
SUN/183.6

Starlink Project
Starlink User Note 183.6

D.S. Berry

2nd October 2007

ARD — A Textual Language for
Describing Regions within a Data Array

Version 2.2
Programmer’s Manual

SUN/183.6 —Abstract i

Abstract

The ARD (ASCII Region Definition) system provides a textual language for describing regions
within a data array, together with software for converting a textual description into a pixel
mask, or plotting it on a graphics device. The textual language is based on a set of keywords
identifying simple shapes (boxes, circles, lines, etc.). These keywords can be combined together
using Boolean-style operators (AND, OR, NOT, etc.) to create more complex shapes. Data arrays
can be multi-dimensional.

ii SUN/183.6—Contents

Contents

1 Introduction 1
1.1 Some Example ARD Descriptions . 2
1.2 An Example ARD Application . 3
1.3 Supplying ARD Descriptions to an Application . 7

2 ARD Description Syntax 10
2.1 Restrictions on the Order of Fields . 10
2.2 Group Expression Control Characters . 11
2.3 Use of GRP Modification Elements . 12

3 Interpretation of ARD Descriptions 13
3.1 Values within the Pixel Mask . 13

3.1.1 Background Pixels . 14
3.1.2 Assignment of Keyword Values . 14
3.1.3 Pixels Included in Several Regions . 15

3.2 Supplying an Initial Pixel Mask . 16
3.3 Bounding Boxes . 17

4 Coordinate Systems 18
4.1 World Coordinate Systems in ARD Version 2 . 18
4.2 Coordinate Handling in ARD Prior to Version 2 20

4.2.1 Application Coordinates . 20
4.2.2 User Coordinates . 21

5 Keywords 21

6 Operators 23

7 Statements 24

8 Compiling and Linking 26

A Alphabetical List of Routines 26

B Routine Descriptions 27
ARD_GROUP . 28
ARD_GRPEX . 29
ARD_GTWCS . 30
ARD_PLOT . 31
ARD_PTWCS . 32
ARD_WCS . 33
ARD_WORK . 34

C Acknowledgements 36

D Changes Introduced in Version 2.0 36

E Changes Introduced in Version 2.1 36

SUN/183.6 —Contents iii

F Changes Introduced in Version 2.2 36

SUN/183.6 —Introduction 1

1 Introduction

Astronomical applications often require the user to identify regions of interest within a data
array. For instance a statistics application may need to be told the region within the input image
in which it is to evaluate the pixel statistics. Another example is a data calibration application
which needs to be told the regions in which the detector was unreliable so that it can flag the
corresponding output pixels as bad.

One way of identifying such regions is through the use of a pixel mask. In a pixel mask, different
pixel values are used to differentiate between those pixels which are to be included by the
application and those which are to be excluded. Such pixel masks are usually the same size and
shape as the data array being processed by the application (so that a one-for-one correspondence
exists between mask pixels and data pixels). This results in such masks occupying large amounts
of disk space. More importantly, it means that different pixel masks are required for data arrays
with different sizes or shapes.

ARD circumvents these problems by using textual expressions (known as “ARD descriptions”)
to describe the pixels to be included by the application. Multi-dimensional data arrays can be
handled. A simple 2-dimensional ARD description such as:

CIRCLE(20, 20, 5) .OR. RECT(20, 20, 30, 30)

tells the application to process all pixels which are either within a circle centred on pixel coordi-
nates (20,20) with a radius of 5 pixels, or are within the rectangle with opposite corners at pixels
coordinates (20,20) and (30,30). The ARD_WORK subroutine will convert an ARD description
such as this into a pixel mask, with a shape and size specified by the application. The application
will usually know the shape and size of the data array and so can ask ARD_WORK to create a
pixel mask of the correct shape and size. Once the pixel mask is no longer needed, the storage
space used to hold the mask can be released; there is no need to keep permanent copies of the
pixel mask on disk.

As well as creating pixel masks, the ARD library also provides facilities to plot an ARD descrip-
tion on a graphics device. The ARD_PLOT routine draws the borders of the regions described
in the ARD description, using a supplied AST Plot (see SUN/210) to perform the graphics.

In the above example, positions and distances in the ARD description were given in pixel
coordinates. The ARD language includes two systems which allow positions and distances to
be given in other coordinate systems:

(1) As of ARD version 2.0, the calling application can define an arbitrary collection of coordi-
nate systems (which need not be linearly related to pixel coordinates) by supplying an AST
FrameSet (see SUN/210). The FrameSet contains information which allows positions to be
mapped from any of these coordinate systems into pixel coordinates. Positions within the
ARD description can then be given in any of these coordinates systems (a statement in the
ARD description indicating which system is being used). Thus, for instance, if the pixel
array has an RA/DEC calibration, the application could supply a FrameSet indicating how
to convert from RA/DEC to pixel coordinates. This would allow the ARD description to
include positions in RA/DEC.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/183.6 —Introduction 2

In addition, the ARD description itself can include a FrameSet defining a collection of
inter-related coordinate systems (positions in the ARD description should be given in the
"current" Frame of this FrameSet). In this case, an attempt is made to find a coordinate
system which is contained both within the FrameSet supplied by the calling application,
and within the FrameSet supplied in the ARD description. For instance, extending the
previous example, if an ARD description contains position given in pixel coordinates in
some other specific image and also contains a FrameSet which relates pixel positions within
that image to RA/DEC, then positions will be mapped from pixel coordinates within the
original image, into RA/DEC, and then into pixel coordinates within the required mask
image. This effectively allows pixel positions to be given within one image and then
transformed so that they can be used within another image.

(2) The calling application can also define an “application coordinate system” which is linearly
related to pixel coordinates. Positions within the ARD description can then either be
given directly in application coordinates, or in any coordinate system linearly related
to application coordinates (in which case the ARD description must include statements
describing the linear transformation). This system was present in version 1 of ARD and
is still present in the current version, but is now deprecated in favour of the above more
general system.

1.1 Some Example ARD Descriptions

ARD descriptions are made up by using logical operators (.AND., .OR., .NOT., etc.) to combine
together keywords which represent the basic shapes known to ARD. statements can also be
included which modify the way the ARD description is interpreted (for instance, by setting up
an alternative coordinate system).

The ARD library includes two subroutines (ARD_GROUP and ARD_GRPEX) which simplify
the task of obtaining ARD descriptions from the user or environment. Using these routines, an
ARD description can be supplied to an application either directly, or by storing it in a text file
and supplying the name of the text file to the application. The following examples represent
lines stored in a text file. Such lines are effectively concatenated together into a single string
before being processed by ARD:

ROTBOX(0, 0, 20, 10, 30)

This example is simply a single keyword representing one of the basic shapes known to ARD.
It selects all pixels which have centres on or within a 2-dimensional rotated box. The box is
centred on coordinates (0,0) and has sides of length 20 and 10. The first side of the box (i.e. the
one with length 20) is at an angle of 30◦ to the array X axis (measured anti-clockwise).

CIR(0, 0, 10) .AND. .NOT. (COLUMN(10) .OR. ROW(5))

This example uses logical operators and parentheses to combine several basic shapes together
into a more complex shape. It also shows the use of abbreviated keywords. All pixels within the
circle of radius 10 centred on (0,0) are selected, except for those which are on column 10 or row
5.

COFRAME(SKY, System=FK5, Equinox=2003.5)
BOX(12:23:41, -89:14, 1h40m, 20m)

SUN/183.6 —Introduction 3

This example shows the use of statements to specify the coordinate system in which positions
are supplied. In this case, the COFRAME statement indicates that positions are supplied in FK5
equatorial (RA/DEC) coordinates, referred to the equinox of 2003.5. The BOX keyword then
selects a box centred at RA 12h23m41s and Dec. −89deg14

′
. The box covers an RA range of 1h40m

and a Dec range of 20
′
. The edges of a BOX region are always lines of constant axis value. Since

this region is very close to the south equatorial pole, the pixel region containing this "box" will
have quite strongly curved sides.

PIXEL(1, 1)
PIXEL(20, 13)
PIXEL(-55,122)
PIXEL(112, 87)
PIXEL(33, 12)

This example demonstrates the ability of ARD to recognise implicit .OR. operators. The list of
PIXEL keywords specifies a set of individual pixels. Since these keywords have no intervening
operators, ARD assumes that a .OR. operator is to be inserted between each pair, i.e. the union
of all the individual pixels is assumed.

1.2 An Example ARD Application

This section presents Fortran code for an ADAM application which obtains a data array (in
the form of an NDF structure, see SUN/33) and an ARD description from the environment,
converts the ARD description into a pixel mask, and then finds and displays the data sum
within the region specified by the ARD description. The application will deal with NDFs of any
dimensionality up to the limit imposed by the NDF_ system.

SUBROUTINE ARD_TEST(STATUS) [1]
IMPLICIT NONE

* Include definitions of global constants.
INCLUDE ’SAE_PAR’ [2]
INCLUDE ’NDF_PAR’
INCLUDE ’PRM_PAR’
INCLUDE ’GRP_PAR’
INCLUDE ’AST_PAR’

* Declare local variables.
INTEGER STATUS, IGRP, INDF, NDIM, IPDATA, IPMASK, EL,

: LBND(NDF__MXDIM), UBND(NDF__MXDIM), [3]
: LBNDI(NDF__MXDIM), UBNDI(NDF__MXDIM),
: LBNDE(NDF__MXDIM), UBNDE(NDF__MXDIM),
: REGVAL
REAL SUM, TRCOEF(1)
INTEGER IWCS

* Check inherited global status.
IF (STATUS .NE. SAI__OK) RETURN [4]

* Obtain an identifier for the input NDF.
CALL NDF_ASSOC(’NDF’, ’READ’, INDF, STATUS) [5]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/183.6 —Introduction 4

* Obtain the bounds of the NDF.
CALL NDF_BOUND(INDF, NDF__MXDIM, LBND, UBND, NDIM, [6]

: STATUS)

* Map the DATA component of the NDF.
CALL NDF_MAP(INDF, ’DATA’, ’_REAL’, ’READ’, IPDATA, EL, [7]

: STATUS)

* Obtain an ARD description specifying the region in which
* the pixel values are to be summed.

