
SUN/134.3

Starlink Project
Starlink User Note 134.3

B D Kelly1

A J Chipperfield

30 March 1992

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

ADAM

Guide to Writing Instrumentation Tasks

Programmer’s Manual

1Royal Observatory Edinburgh

SUN/134.3 —Abstract ii

Abstract

This guide shows you how to write programs for use as part of instrumentation systems under
ADAM Version 2. If you are a programmer experienced with ADAM Version 1, then refer to
Appendix C which summarises some of the differences between the new ADAM tasking model
and the old one.

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

iii SUN/134.3—Contents

Contents

1 Introduction 1

2 A simple picture of a task 1

3 Waiting for a command 2

4 Carrying out a simple command 2

5 A task with two actions 3

6 Completion of a timed interval 4

7 Completion of data input 6

8 Kicking one action from another 7

9 Receipt of messages from other tasks 8

10 Cancelling actions 9

11 Behaviour of the parameter system 11

12 Compiling and linking 12

13 Further reading 12

A Making tea and coffee 13
A.1 Making tea . 13
A.2 Making coffee . 15
A.3 Controlling tea and coffee making . 16

B Cancelling in multi-task subsystems 21
B.1 Controlling task . 21
B.2 Controlled task . 22

C For “old” programmers 25
C.1 Introduction to the changes . 25
C.2 Linking old-style tasks . 25
C.3 NEEDS list checking . 25
C.4 DTASK_RPON and DTASK_RPOFF . 25
C.5 DTASK_ASTSIGNAL and DTASK_TSTINTFLG 26
C.6 TASK_ASTMSG (NAME, LENGTH, VALUE, STATUS) 26
C.7 Multiple calls to TASK_ASTSIGNAL, TASK_ASTMSG 26
C.8 AST enabling and disabling . 26
C.9 Message reschedules . 26
C.10 Timeout on AST and message reschedules . 26
C.11 Closing down the Parameter system – Global associations 26

D List of TASK routines 27

SUN/134.3 —Contents iv

E REQUEST constants 33

F Important STATUS values 33

G Document changes 34

1 SUN/134.3 —A simple picture of a task

1 Introduction

An ADAM instrumentation system typically consists of a number of separate programs which
are loaded into various computers and which carry out their functions in response to receiving
commands. A large part of their functionality involves either sending commands to some
instrument and receiving data back from it, or sending commands to other ADAM tasks. It
follows that communication is a key feature of an ADAM task, and one can expect that a task
spends most of its time waiting for a communication of one sort or another. Experience indicates
that it is very inconvenient if a task is only sensitive to the communication it is expecting - for
example, it becomes very difficult for the user to intervene because there has been a change
of plan. An ADAM task written as part of an instrumentation system should, therefore, be
organised such that if it is waiting for something it can also receive a command. This document
describes the ADAM facilities provided to enable you to write tasks which match this idea.

2 A simple picture of a task

A task is implemented by the application code plus an interface file. The interface file is a text
file containing declarations of the parameters and actions (i.e. commands) which the task can
carry out. The source code looks like this

SUBROUTINE MYTASK (STATUS)
INCLUDE ’SAE_PAR’
INTEGER STATUS

IF (STATUS .NE. SAI__OK) RETURN
do things

END

That is, it appears as a subroutine which is linked into some ADAM code called the task fixed-part.
It is conventional to test STATUS on entry and to exit without action if it is not equal to SAI__OK.
The value SAI__OK is defined in the include file SAE_PAR. When the task does things, it might
have to wait for some other task or system to reply.

The things a task might be waiting for include

• receipt of a command

• completion of a timed interval

• completion of data input

• receipt of messages from one or more other tasks

An ADAM instrumentation application works by telling the ADAM system what kind of thing
it is expecting to happen by giving it a REQUEST through calling TASK_PUT_REQUEST.

CALL TASK_PUT_REQUEST(REQUEST,STATUS)

SUN/134.3 —Carrying out a simple command 2

and then returning to the code which called it (the task’s fixed-part). See Appendix E for possible
values of REQUEST.

The fixed-part waits for messages to arrive. If one arrives which your application has warned it
about, then it will call your application after storing information about the message where you
can collect it.

The following sections describe how to wait for the various possibilities.

3 Waiting for a command

When you first load your task, the only thing it is waiting for is a command. It can receive
commands from other ADAM tasks telling it to SET or GET the value of one of its program
parameters. The fixed-part handles this without your code being aware of it. It can also receive
a command telling it to CANCEL an earlier command, but as there hasn’t yet been a command,
the fixed-part will return an error to the other task.

If the fixed-part receives an OBEY <action_name> command, it checks whether the given
action_name has been declared in the interface file. If it has, then your code is called. You can
find out why your code has been called by using the TASK library, for example,

CALL TASK_GET_NAME(NAME,STATUS)

returns the name of the action.

4 Carrying out a simple command

Suppose your application is very simple, for example, SUMS.IFL contains

interface SUMS
parameter VALUE

type ’_REAL’
endparameter
action SQUARE

obey
endobey

endaction
endinterface

and SUMS.FOR contains

SUBROUTINE SUMS (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INTEGER STATUS
REAL VALUE

3 SUN/134.3 —A task with two actions

IF (STATUS .NE. SAI__OK) RETURN
CALL PAR_GET0R (’VALUE’, VALUE, STATUS)
CALL MSG_SETR (’ANS’, VALUE**2)
CALL MSG_OUT (’ ’, ’answer is = ^ANS’, STATUS)
END

This can be built as a task called SUMS and loaded using ICL. When it is loaded, the fixed-part
reads the interface file and discovers that the task has just one action, called SQUARE, and one
parameter called VALUE. If you send a command to it of the form

ICL> send sums obey square

then the task will prompt you for VALUE. It will attempt to square your reply and then return to
the fixed-part. If you send the command again, you will not be prompted for VALUE. The task
will remember the value of VALUE unless your application calls PAR_CANCL, or you KILL the
task from ICL.

5 A task with two actions

Let us make the task SUMS able to accept two different commands. SUMS.IFL contains

interface SUMS
parameter VALUE

type ’_REAL’
endparameter
action SQUARE

obey needs VALUE
endobey

endaction
action ADD

obey needs VALUE
endobey

endaction
endinterface

and SUMS.FOR contains

SUBROUTINE SUMS (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INTEGER STATUS
REAL VALUE
CHARACTER*(PAR__SZNAM) NAME

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_NAME (NAME, STATUS)
IF (NAME .EQ. ’SQUARE’) THEN

CALL PAR_GET0R (’VALUE’, VALUE, STATUS)

SUN/134.3 —Completion of a timed interval 4

CALL MSG_SETR (’ANS’, VALUE**2)
CALL MSG_OUT (’ ’, ’answer is = ^ANS’, STATUS)

ELSE IF (NAME .EQ. ’ADD’) THEN
CALL PAR_GET0R (’VALUE’, VALUE, STATUS)
CALL MSG_SETR (’ANS’, VALUE+VALUE)
CALL MSG_OUT (’ ’, ’answer is = ^ANS’, STATUS)

ENDIF
END

As above, you can issue the ICL command

ICL> send sums obey square

and you will be prompted for VALUE. Thereafter, that same value of VALUE will be used, even
if you

ICL> send sums obey add

However, notice that the interface file has now been changed to specify that VALUE is NEEDed
by the actions. This means that you can

ICL> send sums obey add 42

and the value 42 is put into the parameter by the fixed-part before your application is called.

