
SUN/130.5

Starlink Project
Starlink User Note 130.5

David Terrett
Nicholas Eaton

7 July 1995

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

GWM — X Graphics Window Manager
Version 1.5-1

Programmers’ Manual

SUN/130.5 —Abstract ii

Abstract

This note describes how to create graphics windows on an X display that do not disappear when
a program terminates.

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

iii SUN/130.5—Contents

Contents

1 Introduction 1

2 Creating a window 1

3 Using windows 5

4 Resizing windows 5

5 Deleting windows 5

6 The FORTRAN interface 5
6.1 Summary of GWM calls . 6
6.2 Making the X connection . 6
6.3 Creating a GWM window . 7
6.4 Inquiries . 8
6.5 Linking programs with GWM . 9
6.6 Subroutine Specifications . 10

GWM_CLOSE . 11
GWM_CRWIN . 12
GWM_DSWIN . 13
GWM_EXIST . 14
GWM_GETCI . 15
GWM_OPEN . 16
GWM_WSETC . 17
GWM_WSETI . 18
GWM_WSETL . 19

7 Graphics Driver Interface 20
7.1 Anatomy of a Window . 20
7.2 Drawing in the Window . 21
7.3 Drawing in the Overlay Plane . 21
7.4 The Colour Table . 21
7.5 Scrolling . 21
7.6 Examples . 22
7.7 Subroutine Specifications . 23

GWM_CreateWindow . 24
GWM_DestroyWindow . 25
GWM_FindWindow . 26
GWM_GetBgCol . 27
GWM_GetColTable . 28
GWM_GetFgCol . 29
GWM_GetOvMask . 30
GWM_GetOvScroll . 31
GWM_GetPixmap . 32
GWM_GetScroll . 33
GWM_SetBgCol . 34
GWM_SetColTable . 35

SUN/130.5 —Contents iv

GWM_SetFgCol . 36
GWM_SetOvScroll . 37
GWM_SetPixmap . 38
GWM_SetScroll . 39

1 SUN/130.5 —Creating a window

1 Introduction

X was designed to support “graphical user interfaces” (GUIs) and there are two properties of
X that make an X window fundamentally different from a traditional graphics device. Firstly,
windows “belong” to applications programs and are deleted when the application exits unlike
the picture on an image display which remains there until replaced by something else.

Secondly, applications programs are expected respond to “events” occurring in their windows;
things like key presses, mouse movements, etc. One event type that all applications must handle
is the “window expose” event which occurs whenever part of a window that was invisible—
because another application’s window was obscuring it for example—becomes visible. The
application is responsible for restoring the contents of the newly exposed part of the window
but only an application designed as an X application can do this; an application that is using X
via a graphics package such as GKS (SUN/83) or IDI (SUN/65) but is otherwise a conventional
application that knows nothing of X, cannot.

The X graphics window manager (not to be confused with the Window Manager which allows
you to move windows around the screen, iconize them etc.) makes a window on an X windows
display behave like a traditional graphics device by making the lifetime of the window indepen-
dent of any applications program and by handling window expose events. Applications still
send plotting commands directly to the window; they don’t have to go via a “server” process, so
there is no adverse impact on performance. All communication between the window manager
and the application is via the X server and the graphics window manager does not have to
run on the same machine as the application. Indeed the manager and applications can even be
running on different operating systems.

2 Creating a window

The simplest way to create a window (in terms of understanding what is happening) is to use
the xmake command and specify the properties that you want the window to have. There are
other, more convenient, ways to create windows but they are easier to explain after describing
the xmake command.

xmake name options

creates a window with the name name. Case matters in window names so mywindow, MYWINDOW
and MyWindow are all different.

The following options, which can be abbreviated, are recognized:

-background colour The background colour of the window; colour is the name of a colour
recognized by X windows. Examples:

xmake test -background black
xmake test -background yellow

The default is Black.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun83.htx/sun83.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun65.htx/sun65.html?xref_

SUN/130.5 —Creating a window 2

-bg colours The same as -background.

-borderwidth Specifies the width of the window border in pixels. The border width is ignored
by many window managers but the value specified is used to calculate the window
position so should match the actual border width used by the window manager. The
default is 10 which is what the Motif window manager uses.

