must
make sure that the permissions are correct on the resulting repository: you must make sure that everyone
who should have any access to the repository can read and write each of the directories.

CVS repository access is controlled by groups (at least when the repository is shared), and so each
directory within the repository must have a suitable group ownership, with group-write permissions;
each directory must also have the setgid bit set, so that any directories created within it inherit its gid.
Make sure you check this as soon as you put the repository in place, or else everyone will have problems
with the repository. Within the Starlink repository in particular, all participants are part of the cvs group.
In short, you can set the correct permissions on an imported directory foo with the commands

% find foo -type d | xargs chgrp cvs
% find foo -type d | xargs chmod g+sw

This sets the group-owner of each directory to be cvs, and sets the group-write and set-group-id bits in
the permissions mask (don’t tinker with file permissions, since these affect the permissions of the checked
out files). You need not worry about file or directory ownership, since this always ends up being the last
person who committed a file. Note: The instructions here are based on observation of CVS repositories;
the actual requirements don’t seem to be formally documented anywhere.

Add all of the source files, including files like the mk script and the old makefile, which we are about to
remove. Tag this initial import with a tag <component>-initial-import, so that it is possible to recover
this old-style distribution if necessary. As mentioned above, it is not always completely clear what
constitutes the old-style source set: so don’t do this step mechanically, use your judgement, and above all
avoid losing information. Note also that some of the infrastructure libraries were added before we settled
on this particular tagging practice, and so lack such an initial tag.

In this present case, the adam_source.tar file includes a Fortran include file containing error codes,
adam_err; there are two problems with this.

Firstly, the filename should be uppercase: the file is generally specified within the program in uppercase,
and it should appear thus on the filesystem. The traditional makefile works around this by creating a

SSN/78.1 —Incorporating a package into the Starlink build system 34

link from adam_err to ADAM_ERR, but this won’t work (and indeed will fail messily) on a case-insensitive
filesystem like HFS+, used on OS X.

The second problem is that this is a generated file, though the source is not distributed, is probably
misplaced, and in any case the generation was probably done on a VAX a decade ago. All is not lost,
however. The functionality of the VAX ‘message’ utility is duplicated in the application messgen, in a
component of the same name, along with an application cremsg which constructs a source file from this
message file. Thus it is neither adam_err nor ADAM_ERR which we should check in, but the source file
adam_err.msg which we reconstruct using cremsg. Thus with error files, it is the (probably reconstructed)
.msg file which should be checked in to the repository, and not the _err, _err.h or fac_xxx_err files
which you may have found in the old-style distribution.

The file adam_defns is similar, but this is genuinely a source file, so we need do nothing more elaborate
than rename it to ADAM_DEFNS, then add it to the repository and remove the original lowercased version.
Many packages have one or two xxx_par files, and these should be similarly renamed to XXX_PAR.

% tar xf /star/sources/pcs/adam/adam_source.tar
% chmod +x adam_link_adam
% cremsg adam_err
% cvs add *.f mk makefile adam_link_adam adam_defns.h adam_defns adam_err.msg
...
cvs server: scheduling file ‘adam_err.msg’ for addition
cvs server: use ’cvs commit’ to add these files permanently
% cvs commit -m "Initial import"
% cvs tag adam-initial-import
% mv adam_defns ADAM_DEFNS
% cvs remove adam_defns
% cvs add ADAM_DEFNS
% rm mk makefile
% cvs remove mk makefile

Note that CVS preserves access modes when it stores files, so we should make sure that the script
adam_link_adam is executable before checking it in, and we need not bother to make it executable as part
of the build process. On the other hand, scripts which are substituted by configure do need to be made
executable explicitly, which you do by a variant of the AC_CONFIG_FILES macro. The macro invocation

AC_CONFIG_FILES(foo, [chmod +x foo])

substitutes foo from source file foo.in and then makes it executable. Note that the sequence

AC_CONFIG_FILES(foo)
chmod +x foo

would not work, since this is one of the cases where autoconf macros do not simply expand inline to shell
code. For further discussion, see the section Performing Configuration Actions in the autoconf manual.

Create files configure.ac, Makefile.am and component.xml.in by copying the templates in the starconf
buildsupport directory (starconf –show buildsupportdata); the fields in the component.xml.in file
are discussed in Sec. 2.2.4. If you have an editor that can use it, you might also want to create a link to the
DTD used for the component.xml file, which is in the same directory. Edit these files as appropriate, using
information in the original Starlink makefile for guidance (so it’s useful to keep a copy of the original
makefile handy, rather than simply deleting it as illustrated above). Then check the files in.

What edits should you make?

The adam Makefile.am file looks as follows:

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_20.html

SSN/78.1 —Incorporating a package into the Starlink build system 35

bin_SCRIPTS = adam_link_adam
lib_LTLIBRARIES = libadam_adam.la
libadam_adam_la_SOURCES = $(PUBLIC_INCLUDES) $(F_ROUTINES)
include_HEADERS = $(PUBLIC_INCLUDES)
PUBLIC_INCLUDES = ADAM_ERR ADAM_DEFNS adam_defns.h
F_ROUTINES = \

adm_acknow.f adm_getreply.f adm_getreplyt.f adm_path.f \
adm_prcnam.f adm_receive.f adm_reply.f adm_send.f \
adm_sendonly.f adm_sendt.f adm_trigger.f

Four out of six of these variable declarations are variables meaningful to automake (see Sec. 2.1.2), and
the other two are simply copied from the original makefile.

The adam configure.ac looks like this:

AC_INIT(adam, 3.0, starlink@jiscmail.ac.uk)
AC_PREREQ(2.50)
AM_INIT_AUTOMAKE(1.8.2-starlink)
AC_CONFIG_SRCDIR([ADAM_DEFNS])
STAR_DEFAULTS

AC_PROG_FC
AC_PROG_LIBTOOL
STAR_CNF_COMPATIBLE_SYMBOLS

STAR_DECLARE_DEPENDENCIES(build, [sae messys])
STAR_DECLARE_DEPENDENCIES(link, [chr psx ems messys])

dnl There is no .msg file in this directory. The ADAM_ERR file
dnl contains only a single definition, of the parameter ADAM__OK.

AC_CONFIG_FILES(Makefile component.xml)
AC_OUTPUT

The first five lines are straightforward boilerplate (see Sec. 2.1.1). The next three find a Fortran compiler,
declare that we want to use libtool to build our libraries, and finally that we wish the symbols in that
library to be of the sort that the CNF package is able to handle (see Sec. A.16). The ‘FC’ autoconf macros
will search for a Fortran compiler by looking for a f95 compiler before looking for a f77 compiler; if you
know or discover this is inappropriate, then you can constrain the Fortran dialect that AC_PROG_FC will
look for by giving a value for its optional dialect argument. Macro AC_PROG_FC is not yet documented in
the autoconf manual, but see Sec. B.

After that, we declare the dependencies. The dependencies you work out by any and all means you can.
For a library, the set of ‘build’ dependencies is determined by the set of components which supply files
which the code here includes. Grepping for all the Fortran INCLUDE statements and all the C #include
directives is a good start. For link dependencies, grepping for CALL lines is useful for Fortran, and
grepping for

= *\([A-Za-z][A-Za-z]*__*[A-Za-z][A-Za-z]*\) *(.*

will probably be handy. In fact, the script

#! /bin/sh -
sed -n \

-e ’s/^ *\(INCLUDE\|include\) *’\(.*\)’.*/_ \2/p’ \
-e ’s/^ *\(CALL\|call\) *\([A-Za-z]*_[A-Za-z]*\).*/\2/p’ \
-e ’s/.*= *\([A-Za-z][A-Za-z]*__*[A-Za-z][A-Za-z]*\) *(.*/\1/p’ \
${1+"$@"} | \

sort | \
uniq

SSN/78.1 —Incorporating a package into the Starlink build system 36

should give you the raw material for most of the dependencies you need. It doesn’t really matter too
much if you get this wrong – you might cause something to be built slightly later than it might be in the
top-level bootstrap, might cause some eventual user to have to download one package more than they
have to, or might create a circular dependency and break the nightly build, in which case you’ll find out
soon enough.

See Sec. A.17 for the description of the various types of dependencies you can specify here.

By the way, remember (because everyone forgets) that there are no components err and msg: all of the
err_ and msg_ functions are in the mers component.

The next couple of lines tells you that we lied outrageously, above, when we were talking about .msg
files. Though the remarks there are true enough in general, the ADAM_ERR file is special, and doesn’t
come from any .msg file. This is surprising enough that it’s worth making a remark to this effect in the
configure.ac file.

Finally, we list the files that should be configured. Essentially all starconf-style configure files should
have at least these two files mentioned here.

Now run starconf. As described in Sec. 2.2, this adds some required files, and checks that the directory
looks right. It will look something like this:

% starconf
starconf-validate: the following files are required but do not exist:

bootstrap
starconf-validate: the following files should be checked in, but aren’t

Makefile.am configure.ac bootstrap component.xml.in component.xml
Configuring with STARCONF_DEFAULT_STARLINK=/export3/sun
Configuring with STARCONF_DEFAULT_PREFIX=/export3/sun
Creating bootstrap

That complained that the file bootstrap wasn’t present, and then went on to install one for you; it
listed a number of files which should be checked in; and it added a bootstrap script. The starconf
application actually does the checking by running the starconf-validate script, which you can run yourself
independently if you wish.

Now you have a bootstrap file, so run it:

% ./bootstrap
starconf-validate: the following files should be checked in, but aren’t

Makefile.am configure.ac bootstrap component.xml.in component.xml
Configuring with STARCONF_DEFAULT_STARLINK=/export3/sun
Configuring with STARCONF_DEFAULT_PREFIX=/export3/sun
File bootstrap already exists, not overwriting
autoreconf --install --symlink
configure.ac: installing ‘./install-sh’
configure.ac: installing ‘./missing’

The bootstrap script always re-runs starconf if it can, so this reminds you that you still haven’t checked
those files in. It also runs autoreconf (Sec. 2.1.4) for you, installing the helper files that requires, and
constructing configure from configure.ac and Makefile.in from configure.ac and Makefile.am.

Now, finally, you can try ./configure and make. That might just work.

Iterate until success.

When the code is working, you will might want to add it to the set of components which are explicitly
built. To do this, add it to the ALL_TARGETS variable in the top-level Makefile.in. Next, go to the parent
directory of the directory you have just added: the configure.ac file there will almost certainly have a
skeleton configure.ac which includes a AC_CONFIG_SUBDIRS line, to which you should add your newly
working directory.

SSN/78.1 —Incorporating a package into the Starlink build system 37

4.2 The build system ‘interface’

The previous section describes the steps required to bring a component into the build system. This
section makes reasonably explicit what was implicit in that previous section, by describing the ‘interface’
between the build system and a particular component. The word ‘interface’ is in scare-quotes there
because this interface isn’t formal and isn’t enforced, but it should be useful as a check-list and as an
overview.

1. component.xml: every component has to have an XML-valid instance of this, as defined by componentinfo.dtd
with element <component> at the root level (see Sec. 2.2.4).

2. A Makefile which implements most/all of the GNU standard targets. I think we actually use ‘all’
(default), ‘install’, ‘check’ and ‘dist’ as part of the build system, and I’ve mentioned ‘clean’, ‘distclean’,
and ‘maintainer-clean’ elsewhere in this document. The GNU coding standards add ‘uninstall’, ‘install-
strip’, ‘mostlyclean’, ‘TAGS’, ‘info’, ‘dvi’, none of which we probably care much about (uninstalling
should probably be handled by whatever package-management tool we settle on, rather than a makefile).
The build system does cd xxx; make; make install for component cpt, where xxx is the contents of
/componentset/component[@id=’cpt’]/path in the componentset.xml file. This requirement comes
for free, given that you use a Makefile.am file and automake, and this requirement is mentioned only for
completeness.

3. Doing ‘make install’ additionally installs a $prefix/manifests/cpt manifest, which is a valid instance
of the componentinfo.dtd DTD with the <manifest> element at the root level. Again, this step comes
for free when you use the automake system.

4. Bootstrapping: the top-level bootstrap script includes a call to ‘autoreconf’. This configures the whole
tree, using autoconf’s built-in support for recursing, based around the macro AC_CONFIG_SUBDIRS, and
you should make sure that any new components are pulled in to this mechanism. Apart from that,
the behaviour of the ./configure scripts isn’t really part of this ‘interface’, except that components are
linked in to the tree-wide configure by virtue of being mentioned in the configure.ac scripts in their
parent (see the ‘bridging’ scripts in applications/configure.ac and libraries/configure.ac). If, for
some reason, you wished to incorporate a large number of components in a new tree (perhaps you want
to include some complicated tree of Perl modules, for example), then you would similarly hand-write
some ‘bridging’ scripts, which preserve the property that your new tree is configured (doing whatever is
required in a particular situation) when its parent is.

4.3 Distribution of components

The Makefile.in files which automake generates generally handles distribution pretty successfully, and
the command make dist will usually do almost all the work of packing your files into a distribution
which can be built portably. In some cases, however, you have to give it a little help.

There are two potential problems. Firstly, automake may not be able to accurately work out the set of
files which ought to be distributed. Consider the following makefile fragment (this, along with the other
examples in this section, is from the AST distribution, which presents a variety of distribution problems):

noinst_PROGRAMS = astbad
astbad_SOURCES = astbad.c pointset.h
AST_PAR: ast_par.source astbad

sed -e ’s/<AST__BAD>/’‘./astbad | tr ’E’ ’D’‘’/’ ast_par.source >$@

Automake packages anything mentioned in a _SOURCES variable, so astbad.c and pointset.h are
included in the distribution automatically. However it does not attempt to work out every consequence

SSN/78.1 —Incorporating a package into the Starlink build system 38

of the makefile rules, and so fails to spot that ast_par.source is going to be needed on the build host. In
general, a file which is mentioned only in a makefile dependency will not be automatically distributed by
automake. Files such as this should be included by the distribution by listing them in the value of the
EXTRA_DIST variable:

EXTRA_DIST = ast_par.source

Automake also supports the dist_ and nodist_ prefixes to automake variables. These can be used to
adjust automake’s defaults for certain primaries. Automake does not distribute _SCRIPTS by default (this
is since they are sometimes generated, but I for one find this counter-intuitive), so if you want a script to
be distributed, you must use a prefix:

bin_SCRIPTS = ast_link
dist_bin_SCRIPTS = ast_link_adam
noinst_SCRIPTS = ast_cpp
dist_noinst_SCRIPTS = makeh

We see all four common possibilities here: ast_link_adam and makeh are needed in the distribution
but need no configuration, and so should be distributed as they stand; ast_link and ast_cpp are
configured, so these files should not be distributed, since the corresponding .in files are (as a result of
being mentioned in AC_CONFIG_FILES). Also ast_cpp and makeh are used only to build the library, and
are not installed. You could get the same effect by listing ast_link_adam and makeh in EXTRA_DIST, but
it is probably a little less opaque if all the information about particular files is kept in one place.

Incidentally, the other occasionally important ‘prefix-prefix’ like dist is nobase. See Sec. 5.2.

On the other hand, files in _SOURCES variables are distributed by default, so you must turn this off if one
of these files is generated at configure time:

libast_la_SOURCES = \
$(GRP_C_ROUTINES) \
$(GRP_C_INCLUDE_FILES) \
$(GRP_F_INCLUDE_FILES) \
ast_err.h

nodist_libast_la_SOURCES = \
ast.h \
AST_PAR

Though the set of included files is deterministic, I find it is not terribly predictable, and the best way to
do this sort of tidyup is by making a distribution, trying to build it, and thus discovering which files
were left out or included by accident. There is no harm in listing a file in EXTRA_DIST which would be
included automatically.