6 Completion of a timed interval

Having received a command, the application might not wish to complete immediately, but
may want to wait for something to happen. The simplest thing to wait for is the passing of a
timed interval. This is set up by using TASK_PUT_REQUEST(ACT__WAIT,STATUS) to tell the
fixed-part a timer is required and using TASK_PUT_DELAY to tell the system how long a time
is required. Note that your code has to find out whether it is being called for the first time or not
by inquiring the sequence number SEQ.

interface timer
action WAIT

obey
endobey

endaction
endinterface

SUBROUTINE TIMER (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INTEGER STATUS
INTEGER SEQ

5 SUN/134.3 —Completion of a timed interval

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

* first-time, request 100 millisecond wait
CALL TASK_PUT_DELAY (100, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
* next time in, finished

CALL MSG_OUT (’ ’, ’finished’, STATUS)
ENDIF
END

The time delay can also be used as a timeout facility in conjunction with waiting for input or
message receipt.

It is possible to have several actions active at once, each waiting to be called by the fixed-part.
Here is a simple example of two actions, each doing a timed reschedule.

SUBROUTINE TIMER (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INTEGER STATUS
INTEGER SEQ
CHARACTER*(PAR__SZNAM) NAME

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_SEQ (SEQ, STATUS)
CALL TASK_GET_NAME (NAME, STATUS)
IF (SEQ .EQ. 0) THEN

IF (NAME .EQ. ’WAIT’) THEN
CALL TASK_PUT_DELAY (5000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE IF (NAME .EQ. ’WAIT1’) THEN
CALL TASK_PUT_DELAY (1000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ENDIF
ELSE

IF (NAME .EQ. ’WAIT’) THEN
CALL MSG_OUT (’ ’, ’WAIT has rescheduled’, STATUS)
CALL TASK_PUT_DELAY (5000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE IF (NAME .EQ. ’WAIT1’) THEN
CALL MSG_OUT (’ ’, ’WAIT1 has rescheduled’, STATUS)
CALL TASK_PUT_DELAY (1000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ENDIF
ENDIF
END

Obviously, this application never terminates, but will put out the WAIT message every 5 seconds
and the WAIT1 message every 1 second.

SUN/134.3 —Completion of data input 6

7 Completion of data input

Suppose that your task has to input data from some hardware connected to an RS232 line. You
can use the VAX/VMS SYS$QIO system service with your own AST handler to start the input
operation, optionally call TASK_PUT_DELAY to set a timeout on the operation, and return to
the task fixed-part after having put a request ACT__ASTINT.

When the input completes, VMS hands control to your AST handler which can carry out what-
ever actions are necessary and then use TASK_ASTMSG(NAME,LENGTH,VALUE,STATUS) to
tell the fixed part to call the application again. In this call:

NAME is the name of the relevant task action

VALUE is a character string containing any information you want passed

LENGTH is the number of significant bytes in VALUE

Provided NAME coincides with one of your actions which has requested to be called again, any
associated timer is cancelled and your application is called.

TASK_GET_REASON(REASON,STATUS) returns, in REASON, value MESSYS__ASTINT if the
message was received from the AST handler, or MESSYS__RESCHED if the timer completed.
In the former case, you could use TASK_GET_VALUE(VALUE,STATUS) to get the information
passed from the AST handler.

Let us consider an example task called DO_IO with an action called READ.

SUBROUTINE DO_IO (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INCLUDE ’MESSYS_ERR’
INCLUDE ’DDMSG’
INCLUDE ’$IODEF’
INTEGER ASTPARM
CHARACTER*(MSG_VAL_LEN) VALUE
INTEGER CHAN
CHARACTER*80 INSTRING
INTEGER REASON
INTEGER STATUS
INTEGER SEQ
EXTERNAL READAST

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_SEQ(SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

CALL SYS$ASSIGN (’TTA5:’, CHAN, ,)
CALL SYS$QIO (, %VAL(CHAN), IO$_READ,, READAST, ASTPARM,

: %REF(INSTRING), %VAL(80),,,,)
CALL TASK_PUT_DELAY (5000, STATUS)
CALL TASK_PUT_REQUEST (ACT__ASTINT, STATUS)

ELSE

7 SUN/134.3 —Kicking one action from another

CALL TASK_GET_REASON (REASON, STATUS)
IF (REASON .EQ. MESSYS__ASTINT) THEN

CALL TASK_GET_VALUE (VALUE, STATUS)
CALL MSG_OUT (’ ’, VALUE, STATUS)

ELSE IF (REASON .EQ. MESSYS__RESCHED) THEN
CALL MSG_OUT (’ ’, ’timed-out’, STATUS)

ENDIF
CALL SYS$DASSGN (%VAL(CHAN))

ENDIF
END

SUBROUTINE READAST (ASTPARM)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’DDMSG’
INTEGER ASTPARM
CHARACTER*(MSG_VAL_LEN) VALUE
CHARACTER*(PAR__SZNAM) NAME
INTEGER LENGTH
INTEGER STATUS

STATUS = SAI__OK
NAME = ’READ’
VALUE = ’input finished’
LENGTH = 14
CALL TASK_ASTMSG (NAME, LENGTH, VALUE, STATUS)
END

8 Kicking one action from another

In some complex instrumentation systems you may wish to have an action in a task which wakes
other waiting actions within the same task. TASK_KICK(NAME,LENGTH,VALUE,STATUS)
may be called to do this.

SUBROUTINE KICKER (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INCLUDE ’MESSYS_ERR’
INTEGER STATUS
INTEGER SEQ
INTEGER REASON
CHARACTER*(PAR__SZNAM) NAME
CHARACTER*(MSG_VAL_LEN) VALUE
INTEGER LENGTH

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_NAME (NAME, STATUS)
IF (NAME .EQ. ’WAIT’) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)

SUN/134.3 —Receipt of messages from other tasks 8

IF (SEQ .EQ. 0) THEN
CALL TASK_PUT_DELAY (10000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
CALL TASK_GET_REASON (REASON, STATUS)
IF (REASON .EQ. MESSYS__KICK) THEN

CALL TASK_GET_VALUE (VALUE, STATUS)
CALL MSG_OUT (’ ’, VALUE, STATUS)

ELSE IF (REASON .EQ. MESSYS__RESCHED) THEN
CALL MSG_OUT (’ ’, waked by timer’, STATUS)

ENDIF
ENDIF

ELSE IF (NAME .EQ. ’KICK’) THEN
VALUE = ’waked by kick’
LENGTH = 13
CALL TASK_KICK (’WAIT’, LENGTH, VALUE, STATUS)

ENDIF
END

9 Receipt of messages from other tasks

Suppose that your task is controlling other tasks. Say it sends an OBEY message to some other
task. The other task will carry out its operations, maybe generating output intended for the user
to see, and send your task a final message when it has completed the obey. You can use:

TASK_ADD_MESSINFO(PATH,MESSID,STATUS)

to tell the fixed-part you are expecting messages on this PATH,MESSID combination, then return
to the fixed-part having set a request ACT__MESSAGE. You could also have set a timeout as
above. You can use multiple calls to TASK_ADD_MESSINFO if you are controlling more than
one operation in other tasks.

When the fixed-part calls your application again, you can use:

TASK_GET_MESSINFO(PATH,CONTEXT,NAME,VALUE,MESSID,EVENT,STATUS)

to obtain the information carried in the message.