If the window appears to be incorrectly position when a geometry specification of -geometry
-0-0 is used then changing the border width may correct the problem.

-colours number The number of colour table entries to be allocated to the window; number
should be an integer greater than or equal to 2.

On a server with a writable colour table, the requested number of colour table entries are
reserved for the exclusive use of the window; if there are insufficient free entries in the
default colour map, a private colour map is created and the entries allocated from that.
On a server with a fixed colour table, entries can be shared between windows and any
number up to the maximum supported by the server can be requested.

Examples:

xmake test -colours 2
xmake test -col 127

The default depends on the properties of the X server.

-fg colours The same as -foreground.

-foreground colour The foreground colour of the window; colour is the name of a colour or
RGB specification in X windows format. Case does not matter but colour names cannot be
abbreviated. Examples:

xmake test -foreground white
xmake test -foreground SpringGreen
xmake test -foreground #FF00FF}

The default is White.

-geometry specification The size and position of the window; specification is a window
geometry specification of the form:

width xheight +/-xorigin +/-yorigin

(x is the letter “x” and +/- is either a plus sign or a minus sign.) All dimensions are in
pixels and the origin is the position of the top left hand corner of the window relative to
the top left hand corner of the screen if the origin specification is a positive number, or the
position of the bottom right corner of the window relative to the bottom right of the screen
if it is negative. All the components of the geometry specification are optional. Examples:

xmake test -geometry 780x512
xmake test -geom 600x400+300+300
xmake test -geom +512+368

To position the window in the bottom right corner of the screen:

xmake test -geom -0-0

3 SUN/130.5 —Creating a window

To position the window in the top right corner:

xmake test -geom -0+0

The default is 780x512 (this leaves it up to the window manager to decide where to place
the window).

The geometry specification is only a hint to the window manager and may be ignored.

-iconic Create the window as an icon.

-interactive Allows the window size to be set interactively. When the window appears on the
screen its size can be modified before the window creation is completed and the window
size fixed. Resize the window with the facilities provided by the window manager that
you are using and then click the mouse on the interior of the window to indicate that the
desired size has been set.

This option is ignored if -iconic is specified.

-nointeractive The opposite of -interactive. This is the default.

-nooverlay Do not allocate an overlay plane. This option would be required if a default overlay
colour had been set using the “X defaults” file (see below) but a window without an
overlay plane was required.

-ovcolour colour Set the colour of the overlay plane. If not specified the overlay plane is set
to the foreground colour. Example:

xmake test -ovcolour Green

-overlay Allocate an overlay plane There is no default for this option. The default is not to
allocate an overlay plane. Note that overlay planes effectively consume half the available
colours on the X server so an overlay should be specified only when required.

-title title The window title that is displayed in the window’s title bar; title is a character
string. If it contains spaces or other special characters it must be enclosed in quotes
Example:

xmake test -title Test_Window

The default title is “GWM Window - window name ”

There are defaults for all these options but they are not necessarily appropriate. You can provide
your own defaults by putting them in your “X defaults” file (˜/.Xdefaults) and to have different
defaults for different window names. If you edit your X defaults file, the changes won’t have any
effect until they have been loaded into the resource database in your X server. This is normally
done by the window manager when you first log in to the server but can be done explicitly with
the command:

xrdb -merge \$HOME/.Xdefaults

Rather than attempting to explain in detail what is a powerful but quite complicated system
here is an example that shows how to control the properties of GWM windows. Suppose your X
defaults file contains the following:

SUN/130.5 —Creating a window 4

Table 1: GWM X resources

Resource name Default

background Black

borderWidth 10

colours 0

foreground White

geometry 780x512

overlay False

overlayColour

iconic False

interactive False

title

Gwm.mono*colours: 2
Gwm*colours: 128

then a window created with the name “mono” will have 2 colours allocated to it and windows
with any other names will have 128 colours allocated.