For fuller detail on automake’s distribution calculations, see section What Goes in a Distribution of the
automake manual.

The second distribution problem is that some Starlink components do quite a lot of work at distribution
time, building documentation or generating sources, generally using programs or scripts which are
not reasonably available on the eventual build host. This is in principle out of scope for automake and
autoconf, but since it is common and fairly standardised in Starlink applications, Starlink automake and
autoconf provide some support for pre-distribution configuration.

All configuration tests in configure.ac should be done unconditionally, even if they are only mean-
ingful prior to a distribution – they are redundant afterwards, but cause no problems. Any files
which should be present only prior to the distribution should be listed in configure.ac inside macro
STAR_PREDIST_SOURCES. The ./configure script expects to find either all of these files or none of
them, and if it finds some other number, it will warn you. If it finds these files, it concludes that you are

http://www.gnu.org/software/automake/manual/html_node/Dist.html

SSN/78.1 —Incorporating a package into the Starlink build system 39

in a pre-distribution checkout, and sets the substitution variable @PREDIST@ to be empty; if it finds none,
it concludes that you are in a distributed package, and defines @PREDIST@ to be the comment character #.
This means that makefile fragments which are only usable prior to distribution should all be prefixed
with the string @PREDIST@, and they will thus be enabled or disabled as appropriate. The distribution
rules mentioned above mean that any configuration of such undistributed files must be done by hand
in the Makefile.am, and not by AC_CONFIG_FILES, since this macro automatically distributes the files
implied by its arguments.

For example, the AST configure.ac has:

STAR_LATEX_DOCUMENTATION([sun210 sun211], [sun210.htx_tar sun211.htx_tar])
STAR_PREDIST_SOURCES(sun_master.tex)
STAR_CHECK_PROGS(star2html)
STAR_CHECK_PROGS(prolat, sst) # prolat is part of SST

The sun_master.tex file is used when the SUN/210 and SUN/211 files are being generated, and should
not be distributed. Since the process of generating the documentation uses application star2html, we
check for this and for prolat (and thus do this redundantly even after distribution). Most compo-
nents can get away with the one-argument version of STAR_LATEX_DOCUMENTATION which avoids these
complications, and does the equivalent of the star2html check internally.

This AST configure script also has

STAR_PREDIST_SOURCES(error.h.in version.h.in)

and carefully avoids calling AC_CONFIG_FILES(error.h version.h). It still has to configure these files
prior to distribution, so this has to be done in the Makefile.am:

@PREDIST@predist_subs = sed \
@PREDIST@ -e ’s,@star_facilitycode\@,$(star_facilitycode),’ \
@PREDIST@ -e ’s,@PACKAGE_VERSION\@,$(PACKAGE_VERSION),’ \
@PREDIST@ -e ’s,@PACKAGE_VERSION_MAJOR\@,$(PACKAGE_VERSION_MAJOR),’ \
@PREDIST@ -e ’s,@PACKAGE_VERSION_MINOR\@,$(PACKAGE_VERSION_MINOR),’ \
@PREDIST@ -e ’s,@PACKAGE_VERSION_RELEASE\@,$(PACKAGE_VERSION_RELEASE),’ \
@PREDIST@ -e ’s,@PERL\@,$(PERL),’
@PREDIST@error.h: error.h.in
@PREDIST@ rm -f $@; $(predist_subs) $< >$@
@PREDIST@version.h: version.h.in
@PREDIST@ rm -f $@; $(predist_subs) $< >$@

(this is the same technique that was illustrated in passing in the discussion of ‘installation locations’ in
Sec. 2.1.2). The leading @PREDIST@ strings mean that this stanza causes no problems after distribution,
when the error.h.in files are not present. See Sec. A.27 for more details.

This is admittedly a rather crude technique, but it is a lot less fragile than the more elegant alternatives.

4.3.1 Making a distribution

In general, the details of making distributions are outside the (current) scope of this document. However
there is one aspect we can usefully mention, since it interacts with the buildsupport tools which configure
the distribution.

Normally, when you ./bootstrap a directory, it arranges to install it by default in a location governed
by starconf (see Sec. 2.2 for details). Since this default is a location on your local machine, it might not
be appropriate for a distribution tarball. In that case, you will probably want to ensure that the built
distribution will install into /star (or /usr/local perhaps). There are multiple ways you can do this.

SSN/78.1 —Incorporating a package into the Starlink build system 40

4.3.1.1 A distribution from the complete tree

If you are doing this for a complete tree, with the intention of building all the software and rolling
distribution tarballs with the result, then the procedure you should use is as follows.

(1) Check out the repository as usual.

(2) Identify the directory you want to be the default installation location for the distributed components,
and the directory in which the distributed tarball will find other tools. These will typically be the
same, but if you are distributing a development or updated version, you might want the default
prefix to be /stardev but the default Starlink directory to remain /star. Set these as the STARCONF_*
defaults.

% export STARCONF_DEFAULT_PREFIX=/star
% export STARCONF_DEFAULT_STARLINK=/star

If this directory really is just /star then these settings could in principle be omitted and the variables
simply left unset, since /star is the default for both, but declaring them explicitly avoids ambiguity.
The directory mentioned here need not exist or be writable.

(3) Identify a directory tree to hold the products as you build them; I’ll use /tmp/star as an example.
Since this directory will receive the the buildsupport tools, and other tools built during the build, it
will need to be included in your PATH.

% PATH=/tmp/star:$PATH

(4) Bootstrap the tree, creating as you do so a set of buildsupport tools which are put in this working
tree. If you do not add this option then the bootstrap will attempt to install the buildsupport tools
in /star.

% ./bootstrap --buildsupport-prefix=/tmp/star

(5) Configure the tree, here overriding the STARCONF_* defaults.

% ./configure -C --prefix=/tmp/star --with-starlink=/tmp/star

This will install the components into /tmp/star, with later components using tools installed there
earlier, but with the ./configure scripts within those components written so that they will still
install in /star by default.

(6) Then build the tree as usual.

% make world

The manifests will end up in /tmp/star/manifests.

After this process has completed, if you go to a built component and make a tarball using make dist,
then this tarball will install in /star by default, which you can check using ./configure –help.

4.3.1.2 Distributing a single component

If, on the other hand, you wish to create a distribution tarball of a single component, then you do not
have to reconfigure the entire tree to do so (fortunately).

The more robust way is to create a special set of buildsupport tools which have the desired directory as
their default prefix. Say you want the distribution to install by default in /star, but have these special
buildsupport tools installed in /local-star/makedist (for example) . Do that as follows:

% STARCONF_DEFAULT_PREFIX=/star ./bootstrap --buildsupport \
--buildsupport-prefix=/local-star/makedist

SSN/78.1 —Incorporating a package into the Starlink build system 41

(or use env ... on csh-type shells; you would typically specify STARCONF_DEFAULT_STARLINK here, too)..
Setting the two STARCONF_* variables is actually redundant, here, since both have /star as their default,
but it does no harm and can make things usefully explicit.

At this point, you can check out the appropriate version of your software (probably via a CVS export of a
particular tag), put this /local-star/makedist/bin in your path (rehashing if you are using csh), and
call ./bootstrap; ./configure; make dist as usual. The command ./configure –help will show
you the default prefix for this ./configure script.

An alternative way is to use the acinclude.m4 method described in Sec. 2.2.1, setting OVERRIDE_PREFIX
to /star (for example). When you run ./bootstrap after that, the given prefix will be used instead of
the prefix baked into the installed buildsupport tools.

That is, to create a distribution of component foo, located in libraries/foo in the repository, you should
tag the source set with a suitable release tag, such as foo-1-2-3, and then, in a temporary directory, do
the following:

% cvs -d \emph{???} export -r foo-1-2-3 libraries/foo
% cd libraries/foo
% echo ’m4_define([OVERRIDE_PREFIX],[/star])’ >acinclude.m4
% ./bootstrap
% ./configure
% make dist

This will leave a tarball such as foo-1.2-3.tar.gz in the current directory.

4.4 Regression tests

Automake provides some simple support for regression tests. There is a (terse) description of these in the
automake manual, in the section Support for test suites, but it lacks any example. You run the tests with
make check, after the build, but before the component is installed.

You can set up tests as follows.

TESTS = test1 test2
check_PROGRAMS = test1 test2

test1_SOURCES = test1.f
test1_LDADD = libemsf.la libems.la ‘cnf_link‘

test2_SOURCES = test2.c

The TESTS variable lists a set of programs which are run in turn. Each should be a program which
returns zero on success, and if all the programs return zero, the test is reported as a success overall. If a
non-portable test makes no sense on a particular platform, the program should return the magic value
77; such a program will not be counted as a failure (so it’s actually no different from ‘success’, and the
difference seems rather pointless to me). A PROGRAMS ‘primary’ (see Sec. 2.1.2 for this term) indicates that
these are programs to be built, but the ‘prefix’ check indicates that they need be built only at ‘make check’
time, and are not to be installed.

The SOURCES primary is as usual, but while the test2 program is standalone (it’s not clear quite how
this will test anything, but let that pass), the test1 program needs to be linked against two libraries,
presumably part of the build. We specify these with a LDADD primary, but note that we specify the two
libraries which are actually under test as two libtool libraries, with the extension .la, rather than using
the -lemsf -lems ‘cnf_link‘ which ‘ems_link‘ uses as its starting point (this example comes from

http://www.gnu.org/software/automake/manual/html_node/Tests.html

SSN/78.1 —Incorporating a package into the Starlink build system 42

the ems component). That tells libtool to use the libraries in this directory, rather than any which have
been installed.

The fact that test programs must return non-zero on error is problematic, since Fortran has no standardised
way of controlling the exit code. Many Fortran compilers will let you use the exit intrinsic:

rval = 1
call exit(rval)

to return a status. Since this is test code, it doesn’t really matter that this might fail on some platforms, but
if this worries you, then write the test code as a function which returns a non-zero integer value on error,
and wrap it in a dummy C program:

test1_SOURCES = test1.f test1_wrap.c
test1_wrap.c:

echo "int main() { exit (test1_()); }" >test1_wrap.c

If the tests you add use components other than those declared or implied as component dependencies (see
Sec. A.17), then you should declare the full set of test dependencies using STAR_DECLARE_DEPENDENCIES([test],
[...]).

4.5 Importing third-party sources

NOTE: this section is subject to a little change. The guidance in this section is to some extent subject to
change as we get more experience including third-party sources into the tree.

If an application needs to rely on a non-Starlink application, and especially if it relies on a modified
version, then the sources for that application should be checked in to the thirdparty/ part of the tree.

There are two stages to this. Firstly we have to import a distribution version of the software, and secondly
we have to bring it in to the Starlink build system.

The example here is the GNU m4 distribution, which is one of the buildsupport tools necessary on
Solaris, which has a non-GNU m4 (autoconf relies on language extensions in GNU m4, which is therefore
required). The first step is rather mechanical, the second better introduced by example.

First, we get and import the sources (see the fuller details in the CVS manual):

% cd /tmp
% wget http://ftp.gnu.org/pub/gnu/m4/m4-1.4.tar.gz
% tar xzf m4-1.4.tar.gz
% cd m4-1.4
% cvs -d :ext:username@cvs.starlink.ac.uk:/cvs import \

-ko -m "Import of GNU m4 1.4" \
thirdparty/fsf/m4 FSF m4-1-4

The -ko option turns off any keyword expansion for the newly-imported files. Thus they will retain
the values they had when they were imported. This appears to be the practice recommended by the
CVS manual, though it is not absolutely clear that it is best, and this should not be taken as a firm
recommendation.

The thirdparty/fsf/m4 argument is the location of the new component within our repository, the path
to which will be created for you if necessary. FSF – the ‘Free Software Foundation’ – is the ‘vendor’ in
this case, and this is used for the location within the thirdparty/ tree as well as the next CVS argument.
CVS uses this vendor argument as the name of the branch this new import is nominally located on.

http://www.cvshome.org/docs/manual/

SSN/78.1 —Incorporating a package into the Starlink build system 43

Finally, this import command tags the imported files with the tag you give as the last argument. This
should use the same convention as other tags within the Starlink repository, namely the component name
and version number.

Note that we import a distribution tarball of the source, namely one including the configure script and
any other generated files. This is because we cannot reliably bootstrap the original sources if they, for
example, and also so that we can reliably track any future releases of the tarball. Even if the component
has a public CVS archive, resist the temptation to import a snapshot of that.

Now that the source set is in the repository, you can go back to your checkout tree and check the new
component out:

% cd <checkout-tree>
% cvs -d :ext:username@cvs.starlink.ac.uk:/cvs co thirdparty/fsf/m4
[blah...]
% cd thirdparty/fsf/m4
% cvs status -v configure.in
===
File: configure.in Status: Up-to-date

Working revision: 1.1.1.1
Repository revision: 1.1.1.1 /cvs/thirdparty/fsf/m4/configure.in,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: -ko

Existing Tags:
m4-1-4 (revision: 1.1.1.1)
FSF (branch: 1.1.1)

We see that the newly-imported files have been put on the 1.1.1 branch, named FSF. Any files we add to
this component, and any files we modify, will go on the trunk.

What you do next depends on how easy it is to configure the new component. We’ll look at three
examples, the m4 component, containing the GNU version of m4, the cfitsio component, containing the
HEASARC FITS library, and the tclsys component, containing a distribution of Tcl.

(1) The m4 configuration is quite regular (as befits a core GNU component), and so admits of reasonable
adaptation in place, by simply editing the configuration files included in the distribution (and then,
despite what we said above, regenerating the distributed ./configure script.

(2) The cfitsio distribution comes with its own configure scripts, but they are generated using a
rather old version of autoconf, so we want to avoid touching them. However the build is basically
rather simple, and only a few built files need to be installed. This component shows how to wrap a
distribution’s own configuration in a straightforward way.

(3) The tclsys component, on the other hand comes with its own fearsomely intricate configuration
and installation mechanism, which we want to disturb (or indeed know about) as little as possible.
This section shows how to wrap such an installation in the most general way.

4.5.1 Configuring m4

The first thing to do is to add the component.xml.in file:

% cp ‘starconf --show buildsupportdata‘/template-component.xml.in \
component.xml.in

SSN/78.1 —Incorporating a package into the Starlink build system 44

after which we edit component.xml.in appropriately. This editing turns out to be slightly more intricate
than usual: the configure.in file is old-fashioned enough that it does not define the substitution variables
that component.xml.in is expecting, and it requires a slightly closer inspection of configure.in to
determine what these should be (@PRODUCT@ and @VERSION@ in this case). Although this step seems
redundant, it is best to have this file configured rather than completely static, so that the generated
component.xml will remain correct when and if a new version of the ‘m4’ component were imported.
Having said that, ensure that the <bugreports> element in the component.xml.in file points to a Starlink
address – we don’t want bugs in our modifications to be reported to the original maintainers.

Note that it is the now-deprecated configure.in file that is the autoconf source in this component, and
that it has now-deprecated syntax; there is no need to update this. When we run autoreconf, we discover
that this is not the only obsolete feature, and we have to do some futher mild editing of configure.in
before it is acceptable to the repository version of autoconf, though it still produces a good number of
warnings. These don’t matter for our present purposes: the ./configure which autoreconf produces
(and which we commit) still works, and the component builds and runs successfully. If the configure.in
were old enough that our current autoconf could not process it at all, then we might consider retrieving
and temporarily installing an older version of autoconf – the ./configure script includes at the top a
note of the autoconf version which produced it.

