SUN/11.6

Starlink Project
Starlink User Note 11.6

R.F. Warren-Smith & D.S. Berry
4th December 2017

ARY

A Subroutine Library for Accessing
ARRAY Data Structures
Version 2.0
Reference Manual

SUN/11.6 —Abstract ii

Abstract

The ARY library is a set of routines for accessing Starlink ARRAY data structures built using the
Hierarchical Data System (HDS).

iii SUN/11.6—Contents

Contents
I__Introduction| 1
2 Bounds, Dimensions and Pixel Counts| 1
2.1 TheFortran APIl 1
22 TheCAPIl e 2
3 Array Storage Forms| 3
B.1 Delta Compressed Array Form| 4
B.I1 CreatingaDelta Array|. 4
B.1.2 The HDS Structure of aDelta Array] 4
4 Compiling and Linking| 7
[A Alphabetical list of Routines| 8
B_Classified list of Routines| 11
[B.T Access to Existing Arrays| oo 11
[B.2 Enquiring Array Attributes| L 11
B.3 Creating and Deleting Arrays| 12
4 Setting Array Attributes| o L oo 12
B5 Accessto Array Values| 12
i ifiers| 13
[B.7 Message System Routines| o oo oo 13
B.8 Creating Placeholders|. 13
B9 Copying Arrays| 13
B.10 Miscellaneous] o 13
|C Fortran Routine Descriptions| 14
| ARY ANNUL] 15
[ARY BAD| . . . o oo e 16
| ARY BASE|. 17
[ARY BOUNDI oottt e e e e e e 18
[ARY BOUNDK] e 19
[ARY CLONE|ottt e 20
[ARY CMPLX] . . oot e et e e e e 21
[ARY COPY . .ottt e et e e e e e 22
[ARY DELET]. . . .ot e et e e e e e e 23
[ARY DELTA|. . . . oot et e e e 24
[ARY DIM| . . .ot e e 26
[ARY DIMK]ottt 27
[ARY DUPE . ..ottt 28
[ARY FINDI. . . oo e e 29
[ARY FORM]ot 30
[ARY FTYPE| 31
| ARY GIDLT]. 32
[ARY GTSZB| oo e e e 33

SUN/11.6 —Contents iv

| ARY TSACTT] . o o o oo e e e e 35
[ARY ISBAST . . . oo e 36
[ARY ISMAD] . . . o oo 37
[ARY ISTMD] . .« . o oo e e e e e 38
| ARY LOT .« o o e e e 39
| ARY MAD| . . o o e e 40
| ARY MAPK] . . o o o e e 41
[ARY MAPZ] . . . e 42
[ARY MAPZK] . . . oo 43
| ARY MGG . o o oo e e e e 44
[ARY NDIM| . . . oo e e e e 45
| ARY NEW| . . o o e e 46
[ARY NEWK] . . . o oo s, 47
[ARY NEWD| . . . oo s 48
[ARY NEWPK] . . . o oo e s s, 49
[ARY NOACT . . o o oo e e e e e e s s 50
[ARY OFFT| . o oo e e 51
[ARY OFFSK| . . . o oo 52
[ARY PLACE]. . . o oo e e e s 53
[ARY PISZBl . . o o oo e 54
| ARY RESET] . o o o e e e e e e 55
[ARY SAME] . . . o oo 56
| ARY SBAD] . o o o oo e e 57
[ARY SBND . . . oo oo e e 58
[ARY SBNDK| . . . o oot e 59
[ARY SCIYD . o oo e e 60
[ARY SECT]. . . . oo e e e e e 61
[ARY SECTK] . .« o oo e e e e e 62
| ARY SHIFT] . . . o oo e e e e 63
| ARY SHIFTK] . . o oo e e e e e s 64
[ARY SIZE . . o o 65
[ARY SIZEK] . . . o oo e e 66
[ARY . SSECT] . . . o o e e e e e e e 67
[ARY STATE] . . . o oo e 69
[ARY STYPE . . . oo o e e 70
[ARY TEMD] . . . oo e e e e 71
[ARY TRACE]. . . o oo e s, 72
[ARY TYPE . . o oo 73
[ARY UNMAD] e e e e e e e s s 74
[ARY VALID] . . . o oo e e e e 75
[ARY VEREY]. . . o oo e e s, 76

ﬂ) C Function Descriptions| 77

aryAnnull 78
arzBa§| ... 79
T ATYBASE . - . e e 80
[aryBound]. 81
arXCIOne| .. 82

SUN/11.6 —Contents

............ 83
AYEIMPI - i
BYLOPM - o
AYZEEl o
AYSCEL o
MY o
AYULK o
arzFin§| ... o
MY ODN e o
ar e o
[Gl . o
N o
MLMP e o
arxlsacq ... o
m 57
QY SMAP] - - o
N o
MY UL .
[oo B
AYROCKEL e
R o
MY SARE o
ari@sg I
ariN@i@ ... I
ANEW] o
ALMEWP v o
A b
arXOffs| o
[P .o 113
S e
[GOVRESET - e
AYROUR e e
e e
e e
T o
[GVBEE] - b
arzbecg o
[IRENH . 123
AT o
e o
S i
arXStXEe‘ oo
AVTEMP] -+ 2
m o
ARG o
AYEROE e >
ALY DI - o
A o
aryVerfy|

SUN/11.6 —Contents

[E Changes and new features in V1.1|

[F Changes and new features in V1.3

|G Changes and new features in V1.4

[H Changes and new features in V2.0

vi

136

136

137

137

1 SUN/11.6 —Bounds, Dimensions and Pixel Counts

1 Introduction

This is a preliminary document describing a set of routines for accessing Starlink ARRAY data
structures built using the Hierarchical Data System HDS (SUN/92). Details of these structures
and the design philosophy behind them can be found in SGP/38, although familiarity with that
document is not necessarily required in order to use the routines described here.

This document currently lacks a descriptive section outlining the philosophy behind the use
of the ARY_ routines. It is nevertheless being made available in this form because the ARY_
system constitutes an essential sub-component of the NDF_ system, which contains routines
for accessing Starlink NDF (N-Dimensional Data Format) structures. These NDF_ routines are
described in SUN/33.

The most likely reason for needing to use the ARY_ routines directly at present is for accessing
ARRAY structures stored in NDF extensions. Since most ARY_ routines closely resemble the
equivalent NDF_ routine, SUN/33 should initially form an adequate introduction to their use,
in conjunction with the detailed routine descriptions contained in Appendix [C|of this document.

Note, version 2.0 of the ARY system is based on a complete re-write of the original Fortran
system in C.

2 Bounds, Dimensions and Pixel Counts

The API for version 2.0 of the ARY system has been changed to allow very large arrays to be
handled - that is, arrays that have more elements than can be counted in a single 4-byte integer.
This has been achieved in different ways in the C and Fortran interfaces.

2.1 The Fortran API

Routines that have integer arguments that represent either the index of a pixel along a pixel axis
or the number of elements in an array now have two APIs - one that supports use with very
large arrays and a legacy API that does not (included for the benefit of old code). The “large
array” and “legacy” routines have the same names except that the “large array” versions have
the character “K” appended to the end. For instance, the legacy API includes ARY_DIM, which
returns the number of pixels along each pixel axis of an array:

INTEGER STATUS
INTEGER IARY
INTEGER NDIM
INTEGER DIM(3)

CALL ARY_DIM(IARY, 3, DIM, NDIM, STATUS)

The “large array” API includes ARY_DIMK, which behaves exactly like ARY_DIM, but returns
the pixel counts in 8 byte integers:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/11.6 —Bounds, Dimensions and Pixel Counts 2

INTEGER STATUS
INTEGER IARY
INTEGER NDIM
INTEGER*8 DIM(3)

CALL ARY_DIMK(IARY, 3, DIM, NDIM, STATUS)

The list of routines for which “K” versions exist is as follows:

e ARY_BOUND
e ARY_DIM

e ARY_MAP
e ARY_MAPZ
e ARY_NEW
e ARY_NEWP
e ARY_OFFS
e ARY_SBND
e ARY_SECT
e ARY_SHIFT
e ARY_SIZE

2.2 The C API

The C API does not include alternate functions for the two APIS. Instead, all arguments that refer
to pixel indices or counts are declared with a special data type of "hdsdim" (defined in include
file “star /hds.h”). The particular form of integer corresponding to “hdsdim” is determiend by
the version fo the HDS library with which the application is linked. Local variables used to store
pixel indices or counts should also be declared with type “hdsdim”:

Ary *ary;

int status;

int ndim;
hdsdim dim[3];

aryDim(ary, 3, dim, ndim, &status);

3

Note that at present, the ARY_ system provides full support only for the “primitive” and “simple

SUN/11.6 —Array Storage Forms

Array Storage Forms

7

forms of the ARRAY data structure.

Some support is also provided for two additional forms:

SCALED - the “scaled” form described in SGP/38. This form is the same as the “simple” form

except that two extra scalar values are included that describe a linear scaling from the
stored array values to the data values of interest to an external user. These two scalars are
referred to as SCALE and ZERO. The external (unscaled) data values are derived from the
stored (scaled) data values as follows:

unscaled = SCALE*scaled + ZERO

DELTA - this form is not currently described in SGP/38. Delta form provides a lossless com-

pression scheme designed for arrays of integers in which there is at least one pixel axis

along which the array value changes only slowly. For further details, see

The following points should be noted:

(1)

(2)

©)

4)

Scaled and delta arrays are “read-only”. An error will be reported if an attempt is made
to map a scaled or delta array for WRITE or UPDATE access. When mapped for READ
access, the pointer returned by ARY_MAP provides access to the original data values - that
is, the mapped values are the result of (for scaled arrays) applying the scale and zero terms
to the stored values, or (for delta arrays) uncompressing the compressed values.

Currently, the internal stored (i.e. scaled or compressed) data values cannot be accessed
directly.

The result of copying a scaled or delta array (using ARY_COPY) will be an equivalent
simple array.

Scaled and delta arrays cannot be created directly. Instead, a simple array must first be
created (using ARY_NEW), and this can then be converted to a scaled or delta array as
follows:

SCALED - storing scale and zero values in the simple array using ARY_PTSZ<T>. A
typical program would create a simple array, map it for write access, store the scaled
data values in the mapped simple array, unmap the array, and then associate scale
and zero values with the array, thus converting it to a scaled array.

DELTA - copying the simple array using ARY_DELTA. The copy will be a compressed
array stored in delta form. A typical program would create a simple array, map it for
write access, store the uncompressed data values in the mapped simple array, unmap
the array, and then copy it using ARY_DELTA. The original simple array could then
be deleted if it is no longer needed.

Scaled and delta arrays cannot have complex data types. An error will be reported if an
attempt is made to to import an HDS structure describing a complex scaled or delta array,
or to use ARY_PTSZ<T> or ARY_DELTA on an array with complex data values.

SUN/11.6 —Array Storage Forms 4

(5) When applied to a scaled or delta array, the ARY_TYPE and ARY_FTYPE routines return
the data type of the external (i.e. unscaled or uncompressed) values. In practice, this
means that for a scaled array they return the data type of the SCALE and ZERO constants,
rather than the data type of the array holding the stored (scaled) data values. For a delta
array they return the data type of the original uncompressed values.

3.1 Delta Compressed Array Form

The DELTA storage form provides lossless compression for integer arrays. It uses two methods
to achieve compression:

¢ Differences between adjacent data values are stored, rather than the full data values
themselves. For many forms of astronomical data, the differences between adjacent data
values have a much smaller range than the data values themselves. This means that they
can be represented in fewer bits. For instance, if the data values are _INTEGER, then
the differences between adjacent values may fit into the range of a _"WORD (-32767 to
+32767) or even a _BYTE (-127 to +127). This use of a shorter data type usually provides
the majority of the compression. However, it is not necessary for all differences to be small
- if the difference between two adjacent data values is too large for the compressed data
type, the second of the two data values will be stored explicitly using the full data type of
the original uncompressed data. Obviously, the more values that need to be stored in full
in this way, the lower will be the compression.

In the above description, the term “adjacent” means “adjacent along a specified pixel axis”.
The pixel axis along which differences are taken is referred to as the “compression axis”. It
may be specified explicitly by the calling application when ARY_DELTA is called, or it
may be left unspecified in which case ARY_DELTA will choose the axis that gives the best
compression.

e If the uncompressed array contains runs of more than three identical values along the
compression axis, then the run of identical values is replaced by a single value (stored in
full, not as a difference) and a repetition count.

3.1.1 Creating a Delta Array

To create a DELTA array, first store the uncompressed integer values in a simple array, and then
copy the array using ARY_DELTA. The copy produced by ARY_DELTA will be stored in DELTA
form.

Arrays of floating point values may be compressed by first storing the floating point values in a
SCALED array, and then using ARY_DELTA to create a delta compressed copy of the scaled
array. Note, the scaled array must use an integer data type to store the internal (i.e. scaled)
values. The use of the scaled array means that the compression is not lossless, since some
information will have been lost in scaling the floating point values into integers.

3.1.2 The HDS Structure of a Delta Array

The HDS structure of a DELTA array is similar to the SIMPLE array, in that it will contain
VARIANT, DATA and ORIGIN components. In addition they can contain SCALE and ZERO

5 SUN/11.6 —Array Storage Forms

terms, which, if present, are used to scale the uncompressed integers as in a SCALED array:.
Uncompression happens first, producing an array of uncompressed integers, which are then
unscaled if required using SCALE and ZERO to produce the final uncompressed, unscaled,
array.

DELTA arrays cannot be used to hold complex values and so no IMAGINARY_DATA component
will be present. Also, DELTA arrays have an implicit value of . TRUE. for their bad pixel flags,
and so no BAD_PIXEL component will be present in the HDS structure.

Information is stored within a DELTA array that allows sub-sections of the compressed array to
be uncompressed without needing to uncompress the whole array.

A DELTA array is stored in an HDS structure with type DELTA_ARRAY, and contains the
following components:

DATA - This is a one-dimensional integer array holding the differences between adjacent
uncompressed integer data values along the compression axis. Its data type will be eother
_INTEGER, _-WORD or _BYTE and is specified when ARY_DELTA is called to create
the array. A few integer values (all near the maximum value allowed by the data type)
are reserved for use as flags to indicate one of the following conditions (wWhere “MAX”
represents the largest positive integer value that can be represented using the data type of
the DATA array):

e The value MAX is reserved to indicate that the next element of the uncompressed
array is good, but could not be expressed as a difference from the previous element
because the difference would not fit into the available data range of the DATA array.
Instead, the full uncompressed value is stored in the next element of the VALUE
array.

e The value (MAX-1) is reserved to indicate that the next element of the uncompressed
array is good and is exactly equal to the following (N-1) elements. The full uncom-
pressed value is stored in the next element of the VALUE array. The value of N is
stored in the next element of the REPEAT array.

e The value (MAX-2) is reserved to indicate that the next element of the uncompressed
array is bad, as are the following (N-1) elements. The full uncompressed value of the
next good value following the bad values is stored in the next element of the VALUE
array. The value of N is stored in the next element of the REPEAT array.

e The value (MAX-3) is reserved to indicate that the next element of the uncompressed
array is bad, but the following element is good and its full uncompressed value is
stored in the next element of the VALUE array.

e The value (MAX-4) is reserved to indicate that the next N elements of the uncom-
pressed array are good but cannot be expressed as differences from the previous
element because the differences would not fit into the available data range of the
DATA array. Instead, the full uncompressed values are stored in the next N elements
of the VALUE array. The value of N is stored in the next element of the REPEAT
array.

e Any other value is taken to be (NEXT - PREVIOUS) - the difference between the next
uncompressed value and the previous uncompressed value.

Notes:

SUN/11.6 —Array Storage Forms 6

(1) The “available data range” in DATA is reduced to leave room for the above flags.

(2) The first element in each row of pixels parallel to the compression axis is always
represented using one of these flag values. This allows each row of pixel values to be
uncompressed without reference to any earlier values.

(3) Repeated runs of good or bad value are always contained within a single row of pixels
parallel to the compression axis. Runs of repeated values that cross the boundary
between adjacent rows are split into two repeated runs - one for each row.

FIRST_DATA - This is an _INTEGER array with (NDIM-1) axes which have the same order
and size as the axes of the uncompressed array, but omitting the compression axis (NDIM
is the number of axes in the uncompressed array). It holds the zero-based index into the
DATA array at which the first element of the corresponding row of values is stored.

For instance, if the uncompressed array is a cube with bounds (1:10,1:5,1:7), and the
compression axis is axis number 2, then the FIRST_DATA array will be two-dimensional
with bounds (1:10,1:7). Element (2,3) of this array (for instance) will hold the integer index
of the DATA array element that gives the full value for pixel (2,1,3) in the uncompressed
array. Elements (2,2,3), (2,3,3), (2,4,3) and (2,5,3) of the uncompressed array are then
derived from the following values in the DATA array.

FIRST_REPEAT - This is an array with the same shape as the FIRST_DATA array. It holds
the zero-based index of the first value of the REPEAT array to be used whilst uncom-
pressing the corresponding row of pixels. This component will only be present in the
DELTA_ARRAY structure if the REPEAT component is present. The data type of this array
will be one of _INTEGER, _UWORD or _UBYTE, depending on the largest value stored in
it.