CALL ARD_GROUP(’REGION’, GRP__NOID, IGRP, STATUS) [8]

* Obtain workspace to hold the pixel mask corresponding to
* the supplied ARD description.

CALL PSX_CALLOC(EL, ’_INTEGER’, IPMASK, STATUS) [9]

* Get an AST FrameSet describing the WCS coordinate Frames stored
* in the NDF.

CALL NDF_GTWCS(INDF, IWCS, STATUS) [10]

* Indicate that positions within the ARD description can be given in
* any coordinate Frame included in the above WCS FrameSet.

CALL ARD_WCS(IWCS, ’ ’, STATUS) [11]

* Indicate that the value 2 should be used to represent
* pixels specified by the first keyword in the ARD
* description.

REGVAL = 2

* Call ARD_WORK to store positive values at all mask pixels
* specified by the ARD description, and zero at all other
* pixels.

CALL ARD_WORK(IGRP, NDIM, LBND, UBND, TRCOEF, .FALSE., [12]
: REGVAL, %VAL(IPMASK), LBNDI, UBNDI,
: LBNDE, UBNDE, STATUS)

* Call a subroutine to sum the data in the specified regions.
CALL SUMIT(EL, %VAL(IPDATA), %VAL(IPMASK), SUM,

: STATUS) [13]

* Display the data sum.
CALL MSG_SETR(’SUM’, SUM)
CALL MSG_OUT(’ARD_TEST_MSG1’, ’ Data sum: ^SUM’, [14]

: STATUS)

* Release the work space used to hold the pixel mask.
CALL PSX_FREE(IPMASK, STATUS) [15]

* Delete the group used to hold the ARD description.
CALL GRP_DELET(IGRP, STATUS) [16]

* Annul the AST FrameSet identifier.
CALL AST_ANNUL(IWCS, STATUS) [17]

SUN/183.6 —Introduction 5

* Annul the NDF identifier.
CALL NDF_ANNUL(INDF, STATUS) [18]

END

Programming notes:

(1) The example is actually an ADAM A-task, and so consists of a subroutine with a single
argument giving the inherited status value. See SUN/101 for further details about writing
ADAM A-tasks. A “stand-alone” equivalent to the ARD_GROUP routine is available
which can be used with non-ADAM applications.

(2) The INCLUDE statements are used to define the various “symbolic constants”, which are
used in this routine. Starlink software makes widespread use of such constants, which
should always be defined in this way rather than by using actual numerical values. They
are recognisable by the double underscore “__” (e.g. “SAI__OK”) which distinguishes them
from subroutine names. SAE_PAR defines constants starting with “SAI__”, NDF_PAR
defines constants starting with “NDF__” (see SUN/33), PRM_PAR defines constants
starting with “VAL__” (see SUN/39), GRP_PAR defines constants starting with “GRP__”
(see SUN/150), and AST_PAR defines constants starting with “AST__” (see SUN/210).

(3) This application is designed to be able to handle data arrays of any dimensionality, up to
the limit set by the NDF library. This limit is given by the symbolic constant NDF__MXDIM,
which is used in the declaration of various arrays used to hold information describing
each axis.

(4) The value of the STATUS argument is checked. This is because the application uses the
Starlink error handling strategy (see SUN/104), which requires that a subroutine should
do nothing unless its STATUS argument is set to the value SAI__OK on entry. Here, we
simply return without action if STATUS has the wrong value.

(5) The input NDF is now obtained using the ADAM parameter ’NDF’. This may involve
prompting the user, or the NDF may be identified using some other means (for instance,
the NDF may have been specified on the command line which invoked the application).
An integer value is returned to the application in variable INDF. This is an NDF identifier
and is used to refer to the NDF throughout the rest of the application.

(6) The shape and size of the NDF is now obtained. This returns the number of dimensions,
and the upper and lower bounds on each axis. These bounds are needed to be able to
correctly locate positions supplied within the ARD description.

(7) The DATA array in the NDF is then accessed by calling NDF_MAP. Rather than returning
actual data values, this routine returns a pointer to the data values in IPDATA. The total
number of pixels in the array is returned in EL.

(8) Next, the ARD description is obtained using ADAM parameter ’REGION’. The returned
ARD description is stored in a “GRP group” (rather like a Fortran character array). The
GRP package is described in SUN/150 and programmers using ARD should be aware of
its contents. An integer value is returned in IGRP which is used to identify the group con-
taining the ARD description throughout the rest of the application. The second argument

http://www.starlink.ac.uk/cgi-bin/htxserver/sun101.htx/sun101.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/183.6 —Introduction 6

is a “null group identifier” (a symbolic constant defined within the include file GRP_PAR).
It is used to indicate that there is no existing ARD description on which to base the new
ARD description; a completely new ARD description must be supplied.

(9) We now obtain a pointer to a temporary array in which we can store the pixel mask
corresponding to the ARD description. The mask has the same number of pixels as the
data array, and each pixel stores an integer value. The PSX library is a Fortran interface to
the POSIX library and is described in SUN/121.

(10) An NDF structure can have a range of “World Coordinate Systems” associated with it.
Information describing these coordinate systems, and how to transform positions between
them, is stored in the WCS component of the NDF. The NDF_GTWCS routine returns an
identifier for an AST FrameSet which is a representation of the WCS component. The
facilities of the AST library can then be used to manipulate the WCS information in many
different ways.

(11) ARD_WCS stores the supplied FrameSet pointer for later use by the ARD_WORK routine.
Making this call to ARD_WCS is optional. If it were not made, then positions within
the ARD description would have to be supplied in pixel coordinates. Since we are in
fact calling ARD_WCS, positions within the ARD description can be supplied in any
coordinate system which can be related to any of the coordinate systems in the NDF’s
WCS FrameSet.

(12) The subroutine ARD_WORK is now called to create the pixel mask identifying the pixels
specified by the ARD description. Positive values are stored in the mask for such pixels,
and zero is stored for all other pixels. Note, no value need be assigned to the TRCOEF
argument since it will be ignored anyway. This is because of the earlier call to ARD_WCS
which specifies the WCS information, and makes the TRCOEF argument redundant.

(13) A subroutine is now called to add up the pixel values in the regions specified by the ARD
description. The pointer values returned by NDF_MAP and PSX_CALLOC are turned
into actual Fortran arrays at this point, which SUMIT can access. This is done using the
%VAL function in the call to SUMIT. SUMIT is not part of the ARD package, but would be
written by the application programmer. It may look like this:

SUBROUTINE SUMIT(EL, DATA, MASK, SUM, STATUS)
IMPLICIT NONE

* Include definitions of global constants.
INCLUDE ’SAE_PAR’
INCLUDE ’PRM_PAR’

* Arguments Given.
INTEGER EL
REAL DATA(EL)
INTEGER MASK(EL)

* Arguments Returned.
REAL SUM

* Arguments Given and Returned.
INTEGER STATUS

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/183.6 —Introduction 7

* Declare local variables.
INTEGER I

* Check inherited global status.
IF (STATUS .NE. SAI__OK) RETURN

* Initialise the sum of the valid data values.
SUM = 0.0

* Loop round every element in the data array.
DO I = 1, EL

* Check to see if this pixel was included in the ARD
* description. It will have a positive mask value if it was.
* Skip over the pixel if it was not included.

IF(MASK(I) .GT. 0) THEN

* The regions selected by the ARD description may contain
* pixels which are flagged as unusable in the input NDF.
* Such pixels have the value given by the symbolic constant
* VAL__BADR and should not be included in the returned data
* sum.

IF(DATA(I) .NE. VAL__BADR) THEN
SUM = SUM + DATA(I)

END IF

END IF

END DO

END

The two arrays can be treated as one dimensional vectors because they are the same size
and shape. This makes it easy to process arrays of any dimensionality.

(14) The data sum is displayed by assigning its value to an “MSG token” and then incorporating
this token into a message to be displayed on the standard output device. See SUN/104 for
a description of the MSG package.

(15) The storage space used to hold the pixel mask is released so that it can be re-used.

(16) The storage space used by the GRP group to hold the ARD description is released.

(17) We now tell the AST library to release the resources used to store the FrameSet read from
the NDF.

(18) Finally, the NDF is closed.

1.3 Supplying ARD Descriptions to an Application

This section outlines some of the ways in which a user could supply an ARD description in
response to a prompt for the ’REGION’ parameter in the example application described in the
previous section.

SUN/183.6 —Introduction 8

The first thing to be said is that the dimensionality of the ARD description (i.e. the number
of values used to represent a single position in the ARD description) need not match that of
the supplied NDF. The ARD description may refer to some subset of the axes in the NDF, in
which case the mask will be applied independently to every value on the unspecified axes. By
default, ARD descriptions are always assumed to be 2-dimensional, but this default can be
over-ridden by including a DIMENSION statement in the ARD description. Thus for instance,
if the positions in the ARD description are 3-dimensional, the user may want to give an ARD
description such as:

DIMENSION(3)
CIRCLE(40, 50, 60, 10) .OR. CIRCLE(45, 55, 65, 10)

The DIMENSION statement tells ARD to expect three values per position. The rest of the ARD
description specifies the union of two spheres (i.e. “3-dimensional circles”), centred on (40,50,60)
and (45,55,65), each of radius 10. This ARD description uses the default coordinate system
established by the application’s call to ARD_WORK. In the case of the application above, this
default coordinate system is just the pixel coordinate system of the NDF.