In order for the new component to be a good citizen in the Starlink build tree, it needs to install a file
manifest as part of the install target. Add to the configure.in file the lines

: ${STAR_MANIFEST_DIR=’$(prefix)/manifests’}
AC_SUBST(STAR_MANIFEST_DIR)

If we were using Starlink automake, this would be enough to prompt it to include support for installing a
manifest in the Makefile.in it generates. The GNU m4 distribution does not, however, use automake, so
we need to add this by hand. The following additions to Makefile.in do the right thing, though they are
rather clumsier than the support that Starlink automake adds:

STAR_MANIFEST_DIR = @STAR_MANIFEST_DIR@

[...]

Change the install target from the default
install: config.h install-manifest.xml

for subdir in $(SUBDIRS); do \
echo making $@ in $$subdir; \
(cd $$subdir && $(MAKE) $(MDEFINES) $@) || exit 1; \

done
$(srcdir)/mkinstalldirs $(STAR_MANIFEST_DIR)
$(INSTALL_DATA) install-manifest.xml $(STAR_MANIFEST_DIR)/$(PRODUCT)

Add the install-manifest.xml target
install-manifest.xml: all

rm -Rf STAGING
mkdir STAGING
$(MAKE) prefix=‘pwd‘/STAGING install
rm -f $@
echo "<?xml version=’1.0’?>" >$@
echo "<!DOCTYPE manifest SYSTEM ’componentinfo.dtd’>" >>$@
echo "<manifest component=’$(PACKAGE_NAME)’>" >>$@
echo "<version>$(PACKAGE_VERSION)</version>" >>$@
echo "<files>" >>$@
find STAGING -type f | sed ’s,^.*STAGING,$(prefix),’ >>$@
echo "</files>" >>$@
echo "</manifest>" >>$@
rm -Rf STAGING

SSN/78.1 —Incorporating a package into the Starlink build system 45

(if you look at thirdparty/fsf/m4/Makefile.in you will see that we actually need to have PRODUCT
and VERSION there instead of the more general PACKAGE_NAME and PACKAGE_VERSION above). Note that
the actual installation happens within the rule for install-manifest.xml – this guarantees that the
$(prefix) stored in the manifest is the same as the $(prefix) actually used for the installation.

Since we are creating this manifest entirely by hand, we are responsible for ensuring that the resulting
file conforms to the DTD in componentinfo.dtd (in the starconf buildsupportdata directory).

We add the component.xml.in file to the repository, and look at what we have.

% cvs add component.xml.in
% cvs -n update

This tells us that configure, configure.in and config.h.in have been modified, and component.xml.in
added, but we also discover that files stamp-h.in, doc/stamp-vti and doc/version.texi have also
been modified, as part of the regeneration of the ./configure script. The modification to the stamp file
stamp-h.in we should probably commit, to avoid dependency niggles in the future, but the meaningless
changes to the two doc/ files we can just discard:

% cvs commit -m "Add component.xml template" component.xml.in
% cvs commit -m "...blah..." configure configure.in config.h.in
% cvs commit -m "Stamp file regenerated by autoreconf" stamp-h.in
% rm doc/stamp-vti doc/version.texi
% cvs update doc

We can see that the changes to configure.in are now on the trunk for this component, rather than the
FSF branch.

% cvs status configure.in
===
File: configure.in Status: Up-to-date

Working revision: 1.2
Repository revision: 1.2 /cvs/thirdparty/fsf/m4/configure.in,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: -ko

4.5.2 Configuring CFITSIO

The cfitsio component wraps the HEASARC FITS library of the same name, and installs from it the
library itself, plus a few header files. Although we probably could adapt the library’s distributed autoconf
script, that script is sufficiently old, and there are sufficiently few components installed, that it is less
trouble to simply wrap this configuration in another one.

The cfitsio component contains a cfitsio/ directory containing the distributed library source. Along
with it are the usual component.xml.in file, copied from the template in ‘starconf –show buildsupportdata‘,
and Makefile.am and configure.ac files, which are too different from the template ones for them to be
helpful.

The configure.ac looks like this:

dnl Process this file with autoconf to produce a configure script
AC_REVISION($Revision$)
AC_INIT(cfitsio, 2.4-90, starlink@jiscmail.ac.uk)

AC_PREREQ(2.50)

SSN/78.1 —Incorporating a package into the Starlink build system 46

AM_INIT_AUTOMAKE(1.8.2-starlink)

AC_CONFIG_SRCDIR([cfitsio.news])

STAR_DEFAULTS

dnl To configure CFITSIO proper we just run ./configure in the
dnl cfitsio sub-directory. Do not invoke AC_CONFIG_SUBDIRS,
dnl since that prompts autoreconf to try to reconfigure that directory, and
dnl automake to assume it’s allowed to play there, too.
(

cd cfitsio
./configure --prefix=$prefix

)

dnl Find required versions of the programs we need for configuration
AC_PROG_LIBTOOL
AC_PROG_MAKE_SET

STAR_LATEX_DOCUMENTATION(sun227)

AC_CONFIG_FILES([Makefile component.xml])
AC_OUTPUT

Note that we must use STAR_DEFAULTS, and we must not use AC_CONFIG_SUBDIRS, for the reason de-
scribed in the comments above, even though configuring the subdirectories is exactly what we want to
do. This particular combination of commands is sufficient to configure the cfitsio distribution – you
might need to do different things for other third-party packages. That’s all the configuration we need;
how about the Makefile?

The Makefile.am looks like this:

Process this file with automake to produce Makefile.in

dist_bin_SCRIPTS = cfitsio_link

lib_LIBRARIES = cfitsio/libcfitsio.a
There are no sources for libcfits in this directory.
cfitsio_libcfitsio_a_SOURCES =

include_HEADERS = cfitsio/fitsio.h cfitsio/longnam.h \
cfitsio/fitsio2.h cfitsio/drvrsmem.h

stardocs_DATA = @STAR_LATEX_DOCUMENTATION@

EXAMPLE_SOURCES = cfitsio/cookbook.c cfitsio/cookbook.f

Put examples in dist_pkgdata
dist_pkgdata_DATA = $(EXAMPLE_SOURCES) \

cfitsio_changes.txt CFITSIO_CONDITIONS Licence.txt cfitsio.news

Headers and example sources are made within cfitsio
$(include_HEADERS) $(EXAMPLE_SOURCES):

(cd cfitsio; unset CFLAGS; $(MAKE))

Must be a separate target from above, otherwise automake doesn’t notice,
and adds its own, conflicting, target.
cfitsio/libcfitsio.a:

(cd cfitsio; unset CFLAGS; $(MAKE))

SSN/78.1 —Incorporating a package into the Starlink build system 47

...

(if you look in the cfitsio component, you will see that the actual Makefile.am does a little more than
this, and is rather more copiously commented, but these are the important parts).

This uses a number of useful automake features. First of all, the assignments which control what is
installed – the contents of the _LIBRARIES, _HEADERS and (via EXAMPLE_SOURCES) _DATA primaries – refer
to files within the cfitsio/ subdirectory. When these are installed, the path to them is stripped, so that
libcfitsio.a, for example, ends up installed in .../lib/ and not in .../lib/cfitsio/, as you might
possibly intuit. This is the useful behaviour which is turned off by the use of the nobase_ prefix, as
described in Sec. 5.2.

Second, the presence of the lib_LIBRARIES line means that automake expects to find some library sources
somewhere, and if it is not told where they are with a xxx_SOURCES variable, then it will assume a default
based on the library name. In this case, of course, the sources are not in this directory, and we do
not wish automake to generate rules to build them, so we have to pacify it by giving a value for the
cfitsio_libcfitsio_a_SOURCES variable (note the canonicalisation of the library name).

Each of the cfitsio/ targets is built in the same way, by switching to the cfitsio/ directory and making
‘all’ using that directory’s own Makefile. The only remaining wrinkle is that it turns out we have to specify
the cfitsio/libcfitsio.a target by itself, rather than as part of the previous compendium target. Due,
probably, to a bug, automake does not appear to ‘notice’ the library if it’s mentioned in the compendium
target, and instead generates its own conflicting target.

4.5.3 Configuring tcl

The tcl component (like the parallel tk component) is paradoxically easy to configure, partly because
its distributed ./configure script is generated by a version of autoconf too old for us to handle di-
rectly, which means that we want to avoid touching it as much as possible, but also because the Tcl
distribution has an installation mechanism which is too complicated to be handled by the simple
scheme in the previous cfitsio section. The method we use instead, as described below, actually looks
simpler, but you should probably not resort to it unless necessary, since the starconf macro is uses –
STAR_SPECIAL_INSTALL_COMMAND – is a dangerously blunt instrument.

After being unpacked and imported as described above, the top-level of the checked out Tcl distribution
looks like this:

ptolemy:tcl> ls
CVS/ README compat/ generic/ license.terms tests/ unix/
ChangeLog changes doc/ library/ mac/ tools/ win/

The way that the distributed README tells us to compile Tcl is to change to the unix/ subdirectory, and type
./configure; make. We want to create files Makefile.am and configure.ac in this directory, which
handle this for us.

We add a component.xml.in as before, plus non-standard configure.ac and Makefile.am files. The
configure.ac should look like this:

dnl Process this file with autoconf to produce a configure script
AC_REVISION($Revision$)
AC_INIT(tclsys, 8.2.3, starlink@jiscmail.ac.uk)

AC_PREREQ(2.50)
AM_INIT_AUTOMAKE(1.8.2-starlink)

AC_CONFIG_SRCDIR([license.terms])

SSN/78.1 —Incorporating a package into the Starlink build system 48

STAR_DEFAULTS

AC_PROG_MAKE_SET

dnl To configure Tcl, run ./configure in the ‘unix’ directory.
dnl Do not invoke AC_CONFIG_SUBDIRS, since that prompts autoreconf
dnl to try to reconfigure that directory, and automake to assume
dnl it’s allowed to play there, too.
(

cd unix
./configure --prefix=$prefix

)

STAR_SPECIAL_INSTALL_COMMAND([cd unix;
$(MAKE) INSTALL_ROOT=$$DESTDIR install])

AC_CONFIG_FILES([Makefile component.xml])
AC_OUTPUT

This looks rather like the cfitsio example, except for the addition of the new macro, which uses a
parameterised version of the distribution’s own install command to make the installation into the Starlink
tree.

As described in Sec. A.29, this adapts the standard Makefile install target so that it uses the given
command to make an installation. Note that the version of autoconf which generated the Tcl Makefile.in
template was one which used the INSTALL_ROOT variable instead of the DESTDIR variable used by more
modern versions, and so we have to adjust this in this command line. This DESTDIR variable is important,
as it is used during the installation of the component, to do a staged installation, from which a manifest
can be derived.

This staging step is important, and is rather easy to get wrong. If you do get it wrong, then the installed
manifest will be wrong, probably causing problems later when it comes to deinstalling or packaging
this component. The role of the INSTALL_ROOT variable above was discovered only by inspecting the
Makefile.in in the Tcl distribution: if there were no such facility, we could (probably) fake much of it
by using something like $(MAKE) prefix=$$DESTDIR$$prefix install in the installation macro. The
distributed Tcl Makefile appears to respect the variable, but it is important to check for errors such
as making absolute links, or using the current directory incautiously (search for LN_S or ‘pwd‘ in the
Makefile.in).

The Makefile.am file is even simpler:

Process this file with automake to produce Makefile.in

@SET_MAKE@
RECURSIVE_TARGETS = all clean

default: all

$(RECURSIVE_TARGETS):
cd unix; $(MAKE) $@

After writing the Makefile.am and configure.ac files, all you need to do is run starconf to create a
./bootstrap file, and check in the files which starconf suggests.

That’s it!

SSN/78.1 —Incorporating a package into the Starlink build system 49

4.5.4 Time order of third-party sources

When importing third-party code that includes pre-created configure scripts, Makefile.in etc., that
you do not want to re-generate automatically, because they have inconsistent timestamps – that is say a
Makefile.in file is older than an associated Makefile.am, because the initial import was in the wrong order
or too quick (file systems typically resolve at one second intervals), then you may need to re-establish
the time ordering of some files, but only if the imported build system is sensitive to these changes. The
way to do this is by creating a file bootstrap_timeorder that contains a list of relative file names (to the
directory containing the bootstrap script), in the order from oldest to newest. Look for an example of
one of these files in the source tree.

4.6 Documentation

There is fairly complete support for documentation within the build system. Most Starlink documentation
is in the form of LATEX files respecting certain conventions (see SGP/28: Writing Starlink documents and
SUN/199: Star2HTML for some further details), but a small amount is in a custom XML DTD, converted
using the kit contained in the sgmlkit component, documented in SSN/70.

The simplest case is where you have one or more .tex files in the component directory (that is, the
directory which contains the component.xml file). In this case, you simply declare the document numbers,
and the files named after them, in a STAR_LATEX_DOCUMENTATION macro, as in:

STAR_LATEX_DOCUMENTATION([sun123 sc99])

This will put these document codes into the substitution variable @STAR_DOCUMENTATION@, which you can
use to substitute in component.xml.in, and it will arrange to compile the LATEX; files sun123.tex and
sc99.tex. This macro is documented fully in Sec. A.21.

The final step in this case is to declare that the documentation is to be built and installed in the Starlink
documentation directory. You do that by including the following line in the component’s Makefile.am:

stardocs_DATA = @STAR_LATEX_DOCUMENTATION@

(see Sec. A.32). This substitution variable expands to the default list of documentation targets (at present
comprising .tex, .ps and .htx_tar, but subject to change in principle).

The next simplest case is where the source files are in a different directory from the component.xml.
Indicate this by appending a slash to the end of each of the document codes located elsewhere. For
example:

STAR_LATEX_DOCUMENTATION([sun123/ sc99])

This will behave as above for the sc99.tex file, but differently for the sun123 document. That code,
sun123 is still included in @STAR_DOCUMENTATION@, but it is the variable @STAR_LATEX_DOCUMENTATION_SUN123@
which is set to the default target list, and not @STAR_LATEX_DOCUMENTATION@. Documentation specified
in this way does not – contrary to appearances – have to live in a similarly named subdirectory of the
component directory; instead you will have to separately make sure that the documentation is built at
build time.

Suppose, for example, you are managing the documentation for the package which contains SUN/123,
and suppose the source for this is in a subdirectory docs/sun-cxxiii (whimsy is a terrible thing), then
you would still refer to the documentation via STAR_LATEX_DOCUMENTATION(sun123/) as above, but in
the file docs/sun-cxxiii/Makefile.am you would include at least the line

http://www.starlink.ac.uk/cgi-bin/htxserver/sgp28.htx/sgp28.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun199.htx/sun199.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn70.htx/ssn70.html?xref_

SSN/78.1 —Incorporating a package into the Starlink build system 50

stardocs_DATA = @STAR_LATEX_DOCUMENTATION_SUN123@

and make sure that directory docs/sun-cxxiii is built, and its contents installed when appropriate, by
the usual method of mentioning the directory in a SUBDIRS declaration in the component Makefile.am:

SUBDIRS = docs/sun-cxxiii

The datacube component uses this mechanism to build its documentation.

If you need to add extra files to the .htx tarball, you can do so via the .extras file described in Sec. A.21.

Sometimes you need to do more elaborate things to build your documentation – the ast component is a
good example, here. In this case, you can give a non-null second argument to the STAR_LATEX_DOCUMENTATION
macro, giving a list of makefile targets which should be built. The document codes in the first argu-
ment are still included in @STAR_DOCUMENTATION@, but the second argument is included verbatim in
@STAR_LATEX_DOCUMENTATION@ without any defaulting. You are responsible for adding the given targets
to the Makefile and, as before, you should add @STAR_LATEX_DOCUMENTATION@ to the stardocs_DATA
Makefile variable.