FIRST_VALUE - This is an array with the same shape as the FIRST_DATA array. It holds the
zero-based index of the first value of the VALUE array to be used whilst uncompressing
the corresponding row of pixels. The data type of this array will be one of _INTEGER,
_UWORD or _UBYTE, depending on the largest value stored in it.

ORIGIN - A one-dimensional _INTEGER array holding the pixel indices of the first element of
the uncompressed array. This component is optional - an origin of (1,1,1...) is assumed if
the component is not present in the DELTA_ARRAY structure.

REPEAT - A one-dimensional _INTEGER array holding the number of repetitions for each
value associated with an occurrence of (MAX-1), (MAX-2) or (MAX-4) in the DATA array.
The data type of this array will be one of _INTEGER, _"UWORD or _UBYTE, depending
on the largest value stored in it. This array will not be present if there are no runs in the
uncompressed data array.

SCALE - An optional component giving a scale factor to apply to the uncompressed integer
values. It can be of any data type. If present the uncompressed array is treated like a
SCALED array. In particular, the data type of the uncompressed array will be the same
as the data type of the SCALE component, if present. If not present, the data type of the
uncompressed array is given by the data type of the VALUE array.

VALUE - A one-dimensional array with the same data type as the uncompressed array (_IN-
TEGER, _'WORD, _UWORD, _BYTE or _UBYTE) prior to scaling by SCALE and ZERO.

7 SUN/11.6 —Compiling and Linking

It holds full uncompressed integer values for the elements that are flagged with any of
the special values listed under “DATA” above. Note, if SCALE and ZERO components
are present in the DELTA array, the VALUE array holds internal scaled values, rather than
external unscaled values.

VARIANT - The storage form of the array. This will always be set to “DELTA”.

ZAXIS - A scalar _INTEGER value giving the index of the ecompression axis - that is, the
pixel axis index within the uncompressed array along which differences were taken. Care
should be taken in the choice of ZAXIS since it can affect the degree of compression
achieved. If ZAXIS is not specified when compressing an array, it defaults to the axis that
gives the greatest compression. Note, the ZAXIS value is one-based, not zero-based.

ZDIM - A scalar _INTEGER holding the length of the compression axis within the uncom-
pressed array. The other dimensions of the uncompressed array are given by the shape of
the FIRST_DATA array.

ZERO - An optional component giving a zero offset to add to the uncompressed integer values.
It can be of any data type. If present the uncompressed array is treated like a SCALED
array.

ZRATIO - A scalar _REAL holding the compression factor - that is, the ratio of the uncom-
pressed array size to the compressed array size. This is approximate as it does not include
the effects of the metadata needed to describe the extra components of a DELTA array (i.e.
the space needed to hold the HDS component names, types, dimensions, etc).

4 Compiling and Linking

ADAM applications which call ARY_ routines may be linked with the link script ary_link_adam,
which should be specified on the linker command line. For example, to compile and link an
application called adamprog using the alink command, the following might be used:

% alink adamprog.f -o adamprog ‘ary_link_adam®

A “stand-alone” (i.e. non-ADAM) version of the ARY_ system is also available and should be
used by those applications which do not use ADAM facilities. This version may be obtained by
specifying the options file ary_link on the linker command line. For example, to compile and
link a stand-alone C application called prog, the following might be used:

% gcc prog.c -o prog ‘ary_link®

Both versions of the ARY_ system contain the same set of user-callable routines.

SUN/11.6 —Alphabetical list of Routines

A Alphabetical list of Routines

ARY_ANNUL(IARY, STATUS)
Annul an array identifier

ARY_BAD(IARY, CHECK, BAD, STATUS)
Determine if an array may contain bad pixels

ARY_BASE(IARY1, IARY2, STATUS)
Obtain an identifier for a base array

ARY_BOUND(IARY, NDIMX, LBND, UBND, NDIM, STATUS)
Enguire the pixel-index bounds of an array

ARY_BOUNDKI(IARY, NDIMX, LBND, UBND, NDIM, STATUS)
Enquire the pixel-index bounds of an array

ARY_CLONE(IARY1, IARY2, STATUS)
Clone an array identifier

ARY_CMPLX(IARY, CMPLX, STATUS)
Determine whether an array holds complex values

ARY_COPY(IARY1, PLACE, IARY2, STATUS)
Copy an array to a new location

ARY_DELET(IARY, STATUS)
Delete an array

ARY_DIM(IARY, NDIMX, DIM, NDIM, STATUS)
Enquire the dimension sizes of an array

ARY_DIMK(IARY, NDIMX, DIM, NDIM, STATUS)
Enquire the dimension sizes of an array

ARY_DUPE(IARY1, PLACE, IARY2, STATUS)
Duplicate an array

ARY_FIND(LOC, NAME, IARY, STATUS)
Find an array in an HDS structure and import it into the ARY _ system

ARY_FORM(IARY, FORM, STATUS)
Obtain the storage form of an array

ARY_FTYPE(IARY, FTYPE, STATUS)
Obtain the full data type of an array

ARY_GTSZx(IARY, SCALE, ZERO, STATUS)
Get the scale and zero values for a scaled array

ARY_IMPRT(LOC, IARY, STATUS)
Import an array into the ARY _ system from HDS

ARY_ISACC(IARY, ACCESS, ISACC, STATUS)
Determine whether a specified type of array access is available

ARY_ISBAS(IARY, BASE, STATUS)
Engquire if an array is a base array

9 SUN/11.6 —Alphabetical list of Routines

ARY_ISMAP(IARY, MAPPED, STATUS)
Determine if an array is currently mapped

ARY_ISTMP(IARY, TEMP, STATUS)
Determine if an array is temporary

ARY_MAP(IARY, TYPE, MMOD, PNTR, EL, STATUS)
Obtain mapped access to an array

ARY_MAPK(IARY, TYPE, MMOD, PNTR, EL, STATUS)
Obtain mapped access to an array

ARY_MAPZ(IARY, TYPE, MMOD, RPNTR, IPNTR, EL, STATUS)
Obtain complex mapped access to an array

ARY_MAPZK(IARY, TYPE, MMOD, RPNTR, IPNTR, EL, STATUS)
Obtain complex mapped access to an array

ARY_MSG(TOKEN, IARY)
Assign the name of an array to a message token

ARY_NDIM(IARY, NDIM, STATUS)
Enquire the dimensionality of an array

ARY_NEW(FTYPE, NDIM, LBND, UBND, PLACE, IARY, STATUS)
Create a new simple array

ARY_NEWK(FTYPE, NDIM, LBND, UBND, PLACE, IARY, STATUS)
Create a new simple array

ARY_NEWP(FTYPE, NDIM, UBND, PLACE, IARY, STATUS)
Create a new primitive array

ARY_NEWPK(FTYPE, NDIM, UBND, PLACE, IARY, STATUS)
Create a new primitive array

ARY_NOACC(ACCESS, IARY, STATUS)
Disable a specified type of access to an array

ARY_OFFS(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Obtain the pixel offset between two arrays

ARY_OFFSK(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Obtain the pixel offset between two arrays

ARY_PLACE(LOC, NAME, PLACE, STATUS)
Obtain an array placeholder

ARY_PTSZx(IARY, SCALE, ZERO, STATUS)
Set new scale and zero values for a scaled array

ARY_RESET(IARY, STATUS)
Reset an array to an undefined state

ARY_SAME(IARY1, IARY2, SAME, ISECT, STATUS)
Enquire if two arrays are part of the same base array

ARY_SBAD(BAD, IARY, STATUS)
Set the bad-pixel flag for an array

SUN/11.6 —Alphabetical list of Routines

ARY_SBND(NDIM, LBND, UBND, IARY, STATUS)
Set new pixel-index bounds for an array

ARY_SBNDK(NDIM, LBND, UBND, IARY, STATUS)
Set new pixel-index bounds for an array

ARY_SCTYP(IARY, TYPE, STATUS)
Obtain the numeric type of a scaled array

ARY_SECT(IARY1, NDIM, LBND, UBND, IARY2, STATUS)
Create an array section

ARY_SECTK(IARY1, NDIM, LBND, UBND, IARY2, STATUS)
Create an array section

ARY_SHIFT(NSHIFT, SHIFT, IARY, STATUS)
Apply pixel-index shifts to an array

ARY_SHIFTK(NSHIFT, SHIFT, IARY, STATUS)
Apply pixel-index shifts to an array

ARY_SIZE(TARY, NPIX, STATUS)
Determine the size of an array

ARY_SIZEK(IARY, NPIX, STATUS)
Determine the size of an array

ARY_SSECT(IARY1, IARY2, IARY3, STATUS)
Produce a similar array section to an existing one

ARY_STATE(IARY, STATE, STATUS)
Determine the state of an array (defined or undefined)

ARY_STYPE(FTYPE, IARY, STATUS)
Set a new type for an array

ARY_TEMP(PLACE, STATUS)
Obtain a placeholder for a temporary array

ARY_TRACE(NEWFLG, OLDFLG)
Set the internal ARY _ system error-tracing flag

ARY_TYPE(IARY, TYPE, STATUS)
Obtain the numeric type of an array

ARY_UNMAP(IARY, STATUS)
Unmap an array

ARY_VALID(IARY, VALID, STATUS)
Determine whether an array identifier is valid

ARY_VERFY(IARY, STATUS)
Verify that an array’s data structure is correctly constructed

10

11 SUN/11.6 —Classified list of Routines

B Classified list of Routines

B.1 Access to Existing Arrays

ARY_FIND(LOC, NAME, IARY, STATUS)
Find an array in an HDS structure and import it into the ARY _ system

ARY_IMPRT(LOC, IARY, STATUS)
Import an array into the ARY _ system from HDS

B.2 Enquiring Array Attributes

ARY_BAD(IARY, CHECK, BAD, STATUS)
Determine if an array may contain bad pixels

ARY_BOUND(IARY, NDIMX, LBND, UBND, NDIM, STATUS)
Enquire the pixel-index bounds of an array

ARY_CMPLX(IARY, CMPLX, STATUS)
Determine whether an array holds complex values

ARY_DIM(K)(IARY, NDIMX, DIM, NDIM, STATUS)
Enquire the dimension sizes of an array

ARY_FORM(IARY, FORM, STATUS)
Obtain the storage form of an array

ARY_FTYPE(IARY, FTYPE, STATUS)
Obtain the full data type of an array

ARY_ISACC(IARY, ACCESS, ISACC, STATUS)
Determine whether a specified type of array access is available

ARY_ISMAP(IARY, MAPPED, STATUS)
Determine if an array is currently mapped

ARY_ISBAS(IARY, BASE, STATUS)
Enquire if an array is a base array

ARY_ISTMP(IARY, TEMP, STATUS)
Determine if an array is temporary

ARY_NDIM(IARY, NDIM, STATUS)
Enquire the dimensionality of an array

ARY_OFFS(K)(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Obtain the pixel offset between two arrays

ARY_SAME(IARY1, IARY2, SAME, ISECT, STATUS)
Enquire if two arrays are part of the same base array

ARY_SIZE(K)(TARY, NPIX, STATUS)
Determine the size of an array

ARY_STATE(IARY, STATE, STATUS)
Determine the state of an array (defined or undefined)

SUN/11.6 —Classified list of Routines

ARY_TYPE(IARY, TYPE, STATUS)
Obtain the numeric type of an array

ARY_VALID(IARY, VALID, STATUS)
Determine whether an array identifier is valid

ARY_VERFY(IARY, STATUS)
Verify that an array’s data structure is correctly constructed

B.3 Creating and Deleting Arrays

ARY_DELET(IARY, STATUS)
Delete an array

ARY_DUPE(IARY1, PLACE, IARY2, STATUS)
Duplicate an array

ARY_NEW(K)(FTYPE, NDIM, LBND, UBND, PLACE, IARY, STATUS)
Create a new simple array

ARY_NEWP(K)(FTYPE, NDIM, UBND, PLACE, IARY, STATUS)
Create a new primitive array

B.4 Setting Array Attributes

ARY_NOACC(ACCESS, IARY, STATUS)
Disable a specified type of access to an array

ARY_RESET(IARY, STATUS)
Reset an array to an undefined state

ARY_SBAD(BAD, IARY, STATUS)
Set the bad-pixel flag for an array

ARY_SHIFT(K)(NSHIFT, SHIFT, IARY, STATUS)
Apply pixel-index shifts to an array

ARY_STYPE(FTYPE, IARY, STATUS)
Set a new type for an array

B.5 Access to Array Values

ARY_MAP(K)(IARY, TYPE, MMOD, PNTR, EL, STATUS)
Obtain mapped access to an array

ARY_MAPZ(K)(IARY, TYPE, MMOD, RPNTR, IPNTR, EL, STATUS)
Obtain complex mapped access to an array

ARY_UNMAP(IARY, STATUS)
Unmap an array

12

13 SUN/11.6 —Classified list of Routines

B.6 Creation and Control of Identifiers

ARY_ANNUL(IARY, STATUS)
Annul an array identifier

ARY_BASE(IARY1, IARY2, STATUS)
Obtain an identifier for a base array

ARY_CLONE(IARY1, IARY2, STATUS)
Clone an array identifier

ARY_SECT(K)(IARY1, NDIM, LBND, UBND, IARY2, STATUS)
Create an array section

ARY_SSECT(IARY1, IARY2, IARY3, STATUS)
Produce a similar array section to an existing one

ARY_VALID(IARY, VALID, STATUS)
Determine whether an array identifier is valid

B.7 Message System Routines

ARY_MSG(TOKEN, IARY)
Assign the name of an array to a message token

B.8 Creating Placeholders

ARY_PLACE(LOC, NAME, PLACE, STATUS)
Obtain an array placeholder

ARY_TEMP(PLACE, STATUS)
Obtain a placeholder for a temporary array

B.9 Copying Arrays

ARY_COPY(IARY1, PLACE, IARY2, STATUS)
Copy an array to a new location

ARY_DUPE(IARY1, PLACE, IARY2, STATUS)
Duplicate an array

B.10 Miscellaneous

ARY_TRACE(NEWFLG, OLDFLG)
Set the internal ARY_ system error-tracing flag

SUN/11.6 —Fortran Routine Descriptions 14

15 ARY_ANNUL SUN/11.6 —Fortran Routine Descriptions

ARY_ANNUL
Annul an array identifier

Description:
The routine annuls the array identifier supplied so that it is no longer recognised as a valid
identifier by the ARY_ routines. Any resources associated with it are released and made
available for re-use. If the array is mapped for access, then it is automatically unmapped
by this routine.

Invocation:

CALL ARY_ANNUL(IARY, STATUS)
Arguments:

IARY = INTEGER (Given and Returned)
The array identifier to be annulled. A value of ARY__NOID is returned (as defined in the
include file ARY_PAR).

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine attempts to execute even if STATUS is set on entry, although no further
error report will be made if it subsequently fails under these circumstances. In
particular, it will fail if the identifier supplied is not initially valid, but this will only
be reported if STATUS is set to SAI__OK on entry.

e An error will result if an attempt is made to annul the last remaining identifier
associated with an array which is in an undefined state (unless it is a temporary array,
in which case it will be deleted at this point).

SUN/11.6 —Fortran Routine Descriptions 16 ARY_BAD

ARY_BAD
Determine if an array may contain bad pixels

Description:
The routine returns a logical value indicating whether an array may contain bad pixels for
which checks must be made when its values are processed. Only if the returned value is
FALSE. can such checks be omitted. If the CHECK argument to this routine is set . TRUE.,
then it will perform an explicit check (if necessary) to see whether bad pixels are actually
present.

Invocation:

CALL ARY_BAD(IARY, CHECK, BAD, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

CHECK = LOGICAL (Given)
Whether to perform an explicit check to see if bad pixels are actually present.

BAD = LOGICAL (Returned)
Whether it is necessary to check for bad pixels when processing the array’s values.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If CHECK is set .FALSE., then the returned value of BAD will indicate whether
bad pixels might be present and should therefore be checked for during subsequent
processing. However, even if BAD is returned .TRUE. in such circumstances, it is
still possible that there may not actually be any bad pixels present (for instance, in an
array section, the region of the base array accessed might happen to avoid all the bad
pixels).

e If CHECK is set . TRUE., then an explicit check will be made, if necessary, to ensure
that BAD is only returned .TRUE. if bad pixels are actually present.

o If the array is mapped for access through the identifier supplied, then the value of
BAD will refer to the actual mapped values. It may differ from its original (unmapped)
value if conversion errors occurred during the mapping process, or if an initialisation
option of > /ZERO’ was specified for an array which was initially undefined, or if
the mapped values have subsequently been modified.

e The BAD argument will always return a value of .TRUE. if the array is in an undefined
state.

17 ARY_BASE SUN/11.6 —Fortran Routine Descriptions

ARY_BASE
Obtain an identifier for a base array

Description:
The routine returns an identifier for the base array with which an array section is associated.
Invocation:

CALL ARY_BASE(IARY1, IARY2, STATUS)
Arguments:

IARY1 = INTEGER (Given)
Identifier for an existing array section (the routine will also work if this is already a base
array).

IARY2 = INTEGER (Returned)
Identifier for the base array with which the section is associated.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 18 ARY_BOUND

ARY_BOUND
Enquire the pixel-index bounds of an array

Description:
The routine returns the lower and upper pixel-index bounds of each dimension of an array;,
together with the total number of dimensions.