Note that any output generated by the other task (e.g. using MSG_OUT) will have been handled
automatically by the fixed-part of your task and will not cause your application subroutine to
be called. Messages from subsidiary tasks which do cause your subroutine to be called will
generally be completion messages, however, a special ‘TRIGGER’ message is also available.

To send a TRIGGER message the subsidiary task can use:

TASK_TRIGGER(ACTNAME,VALUE,STATUS)

The message will be sent and the task can continue working.

When your controlling task calls TASK_GET_MESSINFO, MESSYS__TRIGGER will be returned
in EVENT.

9 SUN/134.3 —Cancelling actions

Obviously, the example for all this is rather complex, involving three separate tasks and multiple
actions. The example, written by William Lupton, involves a pair of tasks for making tea and
coffee respectively and a third task controlling them, and is relegated to Appendix A.

10 Cancelling actions

It is possible to cancel an action which is in a wait state. Here is a simple example.

interface timer
action WAIT

obey
endobey
cancel
endcancel

endaction
endinterface

SUBROUTINE TIMER (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INCLUDE ’ADAMDEFNS’
INTEGER STATUS
INTEGER SEQ
INTEGER CONTEXT

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
IF (CONTEXT .EQ. OBEY) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

CALL TASK_PUT_DELAY (10000, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
CALL MSG_OUT (’ ’, ’finished’, STATUS)

ENDIF
ELSE IF (CONTEXT .EQ. CANCEL) THEN

CALL MSG_OUT (’ ’, ’I was cancelled’, STATUS)
CALL TASK_PUT_REQUEST (ACT__CANCEL, STATUS)

ENDIF
END

Note the CANCEL declaration in the interface file. This example is exercised by

ICL> send timer obey wait
ICL> send timer cancel wait

It is possible to write the application such that CANCEL modifies the behaviour of the reschedul-
ing action rather than terminating it.

SUN/134.3 —Cancelling actions 10

interface timer
parameter CANTIME

type ’_INTEGER’
endparameter
action WAIT

obey
endobey
cancel needs CANTIME
endcancel

endaction
endinterface

SUBROUTINE TIMER (STATUS)
IMPLICIT NONE
INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INCLUDE ’ADAMDEFNS’
INTEGER STATUS
INTEGER SEQ
INTEGER CONTEXT
INTEGER STATE
SAVE STATE, TIME

IF (STATUS .NE. SAI__OK) RETURN
CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
IF (CONTEXT .EQ. OBEY) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

STATE = 0
CALL TASK_PUT_DELAY (500, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
IF (STATE .EQ. 0) THEN

* Normal reschedule
CALL TASK_PUT_DELAY (500, STATUS)
CALL MSG_OUT (’ ’, ’default timer’, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
* Rescheduling after CANCEL

CALL TASK_PUT_DELAY (TIME, STATUS)
CALL MSG_OUT (’ ’, ’altered timer’, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ENDIF
ENDIF

ELSE IF (CONTEXT .EQ. CANCEL) THEN
STATE = 1
CALL PAR_GET0I (’CANTIME’, TIME, STATUS)
CALL TASK_PUT_DELAY (TIME, STATUS)
CALL MSG_OUT (’ ’, ’timer changed’, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ENDIF
END

Then:

11 SUN/134.3 —Behaviour of the parameter system

ICL> send timer obey wait
ICL> send timer cancel wait 10000

will cause the task to start rescheduling at 0.5sec intervals, but then switch to rescheduling at
10sec intervals. In this particular example the action never terminates.

An example of sending a CANCEL to a task which is controlling a subsidiary task is given in
Appendix B.

11 Behaviour of the parameter system

As far as the ADAM parameter system is concerned, there are two aspects of instrumentation
tasks which cause them to behave differently from standard data analysis tasks (A-tasks). The
first is the way they are linked. The second is the form of the interface file declarations.

Whenever an A-task executes, the parameter system is started-up, the application is called, then
the parameter system is closed-down. For an instrumentation task this continuous opening-
closing of the parameter system does not happen. There are two obvious consequences of
this. Firstly, parameters remain ACTIVE once they have been given a value. Secondly, global
associations for WRITE never happen.

All the parameters of an instrumentation task are available to all the actions. In addition, a
specific OBEY or CANCEL can specify that values of named parameters can be passed on the
command line.

action TRYIT
obey needs TIME

needs MYVAL
endobey

endaction
action OTHER

obey needs MYVAL
needs TIME

endobey
endaction

The order in which NEEDS declarations occur specifies the order in which the values are
expected on the command-line.

An item of special interest to programmers of instrumentation systems is the value-search-path
(VPATH) declaration INTERNAL. An INTERNAL parameter has the following properties which
distinguish it from ordinary parameters.

If it is a scalar, it is stored as a variable inside the parameter system. All other parameter values
are stored in HDS. This means that access to INTERNAL scalar parameters is much faster than
access to ordinary parameters. This property may be of interest to instrumentation applications
which make heavy use of the parameter system.

An INTERNAL parameter is not prompted for. All other parameters have an implicit PROMPT
at the end of their VPATH declarations unless it is explicitly overridden by NOPROMPT.

SUN/134.3 —Further reading 12

The behaviour of PAR_PUTxx is different for an INTERNAL parameter. Putting an INTERNAL
parameter simply puts the given value into the parameter. For an ordinary parameter, the
parameter system expects to be told an existing HDS component into which the value should be
put.

12 Compiling and linking

Assuming that $ ADAMSTART has been obeyed to start ADAM, type:

$ ADAM_DEV

This will define logical names for include files such as SAE_PAR and ACT_ERR and display
the message “+ logged in for ADAM program development”. User-code for tasks may now be
compiled.

To link instrumentation tasks, type:

$ ILINK task [qual] [*]

task (mandatory) is the list of user routines, libraries etc. required for input to the linker. Note
that the ADAM libraries will be included automatically. The executable image produced
will take its name from the first item specified.

qual (optional) is any qualifiers required for the linker (e.g. /DEBUG).

* (optional) specify * if it is required to link with ADAM object libraries rather than the share-
able images. Note that the full ADAM release must be installed and $ @ADAM_SYS:SYSDEV
obeyed for this option to work. If * is specified, qual must also be specified (use /NODE-
BUG if nothing else is required).

13 Further reading

More detailed descriptions of the subjects introduced in this document can be found in the
following documents.