If you have produced XML documentation, use the STAR_XML_DOCUMENTATION macro, which is closely
analogous to the LATEX one.

4.6.1 Components containing only documentation

Though most applications and libraries have some documentation associated with them, some docu-
mentation is not associated with any particular software, and so lives in a component by itself. These
components are principally the various cookbooks and system notes, though there are a few SUNs in
this category as well. Though the correct way to handle such components should be fairly clear from the
discussion above, it seems worth while to make a few remarks here to clear up some ambiguities.

Like any other component, a documentation-only component must have a bootstrap file, and Makefile.am,
configure.ac and component.xml.in files, as described in Sec. 4.1; however these will typically be rather
simple.

We can look at the SC/3 configuration files for an example.

The configure.ac file, shorn of most of its comments, looks like this:

dnl Process this file with autoconf to produce a configure script
AC_INIT(sc3, 2, starlink@jiscmail.ac.uk)
AC_PREREQ(2.50)
AM_INIT_AUTOMAKE(1.8.2-starlink)
AC_CONFIG_SRCDIR(sc3.tex)

STAR_DEFAULTS(docs-only)

STAR_LATEX_DOCUMENTATION(sc3)

AC_CONFIG_FILES(Makefile component.xml)

AC_OUTPUT

Note the docs-only option to the STAR_DEFAULTS macro (see Sec. A.18 for discussion). This particular
configure.ac file is to handle document SC/3.2 – this second edition of the document is represented by
the AC_INIT macro having a ‘version’ number of ‘2’.

The Makefile.am file has some mild complications:

SSN/78.1 —Incorporating a package into the Starlink build system 51

Process this file with automake to produce Makefile.in

stardocs_DATA = @STAR_LATEX_DOCUMENTATION@
starexamples_DATA = $(distdir)-scripts.tar

sc3.htx_tar: sc3-scripts.tex

sc3-scripts.tex is an appendix to the HTML version of the document,
comprising the scripts contained in the scripts/ directory. These are
also bundled in the htx tarball by virtue of being listed in the
sc3.htx_tar.extras file.
sc3-scripts.tex: scripts

cd scripts; \
for f in *; do if test -f $$f; then \

echo $$f | sed ’s/\([a-z0-9_]*\).*/\\subsection{\\label{se_\1_source}\\xlabel{\1}\1}/’; \
echo "\htmladdnormallink{Download $$f}{$$f}"; \
echo ’’; \
echo ’\begin{verbatim}’; \
cat $$f; \
echo ’\end{verbatim}’; \

fi; done > ../$@

$(distdir)-scripts.tar: scripts
DN=$(distdir)-scripts; \

mkdir $$DN; \
for f in scripts/*; do if test -f $$f; then cp $$f $$DN; fi; done;\
tar cf $@ $$DN; \
rm -Rf $$DN

This is the complete SC/3 file. The only thing that is always required in these docs-only Makefile.am
files is the stardocs_DATA = @STAR_LATEX_DOCUMENTATION@ line, which has exactly the same function
described in Sec. 4.6 above. However cookbooks like SC/3 often have both sets of examples (in this
case, example scripts) and some automatically generated documentation, and this example illustrates
how to describe both of these. The starexamples_DATA line specifies a file which is to be installed in the
examples directory (typically /star/examples; see Sec. A.32), and the Makefile.am therefore provides
the rule for generating that tarball of scripts.

In addition, the sc3.tex file includes (in the TEX sense) a generated file sc3-scripts.tex, which docu-
ments these various scripts, and so we include in this Makefile.am the rule for generating this file from
the contents of the scripts/ directory. We must also indicate that the sc3.htx_tar file depends on this
generated file, and we do this by including that dependency (without the build rule, which is generated
automatically) in this Makefile.am file.

Finally, note that this SC/3 directory uses the .htx_tar.extras mechanism which is described rather in
passing in Sec. A.21.

4.7 Adding components: the final step

Whichever type of component you have added, the final step, after committing your changes, is to
ensure that your new component and its newly-declared dependencies are integrated into the network of
dependencies contained within the Makefile.dependencies file at the top level. To do this, you must go
to the top level of a full checkout of the repository, make sure your new component is checked out there,
then delete Makefile.dependencies and remake it.

SSN/78.1 —Incorporating a package into the Starlink build system 52

% rm Makefile.dependencies
% make Makefile.dependencies
... remakes componentset.xml, and from that Makefile.dependencies
% cvs -n update
M componentset.xml
M Makefile.dependencies

The Makefile.dependencies file is generated using a Java program, so you must have a JDK in your
path before starting this procedure (you might possibly need to run ./configure –no-recursion to
bring the Makefile there up to date with respect to Makefile.in). Alternatively, you can invoke make
with make JAVA=/path/to/jdk Makefile.dependencies.

Double-check both Makefile.dependencies and componentset.xml, using cvs diff <file>: ensure
that the right material has been added before re-committing these two files. If this diffing appears to
indicate that material has been removed from either file, this probably means that you don’t have a full or
up-to-date checkout, so investigate that and fix things up before committing.

If the component you have added should be included in the ‘make world’ build, then you should add
it to the list of targets listed in the ALL_TARGETS variable at the top of the top-level Makefile.in. You
should do this only if both this component and anything it depends upon build successfully from scratch.

53 SSN/78.1—FAQs

Chapter 5
FAQs

5.1 General FAQs

For FAQs specifically about installation, see the next section, and for quite detailed FAQs about the
various ways that state is held in the starconf system, see Sec. 5.3.

In the examples below, the installation location (that is, STARCONF_DEFAULT_PREFIX) is written as /local-star,
and the example component is usually cpt.

How do I control which compiler and compiler options I use? You can control the compiler at config-
ure time by specifying the variable F77, FC, CC or CXX, as appropriate; and you add compiler options
with the FFLAGS, FCFLAGS or CFLAGS variables. For details and warnings, see Sec. 2.1.5.

I’ve just been told “make: *** No rule to make target ‘/local-star/manifests/cpt’, needed by ‘world’. Stop. What’s wrong?
The component cpt has been referred to in a dependency, but the Makefile.dependencies file has
no knowledge of it. Whoever added the cpt component forgot to do the final step mentioned in
Sec. 4.7, so you should do that now.

Why does make world not do anything? The make world build works by comparing timestamps of the
installed files in the manifests directory – that is, in something like /local-star/manifests, outside
of the build tree. It only checks whether each component was installed after each of the components
it depends on. If you wish to use this to (rebuild and) reinstall a given component, then simply
delete the manifest file for the component in question and re-run make world.

Alternatively, make in the top-level checkout directory will recurse, and invoke make all in each of
its children, and thus bring the whole tree up to date.

You can check the default installation location – shown as /local-star above – with ./starconf-status
–show STARCONF_DEFAULT_PREFIX

Also, make world only makes those targets listed in the variable ALL_TARGETS within the top-level
Makefile. Thus if the component you’re interested in isn’t there, nor required by something that is
there and that will be rebuilt, nothing will happen. See also Sec. 4.7.

See Sec. 5.3 for a few more remarks about state.

I’ve updated my checkout of a component. How do I best update the installation of it? The most straight-
forward way is to change to the directory in question, and do ./configure; make; make install
there.

Alternatively, you can stay in the top-level directory, delete the component’s manifest file, rm
/local-star/manifests/cpt, and remake it: make /local-star/manifests/cpt.

Actually, the component is one of the buildsupport tools. Is that different? Yes. The best way is up-
date your checkout of the component in question, then run ./bootstrap –buildsupport in the
top level of the checkout. When the bootstrap script is run in this mode, it always deletes any
buildsupport manifests, to ensure that the buildsupport tools are always rebuilt if updated.

It’s best to avoid the ./configure; make; make install route described in the last item. Some of
the buildsupport tools need special handling, and the ./bootstrap script knows how to do that.

SSN/78.1 —FAQs 54

I’ve updated my checkout and a large number of components were updated (or I’m paranoid). What’s the best way to remake absolutely everything that needs it?
Just doing make would remake everything that needs remaking, but wouldn’t install it. The com-
mand make world wouldn’t work either, because that only works with the dependencies between
manifest files – this is the way that the Makefile.dependencies file expresses the dependencies of
components on each other.

The best way to do this is as follows. After your update, and while in the top-level directory, do

% rm /local-star/manifests/*
% make buildsupport
% make world

That is, you delete all the manifests, and remake them. This does a make; make install in each
component directory, and that step handles any files that were updated.

What’s the best way to generate files at build time? Look at the Makefile.am for the prm component.
It’s a good example of using noinst_ tools, the Fortran preprocessor, and ./configure variables in
a reasonably tidy way.

I want to do odd things at clean/distribution time. How? Odder than what is described in Sec. 4.3?

Automake also has support for extending what is cleaned and what is included in the distribution,
though this does not have to be as elaborate as the support for extended installation above. See the
documentation on CLEANFILES and EXTRA_DIST in the Automake manual.

I want to incorporate an external package which already has a configuration system. How? This is ‘third-
party code’: see Sec. 4.5 for several examples.

How do I write portable Makefiles and shell scripts? The autoconf manual has a very useful collection
of portability advice in its section manual Portable Shell Programming. Also, the Single Unix Specifi-
cation, version 3 provides standardised specifications of the behaviour of Unix library functions
and system utilities. The Single Unix core specification is identical to POSIX.3 (IEEE Std 1003.1) and
ISO/IEC 9945:2003.

I’ve just been told that libtool is “unable to infer tagged configuration”. What on earth is that supposed to mean?
I’m not sure what this is supposed to mean exactly, but what it seems to mean in practice is that
libtool has become terribly confused about your compiler and hasn’t been configured to recognise it.
The most common reason for this is that libtool uses a different set of default compilers to those of
autoconf, and in particular is not as bright about Fortran 95 compilers. The simplest way to resolve
this is to define F77 to match the compiler determined by autoconf (or indeed define FC and F77 to
be your preferred compiler).

Other reasons this may happen are when you force ./configure to use a particular compiler by
specifying one of the F77, FC or CC environment variables at configure time. You may have forgotten
that you have that variable set.

Alternatively, you may be unaware that that variable is set: a known manifestation of this problem
is that the IRAF startup script sets F77 to be an IRAF-specific script, which works OK from the
command-line (given that you want to use IRAF), but which leaves libtool in a confused heap.

This problem has also been spotted in the form libtool: compile: specify a tag with ‘–tag’,
with apparently the same cause.

See Sec. 2.1.5 for more discussion of these variables.

I’ve just modified an include file, ran make in a component, but nothing has compiled Automake pro-
vides the depcomp command to automatically generate dependencies on include files (these are
added to Makefile.in). Unfortunately this support doesn’t extend to Fortran, only C, so modifying
a file included in Fortran will not result in the files being recompiled. Also not all C compilers and
platforms are supported. To avoid this problem either keep the list of dependencies up to date in
the Makefile.am, or be prepared to clean directories during development.

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_114.html
http://www.unix.org/version3/
http://www.unix.org/version3/

SSN/78.1 —FAQs 55

It’s all going horribly wrong. Help! Things to think about:

(1) Are there some stray environment variables? Environment variables such as F77 or CC influence
the compilers chosen at configure time, as discussed in Sec. 2.1.5. There is a particular problem
with the IRAF startup script often sourced from the .login file: see Sec. 5.1.

(2) Are the buildsupport tools up to date? This is fairly unlikely (once the build system becomes a
production system), but might be worth checking. See Sec. 3.5.

(3) Think how happy you are that life has been good to you so far.

5.2 Installation FAQs

I have an executable which creates some files during the build – how do I prevent it from being installed?
Use the noinst prefix when you declare the program. See Sec. 2.1.2.

How do I install things in /local-star/docs,etc,examples,help? In the Makefile.am use the DATA
prefixes stardocs, staretc, and so on. See Sec. 2.1.2 for an example.

Note that by /local-star, here, we refer to the directory indicated by STARCONF_DEFAULT_STARLINK
– if you are interested in changing this when making distribution tarballs, see the next question.

I want to make distribution tarballs (for example) install into /star. How? This is a general question
about forcing the $prefix for a directory. See the description of ./bootstrap in Sec. 4.3.1, which
uses a general mechanism described in Sec. 2.2.1.

Automake flattens paths when it installs things. Why? This is a feature, which you can turn off if nec-
essary. A Makefile.am line like include_HEADERS = a.h subdir/b.h will cause both a.h and b.h
to be installed in the same place, as indicated by the _HEADERS primary. It means that if you had
some good reason for creating or distributing the header b.h in its subdirectory, you don’t have to
copy it into the top directory just prior to installation. If you specify nobase_include_HEADERS, on
the other hand, this will cause the hierarchy to be preserved. This is documented rather in passing
in the automake manual, in the section An Alternative Approach to Subdirectories (and no, I don’t
know why ‘nobase’ is supposed to be intuitive, either).

There’s an example of using this in Sec. 4.5.2.

I want to install symbolic links at install time. How? That counts as ‘weird’ for the purposes of this
discussion. See the next item.

I want to do weird things at install time. How? Automake provides a couple of escape hatches for in-
stalling extra material. These are the install-exec-local and install-data-local targets for
installing platform-dependent and -independent files. The associated rules are run at install time,
and can do anything, the similar install-exec-hook and install-data-hook targets are run after
all other install targets, and can do post-installation cleanup and the like. See section What Gets
Installed in the automake manual for details.

For example, the dtask component installs a special object file in the library directory. This isn’t a
program, or script, or library, and so isn’t naturally handled by any other automake mechanism.
The Makefile.am there includes the following:

dtask_main.o: dtask_main.f
install-exec-local: dtask_main.o

$(mkdir_p) $(DESTDIR)$(libdir)
$(INSTALL_PROGRAM) dtask_main.o $(DESTDIR)$(libdir)
$(MANIFEST) && echo "MANIFEST:$(DESTDIR)$(libdir)/dtask_main.o" || :

http://www.gnu.org/software/automake/manual/html_node/Alternative.html
http://www.gnu.org/software/automake/manual/html_node/Install.html
http://www.gnu.org/software/automake/manual/html_node/Install.html

SSN/78.1 —FAQs 56

This first creates the library directory if necessary. The rules then use the $(INSTALL_PROGRAM)
command to install the object file in the library directory (you’d use $(INSTALL_DATA) command
for a data target) . The installation location is $(libdir), which is a location which includes the
$(prefix) variable, so that this install rule behaves as other such rules do. Also, it prefixes the
installation location with $(DESTDIR): this is usually the empty string, but it can be set to something
else to perform a staged installation. Finally, if the $(MANIFEST) variable evaluates to true, then
we echo the echo the name of installed file to stdout prefixed by the string MANIFEST:; note that
the command ends with ‘|| :’, which ensures that this composite command succeeds even if
$(MANIFEST) evaluates to false. This is a Starlink extension, and is how the manifest file is built
up.

Yes, this is a fuss, but it’s the consequence of using the install-xxx-local back door. Each of these
features is important if this hand-made install rule is to behave the same way as the automatically-
generated rules. This technique is also inherently precarious, since if there were ever some reason
to modify the installation conventions (for example to modify the way the manifests were built up),
then each such back-door would have to be adjusted by hand. That is, don’t use this mechanism
unless you really have to.

In particular, you often need to create links in this situation. To do that portably (symbolic links
are not required by POSIX, and so the autoconf macros are able to emulate them if necessary), put
the AC_PROG_LN_S macro in your configure.ac, and use the $(LN_S) macro in your Makefile.am.
Note that the autoconf manual that this macro does not in principle support a path in the second
argument; thus do not write $(LN_S) /target/TARGET /link/LINK, but instead

cd $(DESTDIR)/link; rm -f LINK; $(LN_S) $(DESTDIR)/target/TARGET LINK

The option rm -f is portable. Note that we have included the important $(DESTDIR) variable here,
and that the /link and /target locations here should probably be one or other of the $(???dir)
variables instead.