Invocation:

CALL ARY_BOUND(IARY, NDIMX, LBND, UBND, NDIM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NDIMX = INTEGER (Given)
Maximum number of pixel-index bounds to return (i.e. the declared size of the LBND and
UBND arguments).

LBND(NDIMX) = INTEGER (Returned)
Lower pixel-index bounds for each dimension.

UBND(NDIMX) = INTEGER (Returned)
Upper pixel-index bounds for each dimension.

NDIM = INTEGER (Returned)
Total number of array dimensions.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o If the array has fewer than NDIMX dimensions, then any remaining elements of the
LBND and UBND arguments will be filled with 1’s.

e If the array has more than NDIMX dimensions, then the NDIM argument will return
the actual number of dimensions. In this case only the first NDIMX sets of bounds
will be returned, and an error will result if the size of any of the remaining dimensions
exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the LBND
and UBND arguments so that they will be able to hold the maximum number of
array bounds that this routine can return. This constant is defined in the include file
ARY_PAR.

19 ARY_BOUNDK SUN/11.6 —Fortran Routine Descriptions

ARY_BOUNDK
Enquire the pixel-index bounds of an array

Description:
The routine returns the lower and upper pixel-index bounds of each dimension of an array;,
together with the total number of dimensions.

Invocation:

CALL ARY_BOUNDK(IARY, NDIMX, LBND, UBND, NDIM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NDIMX = INTEGER (Given)
Maximum number of pixel-index bounds to return (i.e. the declared size of the LBND and
UBND arguments).

LBND(NDIMX) = INTEGER*8 (Returned)
Lower pixel-index bounds for each dimension.

UBND(NDIMX) = INTEGER*8 (Returned)
Upper pixel-index bounds for each dimension.

NDIM = INTEGER (Returned)
Total number of array dimensions.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o If the array has fewer than NDIMX dimensions, then any remaining elements of the
LBND and UBND arguments will be filled with 1’s.

e If the array has more than NDIMX dimensions, then the NDIM argument will return
the actual number of dimensions. In this case only the first NDIMX sets of bounds
will be returned, and an error will result if the size of any of the remaining dimensions
exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the LBND
and UBND arguments so that they will be able to hold the maximum number of
array bounds that this routine can return. This constant is defined in the include file
ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 20 ARY_CLONE

ARY_CLONE
Clone an array identifier

Description:
The routine produces a "cloned" copy of an array identifier (i.e. it produces a new identifier
describing an array with identical attributes to the original).

Invocation:

CALL ARY_CLONE(IARY1, IARY2, STATUS)
Arguments:

IARY1 = INTEGER (Given)
Array identifier to be cloned.

IARY2 = INTEGER (Returned)
Cloned identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o If this routine is called with STATUS set, then a value of ARY__ NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

21 ARY_CMPLX SUN/11.6 —Fortran Routine Descriptions

ARY_CMPLX
Determine whether an array holds complex values

Description:
The routine returns a logical value indicating whether an array holds complex values.

Invocation:

CALL ARY_CMPLX(IARY, CMPLX, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

CMPLX = LOGICAL (Returned)
Whether the array holds complex values.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 22 ARY_COPY

ARY_COPY
Copy an array to a new location

Description:
The routine copies an array to a new location and returns an identifier for the resulting
new base array.

Invocation:

CALL ARY_COPY(IARY1, PLACE, IARY2, STATUS)
Arguments:

IARY1 = INTEGER (Given)
Identifier for the array (or array section) to be copied.

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY2 = INTEGER (Returned)
Identifier for the new array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The result of copying a scaled or delta array will be an equivalent simple array.

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

23 ARY_DELET SUN/11.6 —Fortran Routine Descriptions

ARY_DELET
Delete an array

Description:
The routine deletes the specified array. If this is a base array, then the associated data object
is erased and all array identifiers which refer to it (or to sections derived from it) become
invalid. If the array is mapped for access, then it is first unmapped. If an array section is
specified, then this routine is equivalent to calling ARY_ANNUL.

Invocation:

CALL ARY_DELET(IARY, STATUS)
Arguments:

IARY = INTEGER (Given and Returned)
Identifier for the array to be deleted. A value of ARY__NOID is returned.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine attempts to execute even if STATUS is set on entry, although no further
error report will be made if it subsequently fails under these circumstances.

e A value of ARY__NOID is always returned for the IARY argument, even if the routine
should fail. This constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 24 ARY_DELTA

ARY_DELTA
Compress an array using delta compression

Description:
The routine creates a copy of the supplied array stored in DELTA form, which provides a
lossless compression scheme for integer data. This scheme assumes that adjacent integer
values in the input array tend to be close in value, and so differences between adjacent
values can be represented in fewer bits than the absolute values themselves. The differences
are taken along a nominated pixel axis within the supplied array (specified by argument
ZAXIS).

In practice, the scheme is limited currently to representing differences between adjacent
values using a HDS integer data type (specified by argyument TYPE) - that is, arbitrary bit
length is not yet supported. So for instance an _INTEGER input array can be compressed
by storing differences as _WORD or _BYTE values, but a _WORD input array can only be
compressed by storing differences as _BYTE values.

Any input value that differs from its earlier neighbour by more than the data range of the
selected data type is stored explicitly using the data type of the input array.

Further compression is achieved by replacing runs of equal input values by a single
occurrence of the value with a correspsonding repetition count.

It should be noted that the degree of compression achieved is dependent on the nature
of the data, and it is possible for the compressed array to occupy more space than the
uncompressed array. The compression factor actually achieved is returned in argument
ZRATIO (the ratio of the supplied array size to the compressed array size). A minmum
allowed compression ratio may be specified via argument MINRAT. If the compression
ratio is less than this value, then the returned copy is left uncompressed.

Invocation:

CALL ARY_DELTA(IARY1, ZAXIS, TYPE, MINRAT, PLACE, ZRATIO, IARY2, STATUS)
Arguments:

IARY1 = INTEGER (Given)
The input array identifier. This can be stored in any form. If it is already stored in
DELTA form, it is uncompressed and then re-compressed using the supplied compression
parameters. If is is stored in SCALED form, the internal integer values are compressed
and the scale and zero terms are copied into the DELTA array.

ZAXIS = INTEGER (Given)
The index of the pixel axis along which differences are to be taken. If this is zero, a default
value will be selected that gives the greatest compression. An error will be reported if a
value less than zero or greater than the number of axes in the input array is supplied.

TYPE = CHARACTER * (*) (Given)
The data type in which to store the differences between adjacent input values. This must be

25 ARY_DELTA SUN/11.6 —Fortran Routine Descriptions

one of >_BYTE’, >_WORD?” or >_INTEGER’. Additionally, a blank string may be supplied
in which case a default value will be selected that gives the greatest compression.

MINRAT = REAL (Given)
The minimum allowed ZRATIO value. If compressing the input array results in a ZRATIO
value smaller than or equal to MINRAT, then the returned array is left uncompressed. If
the supplied value is zero or negative, then the array will be compressed regardless of the
compression ratio.

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

ZRATIO = REAL (Returned)

The compression factor actually achieved (the ratio of the supplied array size to the
compressed array size). Genuine compressions are represented by values more than 1.0,
but values less than 1.0 may be returned if the input data is not suited to delta compression
(i.e. if the "compression" actually expands the array storage). Note, the returned value of
ZRATIO may be smaller than MINRAT, in which case the supplied array is left unchanged.
The returned compression factor is approximate as it does not take into account the space
occupied by the HDS metadata describing the extra components of a DELTA array (i.e.
the component names, data types, dimensions, etc). This will only be significant for very
small arrays.

IARY2 = INTEGER (Returned)
Identifier for the new DELTA array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e An error will be reported if the supplied array does not hold integer values. In the
case of a SCALED array, the internal (scaled) values must be integers, but the external
(unscaled) values can be of any data type.

e The compression axis and compressed data type actually used can be determined by
passing the returned array to ARY_GTDLT.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

e An error will result if the array holds complex values.

SUN/11.6 —Fortran Routine Descriptions 26 ARY_DIM

ARY_DIM
Enquire the dimension sizes of an array

Description:
The routine returns the size in pixels of each dimension of an array, together with the total
number of dimensions (the size of a dimension is the difference between that dimension’s
upper and lower pixel-index bounds + 1).

Invocation:

CALL ARY_DIM(IARY, NDIMX, DIM, NDIM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NDIMX = INTEGER (Given)
Maximum number of dimension sizes to return (i.e. the declared size of the DIM argu-
ment).

DIM(NDIMX) = INTEGER (Returned)
Size of each dimension in pixels.

NDIM = INTEGER (Returned)
Total number of array dimensions.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If the array has fewer than NDIMX dimensions, then any remaining elements of the
DIM argument will be filled with 1°s.

e If the array has more than NDIMX dimensions, then the NDIM argument will return
the actual number of dimensions. In this case only the first NDIMX dimension sizes
will be returned, and an error will result if the size of any of the excluded dimensions
exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the DIM
argument so that it will be able to hold the maximum number of array dimension
sizes that this routine can return. This constant is defined in the include file ARY_PAR.

27 ARY_DIMK SUN/11.6 —Fortran Routine Descriptions

ARY_DIMK
Enquire the dimension sizes of an array

Description:
The routine returns the size in pixels of each dimension of an array, together with the total
number of dimensions (the size of a dimension is the difference between that dimension’s
upper and lower pixel-index bounds + 1).

Invocation:

CALL ARY_DIMK(IARY, NDIMX, DIM, NDIM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NDIMX = INTEGER (Given)
Maximum number of dimension sizes to return (i.e. the declared size of the DIM argu-
ment).

DIM(NDIMX) = INTEGER*8 (Returned)
Size of each dimension in pixels.

NDIM = INTEGER (Returned)
Total number of array dimensions.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If the array has fewer than NDIMX dimensions, then any remaining elements of the
DIM argument will be filled with 1°s.

e If the array has more than NDIMX dimensions, then the NDIM argument will return
the actual number of dimensions. In this case only the first NDIMX dimension sizes
will be returned, and an error will result if the size of any of the excluded dimensions
exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the DIM
argument so that it will be able to hold the maximum number of array dimension
sizes that this routine can return. This constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 28 ARY_DUPE

ARY_DUPE
Duplicate an array

Description:
The routine duplicates an array, creating a new base array with the same attributes as an
existing array (or array section). The new array is left in an undefined state.

Invocation:

CALL ARY_DUPE(IARY1, PLACE, IARY2, STATUS)
Arguments:

IARY1 = INTEGER (Given)
Identifier for the array to be duplicated.

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY2 = INTEGER (Returned)
Identifier for the new duplicate array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Duplicating a scaled or delta array produces and equivalent simple array.

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

29 ARY_FIND SUN/11.6 —Fortran Routine Descriptions

ARY_FIND
Find an array in an HDS structure and import it into the ARY_ system

Description:
The routine finds a named array within an HDS structure, imports it into the ARY_ system
and issues an identifier for it. The imported array may then be manipulated by the ARY_
routines.

Invocation:

CALL ARY_FIND(LOC, NAME, IARY, STATUS)
Arguments:

LOC = CHARACTER x* (x) (Given)
Locator to the enclosing HDS structure.

NAME = CHARACTER * (*) (Given)
Name of the HDS structure component to be imported.

IARY = INTEGER (Returned)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 30 ARY_FORM

ARY_FORM
Obtain the storage form of an array

Description:
The routine returns the storage form of an array as an upper-case character string (e.g.
>SIMPLE”).

Invocation:

CALL ARY_FORM(IARY, FORM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

FORM = CHARACTER * (*) (Returned)
Storage form of the array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The symbolic constant ARY__SZFRM may be used for declaring the length of a
character variable to hold the storage form of an array. This constant is defined in the
include file ARY_PAR.

e At present, the ARY_ routines only support "primitive", "scaled", "simple" and
"delta" arrays, so only the values * PRIMITIVE’, ’SCALED’ *DELTA’ and ’>SIMPLE’
can be returned.

31 ARY_FTYPE SUN/11.6 —Fortran Routine Descriptions

ARY_FTYPE
Obtain the full data type of an array

Description:
The routine returns the full data type of an array as an upper-case character string (e.g.
>_REAL’ or ’"COMPLEX_BYTE”).

Invocation:

CALL ARY_FTYPE(IARY, FTYPE, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

FTYPE = CHARACTER * (*) (Returned)
Full data type of the array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The symbolic constant ARY__SZFTP may be used for declaring the length of a
character variable to hold the full data type of an array. This constant is defined in
the include file ARY_PAR.

e For "Scaled" arrays, the data type returned by this function is the data type of the
SCALE and ZERO terms, rather than the data type of the stored array.

SUN/11.6 —Fortran Routine Descriptions 32 ARY_GTDLT

ARY_GTDLT
Get the compressed axis and data type for a DELTA array

Description:
The routine returns the details of the compression used to produce an array stored in
DELTA form. If the array is not stored in DELTA form, then null values are returned as
listed below, but no error is reported.

A DELTA array is compressed by storing only the differences between adjacent array values
along a nominated compression axis, rather than the full array values. The differences
are stored using a smaller data type than the original absolute values. The compression
is lossless because any differences that will not fit into the smaller data type are stored
explicitly in an extra array with a larger data type. Additional compression is achieved by
replacing runs of equal values by a single value and a repeat count.

Invocation:

CALL ARY_GTDLT(IARY, ZAXIS, ZTYPE, ZRATIO, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

ZAXIS = INTEGER (Returned)
The index of the pixel axis along which compression occurred. The first axis has index 1.
Zero is returned if the array is not stored in DELTA form.

ZTYPE = CHARACTER * (*) (Returned)
The data type in which the differences between adjacent array values are stored. This
will be one of °_BYTE’, °_WORD? or *_INTEGER’. The data type of the array itself is
returned if the supplid array is not stored in DELTA form.

ZRATIO = REAL (Returned)
The compression factor - the ratio of the uncompressed array size to the compressed
array size. This is approximate as it does not include the effects of the metadata needed
to describe the extra components of a DELTA array (i.e. the space needed to hold the
component names, types, dimensions, etc). A value of 1.0 is returned if the supplid array
is not stored in DELTA form.

STATUS = INTEGER (Given and Returned)
The global status.

33 ARY_GTSZB SUN/11.6 —Fortran Routine Descriptions

ARY_GTSZB
Get the scale and zero values for an array

Description:
The routine returns the scale and zero values associated with an array. If the array is not
stored in scaled form, then values of 1.0 and 0.0 are returned.

Invocation:

CALL ARY_GTSZB(IARY, SCALE, ZERQ, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

SCALE = BYTE (Returned)
The scaling factor.

ZERO = BYTE (Returned)
The zero offset.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 34 ARY_IMPRT

ARY_IMPRT
Import an array into the ARY_ system from HDS

Description:
The routine imports an array into the ARY_ system from HDS and issues an identifier for
it. The array may then be manipulated by the ARY_ routines.

Invocation:
CALL ARY_IMPRT(LOC, IARY, STATUS)

Arguments:

LOC = CHARACTER * (*) (Given)
HDS locator to an array structure.

IARY = INTEGER (Returned)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The locator supplied as input to this routine may later be annulled without affecting
the subsequent behaviour of the ARY_ system.

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

35 ARY_ISACC SUN/11.6 —Fortran Routine Descriptions

ARY_ISACC
Determine whether a specified type of array access is available

Description:
The routine determines whether a specified type of access to an array is available, or
whether it has been disabled. If access is not available, then any attempt to access the array
in this way will fail.

Invocation:

CALL ARY_ISACC(IARY, ACCESS, ISACC, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

ACCESS = CHARACTER (*) (Given)
The type of array access required: ’BOUNDS?’, *DELETE’, *SHIFT’, *TYPE’ or > WRITE’
(see the Notes section for details).

ISACC = LOGICAL (Returned)
Whether the specified type of access is available.

STATUS = INTEGER (Given and Returned)
The global status.
Notes:

The valid access types control the following operations on the array:

e *"BOUNDS’ permits the pixel-index bounds of a base array to be altered.
e "DELETE’ permits deletion of the array.

e *SHIFT’ permits pixel-index shifts to be applied to a base array.

e *TYPE’ permits the data type of the array to be altered.

e *WRITE’ permits new values to be written to the array, or the array’s state to be
reset.

SUN/11.6 —Fortran Routine Descriptions 36 ARY_ISBAS

ARY_ISBAS
Enquire if an array is a base array

Description:
The routine returns a logical value indicating whether the array whose identifier is supplied
is a base array (as opposed to an array section).

Invocation:

CALL ARY_ISBAS(IARY, BASE, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

BASE = LOGICAL (Returned)
Whether the array is a base array.

STATUS = INTEGER (Given and Returned)
The global status.

37 ARY_ISMAP SUN/11.6 —Fortran Routine Descriptions

ARY_ISMAP
Determine if an array is currently mapped

Description:
The routine returns a logical value indicating whether an array is currently mapped for
access through the identifier supplied.

Invocation:

CALL ARY_ISMAP(IARY, MAPPED, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

MAPPED = LOGICAL (Returned)
Whether the array is mapped for access through the IARY identifier.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 38 ARY_ISTMP

ARY_ISTMP
Determine if an array is temporary

Description:
The routine returns a logical value indicating whether the specified array is temporary.
Temporary arrays are deleted once the last identifier which refers to them is annulled.