• SG/4 — ADAM – The Starlink Software Environment

• SG/5 — ICL – The Interactive Command Language for ADAM - Users Guide

• SUN/115 — ADAM – Interface Module Reference Manual

• SUN/104 — MSG and ERR – Message and Error Reporting System

• AED/15 — Using the ADAM Parameter System

• SUN/114 — PAR – ADAM Parameter Routines - Programmer’s Guide (in preparation)

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_

13 SUN/134.3 —Making tea and coffee

A Making tea and coffee

A.1 Making tea

interface test_tea
Test tea task

parameter param
type ’_integer’
range 1,10
vpath ’internal’
default 2

endparameter
action lapsang1

obey
endobey

endaction
action lapsang2

obey
endobey

endaction
action lapsang3

obey
endobey

endaction
action lapsang4

obey
endobey

endaction
action lapsang5

obey
endobey

endaction
endinterface

SUBROUTINE TEST_TEA (STATUS)

* Test D-task that is run from a rescheduling control task

IMPLICIT NONE
INTEGER STATUS ! Modified STATUS

INCLUDE ’SAE_PAR’
INCLUDE ’ADAMDEFNS’
INCLUDE ’ACT_ERR’

INTEGER SEQ ! Action sequence number
INTEGER CONTEXT ! Context (OBEY or CANCEL)
INTEGER PARAM ! Arbitrary integer parameter
INTEGER DELAY ! Delay between initial and final entries
CHARACTER NAME*24 ! Action name
CHARACTER VALUE*80 ! Value string

SUN/134.3 —Making tea and coffee 14

SAVE PARAM ! Value must be saved

IF (STATUS .NE. SAI__OK) RETURN

* Pick up required "ACT parameters"

CALL TASK_GET_NAME (NAME,STATUS)
CALL TASK_GET_CONTEXT (CONTEXT,STATUS)
CALL TASK_GET_SEQ (SEQ,STATUS)

* Loop through possible OBEYs

IF (NAME(1:7) .EQ. ’LAPSANG’) THEN
IF (SEQ .EQ. 0) THEN

* Produce error - undefined parameter on LAPSANG2
IF (NAME(8:8) .EQ. ’2’) THEN

CALL PAR_GET0I (’X’,PARAM,STATUS)
IF (STATUS .NE. SAI__OK) THEN

CALL ERR_REP (’ ’,
: ’TEA: LAPSANG1 Deliberate error - ’//
: ’No parameter X: ^STATUS’, STATUS)

* Flush the error messages and allow task to continue
CALL ERR_FLUSH (STATUS)

ENDIF

* Get parameter value on LAPSANG3
* to be used as a count of TRIGGERS

ELSE IF (NAME(8:8) .EQ. ’3’) THEN
CALL PAR_GET0I (’PARAM’,PARAM,STATUS)
IF (STATUS .NE. SAI__OK) THEN

CALL ERR_REP (’ ’,
: ’TEA: LAPSANG3 Failed to get PARAM: ^STATUS’,
: STATUS)

* Set harmless value for PARAM
PARAM = -1
RETURN

ENDIF
ENDIF
CALL MSG_SETC (’NAME’,NAME)
CALL MSG_OUT (’ ’,’TEA: Starting ^NAME action’,STATUS)
DELAY = 1000 * (ICHAR(NAME(8:8)) - ICHAR(’0’))
CALL TASK_PUT_DELAY (DELAY,STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE IF (NAME(8:8) .EQ. ’4’ .AND. SEQ .LE. PARAM) THEN
VALUE = NAME(1:8)//’ is paging you ...’
CALL TASK_TRIGGER (NAME,VALUE,STATUS)
IF (STATUS .NE. SAI__OK) THEN

CALL ERR_REP (’ ’,
: ’TEA: LAPSANG4 Failed to trigger control task: ^STATUS’,
: STATUS)

ENDIF
CALL TASK_PUT_DELAY (2000,STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE

15 SUN/134.3 —Making tea and coffee

CALL MSG_SETC (’NAME’,NAME)
CALL MSG_OUT (’ ’,’TEA: Finishing ^NAME action’,STATUS)
CALL TASK_PUT_VALUE (’Lapsang’’s ready!’,STATUS)

ENDIF

ENDIF
END

A.2 Making coffee

interface test_coffee
Test coffee task

action mocha1
obey
endobey

endaction
action mocha2

obey
endobey

endaction
action mocha3

obey
endobey

endaction
action mocha4

obey
endobey

endaction
action mocha5

obey
endobey

endaction
endinterface

SUBROUTINE TEST_COFFEE (STATUS)

* Test D-task that is run from a rescheduling control task

IMPLICIT NONE
INTEGER STATUS ! Modified STATUS

INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’

INTEGER SEQ ! Action sequence number
INTEGER DELAY ! Delay between initial and final entries
CHARACTER NAME*24 ! Action name

IF (STATUS .NE. SAI__OK) RETURN

* Pick up required "ACT parameters"

SUN/134.3 —Making tea and coffee 16

CALL TASK_GET_NAME (NAME,STATUS)
CALL TASK_GET_SEQ (SEQ,STATUS)

* Loop through possible OBEYs

IF (NAME(1:5) .EQ. ’MOCHA’) THEN
IF (SEQ .EQ. 0) THEN

CALL MSG_SETC (’NAME’,NAME)
CALL MSG_OUT (’ ’,’COFFEE: Starting ^NAME action’,STATUS)
DELAY = 1000 * (ICHAR(NAME(6:6)) - ICHAR(’0’))
CALL TASK_PUT_DELAY (DELAY,STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
CALL MSG_SETC (’NAME’,NAME)
CALL MSG_OUT (’ ’,’COFFEE: Finishing ^NAME action’,STATUS)
CALL TASK_PUT_VALUE (’Mocha’’s ready!’,STATUS)

ENDIF
ENDIF
END

A.3 Controlling tea and coffee making

interface test_control
Test control task

parameter max
type ’_integer’
range 1,10
prompt ’Number of actions’
vpath ’prompt’
default 1

endparameter
parameter time

type ’_integer’
range -1,3600
prompt ’Timeout in seconds’
vpath ’prompt’
default 10

endparameter
action brew

obey
needs max
needs time

endobey
endaction

endinterface

SUBROUTINE TEST_CONTROL (STATUS)

* Test control task that controls and reschedules multiple actions
* in multiple subsidiary tasks

17 SUN/134.3 —Making tea and coffee

IMPLICIT NONE
INTEGER STATUS ! Modified STATUS

INCLUDE ’ADAMDEFNS’
INCLUDE ’SAE_PAR’
INCLUDE ’MESSYS_ERR’
INCLUDE ’ACT_ERR’
INCLUDE ’DTASK_ERR’

INTEGER I ! Counter
INTEGER MAX ! Number of TEA/COFFEE actions to start
INTEGER TIME ! Timeout in seconds
INTEGER SEQ ! Action sequence number
INTEGER PATH ! Path to task in which OBEY completed
INTEGER MESSID ! Message id of OBEY that completed
INTEGER TEA_PATH ! Path to TEA task
INTEGER TEA_MESSID ! Message ID of TEA’s LAPSANG action
INTEGER TEA_ACTIVE ! Number of active LAPSANG actions
INTEGER COFFEE_PATH ! Path to COFFEE task
INTEGER COFFEE_MESSID ! Message ID of COFFEE’s MOCHA action
INTEGER COFFEE_ACTIVE ! Number of active MOCHA actions
INTEGER CONTEXT ! Context (OBEY or CANCEL)
CHARACTER NAME*24 ! Action name
CHARACTER VALUE*200 ! Action returned value
CHARACTER INVAL*1 ! Action input value (unused)
CHARACTER OUTVAL*1 ! Action output value (unused)
INTEGER EVENT ! Event which caused reschedule

SAVE TEA_ACTIVE,COFFEE_ACTIVE,TIME ! Retain these values

IF (STATUS .NE. SAI__OK) RETURN

* Pick up required "ACT parameters"

CALL TASK_GET_NAME (NAME,STATUS)
CALL TASK_GET_SEQ (SEQ,STATUS)

* Loop through possible OBEYs

IF (NAME .EQ. ’BREW’) THEN

* First time through, initiate the actions ...

IF (SEQ .EQ. 0) THEN

* ... actions LAPSANG1 .. LAPSANG’MAX etc are initiated with a timeout
* of TIME seconds ...