When a graphics package creates a window for you this is the only mechanism available for
specifying the properties of the window. For example, GKS will create a window if it doesn’t
already exist and each of the four available workstation types of X windows can be assigned
different properties as follows:

Gwm*foreground: Black
Gwm*background: White
Gwm.GKS_3800*colours: 2
Gwm.GKS_3800*geometry: 512x380
Gwm.GKS_3801*colours: 8
Gwm.GKS_3801*geometry: 780x512
Gwm.GKS_3802*colours: 128
Gwm.GKS_3802*geometry: 780x512
Gwm.GKS_3803*colours: 128
Gwm.GKS_3803*interactive: True

This defines workstation type 3800 as being a small window with only two colours, suitable for
black and white line plots, 3801 is a bit bigger and has 8 colours suitable for colour line plots,
3802 is the same size but with more colours for image display applications and 3803 is the same
but the window size is set interactively.

A complete list of the resources used and their default values are shown in Table 1.

5 SUN/130.5 —The FORTRAN interface

3 Using windows

Programs that use GWM (usually via a graphics package such as GKS or IDI) will normally
create a new window as required. However, to plot into an existing window you need to know
how the graphics package generates the window name. For example, GKS uses a window with
the name GKS_nnnn where nnnn is the workstation type (the connection identifier is ignored) or
whatever that name translates to if treated as an environment variable.

Consult the documentation for the graphics package in question for full details.

4 Resizing windows

Once a window has been created, any resizing does not alter the size of the plotting area seen by
applications programs; all that happens is either part of the plotting area becomes invisible or a
blank border appears around the plotting area.

You should avoid resizing a window while an application is attached (i.e. plotting into) the
window as the application may not be able to handle the resulting change in the picture position
correctly.

5 Deleting windows

Windows are deleted from the display with the command:

xdestroy name

where name is the window name. There are no command options.

Resetting the X server (i.e. by logging out) will also delete all windows and all window manager
processes will exit.

6 The FORTRAN interface

This section describes the subroutines that can be called from a FORTRAN program to interface
with the Graphics Window Manager. All these routines use the inherited status strategy which
means that if the STATUS argument is not set to the value SAI__OK on entry the routine will exit
without performing any action. If an error occurs during the execution of a routine the STATUS
will be set and an error will be reported using the error message service (EMS—SUN/104).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_

SUN/130.5 —The FORTRAN interface 6

6.1 Summary of GWM calls

GWM_CLOSE(STATUS)
Close the X client-server connection.

GWM_CRWIN(WNAME, STATUS)
Create a GWM window.

GWM_DSWIN(WNAME, STATUS)
Destroy a GWM window.

GWM_EXIST(WNAME, EXISTS, STATUS)
Inquire if a GWM window of the given name exists.

GWM_GETCI(WNAME, IDIM, INDEXS, NCOLS, STATUS)
Inquire the number of colours and colour indices.

GWM_OPEN(DISPLY, USEDEF, STATUS)
Establish the X client server connection.

GWM_WSETC(OPTION, VALUE, STATUS)
Set a character string window option.

GWM_WSETI(OPTION, VALUE, STATUS)
Set an integer window option.

GWM_WSETL(OPTION, VALUE, STATUS)
Set a logical window option.

6.2 Making the X connection

The first thing to do when using the FORTRAN interface is to call the routine GWM_OPEN which
establishes the connection between the client and the server. In this context the client is the cpu
running the program and the server is the cpu displaying the image (X allows these cpu’s to
be different). The first argument passed to GWM_OPEN defines this connection, however most
applications need not worry about the details of the connection and can use the default (the
option of specifying the connection path is included for completeness). The default connection
is established with the following call

CALL GWM_OPEN(’ ’, .TRUE., STATUS)

where the second argument is set to true to indicate that the default connection is to be used.

The connection is ended with a call to GWM_CLOSE. These two routines (GWM_OPEN and GWM_CLOSE)
should bracket all other routines called from this interface.

As well as establishing the X connection GWM_OPEN also sets up an error handler to deal with any
non-fatal X errors. Once this has been set up any such errors are reported using EMS. When
GWM_CLOSE is called the previously active error handler is re-established.

7 SUN/130.5 —The FORTRAN interface

6.3 Creating a GWM window

The routine GWM_CRWIN is used to create a GWM window on the server. The following example
shows how a window with the name ’XWINDOWS’ is created (remember GWM window names
are case sensitive).

CALL GWM_CRWIN(’XWINDOWS’, STATUS)

On its own this call will create a window with the default characteristics of shape, colour etc.
To select different characteristics calls to the routines GWM_WSETx are made before the call to
GWM_CRWIN.