Invocation:

CALL ARY_ISTMP(IARY, TEMP, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TEMP = LOGICAL (Returned)
Whether the array is temporary.

STATUS = INTEGER (Given and Returned)
The global status.

39 ARY_LOC SUN/11.6 —Fortran Routine Descriptions

ARY_LOC
Obtain an HDS locator for an array

Description:
The routine returns an HDS locator for the data object referred to by the supplied ARY
identifier.

Invocation:

CALL ARY_LOC(IARY, LOC, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

LOC = CHARACTER * (DAT__SZLOC) (Returned)
The HDS locator. It should be annulled using DAT_ANNUL when no longer needed. A
value of DAT__NOLOC will be returned if an error occurs.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 40 ARY_MAP

ARY_MAP
Obtain mapped access to an array

Description:
The routine obtains mapped access an array, returning a pointer to the mapped values and
a count of the number of elements mapped.

Invocation:

CALL ARY_MAP(IARY, TYPE, MMOD, PNTR, EL, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER = (*) (Given)
The numerical data type required for access (e.g. °_REAL?).

MMOD = CHARACTER x (*) (Given)
The mapping mode for access to the array: "READ?’, *UPDATE’ or *WRITE’, with an
optional initialisation mode > /BAD”’ or > /ZERO’ appended.

PNTR = INTEGER (Returned)
Pointer to the mapped values.

EL = INTEGER (Returned)
Number of elements mapped.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If the array is a scaled array, the returned mapped values will be the stored array
values multiplied by the scale factor and shifted by the zero term.

o If the array is a delta (i.e. compressed) array, the returned mapped values will be the
uncompressed array values.

e Currently, only READ access is available for scaled and compressed arrays. An error
will be reported if an attempt is made to get WRITE or UPDATE access to a scaled or
compressed array.

41 ARY_MAPK SUN/11.6 —Fortran Routine Descriptions

ARY_MAPK
Obtain mapped access to an array

Description:
The routine obtains mapped access an array, returning a pointer to the mapped values and
a count of the number of elements mapped.

Invocation:

CALL ARY_MAPK(IARY, TYPE, MMOD, PNTR, EL, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER = (*) (Given)
The numerical data type required for access (e.g. °_REAL?).

MMOD = CHARACTER * (*) (Given)
The mapping mode for access to the array: "READ?’, *UPDATE’ or *WRITE’, with an
optional initialisation mode > /BAD”’ or > /ZERO’ appended.

PNTR = INTEGER (Returned)
Pointer to the mapped values.

EL = INTEGER*8 (Returned)
Number of elements mapped.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If the array is a scaled array, the returned mapped values will be the stored array
values multiplied by the scale factor and shifted by the zero term.

o If the array is a delta (i.e. compressed) array, the returned mapped values will be the
uncompressed array values.

e Currently, only READ access is available for scaled and compressed arrays. An error
will be reported if an attempt is made to get WRITE or UPDATE access to a scaled or
compressed array.

SUN/11.6 —Fortran Routine Descriptions 42 ARY_MAPZ

ARY_MAPZ
Obtain complex mapped access to an array

Description:
The routine obtains complex mapped access to an array, returning pointers to the real and
imaginary values and a count of the number of elements mapped.

Invocation:

CALL ARY_MAPZ(IARY, TYPE, MMOD, RPNTR, IPNTR, EL, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER * (x) (Given)
The numerical data type required for accessing the array (e.g. °_REAL?).

MMOD = CHARACTER x (*) (Given)
The mapping mode for access to the array: "READ?’, *UPDATE’ or *WRITE’, with an
optional initialisation mode > /BAD”’ or > /ZERO’ appended.

RPNTR = INTEGER (Returned)
Pointer to the mapped real (i.e. non-imaginary) values.

IPNTR = INTEGER (Returned)
Pointer to the mapped imaginary values.

EL = INTEGER (Returned)
Number of elements mapped.

STATUS = INTEGER (Given and Returned)
The global status.

43 ARY_MAPZK SUN/11.6 —Fortran Routine Descriptions

ARY_MAPZK
Obtain complex mapped access to an array

Description:
The routine obtains complex mapped access to an array, returning pointers to the real and
imaginary values and a count of the number of elements mapped.

Invocation:

CALL ARY_MAPZK(IARY, TYPE, MMOD, RPNTR, IPNTR, EL, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER * (x) (Given)
The numerical data type required for accessing the array (e.g. °_REAL?).

MMOD = CHARACTER x (*) (Given)
The mapping mode for access to the array: "READ?’, *UPDATE’ or *WRITE’, with an
optional initialisation mode > /BAD”’ or > /ZERO’ appended.

RPNTR = INTEGER (Returned)
Pointer to the mapped real (i.e. non-imaginary) values.

IPNTR = INTEGER (Returned)
Pointer to the mapped imaginary values.

EL = INTEGER*8 (Returned)
Number of elements mapped.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 44 ARY_MSG

ARY_MSG
Assign the name of an array to a message token

Description:
The routine assigns the name of an array to a message token (in a form which a user will
understand) for use in constructing messages with the MSG_ and ERR_ routines (see
SUN/104).

Invocation:

CALL ARY_MSG(TOKEN, IARY)
Arguments:

TOKEN = CHARACTER = (*) (Given)
Name of the message token.

IARY = INTEGER (Given)
Array identifier.

Notes:

e This routine has no STATUS argument and performs no error checking. If it should
fail, then no assignment to the message token will be made and this will be apparent
in the final message.

45 ARY_NDIM SUN/11.6 —Fortran Routine Descriptions

ARY_NDIM
Enquire the dimensionality of an array

Description:
The routine determines the number of dimensions which an array has.

Invocation:

CALL ARY_NDIM(IARY, NDIM, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NDIM = INTEGER (Returned)
Number of array dimensions.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 46 ARY_NEW

ARY_NEW
Create a new simple array

Description:
The routine creates a new simple array and returns an identifier for it. The array may
subsequently be manipulated with the ARY_ routines.

Invocation:

CALL ARY_NEW(FTYPE, NDIM, LBND, UBND, PLACE, IARY, STATUS)
Arguments:

FTYPE = CHARACTER x* (*) (Given)
Full data type of the array.

NDIM = INTEGER (Given)
Number of array dimensions.

LBND(NDIM) = INTEGER (Given)
Lower pixel-index bounds of the array.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the array.

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY = INTEGER (Returned)
Identifier for the new array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

47 ARY_NEWK SUN/11.6 —Fortran Routine Descriptions

ARY_NEWK
Create a new simple array

Description:
The routine creates a new simple array and returns an identifier for it. The array may
subsequently be manipulated with the ARY_ routines.

Invocation:

CALL ARY_NEWK(FTYPE, NDIM, LBND, UBND, PLACE, IARY, STATUS)
Arguments:

FTYPE = CHARACTER x* (*) (Given)
Full data type of the array.

NDIM = INTEGER (Given)
Number of array dimensions.

LBND(NDIM) = INTEGER*8 (Given)
Lower pixel-index bounds of the array.

UBND(NDIM) = INTEGER*8 (Given)
Upper pixel-index bounds of the array.

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY = INTEGER (Returned)
Identifier for the new array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 48 ARY_NEWP

ARY_NEWP
Create a new primitive array

Description:
The routine creates a new primitive array and returns an identifier for it. The array may
subsequently be manipulated with the ARY_ routines.

Invocation:
CALL ARY_NEWP(FTYPE, NDIM, UBND, PLACE, IARY, STATUS)

Arguments:

FTYPE = CHARACTER x (*) (Given)
Data type of the array (e.g. ’_REAL’). Note that complex types are not allowed for
primitive arrays.

NDIM = INTEGER (Given)
Number of array dimensions.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the array (the lower bound of each dimension is taken to be
1).

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY = INTEGER (Returned)
Identifier for the new array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o [f this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

49 ARY_NEWPK SUN/11.6 —Fortran Routine Descriptions

ARY_NEWPK
Create a new primitive array

Description:
The routine creates a new primitive array and returns an identifier for it. The array may
subsequently be manipulated with the ARY_ routines.

Invocation:
CALL ARY_NEWPK(FTYPE, NDIM, UBND, PLACE, IARY, STATUS)

Arguments:

FTYPE = CHARACTER x (*) (Given)
Data type of the array (e.g. ’_REAL’). Note that complex types are not allowed for
primitive arrays.

NDIM = INTEGER (Given)
Number of array dimensions.

UBND(NDIM) = INTEGER*8 (Given)
Upper pixel-index bounds of the array (the lower bound of each dimension is taken to be
1).

PLACE = INTEGER (Given and Returned)
An array placeholder (e.g. generated by the ARY_PLACE routine) which indicates the
position in the data system where the new array will reside. The placeholder is annulled
by this routine, and a value of ARY__NOPL will be returned (as defined in the include file
ARY_PAR).

IARY = INTEGER (Returned)
Identifier for the new array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o [f this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled. The ARY__NOID constant is defined in the include
file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 50 ARY_NOACC

ARY_NOACC
Disable a specified type of access to an array

Description:
The routine disables the specified type of access to an array, so that any subsequent attempt
to access it in that way will fail. Access restrictions imposed on an array identifier by this
routine will be propagated to any new identifiers derived from it, and cannot be revoked.

Invocation:
CALL ARY_NOACC(ACCESS, IARY, STATUS)

Arguments:

ACCESS = CHARACTER * () (Given)
The type of access to be disabled: ’BOUNDS’, *DELETE’, "MODIFY’, °'SCALE’, *SHIFT?,

*TYPE’ or *WRITE".

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

Disabling each type of access imposes the following restrictions on an array:

e "BOUNDS?® prevents the pixel-index bounds of a base array from being altered.

e "DELETE"’ prevents the array being deleted.

e "MODIFY’ prevents any form of modification to the array (i.e. it disables all the
other access types).

e "SCALE"’ prevents the scale and zero values from being changed.

e *SHIFT’ prevents pixel-index shifts from being applied to a base array.

e "TYPE’ prevents the data type of the array from being altered.

e *WRITE’ prevents new values from being written to the array, or the array’s state
from being reset.

51 ARY_OFFS SUN/11.6 —Fortran Routine Descriptions

ARY_OFFS
Obtain the pixel offset between two arrays

Description:
The routine returns the pixel offset for each requested dimension between two arrays.
These values are the offsets which should be added to the pixel indices of the first array to
obtain the indices of the corresponding pixel in the second array.

Invocation:

CALL ARY_OFFS(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Arguments:

IARY1 = INTEGER (Given)
First array identifier.

TARY2 = INTEGER (Given)
Second array identifier.

MXOFFS = INTEGER (Given)
Maximum number of pixel offsets to return (i.e. the declared size of the OFFS argument).

OFFS(MXOFFS) = INTEGER (Returned)
Array of pixel offsets for each dimension.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The two array identifiers supplied need not refer to the same base array (although
they may often do so). If they do not, then the offset between the pixels in each array
is determined by matching the pixel indices of their respective base arrays.

e Note that non-zero pixel offsets may exist even for dimensions which exceed the di-
mensionality of either of the two arrays supplied. The symbolic constant ARY__MXDIM
may be used to declare the size of the OFFS argument so that it will be able to hold
the maximum number of non-zero offsets that this routine can return.

SUN/11.6 —Fortran Routine Descriptions 52 ARY_OFFSK

ARY_OFFSK
Obtain the pixel offset between two arrays

Description:
The routine returns the pixel offset for each requested dimension between two arrays.
These values are the offsets which should be added to the pixel indices of the first array to
obtain the indices of the corresponding pixel in the second array.

Invocation:

CALL ARY_OFFSK(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Arguments:

IARY1 = INTEGER (Given)
First array identifier.

TARY2 = INTEGER (Given)
Second array identifier.

MXOFFS = INTEGER (Given)
Maximum number of pixel offsets to return (i.e. the declared size of the OFFS argument).

OFFS(MXOFFS) = INTEGER*8 (Returned)
Array of pixel offsets for each dimension.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The two array identifiers supplied need not refer to the same base array (although
they may often do so). If they do not, then the offset between the pixels in each array
is determined by matching the pixel indices of their respective base arrays.

e Note that non-zero pixel offsets may exist even for dimensions which exceed the di-
mensionality of either of the two arrays supplied. The symbolic constant ARY__MXDIM
may be used to declare the size of the OFFS argument so that it will be able to hold
the maximum number of non-zero offsets that this routine can return.

53 ARY_PLACE SUN/11.6 —Fortran Routine Descriptions

ARY_PLACE
Obtain an array placeholder

Description:
The routine returns an array placeholder. A placeholder is used to identify a position in
the underlying data system (HDS) and may be passed to other routines (e.g. ARY_NEW)
to indicate where a newly created array should be positioned.

Invocation:

CALL ARY_PLACE(LOC, NAME, PLACE, STATUS)
Arguments:

LOC = CHARACTER x* (x) (Given)
HDS locator to the structure to contain the new array.

NAME = CHARACTER * (*) (Given)
Name of the new structure component (i.e. the array).

PLACE = INTEGER (Returned)
Array placeholder identifying the nominated position in the data system.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Placeholders are intended only for local use within an application and only a limited
number of them are available simultaneously. They are always annulled as soon as
they are passed to another routine to create a new array, where they are effectively
exchanged for an array identifier.

o [f this routine is called with STATUS set, then a value of ARY__NOPL will be returned
for the PLACE argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOPL
constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 54 ARY_PTSZB

ARY_PTSZB
Set new scale and zero values for a scaled array

Description:
The routine sets new values for the scale and zero values associated with an array. If the
array is stored in simple form, then the storage form is changed to scaled.

Invocation:

CALL ARY_PTSZB(IARY, SCALE, ZERQ, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

SCALE = BYTE (Given)
The new value for the scaling factor.

ZERO = BYTE (Given)
The new value for the zero offset.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine may only be used to change the type of a base array. If it is called with
an array which is not a base array, then it will return without action. No error will
result.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

55 ARY_RESET SUN/11.6 —Fortran Routine Descriptions

ARY_RESET
Reset an array to an undefined state

Description:
The routine resets an array so that its values become undefined. Its use is advisable before
making format changes to an array if retention of the existing values is not required (e.g.
before changing its data type with the ARY_STYPE routine); this will avoid the cost of
converting the existing values.

Invocation:

CALL ARY_RESET(IARY, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine may only be used to reset the state of a base array. If an array section is
supplied, then it will return without action. No error will result.

e An array cannot be reset while it is mapped for access. This routine will fail if this is
the case.

SUN/11.6 —Fortran Routine Descriptions 56 ARY_SAME

ARY_SAME
Enquire if two arrays are part of the same base array

Description:
The routine determines whether two array identifiers refer to parts of the same base array.
If so, it also determines whether they intersect.

Invocation:

CALL ARY_SAME(IARY1, IARY2, SAME, ISECT, STATUS)
Arguments:

IARY1 = INTEGER (Given)
Identifier for the first array (or array section).

TARY2 = INTEGER (Given)
Identifier for the second array (or array section).

SAME = LOGICAL (Returned)
Whether the identifiers refer to parts of the same base array.

ISECT = LOGICAL (Returned)
Whether the arrays intersect.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Two arrays (or array sections) are counted as intersecting if (i) they both refer to the
same base array and (ii) altering values in one of the arrays can result in the values in
the other array changing in consequence.

57 ARY_SBAD SUN/11.6 —Fortran Routine Descriptions

ARY_SBAD
Set the bad-pixel flag for an array

Description:
The routine sets the value of the bad-pixel flag for an array. A call to this routine with
BAD set to .TRUE. declares that the specified array may contain bad pixel values for
which checks must be made by algorithms which subsequently processes its values. A call
with BAD set to .FALSE. declares that there are definitely no bad values present and that
subsequent checks for such values may be omitted.

Invocation:

CALL ARY_SBAD(BAD, IARY, STATUS)
Arguments:

BAD = LOGICAL (Given)
Bad-pixel flag value to be set.

TIARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

o If the array is mapped for access when this routine is called, then the bad-pixel flag
will be associated with the mapped values. This information will only be transferred
to the actual data object when the array is unmapped (but only if it was mapped for
UPDATE or WRITE access). The value transferred may be modified if conversion
errors occur during the unmapping process.

SUN/11.6 —Fortran Routine Descriptions 58 ARY_SBND

ARY_SBND
Set new pixel-index bounds for an array

Description:
The routine sets new pixel-index bounds for an array (or array section). The number of
array dimensions may also be changed. If a base array is specified, then a permanent
change is made to the actual data object and this will be apparent through any other array
identifiers which refer to it. However, if an identifier for an array section is specified, then
its bounds are altered without affecting other arrays.

Invocation:
CALL ARY_SBND(NDIM, LBND, UBND, IARY, STATUS)

Arguments:

NDIM = INTEGER (Given)
New number of array dimensions.

LBND(NDIM) = INTEGER (Given)
New lower pixel-index bounds of the array.

UBND(NDIM) = INTEGER (Given)
New upper pixel-index bounds of the array,

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The bounds of an array section cannot be altered while it is mapped for access through

the identifier supplied to this routine.

The bounds of a base array cannot be altered while any part of it is mapped for access
(i.e. even through another identifier).