CALL PAR_GET0I (’MAX’,MAX,STATUS)
CALL PAR_GET0I (’TIME’,TIME,STATUS)

* ... in the tea-maker ...

TEA_ACTIVE = 0

SUN/134.3 —Making tea and coffee 18

DO I = 1,MAX
NAME = ’LAPSANG’//CHAR(48+I)
INVAL = ’ ’
CALL TASK_OBEY (’TEST_TEA’,NAME,INVAL,

: OUTVAL,TEA_PATH,TEA_MESSID,STATUS)
IF (STATUS .EQ. DTASK__ACTSTART) THEN

STATUS = SAI__OK
CALL TASK_ADD_MESSINFO (TEA_PATH,TEA_MESSID,

: STATUS)
TEA_ACTIVE = TEA_ACTIVE + 1

ELSE
CALL MSG_SETC (’NAME’,NAME)
CALL ERR_REP (’ ’,

: ’CONTROL: Failed to start ^NAME: ’//
: ’^STATUS’,STATUS)

* Output reports associated with this failed OBEY
* and try next

CALL ERR_FLUSH (STATUS)
ENDIF

ENDDO

* ... and in the coffee-maker ...

COFFEE_ACTIVE = 0
DO I = 1,MAX

NAME = ’MOCHA’//CHAR(48+I)
INVAL = ’ ’
CALL TASK_OBEY (’TEST_COFFEE’,NAME,INVAL,

: OUTVAL,COFFEE_PATH,COFFEE_MESSID,STATUS)
IF (STATUS .EQ. DTASK__ACTSTART) THEN

STATUS = SAI__OK
CALL TASK_ADD_MESSINFO (COFFEE_PATH,COFFEE_MESSID,

: STATUS)
COFFEE_ACTIVE = COFFEE_ACTIVE + 1

ELSE
CALL MSG_SETC (’NAME’,NAME)
CALL ERR_REP (’ ’,

: ’CONTROL: Failed to start ^NAME: ’//
: ’^STATUS’,STATUS)

* Output reports associated with this failed OBEY
* and try next

CALL ERR_FLUSH (STATUS)
ENDIF

ENDDO

* ... and, if OK, set time-out period and set ACT__MESSAGE request.

IF (TEA_ACTIVE .GT. 0 .OR. COFFEE_ACTIVE .GT. 0) THEN
IF (TIME .NE. -1) THEN

CALL TASK_PUT_DELAY (1000*TIME, STATUS)
ENDIF
CALL TASK_PUT_REQUEST (ACT__MESSAGE, STATUS)

ENDIF

19 SUN/134.3 —Making tea and coffee

* On subsequent entries, get the details of the message that has
* caused this entry (it should either correspond to a subsidiary
* action completion, TRIGGER or a timeout).

ELSE
CALL TASK_GET_MESSINFO (PATH,CONTEXT,NAME,VALUE,MESSID,

: EVENT,STATUS)

* First check for timeout in which case abort the action ...

IF (EVENT .EQ. MESSYS__RESCHED) THEN
CALL MSG_SETI (’TIME’,TIME)
CALL ERR_REP (’ ’,

: ’CONTROL: Timeout occurred after ^TIME ’//
: ’seconds’,EVENT)

* ... or check whether this is a triggering message, in which case
* simply report and set ACT__MESSAGE request

ELSE IF (EVENT .EQ. MESSYS__TRIGGER) THEN
CALL MSG_SETC (’NAME’,NAME)
CALL MSG_SETC (’VALUE’,VALUE)
CALL MSG_OUT (’ ’,

: ’CONTROL: Triggered by ^NAME: ^VALUE’,
: STATUS)

IF (TIME .NE. -1) THEN
CALL TASK_PUT_DELAY (1000*TIME, STATUS)

ENDIF
CALL TASK_PUT_REQUEST (ACT__MESSAGE, STATUS)

* ... or determine which action has completed. Set ACT__MESSAGE request
* if more remain. Otherwise the BREW action is complete.

ELSE
IF (NAME(1:7) .EQ. ’LAPSANG’) THEN

TEA_ACTIVE = TEA_ACTIVE - 1
ELSE IF (NAME(1:5) .EQ. ’MOCHA’) THEN

COFFEE_ACTIVE = COFFEE_ACTIVE - 1
ENDIF

* Report normal subsidiary action completion ...
CALL MSG_SETC (’NAME’,NAME)
IF (EVENT .EQ. DTASK__ACTCOMPLETE) THEN

CALL MSG_OUT (’ ’,
: ’CONTROL: Action ^NAME completed normally’,STATUS)

* including VALUE returned.
IF (VALUE .NE. ’ ’) THEN

CALL MSG_SETC(’VALUE’, VALUE)
CALL MSG_OUT (’ ’,

: ’CONTROL: Value string: ^VALUE’, STATUS)
ENDIF

* or failure ...
ELSE

CALL ERR_REP (’ ’,

SUN/134.3 —Making tea and coffee 20

: ’CONTROL: Action ^NAME completed: ^STATUS’,EVENT)
* including VALUE returned.

IF (VALUE .NE. ’ ’) THEN
CALL MSG_SETC(’VALUE’, VALUE)
CALL ERR_REP (’ ’,

: ’CONTROL: Value string: ^VALUE’, EVENT)
ENDIF

* Flush
CALL ERR_FLUSH (EVENT)

ENDIF
IF (TEA_ACTIVE .GT. 0 .OR. COFFEE_ACTIVE .GT. 0) THEN

IF (TIME .NE. -1) THEN
CALL TASK_PUT_DELAY (1000*TIME, STATUS)

ENDIF
CALL TASK_PUT_REQUEST (ACT__MESSAGE, STATUS)

ENDIF
ENDIF

ENDIF
ENDIF
END

21 SUN/134.3 —Cancelling in multi-task subsystems

B Cancelling in multi-task subsystems

This example was provided by Ian Smith (ROE). When the controlling task receives a CANCEL,
it sends a CANCEL to the subsidiary task. The controlling task then requests ACT__MESSAGE
to wait for the final acknowledgement from the OBEY in the subsidiary task. The final
completion status from the subsidiary task is obtained by the controlling task by the call
to TASK_GET_REASON, irrespective of whether the final completion was due to a CANCEL.