Each required window characteristic is selected with a separate call to one of the GWM_WSETx
routines, where ’x’ represents the type of the characteristic, ’I’ for integer, ’L’ for logical and ’C’
for character string. The following table lists the characteristics and their types.

Characteristic Type

BACKGROUND C

BORDERWIDTH I

COLOURS I

FOREGROUND C

HEIGHT I

ICONIC L

INTERACTIVE L

NOINTERACTIVE L

NOOVERLAY L

OVCOLOUR C

OVERLAY L

TITLE C

WIDTH I

XORIGIN I

XSIGN I

YORIGIN I

YSIGN I

Most of these characteristics are directly comparable to the options of the xmake command.
The only major difference is the -geometry option which here is split into its four components
WIDTH, HEIGHT, XORIGIN and YORIGIN. The XSIGN and YSIGN characteristic is used to
override the sign of XORIGIN and YORIGIN values; setting XSIGN or YSIGN to any value

SUN/130.5 —The FORTRAN interface 8

forces the corresponding origin value to have the same sign. This is only required when setting
one of the origin characteristics to -0 in order to position the window at the bottom or right hand
side of the screen.

The following example shows the use of most the options to create a window.

* Set up the size and position of the window
CALL GWM_WSETI(’WIDTH’, 256, STATUS)
CALL GWM_WSETI(’HEIGHT’, 192, STATUS)
CALL GWM_WSETI(’XORIGIN’, 200, STATUS)
CALL GWM_WSETI(’YORIGIN’, 0, STATUS)
CALL GWM_WSETI(’YSIGN’, -1, STATUS)

* Allocate 128 colours to this window
CALL GWM_WSETI(’COLOURS’, 128, STATUS)

* Define the foreground and background colours
CALL GWM_WSETC(’FOREGROUND’, ’White’, STATUS)
CALL GWM_WSETC(’BACKGROUND’, ’DarkSlateGrey’, STATUS)

* Give the window a title
CALL GWM_WSETC(’TITLE’, ’Small_Window’, STATUS)

* Create the GWM window
CALL GWM_CRWIN(’XWINDOWS’, STATUS)

When defining a logical characteristic, such as the INTERACTIVE option, passing a true value
in GWM_WSETL will activate the option, whereas passing a false value is equivalent to accepting
the default.

Once the window has been created all the options are reset to their default values. If a second
window is to be created all the necessary characteristics have to be re-defined before the next
call to GWM_CRWIN.

A GWM window will remain on the server after the program which created it has terminated
unless it is explicitly deleted using GWM_DSWIN.

6.4 Inquiries

The routine GWM_EXIST can be used to inquire if a GWM window of a given name exists on the
server. A logical argument is returned with a value of true signifying that the window exists on
the server, and a value of false indicating that it does not.

The routine GWM_GETCI returns the number of colours and the list of colour indices (pen numbers)
allocated to a GWM window. The colour indices are returned in an array dimensioned by the
application. If the array is not large enough to contain all the allocated colour indices then
the array is filled up to its maximum size and the remaining indices are not returned. The
argument specifying the number of colours does however return the actual number of colours
allocated, and not the number of colours returned in the array. Consider making the inquiry for
the window created in the previous example:

* Define the array to receive the colour indices
INTEGER IDIM

9 SUN/130.5 —The FORTRAN interface

PARAMETER (IDIM = 64)
INTEGER INDEXS(IDIM), NCOLS

* Inquire the colour indices of the GWM window
CALL GWM_GETCI(’XWINDOWS’, IDIM, INDEXS, NCOLS, STATUS)

In this case the number of colours returned (NCOLS) will be 128, but only the first 64 colour
indices will be returned in the INDEXS array.

6.5 Linking programs with GWM

Stand alone programs are linked with GWM by including ‘gwm_link‘ on the f77 command
line.

Adam programs are linked with GMW by including ‘gwm_link_adam‘ on the alink command
line.

SUN/130.5 —The FORTRAN interface 10

6.6 Subroutine Specifications

11 GWM_CLOSE SUN/130.5 —The FORTRAN interface

GWM_CLOSE
Close the X client-server connection

Description:
Close the X client-server connection established by GWM_OPEN. The standard error handler is
restored.

Invocation:
CALL GWM_CLOSE(STATUS)

Arguments:

STATUS = INTEGER (Given and Returned)
The global status.