The array’s pixel values (if defined) will be retained for those pixels which lie within
both the old and new bounds. Any pixels lying outside the new bounds will be lost
(and cannot later be recovered by further changes to the array’s bounds). Any new
pixels introduced where the new bounds extend beyond the old ones will be assigned
the "bad" value, and the subsequent value of the bad-pixel flag will reflect this.

If the bounds of a base array are to be altered and retention of the existing pixel values
is not required, then a call to ARY_RESET should be made before calling this routine.
This will eliminate any processing which might otherwise be needed to retain the
existing values. This step is not necessary with an array section, where no processing
of pixel values takes place.

59

ARY_SBNDK SUN/11.6 —Fortran Routine Descriptions

ARY_SBNDK
Set new pixel-index bounds for an array

Description:
The routine sets new pixel-index bounds for an array (or array section). The number of
array dimensions may also be changed. If a base array is specified, then a permanent
change is made to the actual data object and this will be apparent through any other array
identifiers which refer to it. However, if an identifier for an array section is specified, then
its bounds are altered without affecting other arrays.

Invocation:
CALL ARY_SBNDK(NDIM, LBND, UBND, IARY, STATUS)

Arguments:

NDIM = INTEGER (Given)
New number of array dimensions.

LBND(NDIM) = INTEGER*8 (Given)
New lower pixel-index bounds of the array.

UBND(NDIM) = INTEGER*8 (Given)
New upper pixel-index bounds of the array,

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The bounds of an array section cannot be altered while it is mapped for access through

the identifier supplied to this routine.

The bounds of a base array cannot be altered while any part of it is mapped for access
(i.e. even through another identifier).

The array’s pixel values (if defined) will be retained for those pixels which lie within
both the old and new bounds. Any pixels lying outside the new bounds will be lost
(and cannot later be recovered by further changes to the array’s bounds). Any new
pixels introduced where the new bounds extend beyond the old ones will be assigned
the "bad" value, and the subsequent value of the bad-pixel flag will reflect this.

If the bounds of a base array are to be altered and retention of the existing pixel values
is not required, then a call to ARY_RESET should be made before calling this routine.
This will eliminate any processing which might otherwise be needed to retain the
existing values. This step is not necessary with an array section, where no processing
of pixel values takes place.

SUN/11.6 —Fortran Routine Descriptions 60 ARY_SCTYP

ARY_SCTYP
Obtain the numeric type of a scaled array

Description:
The routine returns the numeric type of a scaled array as an upper-case character string
(e.g. >_REAL?). The returned type describes the values stored in the array, before they are
unscaled using the associated scale and zero values. Use ARY_TYPE if you need the data
type of the array after it has been unscaled.

Invocation:

CALL ARY_SCTYP(IARY, TYPE, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER * (*) (Returned)
Numeric type of the array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e If the array is not stored in SCALED form, then this routine returns the same type as
the ARY_TYPE routine.

e The symbolic constant ARY__SZTYP may be used for declaring the length of a
character variable which is to hold the numeric type of an array. This constant is
defined in the include file ARY_PAR.

61 ARY_SECT SUN/11.6 —Fortran Routine Descriptions

ARY_SECT
Create an array section

Description:
The routine creates a new array section which refers to a selected region of an existing
array (or array section). The section may be larger or smaller in extent than the original
array.

Invocation:

CALL ARY_SECT(IARY1, NDIM, LBND, UBND, IARY2, STATUS)
Arguments:

IARY = INTEGER (Given)
Identifier for the initial array.

NDIM = INTEGER (Given)
Number of dimensions for new section.

LBND(NDIM) = INTEGER (Given)
Lower pixel-index bounds for the new section.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds for the new section.

IARY2 = INTEGER (Returned)
Identifier for the new section.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The number of section dimensions need not match the number of dimensions in the
initial array. Pixel-index bounds will be padded with 1°s as necessary to identify the
pixels to which the new section should refer.

¢ Note that sections which extend beyond the pixel-index bounds of the initial array
will be padded with bad pixels.

o If this routine is called with STATUS set, then a value of ARY___NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value

will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 62 ARY_SECTK

ARY_SECTK
Create an array section

Description:
The routine creates a new array section which refers to a selected region of an existing
array (or array section). The section may be larger or smaller in extent than the original
array.

Invocation:

CALL ARY_SECTK(IARY1, NDIM, LBND, UBND, IARY2, STATUS)
Arguments:

IARY = INTEGER (Given)
Identifier for the initial array.

NDIM = INTEGER (Given)
Number of dimensions for new section.

LBND(NDIM) = INTEGER*8 (Given)
Lower pixel-index bounds for the new section.

UBND(NDIM) = INTEGER*8 (Given)
Upper pixel-index bounds for the new section.

IARY2 = INTEGER (Returned)
Identifier for the new section.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The number of section dimensions need not match the number of dimensions in the
initial array. Pixel-index bounds will be padded with 1°s as necessary to identify the
pixels to which the new section should refer.

¢ Note that sections which extend beyond the pixel-index bounds of the initial array
will be padded with bad pixels.

o If this routine is called with STATUS set, then a value of ARY___NOID will be returned
for the IARY2 argument, although no further processing will occur. The same value

will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

63 ARY_SHIFT SUN/11.6 —Fortran Routine Descriptions

ARY_SHIFT
Apply pixel-index shifts to an array

Description:
The routine applies pixel-index shifts to an array. An integer shift is applied to each
dimension so that its pixel-index bounds, and the indices of each pixel, change by the
amount of shift applied to the corresponding dimension. The array’s pixels retain their
values and none are lost.

Invocation:

CALL ARY_SHIFT(NSHIFT, SHIFT, IARY, STATUS)
Arguments:

NSHIFT = INTEGER (Given)
Number of dimensions to which shifts are to be applied. This must not exceed the number
of array dimensions. If fewer shifts are supplied than there are dimensions in the array,
then the extra dimensions will not be shifted.

SHIFT(NSHIFT) = INTEGER (Given)
The pixel-index shifts to be applied to each dimension.

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Pixel-index shifts applied to a base array will affect the appearance of that array as
seen by all base-array identifiers associated with it. However, array sections derived
from that base array will remain unchanged (as regards both pixel-indices and data
content).

e Pixel-index shifts cannot be applied to a base array while any part of it is mapped for
access (i.e. even through another identifier).

e Pixel-index shifts applied to an array section only affect that section itself, and have
no effect on other array identifiers.

e Pixel-index shifts cannot be applied to an array section while it is mapped for access
through the identifier supplied to this routine.

SUN/11.6 —Fortran Routine Descriptions 64 ARY_SHIFTK

ARY_SHIFTK
Apply pixel-index shifts to an array

Description:
The routine applies pixel-index shifts to an array. An integer shift is applied to each
dimension so that its pixel-index bounds, and the indices of each pixel, change by the
amount of shift applied to the corresponding dimension. The array’s pixels retain their
values and none are lost.

Invocation:

CALL ARY_SHIFTK(NSHIFT, SHIFT, IARY, STATUS)
Arguments:

NSHIFT = INTEGER (Given)
Number of dimensions to which shifts are to be applied. This must not exceed the number
of array dimensions. If fewer shifts are supplied than there are dimensions in the array,
then the extra dimensions will not be shifted.

SHIFT(NSHIFT) = INTEGER*8 (Given)
The pixel-index shifts to be applied to each dimension.

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Pixel-index shifts applied to a base array will affect the appearance of that array as
seen by all base-array identifiers associated with it. However, array sections derived
from that base array will remain unchanged (as regards both pixel-indices and data
content).

e Pixel-index shifts cannot be applied to a base array while any part of it is mapped for
access (i.e. even through another identifier).

e Pixel-index shifts applied to an array section only affect that section itself, and have
no effect on other array identifiers.

e Pixel-index shifts cannot be applied to an array section while it is mapped for access
through the identifier supplied to this routine.

65 ARY_SIZE SUN/11.6 —Fortran Routine Descriptions

ARY_SIZE
Determine the size of an array

Description:
The routine returns the number of pixels in the array whose identifier is supplied (i.e. the
product of its dimensions).

Invocation:

CALL ARY_SIZE(IARY, NPIX, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NPIX = INTEGER (Returned)
Number of pixels in the array.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 66 ARY_SIZEK

ARY_SIZEK
Determine the size of an array

Description:
The routine returns the number of pixels in the array whose identifier is supplied (i.e. the
product of its dimensions).

Invocation:

CALL ARY_SIZEK(IARY, NPIX, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

NPIX = INTEGER*8 (Returned)
Number of pixels in the array.

STATUS = INTEGER (Given and Returned)
The global status.

67

ARY_SSECT SUN/11.6 —Fortran Routine Descriptions

ARY_SSECT
Create a similar array section to an existing one

Description:
The routine creates a new array section, using an existing section as a template. The new
section bears the same relationship to its base array as the template section does to its
own base array. Allowance is made for pixel-index shifts which may have been applied
so that the pixel-indices of the new section match those of the template. The number of
dimensions of the input and template arrays may differ.

Invocation:

CALL ARY_SSECT(IARY1, IARY2, IARY3, STATUS)

Arguments:

IARY1 = INTEGER (Given)
Identifier for the input array from which the section is to be derived. This may be a base
array or an array section.

IARY2 = INTEGER (Given)
Identifier for the template section (this may also be a base array or an array section).

IARY3 = INTEGER (Returned)
Identifier for the new array section.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine normally generates an array section. However, if both input arrays are

base arrays with identical pixel-index bounds, then there is no need to create a section
in order to access the required part of the first array. In this case a base array identifier
will be returned instead.

The new section created by this routine will have the same number of dimensions as
the array (or array section) from which it is derived. If the template (IARY2) array
has fewer dimensions than this, then the bounds of any additional input dimensions
are preserved unchanged in the new array. If the template (IARY2) array has more
dimensions, then the excess ones are ignored.

This routine takes account of the regions of each base array to which the input array
sections have access. It may therefore restrict the region accessible to the new section
(and pad with "bad" pixels) so as not to grant access to regions of the base array
which were not previously accessible through the input arrays.

SUN/11.6 —Fortran Routine Descriptions 68 ARY_SSECT

e If this routine is called with STATUS set, then a value of ARY__NOID will be returned
for the IARY3 argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOID
constant is defined in the include file ARY_PAR.

69 ARY_STATE SUN/11.6 —Fortran Routine Descriptions

ARY_STATE
Determine the state of an array (defined or undefined)

Description:
The routine returns a logical value indicating whether an array’s pixel values are currently
defined.

Invocation:

CALL ARY_STATE(IARY, STATE, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

STATE = LOGICAL (Returned)
Whether the array’s pixel values are defined.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 70 ARY_STYPE

ARY_STYPE
Set a new type for an array

Description:
The routine sets a new full type for an array, causing its data storage type to be changed.
If the array’s pixel values are defined, then they will be converted from the old type to
the new one. If they are undefined, then no conversion will be necessary. Subsequent
enquiries will reflect the new type. Conversion may be performed between any types
supported by the ARY_ routines, including from a non-complex type to a complex type
(and vice versa).

Invocation:

CALL ARY_STYPE(FTYPE, IARY, STATUS)
Arguments:

FTYPE = CHARACTER * (*) (Given)
The new full type specification for the array (e.g. ’_REAL’ or ?COMPLEX_INTEGER?).

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine may only be used to change the type of a base array. If it is called with
an array which is not a base array, then it will return without action. No error will
result.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

o If the type of an array is to be changed without its pixel values being retained, then a
call to ARY_RESET should be made beforehand. This will avoid the cost of converting
all the values.

71 ARY_TEMP SUN/11.6 —Fortran Routine Descriptions

ARY_TEMP
Obtain a placeholder for a temporary array

Description:
The routine returns an array placeholder which may be used to create a temporary array
(i.e. one which will be deleted automatically once the last identifier associated with it
is annulled). The placeholder returned by this routine may be passed to other routines
(e.g. ARY_NEW or ARY_COPY) to produce a temporary array in the same way as a new
permanent array would be created.

Invocation:

CALL ARY_TEMP(PLACE, STATUS)
Arguments:

PLACE = INTEGER (Returned)
Placeholder for a temporary array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e Placeholders are intended only for local use within an application and only a limited
number of them are available simultaneously. They are always annulled as soon as
they are passed to another routine to create a new array, where they are effectively
exchanged for an array identifier.

e If this routine is called with STATUS set, then a value of ARY__NOPL will be returned
for the PLACE argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. The ARY__NOPL
constant is defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 72 ARY_TRACE

ARY_TRACE
Set the internal ARY_ system error-tracing flag

Description:
The routine sets an internal flag in the ARY_ system which enables or disables error-tracing
messages. If this flag is set to . TRUE., then any error occurring within the ARY_ system
will be accompanied by error messages indicating which internal routines have exited
prematurely as a result. If the flag is set to .FALSE.,, this internal diagnostic information
will not appear and only standard error messages will be produced.

Invocation:

CALL ARY_TRACE(NEWFLG, OLDFLG)
Arguments:

NEWFLG = LOGICAL (Given)
The new value to be set for the error-tracing flag.

OLDFLG = LOGICAL (Returned)
The previous value of the flag.

Notes:

e By default, the error tracing flag is set to .FALSE., so no internal diagnostic information
will be produced.

73 ARY_TYPE SUN/11.6 —Fortran Routine Descriptions

ARY_TYPE
Obtain the numeric type of an array

Description:
The routine returns the numeric type of an array as an upper-case character string (e.g.
>_REAL”).

Invocation:

CALL ARY_TYPE(IARY, TYPE, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

TYPE = CHARACTER * (x) (Returned)
Numeric type of the array.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e The symbolic constant ARY__SZTYP may be used for declaring the length of a
character variable which is to hold the numeric type of an array. This constant is
defined in the include file ARY_PAR.

SUN/11.6 —Fortran Routine Descriptions 74 ARY_UNMAP

ARY_UNMAP
Unmap an array

Description:
The routine unmaps an array which has previously been mapped for READ, UPDATE or
WRITE access.

Invocation:

CALL ARY_UNMAP(IARY, STATUS)
Arguments:

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

e This routine attempts to execute even if STATUS is set on entry, although no further
error report will be made if it subsequently fails under these circumstances.

e An error will result if the array has not previously been mapped for access.

75 ARY_VALID SUN/11.6 —Fortran Routine Descriptions

ARY_VALID
Determine whether an array identifier is valid

Description:
Determine whether an array identifier is valid (i.e. associated with an array).

Invocation:

CALL ARY_VALID(IARY, VALID, STATUS)
Arguments:

IARY = INTEGER (Given)
Identifier to be tested.

VALID = LOGICAL (Returned)
Whether the identifier is valid.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/11.6 —Fortran Routine Descriptions 76 ARY_VERFY

ARY_VERFY
Verify that an array’s data structure is correctly constructed

Description:

The routine checks that the data structure containing an array is correctly constructed and
that the array’s pixel values are defined. It also checks for the presence of any "rogue"

components in the data structure. If an anomaly is found, then an error results. Otherwise,
the routine returns without further action.

Invocation:
CALL ARY_VERFY(IARY, STATUS)

Arguments:

IARY = INTEGER (Given)
Array identifier.

STATUS = INTEGER (Given and Returned)
The global status.

77 SUN/11.6 —C Function Descriptions

D C Function Descriptions

The C API differs from the Fortran API in the following ways:

(1) Arrays are identified using pointers of type “Ary *” rather than integer values.

(2) Values representing pixel indices or counts are stored in variables of type “hdsdim”. This
will be a 4 or 8 byte integer type, depending on the version of the installed HDS library.

(3) HDS locators are passed as pointers of type “HDSLoc *” rather than as character strings.

SUN/11.6 —C Function Descriptions 78 aryAnnul

aryAnnul
Annul an array pointer

Description:
This function annuls the array pointer supplied so that it is no longer recognised as a valid
pointer by the ARY_ routines. Any resources associated with it are released and made
available for re-use. If the array is mapped for access, then it is automatically unmapped
by this routine.

Invocation:

void aryAnnul(Ary **ary, int *status)

Notes:

e This routine attempts to execute even if ’ status’ is set on entry, although no further
error report will be made if it subsequently fails under these circumstances. In
particular, it will fail if the pointer supplied is not initially valid, but this will only be
reported if ’ status’ is set to SAI__OK on entry.

e An error will result if an attempt is made to annul the last remaining pointer associ-
ated with an array which is in an undefined state (unless it is a temporary array, in
which case it will be deleted at this point).

Parameters

ary Address of the array pointer to be annulled. A value of NULL is returned in place of the
supplied pointer.

status
The global status.

79

aryBad SUN/11.6 —C Function Descriptions

aryBad
Determine if an array may contain bad pixels

Description:
This function returns a boolean value indicating whether an array may contain bad pixels
for which checks must be made when its values are processed. Only if the returned value
is zero can such checks be omitted. If the " check" argument to this function is set non-zero,
then it will perform an explicit check (if necessary) to see whether bad pixels are actually
present.

Invocation:

void aryBad(Ary *ary, int check, int xbad, int *status)

Notes:

If " check" is set to zero, then the returned value of " bad" will indicate whether
bad pixels might be present and should therefore be checked for during subsequent
processing. However, even if " bad" is returned non-zero in such circumstances, it is
still possible that there may not actually be any bad pixels present (for instance, in an
array section, the region of the base array accessed might happen to avoid all the bad
pixels).