ARD uses the versatile facilities of the GRP package to obtain the ARD description. The following
examples outline some of the ways in which the above ARD description could be specified in
response to a prompt for parameter ’REGION’. For more details on the facilities of GRP, see
SUN/150. In each case the “>” represents the final character of the prompt string issued by the
ADAM parameter system and is not actually typed in by the user:

(1) The entire ARD description could be given as a single literal string:

> DIMENSION(3) CIRCLE(40, 50, 60, 10) .OR. CIRCLE(45, 55, 65, 10)

All blanks and tabs are ignored.

(2) The ARD description could be split up into several strings given in response to successive
prompts. This is particularly useful for long ARD descriptions:

> DIMENSION(3) -
> CIRCLE(40, 50, 60, 10) .OR. -
> CIRCLE(45, 55, 65, 10)

If an ARD description ends with a minus sign (“−”), the ARD_GROUP subroutine will
issue another prompt and append any string supplied to the end of the previously supplied
string. This continues until an ARD description is supplied which doesn’t end with a
minus sign.

(3) ARD descriptions can be split anywhere except in the middle of a numerical value. So, for
instance, the following responses would be valid:

> DIMENSION(3) CIRCLE(40, 50, -
> 60, 10) .OR. CIRCLE(45, 55, -
> 65, 10)

(4) If ARD finds adjacent keywords without any intervening operator, an implicit .OR. is
inserted between them. So the following, in which the .OR. operator is not explicitly
included, would give the same results as the previous examples:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/183.6 —Introduction 9

> DIMENSION(3) -
> CIRCLE(40, 50, 60, 10) -
> CIRCLE(45, 55, 65, 10)

(5) Instead of supplying the ARD description directly in response to the parameter prompt, it
can be stored in a text file and the name of the text file given in response to the prompt. To
do this, the file name must be preceded by an up-arrow symbol (“^”). If the file desc.ard
contained the three lines:

DIMENSION(3)
CIRCLE(40, 50, 60, 10)
CIRCLE(45, 55, 65, 10)

then the user could give the following response:

> ^desc.ard

The ARD description can be split between the lines of the file in any way the user chooses.

(6) If only part of the ARD description is stored in a text file, then the two methods can be
combined. For instance, if the DIMENSION statement is omitted from the file, so that
desc.ard contains:

CIRCLE(40, 50, 60, 10)
CIRCLE(45, 55, 65, 10)

then the user could give the complete ARD description by giving the following response:

> DIMENSION(3);^desc.ard

This would cause the contents of the file desc.ard to be concatenated with the string
preceding the “;” character. Note, the semi-colon is not included in the ARD description
returned by ARD_GROUP.

(7) If the ARD description were to be split over several files, the contents of the files could be
concatenated together in a similar way:

> ^desc1.ard;^desc2.ard;^desc3.ard

This would cause the contents of files desc1.ard, desc2.ard and desc3.ard to be com-
bined to form the final ARD description.

(8) Indirection through text files can be nested. So if the string

^desc1.ard;^desc2.ard;^desc3.ard

were stored in a file total.ard, then the user could give the response:

> ^total.ard

SUN/183.6 —ARD Description Syntax 10

2 ARD Description Syntax

An ARD description consists of a stream of fields, optionally separated by one or more spaces, or
tabs. There are three types of fields:

(1) Keyword fields: These specify the basic shapes known to ARD (CIRCLE, BOX, etc.) from
which more complex shapes are constructed.

(2) Operator fields: These are logical operators, as in Fortran (.AND., .OR., .XOR., .NOT. etc.).

(3) Statement fields: These are fields which effect the way that the keyword fields are inter-
preted, e.g. setting up the dimensionality of the system (DIMENSION), the recognized
coordinate systems (COFRAME), etc.

Some keyword and statement fields require argument lists, and these are enclosed within
parentheses following the keyword or statement. Arguments are delimited by commas.

keywords and statements can be abbreviated to three characters (operators cannot be abbrevi-
ated). ARD descriptions are case-insensitive, and white space (eg spaces, blank records in a file,
blank group expressions) is ignored.

2.1 Restrictions on the Order of Fields

An ARD description is basically an algebraic expression in which the operators are logical
operators (.AND., .OR., etc.) and the operands are represented by keywords (CIRCLE, BOX,
etc.) which notionally take true or false values depending on whether or not the current pixel is
inside or outside the specified region. Therefore, all the usual restrictions exist on the placing of
operators and operands in algebraic expressions; binary operators (e.g. .AND.) must have an
operand or bracketed expression on each side, unary operators (e.g. .NOT.) must be followed by
an operand or bracketed expression, opening and closing parentheses must balance, etc.

There are, however, certain ways in which an ARD description can depart from this syntax:

• Statement fields can be embedded within an ARD description at any point. They are
always removed before evaluating the ARD description as an algebraic expression.

• If .TRUE. is supplied for ARD_WORK argument CONCAT, then a single operator field
may appear before the first keyword field. In this case the “missing” operand value to the
left of the first operator is defined by the initial mask supplied to routine ARD_WORK. If
CONCAT is supplied .TRUE. and no operator field is found before the first keyword field,
then an implicit .OR. operator is assumed.

• If two keyword fields do not have an intervening operator field, then an implicit .OR.
operator is assumed. This allows a simple list of regions to be specified such as:

#
ARD description file
#
POLYGON(20, 20, 50, 50, 25, 75) # A triangle
ELLIPSE(10.0, 10.0, 8.0, 5.0, 45.0)
CIRCLE(22, 22, 40)

SUN/183.6 —ARD Description Syntax 11

This is effectively equivalent to:

POLYGON(20, 20, 50, 50, 25, 75) .OR.
ELLIPSE(10.0, 10.0, 8.0, 5.0, 45.0) .OR.
CIRCLE(22, 22, 40)

The returned integer mask will contain positive values within the union of the three
regions, and zero outside.

• If an operand is directly followed by a .NOT. operator then an implicit .OR. will be inserted
in front of the .NOT. This allows lists of regions such as the following to be given:

POLYGON(20, 20, 50, 50, 25, 75)
.NOT.ELLIPSE(10.0, 10.0, 8.0, 5.0, 45.0)
.NOT.CIRCLE(22, 22, 40)

The returned mask will contain positive values for all pixels which are either within the
polygon, or are not within the ellipse, or are not within the circle. It may need to be
emphasised here that .OR. operators are inserted and not .AND. operators.

2.2 Group Expression Control Characters

The following two sub-sections supply details of the interaction of ARD with the GRP package,
and may safely be skipped over on an initial reading through this document.

The stream of ARD fields is supplied in the form of a GRP group expression (and stored in a
normal GRP group) with the following control characters (see SUN/150):

• “^” is used to mark the start of an indirection file, from which further ARD fields should
be read.

• “#” is used to initiate a comment.

• “;” is used to delimit GRP elements. A GRP element may contain any number of ARD
fields (within the restrictions on string length set by GRP). Argument lists for keyword
and statement fields can be split between elements. An element may consist of a single
reference to an indirection file (using the “^” character). In this case the element must not
contain any explicit ARD fields. Note, GRP elements cannot span records. Thus, carriage
returns (either in a file or entered at a prompt) also act as GRP element delimiters, in
addition to the “;” character.

• “*” is used as the token which represents basis names within a modification element.

• “|” is used to separate old and new substitution strings when editing names.

• The “OPEN_NEST” and “CLOSE_NEST” control characters are not used (they are set
“null”).

• “-” is used as the flag character. If a group expression is supplied which ends with “-”,
then the user is re-prompted for a further group expression, which will be appended
to the end of the earlier ones. The interpretation of “-” as the GRP flag character takes
precedence over it’s interpretation as a synonym for the .NOT. operator.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/183.6 —ARD Description Syntax 12

• “{” is used to open a new kernel.

• “}” is used to close a kernel. A typical use of the kernel characters is to allow the
contents of an indirection file to be edited before being used. An element such as
“{^file1.ard}|100|200|” would cause the contents of file1.ard to be read, and then all
occurrences of 100 would be replaced by 200.

A complete ARD description can be broken across several lines of an indirection file, or across
several directly supplied group expressions (each one terminated with the flag character “-”).
However, breaks must occur either between fields or between values in a keyword or statement
argument list.

2.3 Use of GRP Modification Elements

The GRP system provides a facility which allows a user to modify the contents of a group
previously created by the calling application. To do this, a “modification element” is included in
the supplied ARD description (or “group expression” to use GRP parlance). A GRP identifier for
an existing group can be supplied to the routines ARD_GROUP and ARD_GRPEX (argument
IGRP1). If the ARD description supplied by the user contains a modification element, then the
contents of the group identified by IGRP1 will be modified according to the instructions in the
modification element, and the results incorporated into the returned group. Note, the specified
editing is applied separately to each element in the existing group, to produce the corresponding
element for the new group. Elements are delimited in ARD descriptions by the “;” character,
and by carriage returns.