SUN/130.5 —The FORTRAN interface 12 GWM_CRWIN

GWM_CRWIN
Create a GWM window

Description:
Create a GWM window. A window with the given name is created on the current X display. The
window is created with the default characteristics unless they have been set using the GWM_WSETx
routines. After the window has been created any set characteristics are reset to their default values.

Invocation:
CALL GWM_CRWIN(WNAME, STATUS)

Arguments:

WNAME = CHARACTER∗(∗) (Given)
The window name.

STATUS = INTEGER (Given and Returned)
The global status.

13 GWM_DSWIN SUN/130.5 —The FORTRAN interface

GWM_DSWIN
Destroy a GWM window

Description:
Destroy a GWM window. The GWM window having the given name on the current X display is
destroyed.

Invocation:
CALL GWM_DSWIN(WNAME, STATUS)

Arguments:

WNAME = CHARACTER∗(∗) (Given)
The window name.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/130.5 —The FORTRAN interface 14 GWM_EXIST

GWM_EXIST
Inquire if a GWM window of the given name exists

Description:
Inquire if a GWM window of the given name exists. The current X display is searched for a GWM
window with the given name. The result of the search is returned in the EXISTS argument.

Invocation:
CALL GWM_EXIST(WNAME, EXISTS, STATUS)

Arguments:

WNAME = CHARACTER∗(∗) (Given)
The window name.

EXISTS = LOGICAL (Returned)
True if a GWM window of the given name exists, otherwise false.

STATUS = INTEGER (Given and Returned)
The global status.

15 GWM_GETCI SUN/130.5 —The FORTRAN interface

GWM_GETCI
Inquire the number of colours and the colour indices

Description:
Inquire the number of colours and the colour indices allocated to the given window.

Invocation:
CALL GWM_GETCI(WNAME, IDIM, INDEXS, NCOLS, STATUS)

Arguments:

WNAME = CHARACTER∗(∗) (Given)
The window name.

IDIM = INTEGER (Given)
The declared size of the INDEXS array.

INDEXS = INTEGER(IDIM) (Returned)
Array containing the colour indices allocated to the window. If the number of allocated colours
(NCOLS) is greater than the array size (IDIM) only the first IDIM indices are returned.

NCOLS = INTEGER (Returned)
The number of colours allocated to the window.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/130.5 —The FORTRAN interface 16 GWM_OPEN

GWM_OPEN
Establish the X client-server connection

Description:
Establish the X client-server connection. The display name specifies the node on which the server is
running. Most applications will use the default device in which case the logical argument USEDEF
should be set to true and the display name is ignored. An error handler is established which reports
errors via EMS. This routine has to be called before any of the other GWM FORTRAN interface
routines. The connection is terminated by the routine GWM_CLOSE.

Invocation:
CALL GWM_OPEN(DISPLY, USEDEF, STATUS)

Arguments:

DISPLY = CHARACTER∗(∗) (Given)
Display name specifying the network node name and display number of the workstation. The
format of the name will be "hostname:number<.screen>" if the transport mechanism is TCP/IP
or "hostname::number<.screen>" if the transport mechanism is DECNET. The "hostname" is
the name of the host machine to which the display is physically connected. The "number" is the
number of the server on the host machine. A single CPU can have one or more servers which
are usually numbered starting with zero. On a multiple-screen workstation the optional "screen"
number indicates the screen to use. Examples are "cpu:0", "cpu::0", "cpu:0.1" or "cpu::0.1". If
USEDEF is true the display name is ignored.

USEDEF = LOGICAL (Given)
If true use the default display, otherwise use the display specified by the DISPLY argument.

STATUS = INTEGER (Given and Returned)
The global status.

17 GWM_WSETC SUN/130.5 —The FORTRAN interface

GWM_WSETC
Set a character string window option

Description:
The window options are used to control the characteristics of the GWM window and to override
the default values. These must be set before the window is created with GWM_CRWIN. The
’TITLE’ option is an example of an character string option.

Invocation:
CALL GWM_WSETC(OPTION, VALUE, STATUS)

Arguments:

OPTION = CHARACTER∗(∗) (Given)
The option name.