If " check" is set non-zero, then an explicit check will be made, if necessary, to ensure
that " bad" is only returned non-zero if bad pixels are actually present.

If the array is mapped for access through the identifier supplied, then the value
of " bad" will refer to the actual mapped values. It may differ from its original
(unmapped) value if conversion errors occurred during the mapping process, or if
an initialisation option of > /ZERO’ was specified for an array which was initially
undefined, or if the mapped values have subsequently been modified.

The " bad" argument will always be returned holding a non-zero value if the array is
in an undefined state.

Parameters

ary Array identifier.

check

If non-zero, an explicit check is performed to see if bad pixels are actually present.

bad

Returned holding a flag indicating whether it is necessary to check for bad pixels when
processing the array’ s values.

status

The global status.

SUN/11.6 —C Function Descriptions 80 aryBase

aryBase
Obtain an identifier for a base array

Description:
This function returns an identifier for the base array with which an array section is
associated.

Invocation:

void aryBase(Ary xaryl, Arykxary2, int *status)

Notes:

e If this routine is called with " status" set, then a value of NULL will be returned for
the " ary2" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.

Parameters

aryl
Identifier for an existing array section (the function will also work if this is already a base
array).

ary2
Returned holding an identifier for the base array with which the section is associated.

status
The global status.

81 aryBound SUN/11.6 —C Function Descriptions

aryBound
Enquire the pixel-index bounds of an array

Description:
This function returns the lower and upper pixel-index bounds of each dimension of an
array, together with the total number of dimensions.

Invocation:

void aryBound(Ary *ary, int ndimx, hdsdim *1lbnd, hdsdim *ubnd, int *ndim, int
xstatus)

Notes:

e If the array has fewer than " ndimx" dimensions, then any remaining elements of the
" Ibnd" and " ubnd" arguments will be filled with 1° s.

e If the array has more than " ndimx" dimensions, then the " ndim" argument will
return the actual number of dimensions. In this case only the first " ndimx" sets of
bounds will be returned, and an error will result if the size of any of the remaining
dimensions exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the " Ibnd"
and " ubnd" arguments so that they will be able to hold the maximum number of
array bounds that this routine can return. This constant is defined in the header file "
ary.h" .

Parameters

ary Array identifier.

ndimx
Maximum number of pixel-index bounds to return (i.e. the declared size of the " Ibnd"

and " ubnd" arguments).

Ibnd
Returned holding the lower pixel-index bounds for each dimension.

ubnd
Returned holding the upper pixel-index bounds for each dimension.

ndim
Returned holding the total number of array dimensions.

status
The global status.

SUN/11.6 —C Function Descriptions 82 aryClone

aryClone
Clone an array identifier

Description:
This function produces a " cloned" copy of an array identifier (i.e. it produces a new
identifier describing an array with identical attributes to the original).

Invocation:

void aryClone(Ary xaryl, Ary *xary2, int *status)

Notes:

e If this routine is called with " status" set, then a value of NULL will be returned for
the " ary2" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.

Parameters

aryl
Array identifier to be cloned.

ary2
Returned holding the cloned identifier.

status
The global status.

83 aryCmplx SUN/11.6 —C Function Descriptions

aryCmplx
Determine whether an array holds complex values

Description:
This function returns a logical value indicating whether an array holds complex values.

Invocation:

void aryCmplx(Ary *ary, int *cmplx, int *status)

Parameters

ary Array identifier.

cmplx
Returned holding a flag indicating whether the array holds complex values.

status
The global status.

SUN/11.6 —C Function Descriptions 84 aryCopy

aryCopy
Copy an array to a new location

Description:
This function copies an array to a new location and returns an identifier for the resulting
new base array.

Invocation:

void aryCopy(Ary xaryl, AryPlace *xplace, Ary *xary2, int *status)

Arguments:

aryl
Identifier for the array (or array section) to be copied.

place
An array placeholder (e.g. generated by the aryPlace function) which indicates the position
in the data system where the new array will reside. The placeholder is annulled by this
function, and a value of NULL will be returned.

ary2
Returned holding the identifier for the new array.

status
The global status.

Notes:

e The result of copying a scaled or delta array will be an equivalent simple array.

o If this routine is called with " status" set, then a value of NULL will be returned
for the " ary" argument, although no further processing will occur. The same value
will also be returned if the function should fail for any reason. In either event, the
placeholder will still be annulled.

85 aryDelet SUN/11.6 —C Function Descriptions

aryDelet
Delete an array

Description:
This function deletes the specified array. If this is a base array, then the associated data
object is erased and all array identifiers which refer to it (or to sections derived from it)
become invalid. If the array is mapped for access, then it is first unmapped. If an array
section is specified, then this function is equivalent to calling ary Annul.

Invocation:

void aryDelet(Ary *xary, int *status)

Notes:

e This function attempts to execute even if " status" is set on entry, although no further
error report will be made if it subsequently fails under these circumstances.

e A value of NULL is always returned for the " ary" argument, even if the function
should fail.

Parameters

ary Identifier for the array to be deleted. A value of NULL is returned.

status
The global status.

SUN/11.6 —C Function Descriptions 86 aryDelta

aryDelta
Compress an array using delta compression

Description:
This function creates a copy of the supplied array stored in DELTA form, which provides a
lossless compression scheme for integer data. This scheme assumes that adjacent integer
values in the input array tend to be close in value, and so differences between adjacent
values can be represented in fewer bits than the absolute values themselves. The differences
are taken along a nominated pixel axis within the supplied array (specified by argument
ZAXIS).

In practice, the scheme is limited currently to representing differences between adjacent
values using a HDS integer data type (specified by argyument TYPE) - that is, arbitrary bit
length is not yet supported. So for instance an _INTEGER input array can be compressed
by storing differences as _WORD or _BYTE values, but a _'WORD input array can only be
compressed by storing differences as _BYTE values.

Any input value that differs from its earlier neighbour by more than the data range of the
selected data type is stored explicitly using the data type of the input array.

Further compression is achieved by replacing runs of equal input values by a single
occurrence of the value with a correspsonding repetition count.

It should be noted that the degree of compression achieved is dependent on the nature
of the data, and it is possible for the compressed array to occupy more space than the
uncompressed array. The compression factor actually achieved is returned in argument
" zratio" (the ratio of the supplied array size to the compressed array size). A minmum
allowed compression ratio may be specified via argument " minrat" . If the compression
ratio is less than this value, then the returned copy is left uncompressed.

Invocation:
void aryDelta(Ary *aryl, int zaxis, const char xtype, float minrat, AryPlace

xxplace, float *zratio, Ary **ary2, int *status)

Notes:

e An error will be reported if the supplied array does not hold integer values. In the
case of a SCALED array, the internal (scaled) values must be integers, but the external
(unscaled) values can be of any data type.

e The compression axis and compressed data type actually used can be determined by
passing the returned array to aryGtdlt.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

e An error will result if the array holds complex values.

Parameters

87 aryDelta SUN/11.6 —C Function Descriptions

aryl
The input array identifier. This can be stored in any form. If it is already stored in
DELTA form, it is uncompressed and then re-compressed using the supplied compression
parameters. If is is stored in SCALED form, the internal integer values are compressed
and the scale and zero terms are copied into the DELTA array.

zaxis
The one-based index of the pixel axis along which differences are to be taken. If this is
zero, a default value will be selected that gives the greatest compression. An error will be
reported if a value less than zero or greater than the number of axes in the input array is
supplied.

type
The data type in which to store the differences between adjacent input values. This must
be one of > _BYTE’ , > _ZWORD?" or > _INTEGER" . Additionally, a blank string may be

supplied in which case a default value will be selected that gives the greatest compression.

minrat
The minimum allowed ZRATIO value. If compressing the input array results in a ZRATIO
value smaller than or equal to MINRAT, then the returned array is left uncompressed. If
the supplied value is zero or negative, then the array will be compressed regardless of the
compression ratio.

place
Address of an array placeholder pointer (e.g. generated by the aryPlace function), which
indicates the position in the data system where the new array will reside. The placeholder
is annulled by this function, and a value of NULL will be returned.

zratio

Returned holding the compression factor actually achieved (the ratio of the supplied array
size to the compressed array size). Genuine compressions are represented by values more
than 1.0, but values less than 1.0 may be returned if the input data is not suited to delta
compression (i.e. if the " compression" actually expands the array storage). Note, the
returned value of ZRATIO may be smaller than MINRAT, in which case the supplied array
is left unchanged. The returned compression factor is approximate as it does not take into
account the space occupied by the HDS metadata describing the extra components of a
DELTA array (i.e. the component names, data types, dimensions, etc). This will only be
significant for very small arrays.

ary2
Returned holding a pointer to the new DELTA array.

status
The global status.

SUN/11.6 —C Function Descriptions 88 aryDim

aryDim
Enquire the dimension sizes of an array

Description:
This function returns the size in pixels of each dimension of an array, together with the total
number of dimensions (the size of a dimension is the difference between that dimension’
s upper and lower pixel-index bounds + 1).

Invocation:

void aryDim(Ary *ary, int ndimx, hdsdim *dim, int *ndim, int *status)

Notes:

e If the array has fewer than " ndimx" dimensions, then any remaining elements of the
" dim" argument will be filled with 1’ s.

e If the array has more than " ndimx" dimensions, then the " ndim" argument will
return the actual number of dimensions. In this case only the first " ndimx" dimension
sizes will be returned, and an error will result if the size of any of the excluded
dimensions exceeds 1.

e The symbolic constant ARY__MXDIM may be used to declare the size of the " dim"
argument so that it will be able to hold the maximum number of array dimension
sizes that this routine can return. This constant is defined in the header file ary.h.

Parameters

ary Array identifier.

ndimx

Maximum number of dimension sizes to return (i.e. the size of the " dim" array).
dim

An array returned holding the size of each dimension in pixels.

ndim
Returned holding the total number of array dimensions.

status
The global status.

89 aryDupe SUN/11.6 —C Function Descriptions

aryDupe
Duplicate an array

Description:
This function duplicates an array, creating a new base array with the same attributes as an
existing array (or array section). The new array is left in an undefined state.

Invocation:

void aryDupe(Ary xaryl, AryPlace *xplace, Ary *xary2, int *status)

Notes:

e Duplicating a scaled or delta array produces an equivalent simple array.

e If this routine is called with " status" set, then a value of NULL will be returned
for the " ary" argument, although no further processing will occur. The same value
will also be returned if the function should fail for any reason. In either event, the
placeholder will still be annulled.

Parameters
aryl

Identifier for the array to be duplicated.

place
An array placeholder (e.g. generated by the aryPlace routine) which indicates the position
in the data system where the new array will reside. The placeholder is annulled by this
routine, and a value of NULL will be returned.

ary2
Returned holding the identifier for the new duplicate array.

status
The global status.

SUN/11.6 —C Function Descriptions 90 aryFind

aryFind
Find an array in an HDS structure and import it into the ARY_ system

Description:
This function finds a named array within an HDS structure, imports it into the ARY_
system and issues an identifier for it. The imported array may then be manipulated by the
ARY_ routines.

Invocation:

void aryFind(HDSLoc *loc, const char *name, Ary **ary, int *status)

Notes:

e If this routine is called with " status" set, then a NNULL pointer will be returned for
the " ary" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.

Parameters

loc Locator to the enclosing HDS structure.

name
Name of the HDS structure component to be imported.

ary Address of variable in which to return the Array identifier.

status
The global status.

91 aryForm SUN/11.6 —C Function Descriptions

aryForm
Obtain the storage form of an array

Description:

This function returns the storage form of an array as an upper-case character string (e.g. ’
SIMPLE”).

Invocation:

void aryForm(Ary xary, char form[ARY__SZFRM+1], int x*status)

Notes:

e The symbolic constant ARY__SZFRM should be used for declaring the length of a
character variable to hold the storage form of an array. This constant is defined in the
header file ary.h.

e At present, the ARY_ routines only support " primitive" , " scaled" , " simple" and
" delta" arrays, so only the values > PRIMITIVE’ , > SCALED’ ’> DELTA’ and °’
SIMPLE’ can be returned.

Parameters

ary Array identifier.

form
Returned holding the storage form of the array.

status
The global status.

SUN/11.6 —C Function Descriptions 92 aryFtype

aryFtype
Obtain the full data type of an array

Description:
This function returns the full data type of an array as an upper-case character string (e.g. ’
_REAL’ or > COMPLEX_BYTE?).

Invocation:

void aryFtype(Ary xary, char ftype[ARY__SZFTP+41], int *status)

Notes:

e The symbolic constant ARY__SZFTP should be used for declaring the length of a
character variable to hold the full data type of an array. This constant is defined in
the header file ary.h.

e For " Scaled" arrays, the data type returned by this function is the data type of the
SCALE and ZERO terms, rather than the data type of the stored array.

Parameters

ary Array identifier.

ftype
Returned holding the full data type of the array.

status
The global status.

93 aryGtdlt SUN/11.6 —C Function Descriptions

aryGtdlt
Get the compressed axis and data type for a DELTA array

Description:
This function returns the details of the compression used to produce an array stored in
DELTA form. If the array is not stored in DELTA form, then null values are returned as
listed below, but no error is reported.

A DELTA array is compressed by storing only the differences between adjacent array values
along a nominated compression axis, rather than the full array values. The differences
are stored using a smaller data type than the original absolute values. The compression
is lossless because any differences that will not fit into the smaller data type are stored
explicitly in an extra array with a larger data type. Additional compression is achieved by
replacing runs of equal values by a single value and a repeat count.

Invocation:

void aryGtdlt(Ary *ary, int *zaxis, char ztype[DAT__SZTYPE+1], float kzratio,
int *status)

Parameters

ary Array identifier.

zaxis
Returned holding the index of the pixel axis along which compression occurred. The first
axis has index 1. Zero is returned if the array is not stored in DELTA form.

ztype
Returned holding the data type in which the differences between adjacent array values are

stored. This will be one of > _BYTE’ , > _ZWORD’ or > _INTEGER" . The data type of the
array itself is returned if the supplid array is not stored in DELTA form.

zratio
Returned holding the compression factor - the ratio of the uncompressed array size to
the compressed array size. This is approximate as it does not include the effects of the
metadata needed to describe the extra components of a DELTA array (i.e. the space needed
to hold the component names, types, dimensions, etc). A value of 1.0 is returned if the
supplid array is not stored in DELTA form.

status
The global status.

SUN/11.6 —C Function Descriptions 94 aryGtsz<T>

aryGtsz<T>
Get the scale and zero values for an array

Description:
This function returns the scale and zero values associated with an array. If the array is not
stored in scaled form, then values of 1.0 and 0.0 are returned.

Invocation:

void aryGtsz<T>(Ary xary, CGEN_TYPE xscale, CGEN_TYPE xzero, int *status)

Parameters

ary Array identifier.

scale
Returned holding the scaling factor.

Zero
Returned holding the zero offset.

status
The global status.

95 arylmprt SUN/11.6 —C Function Descriptions

arylmprt
Import an array into the ARY_ system from HDS

Description:
This function imports an array into the ARY_ system from HDS and issues an identifier
for it. The array may then be manipulated by the ARY_ routines.

Invocation:

void aryImprt(HDSLoc *loc, Ary xxary, int *status)

Notes:

e The locator supplied as input to this routine may later be annulled without affecting
the subsequent behaviour of the ARY_ system.

o If this routine is called with " status" set, then a value of NULL will be returned for
the " ary" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.

Parameters

loc HDS locator to an array structure.
ary Returned holding an array identifier for the array structure.

status
The global status.

SUN/11.6 —C Function Descriptions 96 arylsacc

arylsacc
Determine whether a specified type of array access is available

Description:
This function determines whether a specified type of access to an array is available, or
whether it has been disabled. If access is not available, then any attempt to access the array
in this way will fail.

Invocation:
void aryIsacc(Ary *ary, const char access[ARY__SZACC+1], int *isacc, int *status
)

Notes:

The valid access types control the following operations on the array:

e > BOUNDS’ permits the pixel-index bounds of a base array to be altered.
e > DELETE’ permits deletion of the array.

> SHIFT’ permits pixel-index shifts to be applied to a base array.

> TYPE’ permits the data type of the array to be altered.

> WRITE’ permits new values to be written to the array, or the array’ s state to be
reset.

Parameters

ary Array identifier.

access
The type of array access required: > BOUNDS’ , > DELETE’ , > SHIFT’ , > TYPE’ or °’
WRITE’ (see the Notes section for details).

isacc
Returned holding a flag indicating whether the specified type of access is available.

status
The global status.

97 arylsbas SUN/11.6 —C Function Descriptions

arylsbas
Enquire if an array is a base array

Description:
This function returns a boolean value indicating whether the array whose identifier is
supplied is a base array (as opposed to an array section).

Invocation:

void aryIsbas(Ary *ary, int xbase, int *status)

Parameters

ary Array identifier.

base
Returned holding a flag indicating whether the array is a base array.

status
The global status.

SUN/11.6 —C Function Descriptions 98 arylsmap

arylsmap
Determine if an array is currently mapped

Description:
This function returns a boolean value indicating whether an array is currently mapped for
access through the identifier supplied.

Invocation:

void aryIsmap(Ary *ary, int xmapped, int *status)

Parameters

ary Array identifier.

mapped
Returned holding a flag indicating whether the array is mapped for access through the
ARY identifier.

status
The global status.