For instance, suppose that the application has already created a group containing the following
ARD description:

CIRCLE(0, 10, 10) .OR. CIRCLE(0, -10, 10)

If the GRP identifier for this group is supplied as argument IGRP1 to routine ARD_GROUP, the
user may supply an ARD description including a modification element such as:

(*) .AND. BOX(0, 0, 5, 5)

The asterisk is replaced in turn by each element of the contents of the group identified by IGRP1
(the “basis” group). Thus, the above ARD description is equivalent to the following:

(CIRCLE(0, 10, 10) .OR. CIRCLE(0, -10, 10)) .AND. BOX(0, 0, 5, 5)

Note, the original ARD description was supplied on a single line, and was thus stored as a single
element in the group. If it had spanned lines, then each line would have been edited separately.
For instance, if the original ARD description had been supplied as follows, on two lines:

CIRCLE(0, 10, 10) .OR.
CIRCLE(0, -10, 10)

then the modified ARD description would be :

SUN/183.6 —Interpretation of ARD Descriptions 13

(CIRCLE(0, 10, 10) .OR.) .AND. BOX(0, 0, 5, 5)
(CIRCLE(0, -10, 10)) .AND. BOX(0, 0, 5, 5)

This group expression would not be accepted by ARD_WORK because of the missing operand
after the .OR. operator.

If the user has supplied the ARD description on a single line, and then modified it using the
following ARD description:

(*|10|5|) .AND. BOX(0, 0, 5, 5)

then the basis group would be edited by replacing all occurrences of the string “10” by the string
“5”, before being included in the final ARD description. Thus the above would be equivalent to:

(CIRCLE(0, 5, 5) .OR. CIRCLE(0, -5, 5)) .AND. BOX(0, 0, 5, 5)

The syntax of such modification elements is described fully in SUN/150.

3 Interpretation of ARD Descriptions

After removal of all statement fields, and the insertion of any implicit .OR. operators, the fields in
an ARD description are treated as a Fortran-like logical expression. Each keyword field forms a
logical operand, acted upon by the adjoining operator fields. operators have their usual Fortran
precedence (see Section 6). The order of evaluation can be changed by enclosing sub-expressions
within parentheses as usual. The interpretation of operands depends on the type of keyword:

• Operands for regions which (in general) have non-zero volume (e.g. POLYGON, CIRCLE,
BOX, etc.) are .TRUE. if the centre of the current pixel lies on or within the boundary of the
region, and are .FALSE. otherwise.

• Operands for regions which have zero volume (e.g. POINT, LINE, ROW, COLUMN,
etc.) are .TRUE. if the boundary of the region passes through the current pixel. The pixel
with index I along some axis is assumed to cover a range of pixel coordinates P given by
(I − 1) < P ≤ I.

3.1 Values within the Pixel Mask

The ARD_WORK subroutine creates an array of integer values (the “mask”) which holds the
result of evaluating the entire logical expression at each pixel. Positive integers represent .TRUE.
(i.e. included pixels) and zero represents .FALSE. (i.e. excluded pixels).

Each keyword included in an ARD description is represented by a different positive integer. This
provides the possibility for applications to differentiate between the different regions within an
ARD description on the basis of the pixel mask alone.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/183.6 —Interpretation of ARD Descriptions 14

3.1.1 Background Pixels

The .NOT. operator adds a few complications in that it requests pixels to be included which are
not within a given region. For instance:

.NOT.CIRCLE(0, 0, 10)

includes all pixels which are not within the circle of radius 10 centred on the origin. If (say) the
value 2 was used to represent the CIRCLE region, what value should be used to represent the
pixels which are not within the circle? The solution adopted by ARD is to consider all pixels not
within a region to be “background” pixels, and to reserve the value 1 to represent such pixels.
All .NOT. operators in an ARD description use the value 1 to represent included background
pixels. Note, ARD doesn’t know if a pixel is truly part of the background or not, it just assumes
that all pixels selected by a .NOT. operator will be background. This gives rise to a possible
anomaly which can be illustrated by the ARD description:

.NOT. (.NOT. CIRCLE(0, 0, 10))

One might expect this to be equivalent to the ARD description:

CIRCLE(0, 0, 10)

but there will be a difference. The two ARD descriptions will store positive values at the same
pixels (i.e. those within the circle), but the values stored will be different. In the first ARD
description, the included pixels are generated by a .NOT. operator and so will be considered to
be “background” pixels and will be represented by the value 1. In the second ARD description,
the included pixels are generated directly by the CIRCLE keyword and will be represented by
the value assigned to the keyword (which will be larger than 1).

The .EQV. operator can also cause background pixels to be included in the returned mask, and
such background pixels are again represented by the value 1. The ARD description:

CIRCLE(0, 0, 10) .EQV. CIRCLE(10, 0, 10)

selects pixels which are either within both circles or within neither circle. Pixels which are within
neither circle form part of the background, and are represented by the value 1. Pixels which are
within both circles are represented by the larger of the two values assigned to the two keywords.

3.1.2 Assignment of Keyword Values

The choice of which positive value to use to represent each keyword in the ARD description is
controlled by the REGVAL argument supplied to the ARD_WORK routine. If a positive value is
supplied for REGVAL then the first keyword in the ARD description (working from left to right)
is assigned the supplied value. Successive values are assigned to the remaining keywords. An
error is reported if REGVAL is supplied equal to 1. This is because 1 is reserved to represent
background pixels and may not be used to represent keywords.

If a zero or negative value is supplied for REGVAL, then the array of pixel values supplied
to ARD_WORK in argument MASK is examined and the maximum value found. This value

SUN/183.6 —Interpretation of ARD Descriptions 15

is incremented by one and used to represent the first keyword in the ARD description (if the
incremented value is less than 2, then 2 is used instead). Successive values are assigned to the
remaining keywords.

There is one exception to these rules; pixels selected using an INPUT keyword (see section 3.2)
are assigned the values of the corresponding pixels in the input mask supplied to ARD_WORK,
irrespective of the position of the INPUT keyword in the ARD description. The inclusion of
INPUT keywords within an ARD description does not effect the integer values used to represent
other keywords. Thus if REGVAL is supplied equal to 2 and the ARD description is:

CIRCLE(0, 0, 10) .AND. (INPUT .OR. CIRCLE(0, 10, 10))

then the CIRCLE(0,0,10) region is assigned the value 2 and the CIRCLE(0,10,10) region is
assigned the value 3 (i.e. the INPUT keyword is not included in the count of keywords).

On return from ARD_WORK the REGVAL argument will hold a value one larger than the value
assigned to the last keyword in the ARD description.

3.1.3 Pixels Included in Several Regions

If a given pixel falls within more than one region, then the largest of the values associated with
the regions is stored at the pixel’s location. Specifically, the rules for determining the result of
each operator are:

.AND. - A zero is returned unless both operands are positive, in which case the larger of the
two positive values is returned.

.OR. - The larger of the two operand values is returned.

.XOR. - If either operand is zero, then the value of the other operand is returned. If neither
operand is zero, then zero is returned.

.EQV. - If neither of the operands is zero, then the larger of the two operands is returned. If one
of the operands is zero, then zero is returned. If both of the operands are zero, then the
value 1 is returned.

.NOT. - If the operand is positive, then zero is returned. If the operand is zero, then 1 is returned.

Let’s look at an example:

CIR(0, 0, 50)
CIR(0, 0, 40)
CIR(0, 0, 30)
CIR(0, 0, 20)
CIR(0, 0, 10)

An implicit .OR. operator is assumed to exist between each of the CIRCLE keywords. Let’s
assume that ARD_WORK is called with argument REGVAL set to 2. The CIR(0,0,50) keyword is
evaluated first and causes a circular region of radius 50 to be filled with the value 2. Next, the
CIR(0,0,40) keyword is evaluated. The value used to represent included pixels is incremented
to 3, and a circular region of radius 40 is filled with this value, over-writing some of the 2’s

SUN/183.6 —Interpretation of ARD Descriptions 16

which were written to the mask because of the previous keyword. Since the circular regions
are concentric (both being centred on the (0,0)), this will leave an annulus containing the value
2 around the edge of the circle containing value 3. The remaining keywords are processed in
the same way, each successive keyword over-writing all but an annulus of the circle created by
the previous keyword. The final mask consists of a set of concentric annuli, each of thickness
10. Working outwards from the centre, the annuli have the values 6, 5, 4, 3 and 2. The REGVAL
argument will be returned holding 7.

One consequence of allowing larger values to “over-write” smaller values is that background
pixels always get over-written by pixels which are selected by virtue of being within a keyword
region. Consider the following (assuming that REGVAL is again supplied equal to 2):

CIRCLE(0, 0, 10) .AND. .NOT. CIRCLE(0, 0, 5)

This ARD description will be evaluated by first creating two intermediate masks, one containing
the CIRCLE(0,0,10) region and another containing the .NOT.CIRCLE(0,0,5) region. These two
masks will then be combined together using the .AND. operator to create the final mask. The
first intermediate mask contains the value 2 at all pixels which are within the CIRCLE(0,0,10)
region, and zero at all other pixels.

The second intermediate mask is initially set to hold the region CIRCLE(0,0,5). This means that
pixels within the circle are given the value 3 and all others are given the value zero. The mask is
then inverted to take account of the .NOT. operator. Pixels inside the circle which previously
held the value 3 are changed to zero (indicating that these pixels have not been selected). Pixels
outside the circle which previously held the value zero are assigned the value 1 (indicating that
these pixels are background pixels).

The last stage is to combine the two intermediate masks together following the rules described
above for an .AND. operator. Pixels which are further than 10 units from the origin (i.e. outside
the CIRCLE(0,0,10) region) will hold zero in the first mask and 1 in the second mask, and so will
be assigned a value zero in the final mask. Pixels which are between 5 and 10 units from the
origin (i.e. inside the first circle but not the second) will have the value 2 in the first mask and
the value 1 in the second. Both these values are positive and so the output mask pixel will also
be positive. The rules for the .AND. operator above say that the positive value used will be the
larger of the two values in the input masks. Thus the output mask pixels are assigned the value
2. Pixels which are less than 5 units from the origin will have the value 2 in the first mask and
the value zero in the second mask, and so are assigned the value zero in the output mask. The
final mask thus holds an annulus extending from radius 5 to radius 10 in which the pixels hold
the value 2, all other pixels holding the value zero.