B.1 Controlling task

interface cmotask
Motor task controller

parameter motor
type ’_char’
in ’FILTER_WHEEL’, ’FOCUS_WHEEL’
prompt ’which wheel - FILTER_WHEEL or FOCUS_WHEEL?’

endparameter
action motor_control

obey
needs motor

endobey
cancel

needs motor
endcancel

endaction
endinterface

SUBROUTINE CMOTASK(STATUS)

* Control the task Motask which moves 2 imaginary motors

IMPLICIT NONE ! No implicit typing

INCLUDE ’SAE_PAR’ ! Standard SAE constants
INCLUDE ’ADAMDEFNS’
INCLUDE ’MESSYS_ERR’
INCLUDE ’ACT_ERR’
INCLUDE ’DTASK_ERR’

INTEGER STATUS ! modified status
INTEGER CONTEXT ! context OBEY or CANCEL
INTEGER SEQ ! action sequence number
INTEGER GOOD_STATUS ! local status
INTEGER MOTASK_PATH ! path to subsidiary task
INTEGER MOTASK_MESSID ! message id
CHARACTER*80 MOTOR ! name of motor to be moved
CHARACTER*80 INVAL ! parameter string sent
CHARACTER*80 OUTVAL ! parameter string returned
INTEGER REASON ! subsidiary completion status

IF (STATUS .NE. SAI__OK) RETURN

SUN/134.3 —Cancelling in multi-task subsystems 22

GOOD_STATUS = SAI__OK
CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
IF (CONTEXT .EQ. OBEY) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

CALL PAR_GET0C (’MOTOR’, MOTOR, STATUS)
INVAL = ’ ’
CALL TASK_OBEY (’MOTASK’, MOTOR, INVAL, OUTVAL,

: MOTASK_PATH, MOTASK_MESSID, STATUS)
IF (STATUS .EQ. DTASK__ACTSTART) THEN

STATUS = SAI__OK
CALL TASK_ADD_MESSINFO (MOTASK_PATH, MOTASK_MESSID,

: STATUS)
CALL TASK_PUT_REQUEST (ACT__MESSAGE, STATUS)

ELSE
CALL MSG_SETC (’MOTOR’, MOTOR)
CALL ERR_REP (’ ’, ’^MOTOR FAILED’, STATUS)

END IF
ELSE

CALL TASK_GET_REASON (REASON, STATUS)
IF (REASON .EQ. DTASK__ACTCANCEL) THEN

CALL MSG_OUT (’ ’,
: ’CMOTASK: subsidiary task has been cancelled’,
: STATUS)

ELSE IF (REASON .NE. DTASK__ACTCOMPLETE) THEN
STATUS = REASON
CALL ERR_REP (’ ’,

: ’CMOTASK: subsidiary task has returned bad status’,
: STATUS)

END IF
END IF

ELSE IF (CONTEXT .EQ. CANCEL) THEN
CALL TASK_CANCEL (’MOTASK’, MOTOR, INVAL, OUTVAL, STATUS)
IF (STATUS .EQ. DTASK__ACTCANCEL) THEN

STATUS = SAI__OK
CALL TASK_PUT_REQUEST (ACT__MESSAGE, STATUS)

ELSE
CALL ERR_REP (’ ’, ’CMOTASK: failure cancelling MOTASK’,

: STATUS)
ENDIF

END IF

CALL PAR_CANCL (’MOTOR’, GOOD_STATUS)

END

B.2 Controlled task

interface motask
parameter filter

type ’_integer’
range 1,100

23 SUN/134.3 —Cancelling in multi-task subsystems

endparameter
parameter focus

type ’_integer’
range 1,100

endparameter
action filter_wheel

obey
needs filter

endobey
cancel
endcancel

endaction
action focus_wheel

obey
needs focus

endobey
cancel
endcancel

endaction
endinterface

SUBROUTINE MOTASK(STATUS)

* Task to drive 2 dummy motors. One called FILTER_WHEEL
* and the other FOCUS. Each invocation requires 1 parameter
* relating to requested position but will be used in the call to the
* delay routine for a delay of n seconds

IMPLICIT NONE ! No implicit typing

INCLUDE ’SAE_PAR’
INCLUDE ’ACT_ERR’
INCLUDE ’ADAMDEFNS’

INTEGER STATUS
INTEGER CONTEXT
INTEGER SEQ
INTEGER FILTER
INTEGER FOCUS
INTEGER PERIOD
CHARACTER*(PAR__SZNAM) NAME

SAVE FILTER
SAVE FOCUS

IF (STATUS .NE. SAI__OK) RETURN

CALL TASK_GET_NAME (NAME, STATUS)

IF (NAME .EQ. ’FILTER_WHEEL’) THEN
CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
IF (CONTEXT .EQ. OBEY) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

SUN/134.3 —Cancelling in multi-task subsystems 24

CALL PAR_GET0I (’FILTER’, FILTER, STATUS)
PERIOD = FILTER * 1000
CALL MSG_SETI (’FILTER’, FILTER)
CALL MSG_OUT (’ ’, ’moving to filter ^FILTER...’,

: STATUS)
CALL TASK_PUT_DELAY (PERIOD, STATUS)
CALL PAR_CANCL (’FILTER’, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
CALL MSG_SETI (’FILTER’, FILTER)
CALL MSG_OUT(’ ’, ’filter position ^FILTER reached’,

: STATUS)
END IF

ELSE IF (CONTEXT .EQ. CANCEL) THEN
CALL TASK_PUT_REQUEST (ACT__CANCEL, STATUS)

END IF
ELSE IF (NAME .EQ. ’FOCUS_WHEEL’) THEN

CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
IF (CONTEXT .EQ. OBEY) THEN

CALL TASK_GET_SEQ (SEQ, STATUS)
IF (SEQ .EQ. 0) THEN

CALL PAR_GET0I (’FOCUS’, FOCUS, STATUS)
PERIOD = FOCUS * 1000
CALL MSG_SETI (’FOCUS’, FOCUS)
CALL MSG_OUT (’ ’, ’moving to focus ^FOCUS...’, STATUS)
CALL TASK_PUT_DELAY (PERIOD, STATUS)
CALL PAR_CANCL (’FOCUS’, STATUS)
CALL TASK_PUT_REQUEST (ACT__WAIT, STATUS)

ELSE
CALL MSG_SETI (’FOCUS’, FOCUS)
CALL MSG_OUT (’ ’, ’focus position ^FOCUS reached’,

: STATUS)
END IF

ELSE IF (CONTEXT .EQ. CANCEL) THEN
CALL TASK_PUT_REQUEST (ACT__CANCEL, STATUS)

END IF
END IF
END

25 SUN/134.3 —For “old” programmers

C For “old” programmers

C.1 Introduction to the changes

C-tasks, CD-tasks and D-tasks are now “unfashionable”, but are supported for the time being.
That is, all existing ADAM tasks should continue to behave as they did under ADAM V1, except
for the following two features.

Firstly, an OBEY to a task will no longer be rejected on the grounds that its NEEDS list is not
satisfied. See section C.3 for more details.

Secondly, the VALUE string is only guaranteed to contain the parameter string for the OBEY
on first entry to ACT. If the action is rescheduling, the VALUE string will not have retained the
parameter string for subsequent entries.

Note that D-tasks are now free to use ERR and MSG and to send messages to other tasks
whenever they feel like it (except inside AST routines!).

The characteristics of the new-style “instrumentation" tasks are as follows:

• The arguments previously passed in the call to CD-tasks and D-tasks, ie. CONTEXT,
NAME, SEQ, VALUE and RETVAL are now accessed by calls to the TASK routines.

• The DTASK library is being phased-out as far as applications are concerned. The DTASK_
calls are replaced by TASK_ calls.

• The syntax of the interface file remains unchanged.

The following sections list all the changes.

C.2 Linking old-style tasks

Old-style D-tasks and CD-tasks may still be linked using DLINK and CDLINK. After re-linking
they will use the new fixed-part and exhibit the new behaviour, particularly the improved error
reporting. Furthermore, future changes to the fixed-part will be incorporated automatically via
a shareable image.

DLINK and CDLINK have the same parameters as ILINK. Procedures DNOSHR and CDNOSHR
are withdrawn.

C.3 NEEDS list checking

The fixed-part will no longer reject an OBEY or CANCEL on the grounds that the parameters
specified on the NEEDS list do not have suitable values. The only significance of NEEDS lists
in ADAM V2 is to specify the order of any command-line parameters – NEEDS constraints no
longer have any effect.