VALUE = CHARACTER∗(∗) (Given)
The option value.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/130.5 —The FORTRAN interface 18 GWM_WSETI

GWM_WSETI
Set an integer window option

Description:
The window options are used to control the characteristics of the GWM window and to override
the default values. These must be set before the window is created with GWM_CRWIN. The
’COLOURS’ option is an example of an integer option.

Invocation:
CALL GWM_WSETI(OPTION, VALUE, STATUS)

Arguments:

OPTION = CHARACTER∗(∗) (Given)
The option name.

VALUE = INTEGER (Given)
The option value.

STATUS = INTEGER (Given and Returned)
The global status.

19 GWM_WSETL SUN/130.5 —The FORTRAN interface

GWM_WSETL
Set a logical window option

Description:
The window options are used to control the characteristics of the GWM window and to override
the default values. These must be set before the window is created with GWM_CRWIN. A logical
option has two values, true or false. A true value means select the option, a false value is equivalent
to accepting the default. The ’INTERACTIVE’ option is an example of a logical option.

Invocation:
CALL GWM_WSETL(OPTION, VALUE, STATUS)

Arguments:

OPTION = CHARACTER∗(∗) (Given)
The option name.

VALUE = LOGICAL (Given)
The option value, true or false.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/130.5 —Graphics Driver Interface 20

7 Graphics Driver Interface

This section describes the routines that are used by low level graphics software to interact with
GWM windows. A working knowledge of Xlib programming is assumed.

The routines described here are for the use of “system” software only and all this information
in this section is subject to change without notice. Therefore before making any use of it you
should consult the Starlink project staff at RAL.

These return a status value rather than reporting errors; symbolic names for the status values
can be found in gwm_err.h. Note that these are not EMS error codes.

7.1 Anatomy of a Window

A GWM window consists of the following components:

• A window

• A pixmap for saving the contents of the window

• On an X display with a writable colour table, a set of allocated colour cells.

• Optionally, an allocated bit plane for use as an overlay plane (only supported on pseudo
colour displays).

Various items of information are stored as properties of the window so that any applications
which knows the id of the window can read and write them. The GWM_SetXxxx and GWM_GetXxxx
routines can be used to access them. The properties are:

GWM_background The background colour of the window (a character string)

GWM_colour_table An array of integers that lists the colour cells allocated to the window. The
first element of the array defines the background colour.

GWM_foreground The foreground colour of the window (a character string)

GWM_name The window name (a character string). This enables a window id to be translated
into a GWM window name.

GWM_ov_mask A bit mask that which plane is the overlay plane. The mask has a 1 in every
bit position that should be used when writing to the window and a 0 in the bit position
corresponding to the overlay plane. A window with no overlay plane has a mask of all 1s.

GWM_pixmap The id of the pixmap.

GWM_x_offset GMW_y_offset The position of the top left corner of the pixmap relative to the
top left corner of the window. Used by the refresh process when copying the pixmap to
the window and allows the contents of the window to be scrolled.

GWM_x_ov_offset GWM_y_ov_offset As above but for the overlay plane.

http://www.starlink.ac.uk/people.html

21 SUN/130.5 —Graphics Driver Interface

7.2 Drawing in the Window

Everything drawn in the window must also be drawn in the pixmap so that the window is
refreshed properly. The easiest way to do this is to draw into the pixmap first and then add the
x and y offsets to all the absolute coordinates and then draw into the window. The graphics
context must have its plane mask set to the value of the overlay mask property (so as to avoid
altering the overlay plane) and the foreground set to one of the numbers in the colour table array.
If the drawing operation results in anything being drawn with the background colour then the
background should also be set to one of the numbers in the colour table array, usually the first.

If the drawing operation involves a large amount of data it may be more efficient to only draw
into the pixmap and then copy the pixmap to the window with XCopyArea. The destination
position should be the x and y offset values and again, the overlay plane must be protected by
the plane mask in the gc.

7.3 Drawing in the Overlay Plane

Drawing in the overlay plane is just the same as drawing into the window except that the plane
mask must be set to the complement of the overlay mask property and the foreground and
background colours must be all 1s and all 0s respectively1. The overlay offset values must be
added to the coordinates when drawing into the window.

7.4 The Colour Table

On a display with a writeable colour table, the colour table property is a list of the colour cells
allocated to the refresh process and must not be altered.