5.3 State FAQs

This is only a summary of the various ways that state is held within the Starlink build system. The details
are in Sec. 2.4.

How do I get rid of state in a checked-out directory? One of make clean, make distclean or make maintainer-clean
should do what you want. The first gets rid of compiled files, the second everything but distributed
files, and the third returns the directory to an almost pristine state, though without deleting
./configure or the files it needs to run.

The nuclear option for clearing state from a directory ping is to delete it and check it out afresh:

% cd ..
% cvs release -d ping # or: mv ping ping-old
% cvs update -d ping

The CVS ‘release’ command tells CVS you have finished with a particular checkout. With the -d
option, it is basically rm -rf except that it checks you have no modified but uncommited files left
within ping.

How do I start again? As mentioned above, make maintainer-clean in the top level should recurse
and make maintainer-clean in each of the children. That unmakes and unconfigures everything,
but doesn’t undo the bootstrapping. The bootstrapping done by ./bootstrap doesn’t depend
on any state except the contents of the manifest files, and to undo that, you need only delete the
manifest.

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/html_node/autoconf_40.html" >notes

SSN/78.1 —FAQs 57

For maintainer-clean to work, one sometimes needs to make extra declarations in Makefile.am.
There could well be components where maintainer-clean doesn’t work as fully as it ought. Do
mention those if you spot them.

How do I control where a component is installed? In a variety of ways. In the list below, each mecha-
nism effectively supplies the default for the mechanism before it.

(1) You can specify an installation prefix at install time:
% make prefix=/odd/place install

This might break your installation if there was a prefix baked in to your component at build
time. Do this only if you have a particular reason for doing so, and know what you’re doing.

(2) At make time:
% make prefix=/odd/place

This builds your component with the Makefile variable $prefix set to the given value. The
component will be installed into this location at install time, unless you override the location
as described above. See the discussion of ‘installation directory variables’ in Sec. 2.1.2.

(3) At configure time:
% ./configure --prefix=/odd/place

This is usually the most appropriate way to do this.

(4) By setting a ‘sticky variable’:
% ./starconf.status STARCONF_DEFAULT_PREFIX=/odd/place

This sets the default for the ./configure script’s –prefix option.

(5) By configuring starconf :
% pwd
.../buildsupport/starconf
% ./configure STARCONF_DEFAULT_PREFIX=/odd/place
...
% make; make install

This sets the default for all directories configured using this starconf application. This is
effectively what you do when you set the environment variable STARCONF_DEFAULT_PREFIX
before you run the top-level ./bootstrap script, as described in Sec. 3.2.

OK, now I’ve changed my mind about where I want components to be installed – the ‘prefix’. How do I tell the build system?
Easy. Set the STARCONF_... variables as you want them, as described in Sec. 3.2, and in the top
level of the checkout, do

% ./bootstrap --buildsupport
% rm config.cache

The –buildsupport option forces the bootstrap to remake and reinstall the buildsupport compo-
nents, taking the current values of the STARCONF_... variables into account.

You should also remove any config.cache files, both in the top-level directory and elsewhere,
since these often store paths to applications and libraries which are probably not appropriate for
your new prefix.

For more details, see the notes on state in Sec. 2.4.

What does this mean?: required file ‘./install-sh’ not found It means that you need to run au-
toreconf with different options.

You have just run autoreconf by hand (haven’t you?) and it is complaining that it cannot find the
./install-sh file which automake requires (in fact autoreconf has spotted a Makefile.am in your
directory, and so has invoked automake, and it is this which is reporting the error). Give autoreconf
the –install –symlink options, which installs required files, and does so by symlinking rather
than copying them.

SSN/78.1 —FAQs 58

What does this mean?: configure: error: ‘<env-var>’ has changed since the previous run
The message might say:

% ./configure -C
configure: loading cache config.cache
configure: error: ‘STARLINK’ has changed since the previous run:
configure: former value: /somewhere/else
configure: current value: /export3/sun
configure: error: changes in the environment can compromise the build
configure: error: run ‘make distclean’ and/or ‘rm config.cache’ and start over

You have changed an ‘influential environment variable’. See Sec. 2.1.5.

59 SSN/78.1— Miscellaneous hints and tips

Chapter 6
Miscellaneous hints and tips

This section contains assorted techniques and patterns which don’t fit neatly in anywhere else. Please do
add to this section.

6.1 Forcing automake’s choice of linking language

XXX no: there’s an better mechanism, as yet undocumented. Watch this space, but don’t use this
technique.

When building a library or application, automake needs to make a decision about which language to use
to do the final link. For example, it must use the Fortran linker to make a library which consists of or
includes Fortran modules, and the C linker if it consists of pure C. This matters more on some platforms
than others – the OSX linker has some very fixed ideas on this point (it heartily disapproves of common
blocks, and so needs special Fortran juju to make a library from Fortran which uses them).

Automake makes this decision based on the source code which is listed in the library’s _SOURCES variable.
When you are assembling a library purely from convenience libraries, however (see section ‘Linking
static libraries’ in the Libtool manual), the _SOURCES variable is empty, and automake ends up using the
C linker, for want of any other information.

You can avoid this problem, and indicate to automake which langauge it should use, by giving a dummy
value for the _SOURCES variable as follows:

libsubpar_adam_la_SOURCES = dummy_routine.f
libsubpar_adam_la_LIBADD = \

subpar/libsubpar_convenience.la \
parsecon/libparsecon_convenience.la

where the dummy_fortran.f module is a trivial Fortran routine:

C A dummy Fortran routine. See comments in Makefile.am
SUBROUTINE DUMMY
END

As the comment indicates, it is wise to include an explanation of this ... let’s not call it a hack ... in the
Makefile.am.

This is currently used in the ‘pcs’, ‘gks’, ‘astrom’ and ‘pgplot’ components.

6.2 Conditionally building components, I

It is occasionally useful to build code conditionally, depending on features of the environment. About the
only place where this is necessary, however, is when building a target of a configure dependency (see
Sec. A.17), where a library (for example) must be built only if it is not available on the platform already.

http://www.gnu.org/software/libtool/manual.html

SSN/78.1 — Miscellaneous hints and tips 60

There is no way to decide not to build a component, so instead we arrange the configuration of the
component in such a way that if the component’s code is not required, then the component trivially
builds and installs nothing, or nothing more than a stamp file.

This is true for the jpeg component, which is a configure dependency of startcl, and located in the
repository in thirdparty/ijg/jpeg. The important parts of jpeg’s configure.ac are as follows:

AC_CHECK_HEADER([jpeglib.h],
[MAIN_TARGET=jpeglib-stamp],
[
(

cd src
echo ./configure --prefix=$prefix --cache-file=config.cache
./configure --prefix=$prefix --cache-file=config.cache

)
MAIN_TARGET=jpeglib

])
AC_SUBST(MAIN_TARGET)

STAR_SPECIAL_INSTALL_COMMAND([
if test $(MAIN_TARGET) = jpeglib; then

cd src;
for d in bin lib include man/man1;

do $(mkdir_p) $$DESTDIR$(prefix)/$$d;
done;
$(MAKE) DESTDIR=$$DESTDIR install install-lib;

fi])

The first part wraps the actual jpeglib configuration code (see Sec. 4.5.3 for the rationale for that code)
inside an autoconf test for the jpeglib.h include file. If it finds it, there is nothing to do; if it doesn’t
then it does actually configure the package. The decision it makes is recorded in the substituted variable
@MAIN_TARGET@ and its corresponding Makefile variable $(MAIN_TARGET).

Note that the STAR_SPECIAL_INSTALL_COMMAND is expanded at a different time from the header test, with
the effect that it is effective in both conditions, when the header file is there and when it isn’t. Thus the
command inside it must be written with this in mind, and explicitly test the value of $(MAIN_TARGET).

The Makefile.am has corresponding support, the important parts of which are as follows.

all-local: $(MAIN_TARGET)

jpeglib:
cd src; $(MAKE) all

jpeglib-stamp:
rm -f $@
{ date; \

echo "jpeglib.h found in system -- no need to build our own"; } >$@

We can’t override the ‘all’ target, but instead use automake’s ‘all-local’ hook which, if it is present, is built
at the same time as ‘all’. Thus depending on the value of the variable $(MAIN_TARGET), as determined and
substituted by configure.ac, we build either the jpeglib software, or a stamp file. The install command in
the configure.ac file above then avoids installing anything if $(MAIN_TARGET) is not the string jpeglib.

6.3 Conditionally Building Components, II

The other way in which you might conditionally build a component is to suppress building it at the end
of the configuration stage, if it turns out that the important features are missing from the environment.

SSN/78.1 — Miscellaneous hints and tips 61

For a description of this, see Sec. A.30.

6.4 Manipulating compiler and linker flags

Sometimes it is necessary to add compiler or linker flags for particular make targets, or add libraries to a
link. This is described in the automake manual, in the section Program and Library Variables. This is a
powerful mechanism, but there is a gotcha.

For each of the variables CFLAGS, LDFLAGS and so on, automake maintains a parallel variable AM_CFLAGS
or AM_LDFLAGS, the contents of which are managed by automake and autoconf, so that the unprefixed
variables are free to be overridden by the user (see section Variables reserved for the user of the automake
manual; to be clear, ‘user’ in this context means the person building the distributed software, as opposed
to the maintainer, or whoever is creating the distribution). If automake sees one of the above per-target
variables, however, it carefully uses this instead of the AM_ variable, not in addition to it. This replacement
is sensible, since if this were not the case then there would be no way to remove a problematic flag from
an AM_ variable, but it is not the behaviour you might guess at first, and so can come as rather a surprise.
Given that you want to add to these flags rather than replace them, you do so with the idiom:

libxxx_la_FCFLAGS = $(AM_FCFLAGS) -my-magic-flag

An alternative to setting per-target flags like this is to set one or more of the AM_*FLAGS variables directly.
These variables are ‘yours’ as the author of the Makefile.am and configure.ac files – the automake
system ensures that the variables are included in the correct places in compile and link commands, but
neither it nor autoconf set these flags. See the FAQ on ‘Flag Variables Ordering’ in the automake manual
for some further discussion.

There is another set of similar variables, named STAR_*FLAGS, which are maintained by starconf and the
STAR_* macros in configure.ac, and which are the means by which those macros pass their discovered
magic on to the Makefile. You shouldn’t need to know that, and you should not need to adjust these
variables at all, but if for some occult reason you need to refer to the complete set of flags used to compile
and link programs, you will need to include these flags also. In general, Makefile variables such as
$(COMPILE) and $(FCCOMPILE) are most suitable for any by-hand compilations you need to do, and they
already have all the extra flags you need, in the right order..

http://www.gnu.org/software/automake/manual/html_node/Program-and-Library-Variables.html
http://www.gnu.org/software/automake/manual/html_node/User-Variables.html
http://www.gnu.org/software/automake/manual/html_node"

62 SSN/78.1— The Starconf macros and variables

Appendix A
The Starconf macros and variables

The following macros may be used within the configure.ac file. Of these, only the STAR_DEFAULTS
macro is required to be in the file.

In the descriptions below, optional arguments are shown in square brackets, along with their default
value. If the sole argument is optional (for example in the case of STAR_DEFAULTS), you do not need to
supply the brackets.

The macros below ultimately do their work by expanding into shell script, and these results are exposed
in the ./configure file. Although it can occasionally be useful to examine these implementation details,
resist the temptation to write your configure.ac scripts based on what you find there. If macro behaviour
is not documented here, you should not rely on it. If you need to rely on it, then consult with the starconf
maintainer to have the documentation changed, and the behaviour thus fixed.

A.1 AC_FC_CHECK_HEADERS

AC_FC_CHECK_HEADERS(include-file...)

Fortran analogue of AC_CHECK_HEADERS, though it only takes the first argument, giving the list of include
files to check. For each include file, defines HAVE_include-file (in all capitals) if the include file is found.
Respects the current value of FCFLAGS.

A.2 AC_FC_CHECK_INTRINSICS

AC_FC_CHECK_INTRINSICS (function...)

Like AC_CHECK_FUNCS, but instead determine the intrinsics available to the Fortran compiler. For each in-
trinsic in the (whitespace-separated and case-insensitive) argument list, define HAVE_INTRINSIC_intrinsic
if it is available. For example, AC_FC_CHECK_INTRINSICS(sin) would define HAVE_INTRINSIC_SIN if the
‘sin’ intrinsic function were available (there are probably rather few Fortrans which don’t have this
function).

There are some functions, such as getcwd, getenv and chdir, which are provided as intrinsics by some
Fortran compilers, but which others supply as external routines in the Fortran runtime. To deal with this
(exasperating) situation, you need a construction like this in your configure.ac:

AC_FC_CHECK_INTRINSICS([getcwd])
AC_LANG_PUSH([Fortran])
AC_CHECK_FUNCS([getcwd])
AC_LANG_POP([Fortran])

and then conditionalise on the defines HAVE_GETCWD and HAVE_INTRINSIC_GETCWD in your preprocessable
code. That is, you use the standard macro AC_CHECK_FUNCS, but wrapped in declarations which force the
check to use Fortran (this doesn’t work in standard autoconf, since the required support is missing).

SSN/78.1 — The Starconf macros and variables 63

A.3 AC_FC_HAVE_BOZ

AC_FC_HAVE_BOZ

Test whether the FC compiler supports BOZ constants in the Fortran 95 style. These are integer constants
written in the format B’xxx’, O’xxx’ and Z’xxx’. If so set the preprocessor variable HAVE_BOZ to be 1.
This should be true of all Fortran 95, and later, compilers.

See also AC_FC_HAVE_TYPELESS_BOZ and AC_FC_HAVE_OLD_TYPELESS_BOZ.

A.4 AC_FC_HAVE_OLD_TYPELESS_BOZ

AC_FC_HAVE_OLD_TYPELESS_BOZ

Test whether the Fortran compiler (FC) supports typeless BOZ constants in the OLD (VMS and g77)
Fortran style. These are constants written in the format ’xxx’X, which allow the initialisation of any type
to a specific bit pattern. If so set the preprocessor variable HAVE_OLD_TYPELESS_BOZ to be 1.

See also AC_FC_HAVE_BOZ and AC_FC_HAVE_TYPELESS_BOZ

A.5 AC_FC_HAVE_PERCENTLOC

AC_FC_HAVE_PERCENTLOC

Test whether the FC compiler has the %LOC extension. If so, define the preprocessor variable HAVE_PERCENTLOC
to be 1.

A.6 AC_FC_HAVE_PERCENTVAL

AC_FC_HAVE_PERCENTVAL

Test whether the FC compiler has the %VAL extension. If so, define the preprocessor variable HAVE_PERCENTVAL
to be 1.

A.7 AC_FC_HAVE_TYPELESS_BOZ

AC_FC_HAVE_TYPELESS_BOZ

Test whether the Fortran compiler (FC) supports typeless BOZ constants in the Fortran 95 style. These are
constants written in the format X’xxx’ that allow the initialisation of any type of variable to a specific bit
pattern. If so set the preprocessor variable HAVE_TYPELESS_BOZ to be 1.

See also AC_FC_HAVE_BOZ and AC_FC_HAVE_OLD_TYPELESS_BOZ

SSN/78.1 — The Starconf macros and variables 64

A.8 AC_FC_HAVE_VOLATILE

AC_FC_HAVE_VOLATILE

Test whether the Fortran compiler (FC) supports the VOLATILE statement. VOLATILE is used to stop
the optimisation of a variable, so that it can be modified outside of the program itself. If supported the
preprocessor variable HAVE_VOLATILE is set to be 1.