3.2 Supplying an Initial Pixel Mask

It may sometimes be necessary for applications to combine together pixel masks created from
different ARD descriptions. To do this, the ARD descriptions should be processed in turn by
ARD_WORK and they should use the “INPUT” keyword. This keyword refers to the pixel mask
supplied to routine ARD_WORK in argument MASK; if a pixel holds a positive value in the
supplied mask then the INPUT keyword is notionally .TRUE., and is notionally .FALSE. if the
pixel value is zero or negative. This keyword can be used at any point in an ARD description,
and can be included any number of times. A simple example of its use could be:

SUN/183.6 —Interpretation of ARD Descriptions 17

.NOT. INPUT

which inverts the supplied mask. If the ARD description does not include any references to the
INPUT keyword, then the application can force an INPUT keyword to be inserted at the start of
the ARD description by supplying a .TRUE. value for ARD_WORK argument CONCAT. For
instance, if CONCAT is supplied .TRUE., then the ARD description:

BOX(0, 0, 10, 10) .OR. CIR(0, 0, 10)

becomes

INPUT BOX(0, 0, 10, 10) .OR. CIR(0, 0, 10)

There is now no operator between the INPUT and BOX keywords, and so ARD inserts an
implicit .OR. so that the final ARD description used is:

INPUT .OR. BOX(0, 0, 10, 10) .OR. CIR(0, 0, 10)

If the supplied ARD description had started with an operator, for instance:

.AND.(BOX(0, 0, 10, 10) .OR. CIR(0, 0, 10))

then there would be no need to insert an implicit .OR. after the INPUT keyword, and so the final
used ARD description would be:

INPUT .AND.(BOX(0, 0, 10, 10) .OR. CIR(0, 0, 10))

To re-iterate, an INPUT keyword is inserted at the start of the ARD description only if the ARD
description as supplied contains no INPUT keywords, and the ARD_WORK argument CONCAT
is supplied .TRUE.. If either of these conditions is broken then the ARD description is left as
supplied.

3.3 Bounding Boxes

To combine two large masks using a binary operator at every pixel can be wasteful of processor
time, especially if not many of the pixels have actually been selected. To reduce this waste,
ARD keeps track of the regions within the mask where the selected pixels are located, and
only processes pixels in those regions. Precisely, ARD maintains a pair of “bounding boxes”
throughout its evaluation of an ARD description. These are referred to as the internal and
external bounding boxes. Each bounding box is a rectangular region of the mask. The internal
bounding box contains all included pixels in the mask, but may also contain some excluded
pixels. Conversely, the external bounding box contains all excluded pixels and may also contain
some included pixels.

The upper and lower bounds of these boxes are returned to the calling application when the
mask is complete. If an application is only interested in included pixels, it may then restrict its
attention to the region of the data array contained within the internal bounding box (all pixels
outside this box are guaranteed to be excluded). It is still necessary for the application to check

SUN/183.6 —Coordinate Systems 18

mask pixels to see if they are included or excluded, but the checks can at least be restricted to
the region of the internal bounding box. The external bounding box can be used in a similar
way if the application is only interested in excluded pixels.

If all mask pixels are included (i.e. if there are no excluded pixels) then the external bounding
box will be returned “null”, and the internal bounding box will be returned covering the entire
mask. Likewise, if all mask pixels are excluded (i.e. if there are no included pixels) then the
internal bounding box will be returned “null”, and the external bounding box will be returned
covering the entire mask. Null bounding boxes are identified by the fact that the lower bound
of each axis is greater than the corresponding upper bound. This condition should always be
checked for before using a bounding box.

4 Coordinate Systems

ARD_WORK needs to be able to locate pixels within the given pixel mask. To do this, every
position supplied in an ARD description must be converted into pixel coordinates. The position
of the origin of pixel coordinates within the mask is fixed by the upper and lower bounds of the
mask supplied to ARD_WORK. The conventions for pixel coordinates used by Starlink software
are described in Starlink System Note (SSN) 22.

However, it is not always appropriate for an ARD description to describe a region in terms
of pixel coordinates. For instance, in a mosaic image a given position on the sky may have
different pixel coordinates in each image. To describe a given region in pixel coordinates would
therefore require a separate description for each image. In this case, we would ideally like to use
a single ARD description in which the region was defined in terms of RA and Dec. positions.
This can be done, so long as ARD_WORK knows how to transform an RA/Dec position into
pixel coordinates within each of the specified pixel masks.

There are two schemes supported by the ARD library to allow the ARD description to include
positions in a coordinate system other than pixel coordinates. As of version 2 of the ARD
library, the facilities of the AST library (see SUN/210) can be used to specify positions within
generalised non-linear coordinate systems. Prior to version 2, positions needed to be supplied
in a coordinate system which was linearly related to pixel coordinates in the mask supplied to
ARD_WORK. The version 1 scheme is still available in version 2 of the library, but is deprecated.

4.1 World Coordinate Systems in ARD Version 2

ARD version 2 uses the facilities of the AST library to manage coordinate systems. An AST
“FrameSet” describes a collection of related coordinate systems (also called “Frames”), together
with the mappings which allows positions to be transformed from one Frame to another. The
calling application will always know how to locate a point within the mask if the point is
specified in pixel coordinates. If, in addition, it can also locate points specified in one or more
other coordinate systems, then it should create a FrameSet describing all the coordinate systems
which it knows about, one of which must be pixel coordinates within the mask1. It then passes
this FrameSet to the ARD system by calling routine ARD_WCS (this must be done prior to

1ARD recognizes this Frame by the fact that its Domain attribute is set to “PIXEL”.

http://www.starlink.ac.uk/cgi-bin/htxserver/ssn22.htx/ssn22.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/183.6 —Coordinate Systems 19

calling ARD_WORK)2. This FrameSet is known as the “Application FrameSet”, and encapsulates
knowledge of all the coordinate systems known to the application.

If ARD_WCS is not used, then a default application FrameSet containing a single Frame describ-
ing pixel coordinates is generated automatically.

The ARD description must then include statements describing the coordinate system in which
positions are given within the ARD description. This can be done in one of three ways:

(1) By including a COFRAME statement before any keywords. A COFRAME statement
describes a single coordinate system, namely that in which positions are given within the
ARD description.

ARD_WORK will determine if there is any way of converting positions given within this
coordinate system into any of the coordinate systems included in the Application FrameSet,
and thus into pixel coordinates. If there is, then the corresponding transformation is used
to locate positions within the pixel mask. Otherwise, an error is reported.

(2) By including a WCS statement before any keywords. A WCS statement specifies a Frame-
Set describing all the coordinate system known to the user. Positions within the ARD
description are then assumed to be given within the “current” Frame of this FrameSet.
This FrameSet is known as the “User FrameSet” to distinguish it from the “Application
FrameSet”.

ARD_WORK will search both FrameSets looking for a coordinate system which is present
in both. If such a Frame is found, the User FrameSet is used to convert positions included
in the ARD description into the common Frame, and the Application FrameSet is then
used to convert positions from the common Frame into pixel coordinates. If no common
Frame is found, then an error is reported. It may be that there is more than one common
Frame, in this case priority is given to Frames describing celestial coordinate systems,
followed by pixel coordinate Frames, followed by Frames with Domain GRID, followed
by Frames with Domain ARDAPP. The highest priority Frame found within this list is
used as the common Frame.

(3) If there is neither a WCS nor a COFRAME statement in the ARD description, then it
is assumed that positions are supplied in a default coordinate system. This default is
determined as follows:

• If an application FrameSet has been specified using ARD_WCS, then the default
coordinate system is the current Frame of the application FrameSet. In this case, the
TR argument for routine ARD_WORK is ignored.

• If no application FrameSet has been specified using ARD_WCS, then the default
coordinate system is obtained by transforming the pixel coordinate system according
to the values supplied for argument TR when calling ARD_WORK. This is the system
which was used prior to ARD version 2 (see the next section for more details).

In addition, the deprecated version 1 statements COEFFS, OFFSET, TWIST, STRETCH,
SCALE can be used to modify the relationship between the coordinate system used within

2You may be wondering why a separate routine is used instead of simply passing the information to ARD_WORK
as an argument. This was done so that existing application which use ARD version 1 would continue to work
without modification.

SUN/183.6 —Coordinate Systems 20

the ARD description and the default coordinate system describe above. If any of these
statements are found, then any earlier COFRAME or WCS statements are ignored, and the
requested operation (stretch, twist, offset, etc) is applied to the default coordinate system
described above.

An ARD description can contain zero, one or more of the above WCS-related statements. The
positions, etc, defining a given region in the description are interpreted using the most recent
WCS-related statement. Thus, WCS information given later in an ARD description over-rides
any given earlier.

If any of the deprecated version 1 statements (COEFFS, OFFSET, TWIST, STRETCH, SCALE) are
found, then any earlier COFRAME or WCS statements are ignored, and the requested operation
(stretch, twist, offset, etc) is applied to the default coordinate system described above. For this
reason, you should not normally mix the old and the new statements.