99 arylstmp SUN/11.6 —C Function Descriptions

arylstmp
Determine if an array is temporary

Description:
This function returns a boolean value indicating whether the specified array is temporary.
Temporary arrays are deleted once the last identifier which refers to them is annulled.

Invocation:

void aryIstmp(Ary *ary, int xtemp, int *status)

Parameters

ary Array identifier.

temp
Returned holding a flag indicating whether the array is temporary.

status
The global status.

SUN/11.6 —C Function Descriptions 100 aryLoc

aryLoc
Obtain an HDS locator for an array

Description:
This function returns an HDS locator for the data object referred to by the supplied ARY
identifier.

Invocation:

void aryLoc(Ary xary, HDSLoc *xloc, int *status)

Parameters

ary Array identifier.

loc Returned holding the HDS locator. It should be annulled using datAnnul when no longer
needed. A value of NULL will be returned if an error occurs.

status
The global status.

101

aryLock SUN/11.6 —C Function Descriptions

aryLock
Lock an array for exclusive use by the current thread

Description:

This function locks an ARY array for use by the current thread. An array can be locked for
read-only access or read-write access. Multiple threads can lock an array simultaneously
for read-only access, but only one thread can lock an array for read-write access at any one
time. Use of any ARY function that may modify any aspect of the array - either the data
values stored in the array or the meta-data describing the whole array - will fail with an
error unless the thread has locked the array for read-write access. Use of an ARY function
that cannot modify the array will fail with an error unless the thread has locked the array
(in this case the lock can be either for read-only or read-write access).

If " readonly" is zero (indicating the current thread wants to modify some aspect of the
array), this function will report an error if any other thread currently has a lock (read-only
or read-write) on the array.

If " readonly" is non-zero (indicating the current thread wants read-only access to the
array), this function will report an error only if another thread currently has a read-write
lock on the array.

The current thread must unlock the array using datUnlock before it can be locked for
use by another thread. All arrays are initially locked by the current thread when they
are created or opened. The type of access available to the array (" Read" , " Write" or "
Update") determines the type of the initial lock. For pre-existing arrays, this is determined
by the access mode specified when it is first opened. For new and temporary arrays, the
initial lock is always a read-write lock.

Invocation:

aryLock(Ary *ary, int readonly, int *status);

Notes:

e If the version of HDS being used does not support object locking, this function will
return without action unless the HDS tuning parameter VALOCKERROR is set to a
non-zero value, in which case an error will be reported.

e An error will be reported if the supplied array is currently locked by another thread.

e The majority of ARY functions will report an error if the array supplied to the function
has not been locked for use by the calling thread. The exceptions are the functions
that manage these locks - aryLock, datUnlock and aryLocked.

e Attempting to lock an array that is already locked by the current thread will change
the type of lock (read-only or read-write) if the lock types differ, but will otherwise
have no effect.

Parameters

SUN/11.6 —C Function Descriptions 102 aryLock

ary Pointer to the array that is to be locked.

readonly
If non-zero, the array is locked for read-only access. Otherwise it is locked for read-write
access.

status = int+ (Given and Returned)
Pointer to global status.

103

aryLocked SUN/11.6 —C Function Descriptions

aryLocked
See if an array is locked

Description:

This function returns a value that indicates if the supplied ARY array has been locked for
use by one or more threads. A thread can lock an array either for read-only access or for
read-write access. The lock management functions (aryLock and aryUnlock) will ensure
that any thread that requests and is given a read-write lock will have exclusive access to
the array - no other locks of either type will be issued to other threads until the first thread
releases the read-write lock using aryUnlock. If a thread requests and is given a read-only
lock, the lock management functions may issue read-only locks to other threads, but it will
also ensure that no other thread is granted a read-write lock until all read-only locks have
been released.

Invocation:

locked = aryLocked(const Ary *ary, int sstatus);

Notes:

e Zero is returned as the function value if an error has already occurred, or if an error
occurs in this function.

Parameters

ary Pointer to the array to be checked.

status

Pointer to global status.

Returned function value :

A value indicating the status of the supplied array:

e 1: The application is is linked with a version of HDS that does not support object
locking.

0: the supplied array is unlocked. This is the condition that must be met for the current
thread to be able to lock the supplied array for read-write access using function aryLock.
This condition can be achieved by releasing any existing locks using aryUnlock.

1: the supplied array is locked for reading and writing by the current thread. This is the
condition that must be met for the current thread to be able to use the supplied array
in any ARY function that might modify the array (except for the locking and unlocking
functions - see below). This condition can be achieved by calling aryLock.

SUN/11.6 —C Function Descriptions 104 aryLocked

2: the supplied array is locked for reading and writing by a different thread. An error will
be reported if the current thread attempts to use the array in any other ARY function.

3: the supplied array is locked read-only by the current thread (and maybe other threads
as well). This is the condition that must be met for the current thread to be able to use
the supplied array in any ARY function that cannot modify the array. An error will be
reported if the current thread attempts to use the array in any ARY function that could
modify the array. This condition can be achieved by calling aryLock.

4: the supplied array is not locked by the current thread, but is locked read-only by one
or more other threads. An error will be reported if the current thread attempts to use the
array in any other ARY function.

105 aryMap SUN/11.6 —C Function Descriptions

aryMap
Obtain mapped access to an array

Description:
This function obtains mapped access an array, returning a pointer to the mapped values
and a count of the number of elements mapped.

Invocation:
void aryMap(Ary xary, const char *type, const char smmod, void **pntr, size_t

xel, int *status)

Notes:

e If the array is a scaled array, the returned mapped values will be the stored array
values multiplied by the scale factor and shifted by the zero term.

o If the array is a delta (i.e. compressed) array, the returned mapped values will be the
uncompressed array values.

e Currently, only READ access is available for scaled and compressed arrays. An error
will be reported if an attempt is made to get WRITE or UPDATE access to a scaled or
compressed array.

Parameters

ary Array identifier.

type
The numerical data type required for access (e.g. " _REAL").

mmod
The mapping mode for access to the array: " READ" , " UPDATE" or " WRITE" , with an
optional initialisation mode " /BAD" or " /ZERO" appended.

pntr
Returned holding a pointer to the mapped values.

el Returned holding the number of elements mapped.

status
The global status.

SUN/11.6 —C Function Descriptions 106 aryMapz

aryMapz
Obtain complex mapped access to an array

Description:
This function obtains complex mapped access to an array, returning pointers to the real
and imaginary values and a count of the number of elements mapped.

Invocation:

void aryMapz(Ary xary, const char xtype, const char xmmod, void **rpntr, void
*xipntr, size_t xel, int xstatus)

Parameters

ary Array identifier.

type
The numerical data type required for accessing the array (e.g. > _REAL”).

mmod
The mapping mode for access to the array: > READ’ , > UPDATE’ or > WRITE’ , with an
optional initialisation mode > /BAD’ or * /ZERO’ appended.

rpntr
Returned holding a pointer to the mapped real (i.e. non-imaginary) values.

ipntr
Returned holding a pointer to the mapped imaginary values.

el Returned holding the number of elements mapped.

status
The global status.

107 aryMsg SUN/11.6 —C Function Descriptions

aryMsg
Assign the name of an array to a message token

Description:
This function assigns the name of an array to a message token (in a form which a user
will understand) for use in constructing messages with the MSG_ and ERR_ routines (see
SUN/104).

Invocation:

void aryMsg(const char xtoken, Ary *ary)

Notes:

e This routine has no " status" argument and performs no error checking. If it should
fail, then no assignment to the message token will be made and this will be apparent
in the final message.

Parameters

token
Name of the message token.

ary Array identifier.

SUN/11.6 —C Function Descriptions 108

aryNdim

aryNdim
Enquire the dimensionality of an array

Description:
This routine determines the number of dimensions which an array has.

Invocation:

void aryNdim(Ary +ary, int *ndim, int *status)

Parameters

ary Array identifier.

ndim
Returned holding the number of array dimensions.

status
The global status.

109 aryNew SUN/11.6 —C Function Descriptions

aryNew
Create a new simple array

Description:
This function creates a new simple array and returns an identifier for it. The array may
subsequently be manipulated with other Ary functions.

Invocation:

void aryNew(const char *ftype, int ndim, const hdsdim *1bnd, const hdsdim *ubnd,
AryPlace #*xplace, Ary **ary, int xstatus)

Notes:

o If this routine is called with " status" set, then a value of NULL will be returned
for the " ary" argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled.

Parameters
ftype

Full data type of the array.

ndim
Number of array dimensions.

Ibnd
Lower pixel-index bounds of the array.

ubnd
Upper pixel-index bounds of the array.

place
On entry, holds an array placeholder (e.g. generated by the aryPlace function) which
indicates the position in the data system where the new array will reside. The placeholder
is annulled by this function, and a value of NULL will be returned on exit.

ary Returned holding an identifier for the new array.

status
The global status.

SUN/11.6 —C Function Descriptions 110 aryNewp

aryNewp
Create a new primitive array

Description:
This function creates a new primitive array and returns an identifier for it. The array may
subsequently be manipulated with other Ary routines.

Invocation:

void aryNewp(const char *xftype, int ndim, const hdsdim *ubnd, AryPlace xxplace,
Ary sx*ary, int xstatus)

Notes:

o If this routine is called with " status" set, then a value of NULL will be returned
for the " ary" argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason. In either event, the
placeholder will still be annulled.

Parameters
ftype

Data type of the array (e.g. > _REAL’). Note that complex types are not allowed for
primitive arrays.

ndim
Number of array dimensions.

ubnd
Upper pixel-index bounds of the array (the lower bound of each dimension is taken to be
1).

place
On entry, holds an array placeholder (e.g. generated by the aryPlace function) which
indicates the position in the data system where the new array will reside. The placeholder
is annulled by this function, and a value of NULL will be returned on exit.

ary Returned holding an identifier for the new array.

status
The global status.

111 aryNoacc SUN/11.6 —C Function Descriptions

aryNoacc
Disable a specified type of access to an array

Description:
This function disables the specified type of access to an array, so that any subsequent
attempt to access it in that way will fail. Access restrictions imposed on an array identifier
by this routine will be propagated to any new identifiers derived from it, and cannot be

revoked.

Invocation:

void aryNoacc(const char *access, Ary *ary, int *status)

Notes:
Disabling each type of access imposes the following restrictions on an array:

e > BOUNDS?’ prevents the pixel-index bounds of a base array from being altered.
e ’ DELETE’ prevents the array being deleted.

> MODIFY’ prevents any form of modification to the array (i.e. it disables all the
other access types).

> SCALE’ prevents the scale and zero values from being changed.

e ’> SHIFT’ prevents pixel-index shifts from being applied to a base array.

> TYPE’ prevents the data type of the array from being altered.

> WRITE’ prevents new values from being written to the array, or the array’ s state
from being reset.

Parameters

access
The type of access to be disabled: > BOUNDS’ , > DELETE’ , > MODIFY’ , > SCALE”’ , ’

SHIFT’ , > TYPE’ or > WRITE” .
ary Array identifier.

status
The global status.

SUN/11.6 —C Function Descriptions 112 aryOffs

aryOffs
Obtain the pixel offset between two arrays

Description:
This function returns the pixel offset for each requested dimension between two arrays.
These values are the offsets which should be added to the pixel indices of the first array to
obtain the indices of the corresponding pixel in the second array.

Invocation:

void ary0ffs(Ary xaryl, Ary *ary2, int mxoffs, hdsdim xoffs, int *status)

Notes:

e The two array identifiers supplied need not refer to the same base array (although
they may often do so). If they do not, then the offset between the pixels in each array
is determined by matching the pixel indices of their respective base arrays.

¢ Note that non-zero pixel offsets may exist even for dimensions which exceed the di-
mensionality of either of the two arrays supplied. The symbolic constant ARY__MXDIM
may be used to declare the size of the OFFS argument so that it will be able to hold
the maximum number of non-zero offsets that this routine can return.

Parameters
iaryl
First array identifier.
iary2
Second array identifier.
mxoffs
Maximum number of pixel offsets to return (i.e. the declared size of the supplied " offs"
array).
offs

Returned holding an array of pixel offsets for each dimension.

status
The global status.

113 aryPlace SUN/11.6 —C Function Descriptions

aryPlace
Obtain an array placeholder

Description:
This function returns an array placeholder. A placeholder is used to identify a position in
the underlying data system (HDS) and may be passed to other routines (e.g. aryNew) to
indicate where a newly created array should be positioned.

Invocation:

void aryPlace(HDSLoc *loc, const char *name, AryPlace **place, int *status)

Notes:

e Placeholders are intended only for local use within an application and only a limited
number of them are available simultaneously. They are always annulled as soon as
they are passed to another routine to create a new array, where they are effectively
exchanged for an array identifier.

o If this routine is called with " status" set, then a value of NULL will be returned for
the " place" argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason.

Parameters

loc HDS locator to the structure to contain the new array.

name
Name of the new structure component (i.e. the array).

place
Returned holding an array placeholder identifying the nominated position in the data
system.

status
The global status.

SUN/11.6 —C Function Descriptions 114 aryPtsz<T>

aryPtsz<T>
Set new scale and zero values for a scaled array

Description:
This function sets new values for the scale and zero values associated with an array. If the
array is stored in simple form, then the storage form is changed to scaled.

Invocation:

void aryPtsz<T>(Ary xary, CGEN_TYPE scale, CGEN_TYPE zero, int *status)

Notes:

e This routine may only be used to change the type of a base array. If it is called with
an array which is not a base array, then it will return without action. No error will
result.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

Parameters

ary Array identifier.

scale
The new value for the scaling factor.

zZero
The new value for the zero offset.

status
The global status.

115 aryReset SUN/11.6 —C Function Descriptions

aryReset
Reset an array to an undefined state

Description:
This function resets an array so that its values become undefined. Its use is advisable
before making format changes to an array if retention of the existing values is not required
(e.g. before changing its data type with the aryStype function); this will avoid the cost of
converting the existing values.

Invocation:

void aryReset(Ary *ary, int *status)

Notes:

e This function may only be used to reset the state of a base array. If an array section is
supplied, then it will return without action. No error will result.

e An array cannot be reset while it is mapped for access. This routine will fail if this is
the case.

Parameters

ary Array identifier.

status
The global status.

SUN/11.6 —C Function Descriptions 116 aryRound

aryRound
Set the internal ARY_ system rouding flag

Description:
This function sets an internal flag in the ARY_ system that controls how floating point
values are converted to integer values when doing array type conversion. If the flag is
non-zero floating point values are rounded to the nearest integer value. Otherwise, floating
point values are truncated towards zero.

Invocation:

int aryRound(int newflg)

Notes:

e By default, the rounding flag is set to zero, so floating point values are truncated
towards zero when being converted to integers.

Parameters

newflg
The new value to be set for the rounding flag. If a negative value is supplied, the existing
value is left unchanged.

117 arySame SUN/11.6 —C Function Descriptions

arySame
Enquire if two arrays are part of the same base array

Description:
This function determines whether two array identifiers refer to parts of the same base
array. If so, it also determines whether they intersect.

Invocation:

void arySame(Ary xaryl, Ary xary2, int *same, int xisect, int *status)

Notes:

e Two arrays (or array sections) are counted as intersecting if (i) they both refer to the
same base array and (ii) altering values in one of the arrays can result in the values in
the other array changing in consequence.

Parameters

aryl
Identifier for the first array (or array section).

ary2
Identifier for the second array (or array section).

same
Returned holding a boolean flag indicating whether the identifiers refer to parts of the
same base array.

isect
Returned holding a boolean flag indicating whether the arrays intersect.

status
The global status.

SUN/11.6 —C Function Descriptions 118 arySbad

arySbad
Set the bad-pixel flag for an array

Description:
This function sets the value of the bad-pixel flag for an array A call to this routine with
" bad" set non-zero declares that the specified array may contain bad pixel values for
which checks must be made by algorithms which subsequently processes its values. A call
with " bad" set to zero declares that there are definitely no bad values present and that
subsequent checks for such values may be omitted.

Invocation:

void arySbad(int bad, Ary xary, int *status)

Notes:

e If the array is mapped for access when this routine is called, then the bad-pixel flag
will be associated with the mapped values. This information will only be transferred
to the actual data object when the array is unmapped (but only if it was mapped for
UPDATE or WRITE access). The value transferred may be modified if conversion
errors occur during the unmapping process.

Parameters
bad

Bad-pixel flag value to be set.
ary Array identifier.

status
The global status.

119 arySbnd SUN/11.6 —C Function Descriptions

arySbnd
Set new pixel-index bounds for an array

Description:
This function sets new pixel-index bounds for an array (or array section). The number
of array dimensions may also be changed. If a base array is specified, then a permanent
change is made to the actual data object and this will be apparent through any other array
identifiers which refer to it. However, if an identifier for an array section is specified, then
its bounds are altered without affecting other arrays.