On a display with a fixed colour table the colour table property will list all possible pixel values—
since the colour cells can’t be changed they can be used by all windows—and the colour table
can be used to map “virtual” pixel values to the real pixel values used to write to the window
and may be altered. For example, GKS uses the colour table to map colour indices onto pixel
values.

If a window has an overlay plane, the colour of the overlay plane is set by setting the colour cells
that correspond to values listed in the colour tables ORed with the bit position of the overlay
plane (ie. the complement of the plane mask).

7.5 Scrolling

Scrolling of the window and overlay planes is achieved by setting the values of the offset
and overlay offset properties. The refresh process is notified of the changes and updates the
destination positions it uses when copying the pixmap. However, it does not update the window
when the property values change so the application that changes the offsets must copy the
window contents to the new position itself.

1Of course in actual fact only the bit that corresponds to the overlay plane matters since the rest are masked by
the plane mask but all 1s and all 0s is the easiest value to use

SUN/130.5 —Graphics Driver Interface 22

7.6 Examples

Some example programs that illustrate how to perform various operations on a GWM window
can be found in the gwm examples directory ($STARLINK_DIR/share/gwm on Starlink systems).

23 SUN/130.5 —Graphics Driver Interface

7.7 Subroutine Specifications

SUN/130.5 —Graphics Driver Interface 24 GWM_CreateWindow

GWM_CreateWindow
Create a window

Description:
A GWM window is created according to the specification in the argument list and the display id of
the X connection and the name of the window returned.

Invocation:
status = GWM_CreateWindow(argc, argv, &display, &name);

Arguments:

int argc (given)
Count of number of arguments

char ∗argv[] (given)
xmake arguments

Display ∗display (returned)
display id

char name[] (returned)
window name

25 GWM_DestroyWindow SUN/130.5 —Graphics Driver Interface

GWM_DestroyWindow
Destroy a window

Description:
The X display is searched for the named window and if found, the window name property is
removed from the root window and the window and its associated pixmap destroyed.

Invocation:
status = GWM_DestroyWindow(display, name);

Arguments:

Display ∗display (given)
Display id

char name[] (given)
Window name

SUN/130.5 —Graphics Driver Interface 26 GWM_FindWindow

GWM_FindWindow
Find a window

Description:
The X server is searched for a GWM window with the specified name and the id of the window
returned.

Invocation:
status = GWM_FindWindow(display, name, &win);

Arguments:

Display ∗display (given)
Display id

char name[] (given)
Window name

Window win (returned)
Window id

27 GWM_GetBgCol SUN/130.5 —Graphics Driver Interface

GWM_GetBgCol
Get background colour

Description:
The value of the GWM_background property is fetched from the window.

Invocation:
status = GWM_GetBgCol(display, win_id, &bg);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

char ∗bg (returned)
Pointer to background colour specification

SUN/130.5 —Graphics Driver Interface 28 GWM_GetColTable

GWM_GetColTable
Get window’s colour table

Description:
The GWM_colour_table property is fetched from the window and pointer to it and the number of
values it contains returned.

Invocation:
status = GWM_GetColTable(display, win_id, &table, &size);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

long ∗table (returned)
Pointer to Colour table

unsigned long size (returned)
Number of colour table entries

29 GWM_GetFgCol SUN/130.5 —Graphics Driver Interface

GWM_GetFgCol
Get foreground colour

Description:
The value of the GWM_foreground property is fetched from the window.

Invocation:
status = GWM_GetFgCol(display, win_id, &fg);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

char ∗fg (returned)
Pointer to foreground colour specification

SUN/130.5 —Graphics Driver Interface 30 GWM_GetOvMask

GWM_GetOvMask
Get overlay mask

Description:
The GMW_ov_mask property is fetched from the window.

Invocation:
status = GWM_GetOvMask(display, win_id, &mask);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

unsigned long mask
Overlay plane mask

31 GWM_GetOvScroll SUN/130.5 —Graphics Driver Interface

GWM_GetOvScroll
Get overlay scroll offset

Description:
The values of the GWM_x_ov_offset and GWM_y_ov_offset properties are fetched from the
window.