A.9 AC_FC_LITERAL_BACKSLASH

AC_FC_LITERAL_BACKSLASH

Check whether the compiler regards the backslash character as an escape character. The backslash is not
in the Fortran character set, so ISO-1539 does not specify how this is to be interpreted, but many Unix
Fortran compilers interpret ’\n’, for example, as a newline, and ’
’ as a single backslash. Many Unix compilers have switches which allow you to choose between these
two modes.

This macro tests the behaviour of the currently selected compiler, and defines FC_LITERAL_BACKSLASH to
1 if backslashes are treated literally – that is if ’\\’ is interpreted as a pair of backslashes and thus that
’\n’ is interpreted as a pair of characters rather than a newline.

Note that, if you simply want to have a character constant which contains a single backslash, then the
following initialisation will do that for you without any need for this macro (thanks to Peter Draper).

* Printable backslash: some compilers need ’\\’ to get ’\’, which
* isn’t a problem as Fortran will truncate the string ’\\’ to ’\’
* on the occasions when that isn’t needed.

CHARACTER * (1) CCD1__BKSLH
PARAMETER (CCD1__BKSLH = ’\\’)

Fortran is required to truncate the initialising string without error, as noted in ISO-1539 sections 5.2.9 and
7.5.1.

A.10 AC_FC_OPEN_SPECIFIERS

AC_FC_OPEN_SPECIFIERS(specifier ...)

The Fortran OPEN statement is a rich source of portability problems, since there are numerous common
extensions which consiste of extra specifiers, several of which are useful when they are available. For
each of the specifiers in the (whitespace-separated) argument list, define HAVE_FC_OPEN_mungedspecifier
if the specifier may be given as argument to the OPEN statement. The mungedspecifier is the specifier
converted to uppercase and with all characters outside [a-zA-Z0-9_] deleted. Note that this may include
‘specifiers’ such as access=’append’ and [access=’sequential’,recl=1] (note quoting of comma) to
check combinations of specifiers. You may not include a space in the ‘specifier’, even quoted. Each
argument must be a maximum of 65 characters in length (to abide by Fortran 77 line-length limits).

See Sec. 2.5 for an example of using this preprocessor definition in a Fortran program.

SSN/78.1 — The Starconf macros and variables 65

A.11 AC_FC_RECL_UNIT

AC_FC_RECL_UNIT

When opening a file for direct access, you must specify the record length with the OPEN specifier RECL;
however in the case of unformatted direct access files, the units of this specifier are processor dependent,
and may be words or bytes. This macro determines the units and defines FC_RECL_UNIT to contain the
number of bytes (1, 2, 4, 8, ...) in the processor’s unit of measurement.

Note that unformatted files are not themselves portable, and should only be used as either temporary
files, or as data files which will be read by a program or library compiled with the same Fortran processor.
With this macro, however, you can read and write such files in a portable way.

A.12 AC_PROG_FC

AC_PROG_FC([COMPILERS...], [DIALECT])

[COMPILERS...] is a list of specific compilers you want it to try, so you could give it [f77 g77] as an
argument. That’s useful if you have rather specific demands or need to more-or-less customize this.

More useful is the DIALECT, which can be 77, 90, 95 or 2000. Thus if you give this as AC_PROG_FC([],
77) or AC_PROG_FC([], 1977) then this will search only its internal list of Fortran 77 compilers (which
happens to be [g77 f77 xlf frt pgf77 fort77 fl32 af77] currently).

A.13 AC_PROG_FPP

AC_PROG_FPP(required-features,[FPP-SRC-EXT=F])

required-features is a space-separated list of features that the Fortran preprocessor must have for the
code to compile. It is up to the package maintainer to properly set these requirements.

FPP-SRC-EXT is an optional specification of the file extension for preprocessable Fortran source files
(without a leading dot). It defaults to F: There would appear to be a problem, here, with case-insensitive
filesystems, such as the default HFS+ on MacOS X, and Windows filesystems, since the extension .F is
indistinguishable from plain .f. However there is no problem in practice, since the Fortran compilers
you are likely to encounter on these platforms are all capable of compiling preprocessable Fortran directly
to object code, without requiring the intermediate .f file (and there is a check in autoconf to double-check
that this is true).

The macro works out if the Fortran compiler discovered by macro AC_PROG_FC has the requested set of
features. If so, it arranges for the compilation to be done ‘directly’; if not, it arranges for ‘indirect’ compi-
lation, where the preprocessable Fortran code is converted to pure Fortran code and only subsequently
passed to the Fortran compiler.

The configure variables which this macro sets, and which are available for substitution, are as follows.

FPP The Fortran preprocessor which the macro decides is suitable.

FPPFLAGS The flags which will be given to the compiler (in direct mode) or preprocessor (in indirect
mode).

SSN/78.1 — The Starconf macros and variables 66

FPP_SRC_EXT This is the file extension (without a dot) of preprocessable Fortran files; by default this is
‘F’.

FPP_COMPILE_EXT This contains the file extension which the Fortran compiler will accept. It is the same
as FPP_SRC_EXT if the compiler itself can do preprocessing (‘direct’ compilation), or a dummy value
(not .f, since that would conflict with the pre-existing rule for compiling Fortran) if it cannot, and
the file must be preprocessed separately (‘indirect’).

FPP_PREPROCESS_EXT The partner of FPP_COMPILE_EXT. This is FPP_SRC_EXT for indirect compilation,
or a dummy value for direct compilation, when the corresponding separate-processing generated
rule should be ignored.

FPP_MAKE_FLAGS This is used to pass flags to the cpp or fpp command if we compile directly, and leave
them out otherwise.

FPP_OUTPUT This is used to redirect FPP output to the .f file in those cases where FPP writes to stdout
rather than to a file: it is either blank or something like >$@

You do not generally need to know or care about the above variables, since if you have any preprocessable
source files in your source set, then automake will insert appropriate build rules in the generated
Makefile.in on your behalf. If, however, you need to run the preprocessor ‘by hand’ for some reason
(perhaps because you are using the preprocessor to do something other than compiling .F to .o, so that
the .F file is not being mentioned in a _SOURCES primary), then a suitable stanza in a Makefile.am or
Makefile.in would be:

file.f: file.$(FPP_SRC_EXT)
$(FPP) $(FPPFLAGS) $(CPPFLAGS) file.$(FPP_SRC_EXT) $(FPP_OUTPUT)

where we have ensured that the input file has the extension $(FPP_SRC_EXT). You can add extra options
such as -I. if necessary (automake puts these in the variable $(DEFAULT_INCLUDES)).

NOTE: There are some features of this macro support which are arguably bad autoconf style, and it is
very likely that this macro will change. The documentation below is only for completeness, and you are
advised not to pay any attention to it. See Sec. C.

Supported features are:

include the preprocessor must correctly process #include directives and -I options

define correctly process -D options

substitute substitute macros in Fortran code (some preprocessors touch only lines starting with #)

wrap wrap lines that become too long through macro substitution. fpp is probably the only preprocessor
that does this.

cstyle Do not suppress C style comments (the -C option in cpp)

CSTYLE Do suppress C style comments (e.g. code contains C-style comments, and compiler may not
know how to handle them)

Features can be abbreviated: i, in, inc etc. are equivalent to include. Features can be deselected (feature
not needed) by prepending "no", e.g. nodef (=nodefine), now (=nowrap).

Default for the feature list is [include define substitute nowrap nocstyle noCSTYLE]

Feature requirements corresponding to the defaults may be omitted

Note that "wrap" implies "substitute", and CSTYLE and cstyle cannot be requested at the same time. The
macro adjusts this automatically.

SSN/78.1 — The Starconf macros and variables 67

A.14 STAR_CHECK_PROGS

STAR_CHECK_PROGS(progs-to-check-for, [package=”])

Note: The functionality of this macro is very likely to change.

For each of the programs in PROGS-TO-CHECK-FOR, define a variable whose name is the upcased version of
the program name, and whose value is the full path to that program, or the expected installation location
of that program if no absolute path can be found. Because of this default behaviour, this macro should
only be used for locating Starlink programs such as messgen or alink, and not as a general replacement
for AC_CHECK_PROG. Any characters in the program outside of the set of alphanumerics and underscores
are normalised to underscores.

The optional second argument gives the name of the package containing the program in question. Some
packages install their binaries in package-specific directories, and this argument allows this macro to
look there as well.

For example: STAR_CHECK_PROGS(messgen) would define the variable MESSGEN to have the full path to
the messgen application.

Calls AC_SUBST and AC_ARG_VAR on the generated variable name.

This is the analogue of AC_CHECK_PROG, except that: (1) the variable name defaults to the program name,
(2) if the program is not found, the variable value is the program’s name without any path at all.

The current value of the PATH variable is augmented by the location of the binary installation directory,
using the current default value of the prefix (not ideal, since this may in principle change when the
component being configured is installed, but it’s the best we can do at configure time); and by the
$STARLINK/bin, $STARLINK/Perl/bin and $STARLINK/starjava/bin directories (so this is a suitable
macro to use to locate the distributed Perl binary).

If the program in question cannot be found, the the substitution variable is set to be the name of the
program without any path, in the expectation or hope that the program will eventually end up in the
path. This is not ideal, but it is the best that can be done in the important case where the program is being
configured as part of bootstrapping build, and thus before any packages have been built and installed, so
that there is in fact no installed program to be found. This heuristic will obviously fail when the program
to be checked for is not in the path, and this will typically happen when the second ‘package’ argument
is non-null. The pattern to use in this case is as follows.

Some components build their documentation using the (now deprecated) sst component. This uses the
per-package-dirs option, and so installs its applications in a package-specific directory. You would there-
fore check for the prolat tool (for example) in configure.ac using STAR_CHECK_PROGS(prolat,sst). If
the sst component is in fact installed, this would substitute @PROLAT@ with the full path to the application;
but in a bootstrap build could do no more than subsitute it with the bare program name prolat, as
described above. In order to use this within a Makefile.am, you would have to use a rule like

target: dependency
PATH=$$PATH:$(STARLINK)/bin/sst @PROLAT@ args...

where the PATH is temporarily augmented with the installation location of the sst component. This is
pretty safe, because the STARLINK Makefile variable is always present and always substituted. Despite
that, it is not ideal, since it depends on undocumented (but unlikely to change in practice) knowledge of
how the sst component is installed, and it is possible to think of convoluted installation schemes which
might trip this up. Given that, the only time this is likely to matter is during a bootstrap build (at other
times, prolat would be installed already and so @PROLAT@ would be substituted with a full path), so it is
unlikely to be a problem in practice.

SSN/78.1 — The Starconf macros and variables 68

A.15 STAR_CNF_BLANK_COMMON

STAR_CNF_BLANK_COMMON

Determine the global symbol used for the Fortran blank common storage space. This is a special-
ist macro probably only of use to the CNF package. Its only side-effect is to define the C macro
BLANK_COMMON_SYMBOL.

A.16 STAR_CNF_COMPATIBLE_SYMBOLS

STAR_CNF_COMPATIBLE_SYMBOLS

Work out what is required to have the Fortran compiler produce library symbols which are compatible
with those expected by the CNF package. If you are building a library which includes Fortran code, then
you should call this macro, which possibly adjusts the FCFLAGS variable.

At present, all this macro has to do is simply work out whether it needs to stop g77 adding a second
underscore to generated symbol names (it adds a single underscore to most Fortran symbols, but by
default adds two when the symbol name already contains an underscore); the other Fortran compilers
we use don’t need any extra options, as it happens. However this could potentially be much more
complicated. The autoconf AC_F77_WRAPPERS macro detects more possibilities, but probably not a
completely exhaustive set. In future it might be necessary to extend the CNF macros, by somehow
merging the results of AC_F77_WRAPPERS into it, and at that point it might be necessary to extend this
macro.

This macro is designed to work with CNF, however it does not require the cnf.h headers to be installed,
because it should remain callable at configuration time before anything has been installed. Instead we
fake the functionality of the definition F77_EXTERNAL_NAME in cnf.h, which appends an underscore (just
one) to the end of C symbols.

A.17 STAR_DECLARE_DEPENDENCIES

STAR_DECLARE_DEPENDENCIES(type, deplist, [option=”])

Declare dependencies of this component. The TYPE is one of ‘sourceset’, ‘build’, ‘link’, ‘configure’, ‘use’
or ‘test’, and the DEPLIST is a space separated list of component names, which this component depends
on in the specified way.

This is less complicated than it seems. The only types you’re likely to have to specify are ‘build’ and ‘link’
dependencies.

• If a particular component D needs to be installed in order for a given component C to be built (per-
haps because it uses include files installed by the component D), then that second component has a
build dependency on D: C’s configure.ac should contain STAR_DECLARE_DEPENDENCIES(build,D).

• If C is a library which depends on functions from another library D, then D does not have to be
present in order to build C, but it does have to be present, at some later stage, in order to link against
it: STAR_DECLARE_DEPENDENCIES(link,D)

• If D is a library which we need to link against in order to build our component C (which is almost
certainly an application), then this is still a build dependency on D, but we must indicate that we
depend on all of D’s link dependencies also: STAR_DECLARE_DEPENDENCIES(build,D,link).

SSN/78.1 — The Starconf macros and variables 69

In full, the types of dependencies are as follows:

Sourceset dependencies These are the components which must be installed in order to build the com-
plete set of sources, either for building or for distribution. This includes building documentation, so
it would include star2html as well as messgen. These dependencies are generally added for you,
by the STAR_LATEX_DOCUMENTATION or STAR_MESSGEN macros.

Build dependencies These are the dependencies which are required in order to build this component.
This is typically because you require include files installed by the other component, but it might
also be because you require an executable built by it (such as the compifl tool within the parsecon
component). See also the discussion of ‘option’, below. You may not have two components which
have a build dependency on each other, since that would mean that each would have to be built
before the other, which is impossible.

Link dependencies These are the dependencies required to link against the libraries in a component.
That means all the libraries that this component’s libraries use. These are not necessarily build
dependencies, since if you are building a library X, which uses functions in library Y, the library Y
does not have to be present in order to build library X, only when you subsequently want to actually
link against it. Thus you can have two components which have mutual link dependencies. If you are
building an application, however, all its link dependencies will actually be build dependencies and
should be declared as such. In other words, the distinction between build and link dependencies is
important only for library components.

Configure dependencies There are some components which must be installed before the configure step,
since they must be present in order for other packages to configure against them. Components
which are listed as a configure dependency of some other component are made during the make
configure-deps stage of the bootstrapping build process.

You should try hard to avoid declaring dependencies of this type, since they necessarily subvert the
normal build order. Note that transitivity implies that any dependencies of a configure dependency
are also configure dependencies, so that declaring a configure dependency on sst for example (an
obvious but bad plan), results in half the software set being built before configuration. Which is
crazy.

You can see the set of configure dependencies by looking at the configure-deps target in Makefile.dependencies.

Use dependencies These are the dependencies required in order for the component to be used by
something else, after it has been built and installed. For example a library which called another
application as part of its functionality would have only a use dependency on the component which
contained that application. If no use dependencies are declared, we take the use dependencies to
be the same as the link dependencies. We expect that such use dependencies will become more
important when we start using this dependency information to build distribution packages, or to
assemble .rpm or .deb packages. You should add any use dependencies you are aware of, even
though we cannot really debug them until a distribution system is in place.

Test dependencies These are required in order to run any regression tests which come with the compo-
nent. It’s generally a good idea to avoid making this a larger set than the use dependencies, but
sometimes this is unavoidable. If no test dependencies are declared, we take the test dependencies
to be the same as the use dependencies. Note that the system does not currently make any use of
this information.