4.2 Coordinate Handling in ARD Prior to Version 2

ARD version 1 required the transformation between “user coordinates” (i.e. the coordinate
system in which positions are supplied in the ARD description) to pixel coordinates to be linear.
This linear transformation was split up into two components; the application specified a linear
transformation from pixel coordinates to “application coordinates” when calling ARD_WORK,
and the ARD description included statements which defined a linear transformation from
application coordinates to user coordinates (by default, user coordinates were assumed to be
identical with application coordinates). These two components were concatenated to get the
total transformation from pixel to user coordinates.

4.2.1 Application Coordinates

Version 1 applications use the TRCOEF argument of the ARD_WORK routine to define the
application coordinate system. TRCOEF would be supplied holding the coefficients of the linear
mapping from application coordinates to pixel coordinates. For instance, if a 2-dimensional
application coordinates system (xa, ya) is required to be equal to pixel coordinates (xp, yp), but
with the origin shifted to pixel coordinates (10, 20), then the linear mapping from (xa, ya) to
(xp, yp) is:

xp = 10 + 1.xa + 0.ya

yp = 20 + 0.xa + 1.ya

In this case TRCOEF would be supplied holding the 6 coefficient values (10,1,0,20,0,1). In general,
if (Y1, Y2, Y3, ..., YN) are a set of application coordinates in N dimensions, and (Z1, Z2, Z3, ..., ZN)
are the corresponding pixel coordinates, then the application supplies a set of constants C1 to
CN∗(N+1), where:

Z1 = C1 + C2.Y1 + C3.Y2 + ... + CN+1.YN

Z2 = CN+2 + CN+3.Y1 + CN+4.Y2 + ... + C2.(N+1).YN

....
ZN = CN.N + CN.(N+1).Y1 + CN.(N+2).Y2 + ... + CN.(N+1).YN

SUN/183.6 —Keywords 21

These constants can be supplied to ARD_WORK as a 1-dimensional vector C with N.(N+1)
elements, or as a 2-dimensional array T with dimensions (0:N, N) where:

Z1 = T(0, 1) + T(1, 1).Y1 + T(2, 1).Y2 + ... + T(N, 1).YN

Z2 = T(0, 2) + T(1, 2).Y1 + T(2, 2).Y2 + ... + T(N, 2).YN

....
ZN = T(0, N) + T(1, N).Y1 + T(2, N).Y2 + ... + T(N, N).YN

The order in which the coefficient values are stored is the same in both cases.

There will be many cases in which application coordinates are required to be just equal to pixel
coordinates. In this case the diagonal elements of the T array (T(1,1), T(2,2), etc.) would be
set to one and all other elements of T would be set to zero. This is likely to be a common
requirement, and so ARD_WORK has a special facility for creating such a “unit” mapping. If
the first coefficient (C(1) or T(0,1)) is set equal to the symbolic constant VAL__BADR (defined
in include file PRM_PAR), then ARD_WORK will ignore the supplied values of TRCOEF and
use a unit mapping instead.

4.2.2 User Coordinates

The positions and displacements within a Version 1 ARD description are interpreted as applica-
tion coordinates by default. To supply positions and displacements in some other linearly-related
coordinate system, the ARD description would contain statement fields defining the mapping
from user coordinates to application coordinates. Such mappings were set up using the state-
ments COEFFS, OFFSET, SCALE, TWIST and STRETCH.

For instance, if the application expects coordinates to be given in arc-seconds but the user wishes
to give them in arc-minutes, then the statement SCALE(60) should be included in the ARD
description before the first keyword. This mapping is then concatenated with the mapping
supplied by the application to get the mapping from user coordinates to pixel coordinates.

The user coordinate system may be changed at any point within an ARD description using
suitable statement (COEFFS, etc.), and the new mapping will be used to interpret all further
positions until the user coordinate system is modified again.

Arguments which specify distances (such as the radius of a circle for instance) are subject to the
current mapping. Thus, for instance, a circle may be transformed into an ellipse if the coordinate
axes have different scales.

5 Keywords

Keywords are fields within an ARD description which specify one of the basic shapes known to
ARD. Most are followed by an argument list giving values for the size, position, orientation, etc.,
of the shape. Argument lists are contained within parentheses, and arguments are separated
by commas. Positions and distances should be supplied in a format appropriate to the current
user coordinate system as determined by the WCS and/or COFRAME statements. Keywords
can be abbreviated to three characters. The following keywords are currently supported (N
represents the dimensionality of the ARD description, and all positions and distances are given
in N-dimensional user coordinates):

SUN/183.6 —Keywords 22

BOX - A rectangular box with sides parallel to the user coordinate axes. The argument list
should contain 2 ∗ N values; the first N values give the coordinates of the box centre,
and the remaining N values give the lengths of the box sides. It may sometimes be more
convenient to use the RECT keyword which specifies a rectangular box in terms of two
diagonally opposite corners.

CIRCLE - A circle (for N = 2) or sphere (for N > 2). The argument list should contain N + 1
values; the first N values give the coordinates of the centre of the circle or sphere, and the
remaining value gives the radius (in user coordinates).

COLUMN - A set of lines parallel to the second axis of the user coordinate system. The
argument list can contain any number of values (one for each of the lines). Each argument
value X specifies that the corresponding line should pass through the position (X, 0). This
keyword can only be used in 2-dimensional ARD descriptions.

ELLIPSE - A 2-dimensional ellipse. The argument list should contain 5 values; the first pair
give the user coordinates of the centre of the ellipse, the second pair give the half-lengths
of the two axes of the ellipse (in user coordinates), and the fifth value gives the angle (in
degrees) from the first axis of the user coordinate system to the first axis of the ellipse
(positive rotation is from the first to the second user axis). This keyword can only be used
in 2-dimensional ARD descriptions.

FRAME - The entire mask excluding a border of given width. The argument list should
contain a single value giving the width of the border. This keyword can only be used
in 2-dimensional ARD descriptions. A further restriction on its use is that the current
mapping from user coordinates to pixel coordinates must be isomorphic (i.e. each mask
pixel must correspond to a square area in user coordinates; the square may be rotated,
shifted and/or scaled, but it must still be a square). If this is not the case an error will be
reported by ARD_WORK.

INPUT - The pixel mask supplied as input to routine ARD_WORK.

LINE - A straight line between two given positions. The argument list should contain 2 ∗ N
values, the first set of N values giving the user coordinates of the first position, and the
second set of N values giving the second position. Only the section of the line between
(and including) the two positions is included in the mask.

PIXEL - A set of individual pixels. The argument list should contain an integer multiple of N
values; each set of N values giving the user coordinates of a point to be included.

POINT - POINT is a synonym for PIXEL.

POLYGON - A 2-dimensional polygonal area. The argument list should contain an even
number of values; each pair giving the user coordinates of a vertex of the polygon. These
vertices are joined together in the order given to form the polygon. The last vertex is joined
to the first to close the polygon. This keyword can only be used in 2-dimensional ARD
descriptions. Note, the edges of a polygon are geodesics within the user coordinate Frame.
So, for instance, if user coordinates are RA and DEC then the edges of a polygon will
correspond to great circles on the sky.

RECT - A rectangular box with sides parallel to the user coordinate axes. The argument
list should contain 2 ∗ N values; each set of N values giving the coordinates of a pair

SUN/183.6 —Operators 23

of diagonally opposite corners. It may sometimes be more convenient to use the BOX
keyword which specifies a rectangular box in terms of its centre and dimensions.

ROTBOX - A rotated box. The argument list should contain 5 values; the first pair give the
coordinates of the box centre, the second pair give the lengths of the two sides, and the
fifth value gives the angle (in degrees) from the first axis of the user coordinate system to
the first side of the box (positive rotation is from the first to the second user axis). This
keyword can only be used in 2-dimensional ARD Note, the edges of a rotated box are
geodesics within the user coordinate Frame. So, for instance, if user coordinates are RA and
DEC then the edges of a rotated box will correspond to great circles on the sky.

ROW - A set of lines parallel to the first user axis. The argument list can contain any number
of values (one for each of the lines). Each argument value Y specifies that the corre-
sponding line should pass through the position (0, Y). This keyword can only be used in
2-dimensional ARD descriptions.

WHOLE - This keyword selects all pixels in the mask. It has no argument list.

6 Operators

Operators are fields within an ARD description which specify an operation to perform on one
or two keyword fields. They cannot be abbreviated, and the leading and trailing dots must
be included. The following operators are supported (they are listed in order of decreasing
precedence):

.NOT. - Invert the region specified by the following keyword or expression (i.e. included pixels
become excluded, and excluded pixels become included). A minus sign is recognised as a
synonym for .NOT..

.AND. - Take the intersection of the two regions. A pixel is included only if it is within both of
the regions given on either side of the .AND. field.

.OR. - Take the union of the two regions. A pixel is included if it is within either of the regions
given on either side of the .OR. field.

.XOR. - Take the exclusive OR of the two regions. A pixel is included if it is within one, but not
both, of the regions given on either side of the .XOR. field.

.EQV. - Take the equivalence of the two regions. A pixel is included if it is within both of the
regions given on either side of the .EQV. field, or if it is within neither.

.XOR. and .EQV. have equal precedence. Opening and closing parentheses (“(” and “)”) can be
used to bracket sub-expressions within an ARD description.

SUN/183.6 —Statements 24

7 Statements

Statements are fields within an ARD description which modify the way in which keywords
are interpreted. They are followed by an argument list giving various numerical or textual
values. Statements can be abbreviated to three characters. The following statements are currently
supported (N represents the dimensionality of the ARD description):

DIMENSION(N) - This establishes the number of coordinates (N) required to describe a
single point in the ARD description. If no DIMENSION statement is found before the first
keyword field, a value of 2 is assumed for N. The dimensionality may not be changed after
the first keyword field, but multiple DIMENSION statements may be included (so long as
they all specify the same value for N) to improve readability, and to allow the concatenation
of multiple ARD descriptions which contain compatible DIMENSION statements. Note,
N gives the number of dimensions in the user co-ordinate system; this may not necessaily
be the saem as the number of pixel axes in the mask array.