Invocation:

void arySbnd(int ndim, const hdsdim *1lbnd, const hdsdim *ubnd, Ary xary, int
*status)

Notes:

e The bounds of an array section cannot be altered while it is mapped for access through
the identifier supplied to this routine.

e The bounds of a base array cannot be altered while any part of it is mapped for access
(i.e. even through another identifier).

e The array’ s pixel values (if defined) will be retained for those pixels which lie within
both the old and new bounds. Any pixels lying outside the new bounds will be lost
(and cannot later be recovered by further changes to the array’ s bounds). Any new
pixels introduced where the new bounds extend beyond the old ones will be assigned
the " bad" value, and the subsequent value of the bad-pixel flag will reflect this.

e If the bounds of a base array are to be altered and retention of the existing pixel values
is not required, then a call to aryReset should be made before calling this routine.
This will eliminate any processing which might otherwise be needed to retain the
existing values. This step is not necessary with an array section, where no processing
of pixel values takes place.

Parameters

ndim
New number of array dimensions.

Ibnd
Array holding the new lower pixel-index bounds of the array.

ubnd
Array holding the new upper pixel-index bounds of the array.

ary Array identifier.

SUN/11.6 —C Function Descriptions 120 arySbnd

status
The global status.

121 arySctyp SUN/11.6 —C Function Descriptions

arySctyp
Obtain the numeric type of a scaled array

Description:
This function returns the numeric type of a scaled array as an upper-case character string
(e.g. > _REAL”). The returned type describes the values stored in the array, before they
are unscaled using the associated scale and zero values. Use aryType if you need the data
type of the array after it has been unscaled.

Invocation:
void arySctyp(Ary *ary, char type[ARY__SZTYP+1], int *status)

Notes:

e If the array is not stored in SCALED form, then this routine returns the same type as
the aryType function.

e The symbolic constant ARY__SZTYP should be used to declare the length of a charac-
ter variable which is to hold the numeric type of an array. This constant is defined in
the header file ary_par.h.

Parameters

ary Array identifier.

type
Numeric type of the array.

status
The global status.

SUN/11.6 —C Function Descriptions 122 arySect

arySect
Create an array section

Description:
This function creates a new array section which refers to a selected region of an existing
array (or array section). The section may be larger or smaller in extent than the original
array.

Invocation:
void arySect(Ary xaryl, int ndim, const hdsdim *1lbnd, const hdsdim *ubnd, Ary

x*kary2, int *status)

Notes:

e The number of section dimensions need not match the number of dimensions in the
initial array. Pixel-index bounds will be padded with 1’ s as necessary to identify the
pixels to which the new section should refer.

e Note that sections which extend beyond the pixel-index bounds of the initial array
will be padded with bad pixels.

o If this routine is called with " Status" set, then a value of NULL will be returned for
the " ary2" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.

Parameters

ary Identifier for the initial array.

ndim
Number of dimensions for new section. This is the length of the " Ibnd" and Ubnd" arrays.

Ibnd
Lower pixel-index bounds for the new section.

ubnd
Upper pixel-index bounds for the new section.

ary2
Address of a variable in which to return an identifier for the new section.

status
The global status.

123 aryShift SUN/11.6 —C Function Descriptions

aryShift
Apply pixel-index shifts to an array

Description:
This function applies pixel-index shifts to an array. An integer shift is applied to each
dimension so that its pixel-index bounds, and the indices of each pixel, change by the
amount of shift applied to the corresponding dimension. The array’ s pixels retain their
values and none are lost.

Invocation:

void aryShift(int nshift, const hdsdim *shift, Ary xary, int *status)

Notes:

e Pixel-index shifts applied to a base array will affect the appearance of that array as
seen by all base-array identifiers associated with it. However, array sections derived
from that base array will remain unchanged (as regards both pixel-indices and data
content).

e Pixel-index shifts cannot be applied to a base array while any part of it is mapped for
access (i.e. even through another identifier).

e Pixel-index shifts applied to an array section only affect that section itself, and have
no effect on other array identifiers.

e Pixel-index shifts cannot be applied to an array section while it is mapped for access
through the identifier supplied to this routine.

Parameters

nshift
Number of dimensions to which shifts are to be applied (i.e. the length of array " shift").
This must not exceed the number of array dimensions. If fewer shifts are supplied than
there are dimensions in the array, then the extra dimensions will not be shifted.

shift
An array holding the pixel-index shifts to be applied to each dimension.

ary Array identifier.

status
The global status.

SUN/11.6 —C Function Descriptions 124 arySize

arySize
Determine the size of an array

Description:
This function returns the number of pixels in the array whose identifier is supplied (i.e.
the product of its dimensions).

Invocation:

void arySize(Ary xary, int npix, int *status)

Parameters

ary Array identifier.
npix
Returned holding the number of pixels in the array.

status
The global status.

125 arySsect SUN/11.6 —C Function Descriptions
arySsect
Create a similar array section to an existing one
Description:
This function creates a new array section, using an existing section as a template. The new
section bears the same relationship to its base array as the template section does to its
own base array. Allowance is made for pixel-index shifts which may have been applied
so that the pixel-indices of the new section match those of the template. The number of
dimensions of the input and template arrays may differ.
Invocation:
void arySsect(Ary xaryl, Ary *ary2, Ary xxary3, int *status)
Notes:
This routine normally generates an array section. However, if both input arrays are
base arrays with identical pixel-index bounds, then there is no need to create a section
in order to access the required part of the first array. In this case a base array identifier
will be returned instead.
The new section created by this routine will have the same number of dimensions
as the array (or array section) from which it is derived. If the template (ary2) array
has fewer dimensions than this, then the bounds of any additional input dimensions
are preserved unchanged in the new array. If the template (ary2) array has more
dimensions, then the excess ones are ignored.
This routine takes account of the regions of each base array to which the input array
sections have access. It may therefore restrict the region accessible to the new section
(and pad with " bad" pixels) so as not to grant access to regions of the base array
which were not previously accessible through the input arrays.
If this routine is called with " status" set, then a value of NULL will be returned for
the " ary3" argument, although no further processing will occur. The same value will
also be returned if the routine should fail for any reason.
Parameters
aryl
Identifier for the input array from which the section is to be derived. This may be a base
array or an array section.
ary2
Identifier for the template section (this may also be a base array or an array section).
ary3

Returned holding the identifier for the new array section.

SUN/11.6 —C Function Descriptions 126 arySsect

status
The global status.

127 aryState SUN/11.6 —C Function Descriptions

aryState
Determine the state of an array (defined or undefined)

Description:
This function returns a flag indicating whether an array’ s pixel values are currently
defined.

Invocation:

void aryState(Ary *ary, int *state, int x*status)

Parameters

ary Array identifier.

state
Returned hoplding a flag indicating whether the array’ s pixel values are defined.

status
The global status.

SUN/11.6 —C Function Descriptions 128 aryStype

aryStype
Set a new type for an array

Description:
This function sets a new full type for an array, causing its data storage type to be changed.
If the array’ s pixel values are defined, then they will be converted from the old type to
the new one. If they are undefined, then no conversion will be necessary. Subsequent
enquiries will reflect the new type. Conversion may be performed between any types
supported by the ary_ routines, including from a non-complex type to a complex type
(and vice versa).

Invocation:

void aryStype(const char xftype, Ary xary, int *status)

Notes:

e This function may only be used to change the type of a base array. If it is called with
an array which is not a base array, then it will return without action. No error will
result.

e An error will result if the array, or any part of it, is currently mapped for access (e.g.
through another identifier).

o If the type of an array is to be changed without its pixel values being retained, then a
call to aryReset should be made beforehand. This will avoid the cost of converting all
the values.

Parameters

ftype
The new full type specification for the array (e.g. > _REAL’ or > COMPLEX_INTEGER?).

ary Array identifier.

status
The global status.

129 aryTemp SUN/11.6 —C Function Descriptions

aryTemp
Obtain a placeholder for a temporary array

Description:
This function returns an array placeholder which may be used to create a temporary array
(i.e. one which will be deleted automatically once the last identifier associated with it is
annulled). The placeholder returned by this routine may be passed to other routines (e.g.
aryNew or aryCopy) to produce a temporary array in the same way as a new permanent
array would be created.

Invocation:

void aryTemp(AryPlace xxplace, int *status)

Notes:

e Placeholders are intended only for local use within an application and only a limited
number of them are available simultaneously. They are always annulled as soon as
they are passed to another routine to create a new array, where they are effectively
exchanged for an array identifier.

o If this routine is called with STATUS set, then a value of NULL will be returned for
the " place" argument, although no further processing will occur. The same value
will also be returned if the routine should fail for any reason.

Parameters

place
Returned holding a placeholder for a temporary array.

status
The global status.

SUN/11.6 —C Function Descriptions 130 aryTrace

aryTrace
Set the internal ARY_ system error-tracing flag

Description:

This function sets an internal flag in the ARY_ system which enables or disables error-
tracing messages. If this flag is set non-zero, then any error occurring within the ARY_
system will be accompanied by error messages indicating which internal routines have
exited prematurely as a result. If the flag is set to zero, this internal diagnostic information
will not appear and only standard error messages will be produced.

Invocation:

char aryTrace(char newflg)

Notes:

e By default, the error tracing flag is set to zero, so no internal diagnostic information
will be produced.

Parameters

newflg

The new value to be set for the error-tracing flag. If a negative value is supplied, the
existing value is left unchanged.

131 aryType SUN/11.6 —C Function Descriptions

aryType
Obtain the numeric type of an array

Description:
This function returns the numeric type of an array as an upper-case character string (e.g. ’
_REAL”).

Invocation:

void aryType(Ary xary, char typel[ARY__SZTYP+1], int xstatus)

Notes:

e The symbolic constant ARY__SZTYP should be used for declaring the length of a
character array which is to hold the numeric type of an array. This constant is defined
in the header file ary_parh

Parameters

ary Array identifier.

type
Numeric type of the array.

status
The global status.

SUN/11.6 —C Function Descriptions 132 aryUnlock

aryUnlock
Unlock an array so that it can be locked by a different thread

Description:
This function ensures that the current thread does not have a lock of any type on the
supplied array. See aryLock.

The array must be locked again, using aryLock, before it can be used by any other ARY
function. All arrays are initially locked by the current thread when they are first created or
opened.

Invocation:

aryUnlock(Ary xary, int *status);

Notes:

e If the version of HDS being used does not support object locking, this function will
return without action unless the HDS tuning parameter VALOCKERROR is set to a
non-zero value, in which case an error will be reported.

e No error is reported if the supplied array is currently locked for read-only or read-
write access by another thread.

e The majority of ARY functions will report an error if the array supplied to the function
has not been locked for use by the calling thread. The exceptions are the functions
that manage these locks - aryLock, aryUnlock and aryLocked.

e Attempting to unlock an array that is not locked by the current thread has no effect,
and no error is reported. The aryLocked function can be used to determine if the
current thread has a lock on the array.

Parameters

ary Pointer to to the array to be unlocked.

status
Pointer to global status.

133 aryUnmap SUN/11.6 —C Function Descriptions

aryUnmap
Unmap an array

Description:
This function unmaps an array which has previously been mapped for READ, UPDATE
or WRITE access.

Invocation:

void aryUnmap(Ary *ary, int xstatus)

Notes:

e This function attempts to execute even if " status" is set on entry, although no further
error report will be made if it subsequently fails under these circumstances.

e An error will result if the array has not previously been mapped for access.

Parameters

ary Array identifier.

status
The global status.

SUN/11.6 —C Function Descriptions 134

aryValid

ary Valid
Determine whether an array identifier is valid

Description:

Determine whether an array identifier is valid (i.e. associated with an array).

Invocation:

int aryValid(Ary *ary, int xstatus)
Returned Value:

A flag indicating if the identifier is valid.
Parameters
ary Array identifier to be tested.

status
The global status.

135 aryVerfy SUN/11.6 —C Function Descriptions

ary Verfy
Verify that an array’ s data structure is correctly constructed

Description:
This function checks that the data structure containing an array is correctly constructed
and that the array’ s pixel values are defined. It also checks for the presence of any "
rogue" components in the data structure. If an anomaly is found, then an error results.
Otherwise, the routine returns without further action.

Invocation:

void aryVerfy(Ary *ary, int *status)

Parameters

ary Array identifier.

status
The global status.

SUN/11.6 —Changes and new features in V1.3 136

E Changes and new features in V1.1

Only relatively minor changes have taken place since the previous version (V1.0) of the ARY_
system. The most significant of these are as follows:

(1) An obscure bug resulting from an un-annulled HDS locator has been fixed. This could
occasionally result in corrupted files if the ARY_STYPE routine was called repeatedly from
successive invocations of an application in an ADAM monolith.

(2) Two new routines have been introduced, primarily to provide facilities required by the
NDEF_ system:

e ARY_NDIM(IARY, NDIM, STATUS)
Enquire the dimensionality of an array

e ARY_OFFS(IARY1, IARY2, MXOFFS, OFFS, STATUS)
Obtain the pixel offset between two arrays

(3) A stand-alone (non-ADAM) version of the ARY_ library has been added and new linker
options files have been provided to allow linking with either version.

(4) The encoding of ARY_ system identifiers has been changed to improve the chance of
detecting erroneous identifier values.

(5) Messages about array data structures now contain the full HDS object name, including the
full container file name.

(6) A few minor documentation errors have been corrected.

No changes to existing applications should be required, neither should any re-compilation or
re-linking be necessary.

F Changes and new features in V1.3

The most significant changes in version (V1.3) of the ARY_ system were as follows:

(1) A new array storage form called “DELTA” has been introduced. This provides lossless
compression for integer arrays. The new routine ARY_DELTA creates a copy of a supplied
array, stored in DELTA form.

(2) A new routine called ARY_LOC returns a locator for the HDS data object referred to by
the supplied ARY identifier.

137 SUN/11.6 —Changes and new features in V2.0

G Changes and new features in V1.4

The most significant changes in version (V1.4) of the ARY_ system are as follows:

(1) A bugin ARY_DUPE has been fixed. This bug resulted in the wrong data type for the
output array if the input array was compressed.

H Changes and new features in V2.0

The most significant changes in version (V2.0) of the ARY_ system are as follows:

(1) This is a complete new re-write of the orignial Fortran code in C.

(2) The C Interface is thread-safe, including new facilities for locking and unlocking arrays for
exclusive use by the current thread.

(3) The Fortran API has been expanded ito include versions of routines that allow pixel index

and count values to be given and returned in 8 byte integers.

No changes to existing applications should be required, neither should any re-compilation or
re-linking be necessary (so long as you do not need to use any of the new features of course).

	Introduction
	Bounds, Dimensions and Pixel Counts
	The Fortran API
	The C API

	Array Storage Forms
	Delta Compressed Array Form
	Creating a Delta Array
	The HDS Structure of a Delta Array

	Compiling and Linking
	Alphabetical list of Routines
	Classified list of Routines
	Access to Existing Arrays
	Enquiring Array Attributes
	Creating and Deleting Arrays
	Setting Array Attributes
	Access to Array Values
	Creation and Control of Identifiers
	Message System Routines
	Creating Placeholders
	Copying Arrays
	Miscellaneous

	Fortran Routine Descriptions
	ARY_ANNUL
	ARY_BAD
	ARY_BASE
	ARY_BOUND
	ARY_BOUNDK
	ARY_CLONE
	ARY_CMPLX
	ARY_COPY
	ARY_DELET
	ARY_DELTA
	ARY_DIM
	ARY_DIMK
	ARY_DUPE
	ARY_FIND
	ARY_FORM
	ARY_FTYPE
	ARY_GTDLT
	ARY_GTSZB
	ARY_IMPRT
	ARY_ISACC
	ARY_ISBAS
	ARY_ISMAP
	ARY_ISTMP
	ARY_LOC
	ARY_MAP
	ARY_MAPK
	ARY_MAPZ
	ARY_MAPZK
	ARY_MSG
	ARY_NDIM
	ARY_NEW
	ARY_NEWK
	ARY_NEWP
	ARY_NEWPK
	ARY_NOACC
	ARY_OFFS
	ARY_OFFSK
	ARY_PLACE
	ARY_PTSZB
	ARY_RESET
	ARY_SAME
	ARY_SBAD
	ARY_SBND
	ARY_SBNDK
	ARY_SCTYP
	ARY_SECT
	ARY_SECTK
	ARY_SHIFT
	ARY_SHIFTK
	ARY_SIZE
	ARY_SIZEK
	ARY_SSECT
	ARY_STATE
	ARY_STYPE
	ARY_TEMP
	ARY_TRACE
	ARY_TYPE
	ARY_UNMAP
	ARY_VALID
	ARY_VERFY

	C Function Descriptions
	aryAnnul
	aryBad
	aryBase
	aryBound
	aryClone
	aryCmplx
	aryCopy
	aryDelet
	aryDelta
	aryDim
	aryDupe
	aryFind
	aryForm
	aryFtype
	aryGtdlt
	aryGtsz<T>
	aryImprt
	aryIsacc
	aryIsbas
	aryIsmap
	aryIstmp
	aryLoc
	aryLock
	aryLocked
	aryMap
	aryMapz
	aryMsg
	aryNdim
	aryNew
	aryNewp
	aryNoacc
	aryOffs
	aryPlace
	aryPtsz<T>
	aryReset
	aryRound
	arySame
	arySbad
	arySbnd
	arySctyp
	arySect
	aryShift
	arySize
	arySsect
	aryState
	aryStype
	aryTemp
	aryTrace
	aryType
	aryUnlock
	aryUnmap
	aryValid
	aryVerfy

	Changes and new features in V1.1
	Changes and new features in V1.3
	Changes and new features in V1.4
	Changes and new features in V2.0