The point of all this is that different dependencies are required at different times. The set of dependencies
in the master makefile is composed of all the ‘sourceset’ and ‘build’ dependencies, but not ‘link’ or
‘use’ dependencies, and since the core Starlink libraries are closely interdependent, the set of ‘build’
dependencies needs to be kept as small as possible in order to avoid circularities (that is, A depending on
B, which depends, possibly indirectly, on A).

SSN/78.1 — The Starconf macros and variables 70

It is because of this intricacy that the dependencies scheme is so complicated. In general, it is safe to declare
most things to have build dependencies, and only refine these into link or use dependencies when things
won’t work otherwise.

All these relationships are transitive: if A has a build dependency on B, and B has one on C, then A has a
build dependency on C. You can augment this by using the final ‘option’ argument: if, in component A’s
configure.ac, you say STAR_DECLARE_DEPENDENCIES(build, B, link), then you declare that A has a
build-time dependency on B, but that (presumably because B is a component consisting entirely or mostly
of libraries) you need to link against B, so component A has a dependency on all of B’s link dependencies,
not just its build dependencies. An application component should generally declare such a dependency
for each of the libraries it depends on. This is (I believe) the only case where this ‘option’ attribute is
useful, though it is legal for each of the dependency types.

Because of the transitivity, you need only declare direct dependencies. If package A depends on package
B, which depends in turn on package C, then package A need not declare a dependency on C.

The macro may be called more than once. The results of this macro are expressed in the file component.xml
in the component directory.

A.18 STAR_DEFAULTS

STAR_DEFAULTS([options=”])

Sets up the defaults for Starlink configure.ac files. The optional OPTIONS argument holds a space-
separated list of option keywords, of which the only ones defined at present are per-package-dirs and
docs-only.

As part of its initialisation, this macro does the following:

• Makes sure that the variable STARLINK is defined, so that you can use it elsewhere in your
configure.ac file. The value of this variable depends on the STARCONF_DEFAULT_STARLINK variable
which is defined by the ./starconf.status script (see Sec. 2.2), and can be overridden by a setting
of STARLINK in the environment, though you are discouraged from doing that.

• Sets appropriate vales for variables AM_FCFLAGS and AM_LDFLAGS (you shouldn’t have to care, as
the point of these prefixed variables is that they should be orthogonal to the unprefixed variables
with the similar names, but see Sec. 6.4 for a gotcha).

• Defines and substitutes variables PACKAGE_VERSION_MAJOR, ..._MINOR, ..._RELEASE and ..._INTEGER.
These are respectively the major, minor and release numbers extracted from PACKAGE_VERSION, and
an integer representation of these consisting of major * 1000000 + minor * 1000 + release.

This macro also sets the prefix shell variable to its default value. Standard autoconf ./configure
scripts also do this, but at a slightly later stage, which prevents the variable being used safely within
configure.ac scripts. This is useful if you have to configure a thirdparty package in a subdirectory, by
calling its ./configure script with a suitable –prefix option.

The option per-package-dirs, has three consequences:

(1) applications, help and etc files are installed in a package-specific directory (however the fac_*_err
files are regarded as being in a separate category, and still install in /star/help, without any
package-specific prefix);

(2) the otherwise-forbidden variable bin_DATA is permitted: any files assigned to this variable are
installed in the (package-specific) binary directory as data, as opposed to executables;

SSN/78.1 — The Starconf macros and variables 71

(3) a file version.dat is created (at make rather than install time). This holds the bare PACKAGE_VERSION
number, and is installed in the binary directory.

See also Sec. C.

The docs-dir option declares that this component contains only documentation (or at least, no code). This
triggers mild changes in the behaviour of the STAR_DEFAULTS macro which should make configuration
somewhat faster in this case. Certain other macros, such as STAR_MESSGEN, are disabled.

A.19 STAR_INITIALISE_FORTRAN_RTL

STAR_INITIALISE_FORTRAN_RTL

Define a macro which can be used in a C or C++ main program to initialise the Fortran RTL, including,
for example, doing whatever work is required so that the Fortran getarg() function works. This defines
the macro STAR_INITIALISE_FORTRAN(argc,argv). If nothing is required or possible on a particular
platform, then this expands, harmlessly, to nothing.

You might use this as follows:

#include <config.h>

int main(int argc, char** argv)
{

STAR_INITIALISE_FORTRAN(argc, argv);

/* etc */
}

A.20 STAR_LARGEFILE_SUPPORT

STAR_LARGEFILE_SUPPORT

Set macros for compiling C routines that want to make use of large file support. This is a joining of
AC_SYS_LARGEFILE and AC_FUNC_FSEEKO so defines the macros _FILE_OFFSET_BITS, _LARGEFILE_SOURCE
and _LARGE_FILES as needed , along with HAVE_FSEEKO when fseeko and ftello are available.

To use large file support you need to use fseeko and ftello, instead of fseek and ftell, when HAVE_FSEEKO
is defined (and use type off_t for offsets) and compile all C code with the other defines (many of the
usual system calls are replaced with large file supporting ones, when this is done).

Currently the AC_FUNC_FSEEKO macro does not define _LARGEFILE_SOURCE under Solaris, so this function
makes sure that this is done. It also gathers the values of _FILE_OFFSET_BITS, _LARGEFILE_SOURCE and
_LARGE_FILES and sets the STAR_LARGEFILE_CFLAGS variable so that it can be used as part of CFLAGS
when compiling. This in useful for passing to packages which are not directly part of the starconf system.
Note that normally the necessary defines are written to config.h or are already made part of the local
CFLAGS, so this variable is not needed.

A.21 STAR_LATEX_DOCUMENTATION

STAR_LATEX_DOCUMENTATION(documentcode, [targets=”])

SSN/78.1 — The Starconf macros and variables 72

Generate the standard makefile targets to handle LATEX documentation source. The parameter documentcode
should be a space-separated list of codes like ‘sun123’ – they must not include any .tex extension. Each
of the documentcodes may optionally be followed by a slash, to indicate that the source file is not in the
current directory; see below.

The second, optional, argument gives an explicit list of the targets which are build. If this is not specified,
then a standard list is used (.tex, .ps and .tar_htx at present, though this is in principle subject to
change) and corresponding rules added to the generated makefile. If it is specified, it must be non-null,
and its value is a list of files which are to be added to the distribution, and no extra Makefile rules are
added. Thus if users need anything complicated done, they should use this second argument and provide
rules for satisfying the given targets.

In the latter case, the .tex -> htx_tar rule is still emitted, so you can use it, but it requires the sub-
stitution variable @STAR2HTML@, and so if you do use it, you will have to make that available, either
through STAR_CHECK_PROGS(star2html) or otherwise (see Sec. A.14). If you need to tune the parame-
ters used when running the star2html command, then assign these to the STAR2HTML_FLAGS macro in
Makefile.am.

The default rule for compiling LATEX files simply runs LATEX twice. If you need to do more than this – for
example to run BibTeX or make an index – then you can override this by setting the variable LATEX2DVI
in the configure.ac file; it is already substituted with a default value, so you don’t have to call AC_SUBST
on it. This variable should refer to LATEX as $$LATEX, and use $$1 to refer to the root of the LATEX file to be
compiled (that is, the filename with any .tex extension removed). The doubled dollar signs are because
this is evaluated within the context of a ‘make’ rule. Thus if you needed to run BibTeX between the LATEX
runs, you would define:

LATEX2DVI=’$$LATEX $$1; bibtex $$1; $$LATEX $$1’

This macro defines the substitution variable @STAR_LATEX_DOCUMENTATION@ to be the second macro
argument if that is present, or the default target list if not. This variable must therefore be used as a value
for the stardocs_DATA Makefile variable (see Sec. A.32).

If any documentcode is followed by a slash, then the default target list is assigned to @STAR_LATEX_DOCUMENTATION_<DOCUMENTCODE>@
instead; you may not use this latter feature if the second argument is non-null.

See Sec. 4.6 for more discussion of this feature, plus an example.

The configure option –without-stardocs suppresses building documentation.

It is occasionally necessary to add extra files to the .htx tarball – for example .gif images, or other files
referenced by the HTML version of the documentation. To request that extra files should be added to the
starnnn.htx_tar archive, you should create a file starnnn.htx_tar.extras listing the filenames which
should be included, separated by whitespace (spaces, tabs or newlines).

A.22 Variable STAR_MANIFEST_DIR

The STAR_MANIFEST_DIR substitution variable is slightly special. If it is defined in your configure.ac file,
then Starlink automake will include in the generated Makefile.in code to create and install a manifest
of all the files installed.

If you set this variable at installation time:

make STAR_MANIFEST_DIR=/my/special/manifest install

then this overrides the manifest location defaulted at configure time. If the variable is set to be null (make
STAR_MANIFEST_DIR= install) then you will suppress the creation and installation of the manifest.

You define it as follows:

SSN/78.1 — The Starconf macros and variables 73

: ${STAR_MANIFEST_DIR=’$(prefix)/manifests’}
AC_SUBST(STAR_MANIFEST_DIR)

This sets the variable to be $(prefix)/manifests, but allows it to be overridden by a setting of the
variable in the environment. Note that is is set to be relative to the value of the $(prefix) makefile
variable.

You do not have to set this in general, as this is one of the things that the STAR_DEFAULTS macro (Sec. A.18)
takes care of. The only time you need to use this feature is when you are importing a third-party code
set into the tree (as described in Sec. 4.5). In that case, you do not want to specify STAR_DEFAULTS in the
configure.ac, but you do need to install a manifest. If there is more than one configure.ac file in the
tree, you will have to add this for each one.

See also Sec. A.29.

A.23 STAR_MESSGEN

STAR_MESSGEN([msgfile-list])

Handle generating message, error, and facility files.

Declare that we will need to use the messgen utility. This macro does not by itself cause the messgen rules
to be included in the makefile – that is done by automake, when it sees a include_MESSAGES variable.

In the Makefile.am you declare the include_MESSAGES or noinst_MESSAGES variable to have as value
each of the error files you require from the .msg file. For example, you might write:

include_MESSAGES = ast_err.h AST_ERR

to generate, install and distribute the C and Fortran error message files. You may include a _SOURCES
declaration to indicate the name of the .msg file, but the default value (ast_err.msg in this case) is
usually correct. The files thus listed are installed in the same include directory as other header files. You
should not list a file in both include_MESSAGES and include_HEADER.

If you need to work with an error file which is not public, you can declare it with

noinst_MESSAGES = dat_err.h

Such a file is generated but not installed. In order that it be distributed, you should include $(noinst_MESSAGES)
in the _SOURCES declaration of the program which includes it.

Although it’s difficult to see why you’d want to, you can include the nodist_ prefix with this primary.

You do not need to mention the fac_xxx_err file which messgen also generates – this is generated and
installed automatically.

The optional argument is a space-separated list of files, each of which has a set of message declarations in
it, in the format prescribed by the messgen utility. If this is present, then the named files are declared as
pre-distribution files (the macro calls STAR_PREDIST_SOURCES on them), and so the resulting configure
script should expect not to find them in an unpacked distribution. This is useful as documentation or as a
shortcut for calling the latter macro, but recall that it is the presence of the automake include_MESSAGES
variable which does the work.

The macro may be called more than once if you have more than one .msg file in the directory.

The files which this generates should be declared as sources in the Makefile.am if they are to be used in
code, or are to be installed. For example:

SSN/78.1 — The Starconf macros and variables 74

bin_PROGRAMS = foo
foo_SOURCES = foo.c $(include_MESSAGES)

include_MESSAGES = foo_err.h

BUILT_SOURCES = $(include_MESSAGES)

If they are used in building the package, you will probably need to declare them additionally as
BUILT_SOURCES.

The macro also implicitly declares a ‘sourceset’ dependency on the messgen package.

A.24 STAR_MONOLITHS

STAR_MONOLITHS

Declare that we will be creating monoliths. This is conceptually similar to the various AC_PROG_FC
declarations, and does whatever configuration is necessary to handle these.

Note that the declarations done in the Makefile.am, declaring the name of the monolith and the names
and source files of the tasks, are slightly redundant inasmuch as some of that information could be implied.
However, this is required to be explicit for clarity and consistency, and so accomodate the (currently
unexploited) possibility that the tasks and .ifl files longer have the one-task-per-file relationship they
have now.

See Sec. 3.4 for discussion.

A.25 STAR_PATH_TCLTK

STAR_PATH_TCLTK([minversion=0], [options=”])

Finds a tclsh, and the associated libraries, optionally searching for Tk as well.

Sets substitution variable TCL_CFLAGS to the C compiler flags necessary to compile with Tcl, TCL_LIBS
to the required library flags, and variable TCLSH to the full path of the matching tclsh executable and
TCL_VERSION to the major.minor version number; if Tk is requested, it similarly sets TK_CFLAGS, TK_LIBS
and WISH. Define the cpp variable TCL_MISSING to 1 if the required programs and libraries are not
available (that is, it is also set if Tcl is available but a suitable version of Tk isn’t).

If argument minversion is present, it specifies the minimum Tcl/Tk version number required.

If the argument options is present, it is a space-separated list of the words tk and itcl. If one or both of
these is present, then the macro will find a Tcl location which also has Tk or itcl installed (note that the
itcl test doesn’t do anything at present).

The macro searches first in the path, and then in a selection of platform-specific standard locations. The
configure option –with-tcl allows you to provide a path to a tclsh binary, which is put at the head of
the list of locations to search. Option –without-tcl suppresses the search, and results in no variables
being substituted.

This is intended to be similar to macro AC_PATH_XTRA.

SSN/78.1 — The Starconf macros and variables 75

A.26 STAR_PLATFORM_SOURCES

STAR_PLATFORM_SOURCES(target-file-list, platform-list)

Generate the given target-file for each of the files in the list TARGET-FILE-LIST, by selecting the ap-
propriate element of the PLATFORM-LIST based on the value of AC_CANONICAL_BUILD. Both lists are
space-separated lists.

For each of the platforms, <p>, in platform-list, there should be a file <target-file><p>. There should
always be a file <target-file>default, and if none of the platform-list strings matches, this is the file
which is used. If the ‘default’ file is listed in the ‘platform-list’, then it is matched in the normal run of
things; if it is not listed, it still matches, but a warning is issued.

If you wish no match not to be an error – perhaps because there is a platform-dependent file which is
redundant on unlisted platforms – then end the platform-list with NONE. In this case, if no file matches,
then no link is made, with no error or warning.

This macro uses the results of ./config.guess to determine the current platform. That returns a triple
consisting of cpu-vendor-os, such as ‘i686-pc-linux-gnu’ (OS=linux-gnu), ‘sparc-sun-solaris2.9’, or
‘alphaev6-dec-osf5.1’.

The extensions <p> in platform-list should all have the form ‘cpu_vendor[_os]’, where each of the
components ‘cpu’, ‘vendor’ and ‘os’ may be blank. If not blank, they are matched as a prefix of the cor-
responding part of the config.guess value. Thus ‘_sun_solaris’ would match ‘sparc-sun-solaris2.9’
but not ‘sparc-sun-sunos’, and ‘_sun’ would match both. For a <target-file> file foo.c, this would
result in ‘ln -s foo.c_sun foo.c’.

Calls AC_LIBSOURCE for each of the implied platform-specific files.

A.27 STAR_PREDIST_SOURCES

STAR_PREDIST_SOURCES(source-files)

Give a (space-separated) list of files which should exist only in the pre-distribution (ie, repository
checkout) state. If one of these is found, then the substitution variable PREDIST is set to a blank rather
than the comment character #. This means that Makefile rules which are intended to work only in the
pre-distribution state – for example to generate distributed sources – should appear in Makefile.am with
each line prefixed by @PREDIST@. After configuration, these rules will be enabled or disabled depending
on the presence or absence of the marker files listed in this macro.