COEFFS(C1, C2, ...) - DEPRECATED. Use the COFRAME or WCS statement instead. This
establishes a new linear mapping from user coordinates to application coordinates re-
placing any previous mapping (see Section 4). The statement must have N ∗ (N + 1)
arguments. If (X1, X2, X3, ..., XN) are a set of user coordinates in N dimensions, and (Y1,
Y2, Y3, ..., YN) are the corresponding application coordinates, then the argument list should
contain a set of constants C1 to CN∗(N+1), where:

Y1 = C1 + C2.X1 + C3.X2 + ... + CN+1.XN

Y2 = CN+2 + CN+3.X1 + CN+4.X2 + ... + C2.(N+1).XN

....
YN = CN.N + CN.(N+1).X1 + CN.(N+2).X2 + ... + CN.(N+1).XN

The mapping established replaces any previous mapping, and is used to transform all
following coordinates, until another mapping is established. The default mapping results
in user coordinates being identical with application coordinates. The OFFSET, SCALE,
TWIST and STRETCH statements allow complex mappings to be created without the use
of COEFF statement in certain cases.

COFRAME(DOMAIN,...) - Specifies the user coordinate system (i.e. the coordinate system
in which positions are supplied within the remainder of the ARD description). The first
argument is the Domain of the coordinate system. There are several special values that
causes specialised AST objects to be created to descibe specific forms of coordinate systems:

• “SKY”: If the ARD description is 2-dimensional, an AST SkyFrame will be created.

• “TIME”: If the ARD description is 1-dimensional, an AST TimeFrame will be created.

• “SPECTRUM”: If the ARD description is 1-dimensional, an AST SpecFrame will be
created.

• “DSBSPECTRUM”: If the ARD description is 1-dimensional, an AST DSBSpecFrame
will be created.

SUN/183.6 —Statements 25

Any other Domain value will cause a simple AST Frame to be created instead. Any
subsequent arguments should be of the form <keyword>=<value> where <keyword> is
the name of an AST attribute and <value> is the value to assign to the attribute.

OFFSET(X, Y, Z, ...) - DEPRECATED. Use the COFRAME or WCS statement instead. This
modifies the current mapping from user coordinates to application coordinates so that
the origin of the user coordinate system is moved by the given offsets in application
coordinates. The initial position for the origin of user coordinates is (0,0,0,..). In a 2-
dimensional ARD description, the first statement OFFSET(10,15) would put the origin
at (10,15) in the application coordinates system. A second statement OFFSET(2,3) would
move it to (12,18). The statement must have N arguments.

SCALE(F) - DEPRECATED. Use the COFRAME or WCS statement instead. This modifies
the current mapping from user coordinates to application coordinates so that the user
coordinate system is magnified by the given factor F along all axes. The magnification is
centred on the origin of the application coordinate system.

STRETCH(F1, F2, F3, ...) - DEPRECATED. Use the COFRAME or WCS statement instead.
This modifies the current mapping from user coordinates to application coordinates so
that the user coordinate system is magnified by the given factor Fi along axis i. Unlike
the SCALE statement, the magnifications are centred on the origin of the user coordinate
system (i.e. the position of the origin of the user coordinate system within the applica-
tion coordinate system is not changed by this statement). The statement must have N
arguments.

TWIST(T) - DEPRECATED. Use the COFRAME or WCS statement instead. This statement
modifies the current mapping from user coordinates to application coordinates so that
the user coordinate system is rotated by an angle T (in degrees). The rotation is about
the origin of the application coordinate system. If the ARD description has more than 2
dimensions, then the rotation takes place in the X-Y plane. Rotation from the X axis to the
Y axis is positive. “TWIST” is used rather than the more obvious “ROTATE” in order to
avoid a name clash with the keyword ROTBOX.

WCS(...) - Specifies an AST FrameSet in which the current Frame is the user coordinate system
(i.e. the coordinate system in which positions are supplied within the remainder of the
ARD description). The “argument list” should be a textual dump of an AST FrameSet as
produced by the AST Channel class (e.g. using the AST_SHOW routine). Each line of the
dump should be stored as a separate GRP element in the supplied ARD expression - the
simplest way to do this is probably to supply the ARD description within a text file, and
put each line of the dump on a separate line in the file:

WCS(<!!
Begin FrameSet
IsA Frame
Nframe = 6
...
...
End FrameSet

!!>)

SUN/183.6 —Alphabetical List of Routines 26

The <!! and !!> strings tell GRP to treat the enclosed text as verbatim text. That is, any
GRP control characters found within the body of the FrameSet dump are treated as literal
characters.

8 Compiling and Linking

To compile and link a UNIX ADAM application with the ARD package, the following commands
should be used (see SUN/144):

% alink adamprog.f -L/star/lib ‘ard_link_adam‘

(note the use of opening apostrophes (‘) rather than closing apostrophe (’)). To compile and link
a stand-alone UNIX application with the ARD package, the following commands should be
used:

% f77 prog.f -o prog -L/star/lib ‘ard_link‘

This produces an executable image called prog.

The ADAM and stand-alone versions of the ARD_ system differ, in that the stand-alone version
does not contain the routine ARD_GROUP.

A Alphabetical List of Routines

ARD_GROUP (PARAM, IGRP1, IGRP2, STATUS)
Obtain an ARD description from the environment

ARD_GRPEX (DESC, IGRP1, IGRP2, FLAG, STATUS)
Store an explicitly supplied ARD description in a GRP group

ARD_GTWCS (IGRP, NDIM, IWCS, STATUS)
Return a FrameSet connecting pixel and user co-ordinates

ARD_PLOT (IGRP, IPLOT, GBOX, REGVAL, STATUS)
Draw the outline of an ARD description on a graphics device

ARD_PTWCS (IWCS, IGRP, STATUS)
Construct an ARD WCS statement and append it to a GRP group

ARD_WCS (IWCS, DOMAIN, STATUS)
Specify WCS information to be used in future calls to ARD_WORK

ARD_WORK (IGRP, NDIM, LBND, UBND, TRCOEF, CONCAT, REGVAL,
MASK, LBNDI, UBNDI, LBNDE, UBNDE, STATUS)

Create a pixel mask from an ARD description

http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_

SUN/183.6 —Routine Descriptions 27

B Routine Descriptions

28 ARD_GROUP 28

ARD_GROUP
Obtain an ARD description from the environment

Description:
An ARD description is obtained from the environment using the supplied parameter name and
stored in a group identified by the returned value of IGRP2. If the last character in the ARD
description is a minus sign ("- ") then the parameter value is then cancelled and further ARD
descriptions are obtained and appended to the returned group. This process continues until an
ARD description is supplied which does not end with a minus sign, or a null value is supplied.
If a GRP identifier for an existing group is supplied for IGRP1 then the group will be used as the
basis for any modification elements contained within the ARD descriptions obtained from the
environment. No checks are made for modification elements if the symbolic constant GRP__NOID
is supplied for IGRP1.

Invocation:
CALL ARD_GROUP(PARAM, IGRP1, IGRP2, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
The parameter name.

IGRP1 = INTEGER (Given)
GRP identifier for a group to be used as a basis for modification elements.

IGRP2 = INTEGER (Returned)
GRP identifier for the created group.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

• No checks are made on the syntax of the ARD description.

• The returned GRP identifier (IGRP2) should be deleted using GRP_DELET when it is no
longer needed.

• If an error occurs either before or during this routine then IGRP2 will be returned holding the
symbolic value GRP__NOID (defined in include file GRP_PAR).

• An error is returned if the first value obtained for the parameter is a null value.

29 ARD_GRPEX 29

ARD_GRPEX
Store an ARD description in a GRP group

Description:
The supplied ARD description is appended to the group identified by IGRP2. If the symbolic
constant GRP__NOID is supplied for IGRP2 then a new group is first created and its identifier is
returned in IGRP2.
If a GRP identifier for an existing group is supplied for IGRP1 then the group will be used as the
basis for any modification elements contained within the ARD description. No checks are made
for modification elements if the symbolic constant GRP__NOID is supplied for IGRP1.

Invocation:
CALL ARD_GRPEX(DESC, IGRP1, IGRP2, FLAG, STATUS)

Arguments:

DESC = CHARACTER ∗ (∗) (Given)
The ARD description.

IGRP1 = INTEGER (Given)
GRP identifier for a group to be used as a basis for modification elements.

IGRP2 = INTEGER (Given and Returned)
GRP identifier for the group holding the ARD description.

FLAG = LOGICAL (Returned)
Returned .TRUE. if the last non-blank character in the supplied ARD description is a minus sign (
"- ").

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

• No checks are made on the syntax of the ARD description.

• The returned GRP identifier (IGRP2) should be deleted using GRP_DELET when it is no
longer needed.

• The symbolic constant GRP__NOID is defined in the include file GRP_PAR.

30 ARD_GTWCS 30

ARD_GTWCS
Return a FrameSet connecting pixel and user co-ordinates

Description:
This routine returns an AST pointer for a FrameSet describing the relationship between the user
co-ordinate system used by the supplied ARD description, and the pixel coordinate Frame of the
FrameSet stored by the most recent call to ARD_WCS.

Invocation:
CALL ARD_GTWCS(IGRP, NDIM, IWCS, STATUS)

Arguments:

IGRP = INTEGER (Given)
A GRP identifier for the group holding the ARD description.