C.4 DTASK_RPON and DTASK_RPOFF

These no longer do anything. The fixed-part automatically enables reporting back to whatever
process issued the GET/SET/OBEY/CANCEL currently under way.

SUN/134.3 —For “old” programmers 26

C.5 DTASK_ASTSIGNAL and DTASK_TSTINTFLG

These routines are being phased-out. TASK_ASTSIGNAL and TASK_TSTINTFLG, which have
the same arguments and functionality, should be used instead. The DTASK_ calls will continue
to work for the time being.

C.6 TASK_ASTMSG (NAME, LENGTH, VALUE, STATUS)

This is a new routine, similar in function to TASK_ASTSIGNAL, but allowing a message of
length LENGTH to be passed in the character string VALUE. When the main-line code is
rescheduled it can extract the message from VALUE.

C.7 Multiple calls to TASK_ASTSIGNAL, TASK_ASTMSG

It is now possible for an AST handler to make multiple calls to TASK_ASTSIGNAL and
TASK_ASTMSG during a single execution. The information carried in the call is now sent
as a message (rather than entered in a COMMON block) and so the last call does not overwrite
the earlier ones.

C.8 AST enabling and disabling

The DTASK fixed-part no longer re-enables ASTs, and the various AST events (timed reschedules
and AST reschedules) no longer disable ASTs. This means that execution of outstanding AST
handlers is no longer delayed while the main-line code tidies-up from earlier events.

C.9 Message reschedules

The TASK library makes it possible for a task to send an OBEY to another task, and then request
the fixed-part to reschedule this action on receipt of the final acknowledgement from the other
task. The fixed-part automatically handles message forwarding from the other task.

C.10 Timeout on AST and message reschedules

If the application sets RETVAL and then returns with STATUS requesting an AST or message
reschedule, the fixed-part will also set a timed reschedule for the time indicated in RETVAL. If
the AST or message event happens first, the timer is cancelled. Implications of this are that if the
application has been “accidentally" setting RETVAL in the past, it will now set up a timer, and
alternatively, if a single action has been managing to set up multiple timers for itself, it will now
only be able to have one outstanding at any one time.

C.11 Closing down the Parameter system – Global associations

The parameter system does not close-down when an instrumentation task action completes.
This means that parameters retain their values and remain “active", rather than being returned
to the “ground" state. It also means that instrumentation tasks never write global associations. This
behaviour is similar to the behaviour for D-tasks, but unlike the behaviour for CD-tasks.

27 SUN/134.3 —List of TASK routines

D List of TASK routines

The “action keyword” is the name by which a task’s action is known in the world outside that
task. The “action name” is the name by which the action is known to the application code inside
that task. These names are defined in the interface file. The action keyword defaults to the action
name if it is not otherwise specified.

There is a similar distinction between parameter keywords and parameter names.

ACTKEY=CHARACTER*(PAR__SZNAM) action keyword

ACTNAME=CHARACTER*(PAR__SZNAM) action name

CONTEXT=INTEGER symbol for GET, SET, OBEY

or CANCEL

CONTEXTNAME=CHARACTER*(*) string for ’GET’, ’SET’ etc.

DELAY=INTEGER requested delay time in millisecond

EVENT=INTEGER received message status

INVAL=CHARACTER*(MSG_VAL_LEN) a received value string

LENGTH=INTEGER number of bytes in VALUE

MAXVALS=INTEGER maximum number of values

MESSID=INTEGER transaction number

NAMECODE=INTEGER parameter system code-number for the

action

NVALS=INTEGER actual number of values

OUTVAL=CHARACTER*(MSG_VAL_LEN) a sent value string

PARKEY=CHARACTER*(PAR__SZNAM) parameter keyword

PATH=INTEGER path identifier to another task

REASON=INTEGER symbol giving reason for reschedule

REQUEST=INTEGER symbol requesting reschedules

RESULT=LOGICAL .TRUE. implies an AST has occurred

SEQ=INTEGER sequence number

STATUS=INTEGER status

STRINGS(*)=CHARACTER*(*) array of character strings

TASK_NAME=CHARACTER*(PAR__SZNAM) name of another task

TIMEOUT=INTEGER timeout in milliseconds, -1 = infinite

VALUE=CHARACTER*(MSG_VAL_LEN) value string

* Add to the list of active subsidiary actions for an action
CALL TASK_ADD_MESSINFO (PATH, MESSID, STATUS)
Given : PATH, MESSID

SUN/134.3 —List of TASK routines 28

Given and returned : STATUS

* Used in application AST routine to signal to main-line code
CALL TASK_ASTMSG (ACTNAME, LENGTH, VALUE, STATUS)
Given : ACTNAME, LENGTH, VALUE
Given and returned : STATUS

* Used in application AST routine to signal to main-line code
CALL TASK_ASTSIGNAL (ACTNAME, STATUS)
Given : ACTNAME
Given and returned : STATUS

29 SUN/134.3 —List of TASK routines

* Request a task to cancel an action
CALL TASK_CANCEL (TASK_NAME, ACTKEY, INVAL, OUTVAL, STATUS)
Given : TASK_NAME, ACTKEY, INVAL
Given and returned : STATUS
Returned : OUTVAL

* Concatenate an array of strings into an argument list
CALL TASK_CNCAT (NVALS, STRINGS, VALUE, STATUS)
Given : NVALS, STRINGS
Given and returned : STATUS
Returned : VALUE

* Wait for final acknowledgement from task
CALL TASK_DONE (TIMEOUT, PATH, MESSID, OUTVAL, STATUS)
Given : TIMEOUT, PATH, MESSID
Given and returned : STATUS (Returns the status associated with the final

acknowledgement message from the task.)
Returned : OUTVAL

* Get a parameter value from a task
CALL TASK_GET (TASK_NAME, PARKEY, OUTVAL, STATUS)
Given : TASK_NAME, PARKEY
Given and returned : STATUS
Returned : OUTVAL

* Get current action context
CALL TASK_GET_CONTEXT (CONTEXT, STATUS)
Given and returned : STATUS
Returned : CONTEXT

* Get current action context name
CALL TASK_GET_CONTEXTNAME (CONTEXTNAME, STATUS)
Given and returned : STATUS
Returned : CONTEXTNAME

* Get details of message which forced reschedule
CALL TASK_GET_MESSINFO (PATH, CONTEXT, ACTKEY, VALUE, MESSID, EVENT, STATUS)
Given and returned STATUS
Returned : PATH, CONTEXT, ACTKEY, VALUE, MESSID, EVENT

* Get current action name
CALL TASK_GET_NAME (ACTNAME, STATUS)
Given and returned : STATUS
Returned : ACTNAME

SUN/134.3 —List of TASK routines 30

* Get parameter system code for current action name
CALL TASK_GET_NAMECODE (NAMECODE, STATUS)
Given and returned : STATUS
Returned : NAMECODE

* Get reason for current reschedule
CALL TASK_GET_REASON (REASON, STATUS)
Given and returned : STATUS
Returned : REASON

* Get current action sequence number
CALL TASK_GET_SEQ (SEQ, STATUS)
Given and returned : STATUS
Returned : SEQ

* Get value string for current action
CALL TASK_GET_VALUE (VALUE, STATUS)
Given and returned : STATUS
Returned : VALUE