We should find either all of the marker files or none of them; if some but not all are found, this is probably
an error of some type, so warn about it. This means, by the way, that it is the presence or absence of the
first marker file which determines whether we are in the pre-distribution or post-distribution state, with
the rest providing consistency checks.

The macro may be called more than once. Multiple calls are equivalent to a single call with all the marker
files in the list. Automake checks that the files listed here are not in the list of distributed files, and issues
a warning if they are.

If you use this @PREDIST@ variable, then it is important to refer to all the files thus protected in a
STAR_PREDIST_SOURCES call. The build will possibly still work if you forget to do this, but if so you are
discarding a potentially useful consistency check.

For examples of use, see Sec. 4.3

SSN/78.1 — The Starconf macros and variables 76

A.28 STAR_PRM_COMPATIBLE_SYMBOLS

STAR_PRM_COMPATIBLE_SYMBOLS

This macro supports the use of the VAL__ constants that are defined in the include file PRM_PAR. If checks if
any special compiler flags are required to support PRM’s use of typeless BOZ (binary octal, hexadecimal)
constants, or if there’s no typeless BOZ support any special flags that are required for that.

In fact this macro is only currently of use with the gfortran compiler which has no typeless BOZ support,
so requires that the -fno-range-check flag is set so that assigments to integers can silently overflow
(BOZ constants are replaced with their integer and floating point equivalents). In general this macro
should be used by all packages that include PRM_PAR, all monoliths are assumed to use this by default.

A.29 STAR_SPECIAL_INSTALL_COMMAND

Third-party sources will not come with a make install target which installs a manifest. It is reasonably
easy to add such support, however, as described in Sec. 4.5.3. The crucial feature is the one line installation
command declared in the macro STAR_SPECIAL_INSTALL_COMMAND. If this macro variable is present in a
configure.ac file, then Starlink automake will generate an install target which uses this command to
do the installation, in such a way that a manifest file can be generated automatically. The argument to
this macro is executed as the last command (or commands) in a subshell, the exit value of which is tested
for a success status. For this to work, the command must have the following features:

(1) It must include the exact string $(MAKE) (as opposed to plain ‘make’), as part of some $(MAKE) ...
install command.

(2) It must be prepared to install its files in a location which is prefixed by the value of the environment
variable $DESTDIR. Recent versions of automake generate support for this variable automatically,
older versions appear to have had the same functionality, but used a variable $INSTALL_ROOT for it.

(3) The subshell within which the given command is executed must exit with a zero status if the
command is successful, and a non-zero status otherwise. This will happen if, for example, the last
command in the macro argument is a ‘make’ command, since this exits with a non-zero status if the
make fails, and this is passed on to the containing shell.

The example shown in Sec. 4.5.3 shows a use of this macro which satisfies these constraints.

The command may be as complicated as you like, but note that it is collapsed onto a single line by autoconf,
so although you may spread the macro argument over several lines for readability, each command must
be separated by a semicolon (or double-ampersand or double-bar).

See Sec. 4.5 for general discussion of importing third-party sources.

A.30 STAR_SUPPRESS_BUILD_IF

STAR_SUPPRESS_BUILD_IF(test, message)

Some components should be built only conditionally, if certain conditions apply. For example, the
sgmlkit component can be built only if the host system has jade installed on it, but the lack of this is
not an error, in the sense that it should cause a tree-wide ./configure to fail. This macro helps with this
situation.

SSN/78.1 — The Starconf macros and variables 77

If this macro is triggered, by the given condition being true, then ./configure, make and make install
will all succeed without compiling anything, with the latter installing a correctly formed manifest file
which does not list any installed files.

The test in the first argument is a shell expression which should evaluate to true (ie, return a zero status)
if the build should be suppressed. In the case of the sgmlkit component, the configure.ac includes the
lines:

AC_PATH_PROGS(JADE, [openjade jade], NOJADE)
AC_PATH_PROGS(SGMLNORM, [osgmlnorm sgmlnorm], NOSGMLNORM)
...
STAR_SUPPRESS_BUILD_IF([test $JADE = NOJADE -o $SGMLNORM = NOSGMLNORM],

[JADE=$JADE, SGMLNORM=$SGMLNORM: both needed for sgmlkit])

The test expression evaluates to true if either of the $JADE or $SGMLNORM variables has the special values
given as defaults in the AC_PATH_PROGS macros earlier.

If the test is true, the message is displayed during the ./configure run, but the configuration does not
fail. Instead, a stamp file STAR_SUPPRESS_BUILD is left in the build directory, with the consequence that if
you subsequently type make, that build will do nothing, emit the same message, and also not fail. If you
subsequently invoke make install, that will also succeed, but install no files, except a manifest without
a <files> element.

If you do any special installation work in your Makefile.am, remember to check for the existence of this
stamp file, and make sure that you do not actually install anything if the file is present.

The difference between this and the standard AC_FATAL macro is that the latter is for an error in the
configuration script – either a logic error there, or a serious problem like being unable to compile anything
at all! Alternatively, if a dependency should be present because it is listed in the configure.ac as such,
but it isn’t, that’s a case for a call to AC_FATAL. The STAR_SUPPRESS_BUILD_IF macro is for rather more
well-mannered interactions with the user, indicating that there is other work they might have to do to get
this component building.

You should use this macro rather sparingly. If a component depends on a component thus suppressed,
there will likely be trouble.

A.31 STAR_XML_DOCUMENTATION

STAR_XML_DOCUMENTATION(documentcode, [targets=”])

Generate the standard makefile targets to handle XML documentation source. The parameter documentcode
should be something like ‘sun123’ – it should not include any .xml extension.

For details, see the macro STAR_LATEX_DOCUMENTATION, which this macro closely matches, and
which is more often used. The differences are as follows:

• The default list of targets is .texml_tar .htx_tar .ps .pdf, though using the second argument
(discouraged) requires you to specify values for the JADE, SGMLNORM and SGMLKIT_HOME substitution
variables (the .texml_tar tarball contains a .tex file plus any required figures).

• This macro defines the substitution variables @STAR_XML_DOCUMENTATION@ and @STAR_XML_DOCUMENTATION_-
<DOCUMENTCODE>@.

• This macro declares a dependency on the sgmlkit component.

• The interface to LATEX2DVI is the same, and configure option –without-stardocs suppresses this
documenation, too.

SSN/78.1 — The Starconf macros and variables 78

A.32 starxxx_DATA – special installation directories

There are several makefile variables which help you install files in special directories. These are the vari-
ables stardocs_DATA, staretc_DATA, starexamples_DATA, starhelp_DATA and starnews_DATA (there is
also starfacs_DATA, for facility files, but this is handled for you, and you should not need to refer to
this explicitly). In the Makefile.am the variable has as value a list of files to be installed as data in the
corresponding place.

The list of documentation files is not necessarily known in advance, since the macro STAR_LATEX_DOCUMENTATION
has a default list of targets it will generate. You can give the value of the stardocs_DATA as a substitution
variable:

stardocs_DATA = @STAR_LATEX_DOCUMENTATION@

(plus any other documentation files you require). See Sec. 4.6 for more discussion.

A.33 Obsolete macros

A.33.1 AC_F77_HAVE_OPEN_READONLY

AC_F77_HAVE_OPEN_READONLY

Obsolete: use AC_FC_OPEN_SPECIFIERS instead

A.33.2 STAR_DOCS_FILES and friends

Obsolete: The STAR_X_FILES macros (for X in DOCS, ETC, EXAMPLES and HELP) are now obsolete, and you
should use the corresponding makefile variables instead – see Sec. A.32.

A.33.3 STAR_FC_LIBRARY_LDFLAGS

STAR_FC_LIBRARY_LDFLAGS

Obsolete: use standard AC_FC_LIBRARY_LDFLAGS instead – the extra functionality which this macro
added to the standard one is now handled automatically.

A.33.4 STAR_HAVE_FC_OPEN_READONLY

STAR_HAVE_FC_OPEN_READONLY

Obsolete: use AC_FC_OPEN_SPECIFIERS(readonly) instead.

79 SSN/78.1—The relationship with the GNU autotools

Appendix B
The relationship with the GNU autotools

The build system is based heavily on the GNU autotools, autoconf, automake and libtool. Each of these is
checked in to the CVS repository, and built and installed during the top-level ./bootstrap process. Run
the commands with the –version option to see the actual installed version.

The checked-in libtool is an unmodified libtool distribution.

The Starlink autoconf is based on version 2.59, with additions to support preprocessable Fortran; these
modifications have been submitted to the autoconf maintainers, so it is hoped that these will become part
of the autoconf distribution, at which point the Starlink autoconf will revert to being an unmodified one.

The additions are the macros which start AC_... described in Sec. A.

The Starlink automake is a more heavily modified version of automake. There are a few generic changes
to support the added Fortran autoconf macros, but the majority of the changes are in the service of
Starlink’s specific requirements. They are summarised here.

• Addition of the MONOLITHS and TASKS primaries: These function rather like the PROGRAMS primary,
in that the the MONOLITHS primary specifies one or more monoliths to install, and the TASKS one or
more IFL tasks to associate with it. Like the PROGRAMS primary, each MONOLITHS variable should
have a xxx_SOURCES variable associated with it. Starlink automake also emits the makefile rules to
compile .ifl files to .ifc files.

• Addition of the stardocs, staretc, starhelp (and so on) prefixes to the DATA primary. Setting
these variables has the same effect as giving an argument to the STAR_DOCS_FILES macro (and
friends). See Sec. A.33.2.

• Extra LDADD options: In standard automake, the content of the LDADD variables must be a list of
extra objects to add to a program, or extra libraries, specified through -l and -L flags. In Starlink
automake, you can additionally specify extra libraries using the standard Starlink *_link and
*_link_adam commands. You can add to the LDADD variable tokens matching ‘[a-z_]*_link‘ or
‘[a-z_]*_link_adam‘ (that is, a sequence of lowercase letters and underscore), or either of these
preceded by exactly $(srcdir)/, which you would need to do only in the case of test code or the
case below.
You cannot include any options or arguments. If you want, for example, ast_link -pgplot, then
you should create a local script named, for example, my_ast_pgplot_link (that is, matching the
pattern above), which simply invokes the correct link script. In this case, you will have to include
the $(srcdir)/ element in the line, so that the script will be picked up from the current directory.

• Starlink automake spots use of the STAR_MESSGEN and STAR_LATEX_DOCUMENTATION macros in the
associated configure.ac, and produces appropriate extra build rules in the generated Makefile.in.
If the STAR_MANIFEST_DIR is to be substituted by autoconf, then Starlink automake adds support
for installing manifests to the generated makefile.

• Default strictness: Starlink automake adds the –startree strictness level to the default –foreign,
–gnu and –gnits. At present, it is almost indistinguishable from –foreign, and is the default (the
default for GNU automake is –gnu strictness – see also Sec. C).

• All of the installation rules have been modified to recognise the presence of the MANIFEST makefile
variable, and if it is set true, to include the path to the installed file in the output of the command.
The modified install target manages this variable. The makefile ‘install’ target has been modified
to create and install such manifests by default.

SSN/78.1 —The relationship with the GNU autotools 80

• The missing script which is installed as part of Starlink automake respects the MISSING_SUPPRESS_RUN
environment variable.

• The package version is reported as 1.8.2-starlink rather than plain 1.8.2.

81 SSN/78.1—Possible future changes

Appendix C
Possible future changes

The starconf system is still quite new, and there are certain features of it which might change in the light
of experience. These are summarised here, as a warning of what is not finalised, as reassurance if some of
the documentation here seems out of date (in which case tell the document maintainer), and as a note of
what aspects might need further discussion.

• The starconf application currently only generates two files – you should not assume this will always
be so.

• There are only two options to STAR_DEFAULTS – the set will likely expand.

• The description of the tree-wide bootstrapping process in Sec. 3.2 is likely to change as more of the
Starlink legacy and new code is brought under this build system umbrella. The interface to the
‘make world’ build may well change (see Sec. 2.4).

• The default automake strictness is –starlink, which is currently almost identical to the standard
automake –foreign strictness. We may change this, and add other files.

• The AC_PROG_FPP macro described in Sec. B will very likely change its interface.

	Introduction
	 Quick entry-points

	Tools
	Overview of the Autotools
	 Autoconf
	 Automake
	 Libtool
	 Autoreconf: why you don't need to know about aclocal
	 Running ./configure

	 Starconf, and the Starlink autoconf macros
	 STARCONF_DEFAULT_PREFIX and STARCONF_DEFAULT_STARLINK
	 Components
	 File templates
	 The format of the component.xml file

	Version numbers
	A few remarks on state
	 Preprocessable Fortran
	 Using the Starlink CVS repository
	 CVS
	 CVS and tagging
	CVS and recursion – checking out only a subtree

	Building applications and libraries
	 The top-level Makefile
	Bootstrapping and building the entire tree
	Building a single component
	Building monoliths
	 Bootstrapping without building: configuring starconf and the autotools

	Incorporating a package into the Starlink build system
	 Autoconfing a library
	 The build system `interface'
	 Distribution of components
	 Making a distribution

	 Regression tests
	 Importing third-party sources
	 Configuring m4
	Configuring CFITSIO
	 Configuring tcl
	Time order of third-party sources

	 Documentation
	 Components containing only documentation

	 Adding components: the final step

	FAQs
	General FAQs
	 Installation FAQs
	 State FAQs

	 Miscellaneous hints and tips
	 Forcing automake's choice of linking language
	 Conditionally building components, I
	 Conditionally Building Components, II
	 Manipulating compiler and linker flags

	 The Starconf macros and variables
	AC_FC_CHECK_HEADERS
	AC_FC_CHECK_INTRINSICS
	 AC_FC_HAVE_BOZ
	 AC_FC_HAVE_OLD_TYPELESS_BOZ
	 AC_FC_HAVE_PERCENTLOC
	 AC_FC_HAVE_PERCENTVAL
	 AC_FC_HAVE_TYPELESS_BOZ
	 AC_FC_HAVE_VOLATILE
	 AC_FC_LITERAL_BACKSLASH
	 AC_FC_OPEN_SPECIFIERS
	 AC_FC_RECL_UNIT
	 AC_PROG_FC
	 AC_PROG_FPP
	 STAR_CHECK_PROGS
	 STAR_CNF_BLANK_COMMON
	 STAR_CNF_COMPATIBLE_SYMBOLS
	 STAR_DECLARE_DEPENDENCIES
	 STAR_DEFAULTS
	 STAR_INITIALISE_FORTRAN_RTL
	 STAR_LARGEFILE_SUPPORT
	 STAR_LATEX_DOCUMENTATION
	 Variable STAR_MANIFEST_DIR
	 STAR_MESSGEN
	 STAR_MONOLITHS
	 STAR_PATH_TCLTK
	 STAR_PLATFORM_SOURCES
	 STAR_PREDIST_SOURCES
	 STAR_PRM_COMPATIBLE_SYMBOLS
	 STAR_SPECIAL_INSTALL_COMMAND
	 STAR_SUPPRESS_BUILD_IF
	 STAR_XML_DOCUMENTATION
	 starxxx_DATA – special installation directories
	Obsolete macros
	 AC_F77_HAVE_OPEN_READONLY
	 STAR_DOCS_FILES and friends
	 STAR_FC_LIBRARY_LDFLAGS
	STAR_HAVE_FC_OPEN_READONLY

	The relationship with the GNU autotools
	Possible future changes