Invocation:
status = GWM_GetOvScroll(display, win_id, &xoffset, &yoffset);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

int xoffset (returned)
Overlay scroll offset in x

int yoffset (returned)
Overlay scroll offset in y

SUN/130.5 —Graphics Driver Interface 32 GWM_GetPixmap

GWM_GetPixmap
Get pixmap id

Description:
The value of the GWM_pixmap property is fetched from the window.

Invocation:
status = GWM_GetPixmap(display, win_id, &pix_id);

Arguments:

Display ∗display (given)
Display id

Window win_di (given)
Window id

Pixmap pix_id (returned)
Pixmap id

33 GWM_GetScroll SUN/130.5 —Graphics Driver Interface

GWM_GetScroll
Get scroll offset

Description:
The values of the GWM_x_offset and GWM_y_offset properties are fetched from the window.

Invocation:
status = GWM_GetScroll(display, win_id, &xoffset, &yoffset);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

int xoffset (returned)
Scroll offset in x

int yoffset (returned)
Scroll offset in y

SUN/130.5 —Graphics Driver Interface 34 GWM_SetBgCol

GWM_SetBgCol
Set background colour property

Description:
The value of the GWM_background property is set on the window.

Invocation:
status = GWM_SetBgCol(display, win_id, bg);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

char ∗bg (given)
Background colour specification

35 GWM_SetColTable SUN/130.5 —Graphics Driver Interface

GWM_SetColTable
Set colour table

Description:
The GWM_colour_table window property is replaced with the new array of values.

Invocation:
status = GWM_SetColTable(display, win_id, table, size);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

int ∗table (given)
Pointer to new colour table array

unsigned long size (given)
Number of entries in colour table

SUN/130.5 —Graphics Driver Interface 36 GWM_SetFgCol

GWM_SetFgCol
Set foreground colour property

Description:
The value of the GWM_foreground property is set on the window.

Invocation:
status = GWM_SetFgCol(display, win_id, fg);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

char ∗fg (given)
Foreground colour specification

37 GWM_SetOvScroll SUN/130.5 —Graphics Driver Interface

GWM_SetOvScroll
Set overlay scroll offset

Description:
The values of the GWM_x_ov_offset and GWM_y_ov_offset window properties are replaced by
the new values.

Invocation:
status = GWM_SetOvScroll(display, win_id, xoffset, yoffset);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

int xoffset (given)
New overlay offset value in x

int yoffset (given)
New overlay offset value in y

SUN/130.5 —Graphics Driver Interface 38 GWM_SetPixmap

GWM_SetPixmap
Set pixmap id

Description:
The value of the GWM_pixmap window property is replaced with the new value.

Invocation:
status = GWM_SetPixmap(display, win_id, pix_id);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

Pixmap pix_id (given)
New pixmap id

39 GWM_SetScroll SUN/130.5 —Graphics Driver Interface

GWM_SetScroll
Set offset offset

Description:
The GWM_x_offset and GWM_y_offset window properties are replaced by the new values.

Invocation:
status = GWM_SetScroll(display, win_id, xoffset, yoffset);

Arguments:

Display ∗display (given)
Display id

Window win_id (given)
Window id

int xoffset (given)
New window scroll offset in x

int yoffset (given)
New window scroll offset in y

	Introduction
	Creating a window
	Using windows
	Resizing windows
	Deleting windows
	The FORTRAN interface
	Summary of GWM calls
	Making the X connection
	Creating a GWM window
	Inquiries
	Linking programs with GWM
	Subroutine Specifications
	GWM_CLOSE
	GWM_CRWIN
	GWM_DSWIN
	GWM_EXIST
	GWM_GETCI
	GWM_OPEN
	GWM_WSETC
	GWM_WSETI
	GWM_WSETL

	Graphics Driver Interface
	Anatomy of a Window
	Drawing in the Window
	Drawing in the Overlay Plane
	The Colour Table
	Scrolling
	Examples
	Subroutine Specifications
	GWM_CreateWindow
	GWM_DestroyWindow
	GWM_FindWindow
	GWM_GetBgCol
	GWM_GetColTable
	GWM_GetFgCol
	GWM_GetOvMask
	GWM_GetOvScroll
	GWM_GetPixmap
	GWM_GetScroll
	GWM_SetBgCol
	GWM_SetColTable
	GWM_SetFgCol
	GWM_SetOvScroll
	GWM_SetPixmap
	GWM_SetScroll