NDIM = INTEGER (Given)
The number of pixl axes in the mask array.

IWCS = INTEGER (Returned)
An AST pointer to the FrameSet. The base Frame will be the pixel coordinate Frame in the FrameSet
supplied via the most recent call to ARD_WCS. The current Frame will be the user co-ordinate
system specified by the supplied ARD description.

Notes:

• An error is reported if the dimensionality of the ARD description is different to that of the
mask array (as specified by argument NDIM).

31 ARD_PLOT 31

ARD_PLOT
Plot the boundary of an ARD description

Description:
This routine draws a curve marking the boundary of the ARD description supplied within group
IGRP. It can also draw a boundary round a given sub-region by supplying a positive value for
REGVAL. The ARD description must be 2-dimensional.

Invocation:
CALL ARD_PLOT(IGRP, IPLOT, GBOX, REGVAL, STATUS)

Arguments:

IGRP = INTEGER (Given)
A GRP identifier for the group holding the 2-dimensional ARD description.

IPLOT = INTEGER (Given)
An AST pointer to a Plot which will be used to draw the boundary. The Plot and the ARD
description will be aligned in a suitable common coordinate Frame, present in both the Plot and
the WCS FrameSet implied by the ARD description. If no such common Frame is available, an
error is reported.

GBOX(4) = REAL (Given)
An array giving the position and extent of the plotting area (on the plotting surface of the underlying
graphics system) in which graphical output is to appear. This must be specified in the base (i.e.
GRAPHICS) Frame of the supplied Plot. This can be smaller than the area covered by the supplied
Plot, in which case the graphics will be truncated.
The first pair of values should give the coordinates of the bottom left corner of the plotting area
and the second pair should give the coordinates of the top right corner. The coordinate on the
horizontal axis should be given first in each pair.

REGVAL = INTEGER (Given and Returned)
The index of the region within the ARD description to be outlined. If the value zero is supplied,
the entire ARD description is outlined. If a positive value is supplied, then only the region with
the specified index is outlined. If a negative value is supplied, then regions with indices greater
than or equal to the absolute value are outlined. If the supplied value is not zero, then REGVAL is
modified on return to hold one more than the largest value used to represent any of the keywords
in the ARD description. The supplied value is left unchanged if it zero.

STATUS = INTEGER (Given and Returned)
The global status.

32 ARD_PTWCS 32

ARD_PTWCS
Construct an ARD WCS statement and append it to a GRP group

Description:
This routine creates a WCS statement describing the supplied FrameSet, and appends the statement
to the end of the supplied GRP group.

Invocation:
CALL ARD_PTWCS(IWCS, IGRP, STATUS)

Arguments:

IWCS = INTEGER (Given)
An AST pointer to a FrameSet.

IGRP = INTEGER (Given and Returned)
A GRP group identifier. If GRP__NOID is supplied, a new group is created and its identifier
returned.

STATUS = INTEGER (Given and Returned)
The global status.

33 ARD_WCS 33

ARD_WCS
Specify WCS information to be used in future calls to ARD_WORK

Description:
This routine can be used to specify the coordinate systems which can be used in subsequent calls to
ARD_WORK. ARD descriptions passed to subsequent calls to ARD_WORK can include positions
in any of the Frames included in the supplied FrameSet. The ARD description should include
suitable COFRAME or WCS statements to indicate which coordinate system is being used. If
no COFRAME or WCS statements are included in the ARD description, then it is assumed that
positions within the ARD description are given in the current Frame of the supplied FrameSet,
IWCS.
If this routine is not called prior to ARD_WORK (or if it is called with IWCS set AST__NULL), then
the ARD description must provide (either directly or through a WCS statement) positions in pixel
coordinates.
The FrameSet pointer supplied is simply stored by this routine. If any changes are subsequently
made to the FrameSet by the calling routine, then these changes will be visible within ARD_WORK.
In particular, if the calling routine annuls the FrameSet pointer, then ARD_WORK will fail.
The supplied FrameSet will be used by all subsequent calls to ARD_WORK until a new FrameSet
is specified by calling ARD_WCS again.

Invocation:
CALL ARD_WCS(IWCS, DOMAIN, STATUS)

Arguments:

IWCS = INTEGER (Given)
An AST pointer to a FrameSet, or AST__NULL.

DOMAIN = CHARACTER ∗ (∗) (Given)
The Domain name corresponding to pixel coordinates within the mask array passed to routine
ARD_WORK. If a blank value is supplied, "PIXEL "will be used. The IWCS FrameSet (if supplied)
must contain a Frame with this Domain. If the supplied string is longer than 40 characters, the
trailing characters are ignored.

STATUS = INTEGER (Given and Returned)
The global status.

34 ARD_WORK 34

ARD_WORK
Convert an ARD description into a pixel mask

Description:
This routine returns an array which contains a positive value for all pixels within the areas specified
by a given ARD description, and zero for all other pixels.

Invocation:
CALL ARD_WORK(IGRP, NDIM, LBND, UBND, TRCOEF, CONCAT, REGVAL, MASK, LBNDI, UBNDI, LBNDE,
UBNDE, STATUS)

Arguments:

IGRP = INTEGER (Given)
A GRP identifier for the group holding the ARD description.

NDIM = INTEGER (Given)
The number of pixel axes in the mask array.

LBND(NDIM) = INTEGER (Given)
The lower pixel index bounds of the mask array.

UBND(NDIM) = INTEGER (Given)
The upper pixel index bounds of the mask array.

TRCOEF(0:NDIM, NDIM) = REAL (Given)
The coefficients of the mapping from application coordinates (i.e. default user coordinates) to
pixel coordinates. If the first element is equal to VAL__BADR, then a unit mapping is used. This
argument is ignored if a call to ARD_WCS has already been made to establish WCS Information.

CONCAT = LOGICAL (Given)
If .TRUE., then an INPUT keyword is inserted at the start of the ARD description so long as the
ARD description does not already contain any INPUT keywords. If .FALSE., the ARD description
is left as supplied.

REGVAL = INTEGER (Given and Returned)
A positive integer to use to represent the first keyword in the ARD description (excluding INPUT
keywords). An error is reported if the value 1 is supplied. If the supplied value is negative or zero,
then the value used is one greater than the maximum pixel value supplied in MASK (except that
2 is used if the maximum mask value is 1 or less). On return, REGVAL holds one more than the
largest value used to represent any of the keywords in the ARD description.

MASK(∗) = INTEGER (Given and Returned)
The mask array. Any negative values in the supplied array are treated as zero.

LBNDI(NDIM) = INTEGER (Returned)
The lower pixel bounds of a box which encompasses all internal pixels. If there are no internal
pixels in the returned mask, each lower bound is returned greater than the corresponding upper
bound.

UBNDI(NDIM) = INTEGER (Returned)
The upper pixel bounds of a box which encompasses all internal pixels.

LBNDE(NDIM) = INTEGER (Returned)
The lower pixel bounds of a box which encompasses all external pixels. If there are no external
pixels in the returned mask, each lower bound is returned greater than the corresponding upper
bound.

35 ARD_WORK 35

UBNDE(NDIM) = INTEGER (Returned)
The upper pixel bounds of a box which encompasses all external pixels.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/183.6 —Changes Introduced in Version 2.2 36

C Acknowledgements

The current ARD system arose out of previous system produced by Peter Draper. I am grateful
to the following people for useful suggestions: Peter Draper, Malcolm Currie, Richard Saxton,
Rodney Warren-Smith and Grant Privet.

D Changes Introduced in Version 2.0

• Routines ARD_PLOT has been added to allow border of an ARD description to be drawn
on a graphics device.

• Routines ARD_WCS and ARD_PTWCS have been added to support the use of WCS within
ARD description.

• The WCS and COFRAME statements have been introduced.

• The COEFFS, STRETCH, OFFSET, SCALE and TWIST statements have been deprecated in
favour of the new WCS and COFRAME statements.

E Changes Introduced in Version 2.1

• The COFRAME statement has been extended to include specific support for TimeFrame,
SpecFrame and DSBSpecFrame co-ordinate systems.

• The user coordinate system used to describe positions and shapes within an ARD expres-
sion can now refer to a sub-space of the axes defined in the application WCS FrameSet.
For instance, if the application is an (RA,Dec,freq) cube, an ARD expression can be used
that refers only to the freq axis, in which case the same frequency region will be masked in
all (ra,dec) planes.

F Changes Introduced in Version 2.2

• A new routine ARD_GTWCS has been added that returns a FrameSet connecting PIXEL
coordinates and user coordinates within a specified ARD description.

	Introduction
	Some Example ARD Descriptions
	An Example ARD Application
	Supplying ARD Descriptions to an Application

	ARD Description Syntax
	Restrictions on the Order of Fields
	Group Expression Control Characters
	Use of GRP Modification Elements

	Interpretation of ARD Descriptions
	Values within the Pixel Mask
	Background Pixels
	Assignment of Keyword Values
	Pixels Included in Several Regions

	Supplying an Initial Pixel Mask
	Bounding Boxes

	Coordinate Systems
	World Coordinate Systems in ARD Version 2
	Coordinate Handling in ARD Prior to Version 2
	Application Coordinates
	User Coordinates

	Keywords
	Operators
	Statements
	Compiling and Linking
	Alphabetical List of Routines
	Routine Descriptions
	ARD_GROUP
	ARD_GRPEX
	ARD_GTWCS
	ARD_PLOT
	ARD_PTWCS
	ARD_WCS
	ARD_WORK

	Acknowledgements
	Changes Introduced in Version 2.0
	Changes Introduced in Version 2.1
	Changes Introduced in Version 2.2