* Signal another action to reschedule
CALL TASK_KICK (ACTNAME, LENGTH, VALUE, STATUS)
Given : ACTNAME, LENGTH, VALUE
Given and returned : STATUS

* Send an OBEY to a task
CALL TASK_OBEY (TASK_NAME, ACTKEY, INVAL, OUTVAL, PATH, MESSID, STATUS)
Given : TASK_NAME, ACTKEY, INVAL
Given and returned : STATUS (Returns the status associated with the initial

acknowledgement message from the task.)
Returned : OUTVAL, PATH, MESSID

* Set delay before next entry for current action
CALL TASK_PUT_DELAY (DELAY, STATUS)
Given : DELAY
Given and returned : STATUS

* Request the action to be rescheduled on certain events
CALL TASK_PUT_REQUEST (REQUEST, STATUS)
Given : REQUEST
Given and returned : STATUS

* Set current action sequence number
CALL TASK_PUT_SEQ (SEQ, STATUS)
Given : SEQ
Given and returned : STATUS

31 SUN/134.3 —List of TASK routines

* Set value string for current action
CALL TASK_PUT_VALUE (VALUE, STATUS)
Given : VALUE
Given and returned : STATUS

* Set a parameter value in a task
CALL TASK_SET (TASK_NAME, PARKEY, INVAL, STATUS)
Given : TASK_NAME, PARKEY, INVAL
Given and returned : STATUS

* Split an argument list into an array of strings
CALL TASK_SPLIT (VALUE, MAXVALS, NVALS, STRINGS, STATUS)
Given : VALUE, MAXVALS
Given and returned : STATUS
Returned : NVALS, STRINGS

* Return a triggering message to the controlling task
CALL TASK_TRIGGER (ACTNAME, VALUE, STATUS)
Given : ACTNAME, VALUE
Given and returned : STATUS

* Test interrupt flag
CALL TASK_TSTINTFLG (RESULT, STATUS)
Given and returned : STATUS
Returned : RESULT

The following generic string-handling routines are provided to help in building or interpreting
VALUE strings. Each TASK_xxx<T> routine represents the set of calls TASK_xxxC, TASK_xxxD,
TASK_xxxI, TASK_xxxL, and TASK_xxxR.

NDIMS=INTEGER number of dimensions

DIMS(*)=INTEGER sizes of dimensions

NMAXDIMS=INTEGER maximum number of dimensions

MAXDIMS(*)=INTEGER maximum sizes of dimensions

STRING=CHARACTER*(*) string being built or interpreted

<T>VAL=<TYPE> value being converted

<T>VALS()=<TYPE> array being converted

STATUS=INTEGER status

* Decode a character string as a value
CALL TASK_DEC0<T> (STRING, <T>VAL, STATUS)
Given : STRING
Given and returned : STATUS
Returned : <T>VAL

SUN/134.3 —List of TASK routines 32

* Decode a character string as a vector
CALL TASK_DEC1<T> (STRING, MAXVALS, NVALS, <T>VALS, STATUS)
Given : STRING, MAXVALS
Given and returned : STATUS
Returned : NVALS, <T>VALS

* Decode a character string as an array
CALL TASK_DECN<T> (STRING, NMAXDIMS, MAXDIMS, NDIMS, DIMS, <T>VALS, STATUS)
Given : STRING, NMAXDIMS, MAXDIMS
Given and returned : STATUS
Returned : NDIMS, DIMS, <T>VALS

* Encode a value as a character string
CALL TASK_ENC0<T> (<T>VAL, STRING, STATUS)
Given : <T>VAL
Given and returned : STATUS
Returned : STRING

* Encode a vector as a character string
CALL TASK_ENC1<T> (NVALS, <T>VALS, STRING, STATUS)
Given : NVALS, <T>VALS
Given and returned : STATUS
Returned : STRING

* Encode an array as a character string
CALL TASK_ENCN<T> (NDIMS, DIMS, <T>VALS, STRING, STATUS)
Given : NDIMS, DIMS, <T>VALS
Given and returned : STATUS
Returned : STRING

The following three generic routines are provided for compatibility with earlier ADAM releases.
New applications should use the TASK_ENC calls instead.

CALL TASK_VAL0<T> (<T>VAL, STRING, STATUS)
CALL TASK_VAL1<T> (NVALS, <T>VALS, STRING, STATUS)
CALL TASK_VALN<T> (NDIMS, DIMS, <T>VALS, STRING, STATUS)

33 SUN/134.3 —Important STATUS values

E REQUEST constants

The values your application can set using TASK_PUT_REQUEST to instruct the fixed-part are

ACT__ASTINT requests reschedule on AST receipt, with optional timer

ACT__CANCEL signifies the action has completed due to a CANCEL

ACT__MESSAGE requests reschedule on message receipt, optional timer

ACT__STAGE requests an immediate (10msec) timed reschedule

ACT__WAIT requests a timed reschedule

The following ACT__ constants also exist for upwards compatibility with ADAM Version 1.

ACT__END signifies the action has completed successfully

ACT__EXIT *** for U-task writers ONLY ***

ACT__INFORM signifies the action has completed with an error

ACT__UNIMP the requested action is not implemented

The fixed-part only acts on the REQUEST if your task returns a status of SAI__OK. Any other
status returned, for example an error status of some sort, causes the action to be closed down.
The error status is returned to the task which issued the original OBEY. Note that SS$_NORMAL
is not recognised as an OK status, and will be reported as an error.

F Important STATUS values

The inquiry routines TASK_GET_REASON and TASK_GET_MESSINFO return a value in one of
two groups. The first group concerns reschedules caused by events in this task.

MESSYS__RESCHED a timer has expired

MESSYS__ASTINT an AST routine has been obeyed

MESSYS__KICK the action has been ‘kicked’

The second group concerns messages received from a subsidiary task.

SUN/134.3 —Document changes 34

MESSYS__TRIGGER a trigger message has arrived, the subsidiary action

continues

DTASK__ACTCOMPLETE the subsidiary action completed successfully

DTASK__ACTINFORM the subsidiary action completed with an error

DTASK__ACTCANCEL the subsidiary action was cancelled

DTASK__IVACTSTAT the subsidiary action completed with an illegal REQUEST

In addition, the value can be any error status returned by the action in the subsidiary task.

G Document changes

There is a correction to the example CMOTASK in Appendix B and some re-wording of Appendix
C.

	Introduction
	A simple picture of a task
	Waiting for a command
	Carrying out a simple command
	A task with two actions
	Completion of a timed interval
	Completion of data input
	Kicking one action from another
	Receipt of messages from other tasks
	Cancelling actions
	Behaviour of the parameter system
	Compiling and linking
	Further reading
	Making tea and coffee
	Making tea
	Making coffee
	Controlling tea and coffee making

	Cancelling in multi-task subsystems
	Controlling task
	Controlled task

	For ``old'' programmers
	Introduction to the changes
	Linking old-style tasks
	NEEDS list checking
	DTASK_RPON and DTASK_RPOFF
	DTASK_ASTSIGNAL and DTASK_TSTINTFLG
	TASK_ASTMSG (NAME, LENGTH, VALUE, STATUS)
	Multiple calls to TASK_ASTSIGNAL, TASK_ASTMSG
	AST enabling and disabling
	Message reschedules
	Timeout on AST and message reschedules
	Closing down the Parameter system – Global associations

	List of TASK routines
	REQUEST constants
	Important STATUS values
	Document changes

