PDA_CURFIT

Smooth spline approximation. Knots can be given or determined by the routine.

Origin

DIERCKX / NETLIB
        subroutine pda_curfit(iopt,m,x,y,w,xb,xe,k,s,nest,n,t,c,fp,
       * wrk,lwrk,iwrk,ier)
  
  
    given the set of data points (x(i),y(i)) and the set of positive
    numbers w(i),i=1,2,...,m,subroutine pda_curfit determines a smooth spline
    approximation of degree k on the interval xb <= x <= xe.
    if iopt=-1 pda_curfit calculates the weighted least-squares spline
    according to a given set of knots.
    if iopt>=0 the number of knots of the spline s(x) and the position
    t(j),j=1,2,...,n is chosen automatically by the routine. the smooth-
    ness of s(x) is then achieved by minimalizing the discontinuity
    jumps of the k-th derivative of s(x) at the knots t(j),j=k+2,k+3,...,
    n-k-1. the amount of smoothness is determined by the condition that
    f(p)=sum((w(i)*(y(i)-s(x(i))))**2) be <= s, with s a given non-
    negative constant, called the smoothing factor.
    the fit s(x) is given in the b-spline representation (b-spline coef-
    ficients c(j),j=1,2,...,n-k-1) and can be evaluated by means of
    subroutine pda_splev.
  
    calling sequence:
       call pda_curfit(iopt,m,x,y,w,xb,xe,k,s,nest,n,t,c,fp,wrk,
      * lwrk,iwrk,ier)
  
    parameters:
     iopt  : integer flag. on entry iopt must specify whether a weighted
             least-squares spline (iopt=-1) or a smoothing spline (iopt=
             0 or 1) must be determined. if iopt=0 the routine will start
             with an initial set of knots t(i)=xb, t(i+k+1)=xe, i=1,2,...
             k+1. if iopt=1 the routine will continue with the knots
             found at the last call of the routine.
             attention: a call with iopt=1 must always be immediately
             preceded by another call with iopt=1 or iopt=0.
             unchanged on exit.
     m     : integer. on entry m must specify the number of data points.
             m > k. unchanged on exit.
     x     : real array of dimension at least (m). before entry, x(i)
             must be set to the i-th value of the independent variable x,
             for i=1,2,...,m. these values must be supplied in strictly
             ascending order. unchanged on exit.
     y     : real array of dimension at least (m). before entry, y(i)
             must be set to the i-th value of the dependent variable y,
             for i=1,2,...,m. unchanged on exit.
     w     : real array of dimension at least (m). before entry, w(i)
             must be set to the i-th value in the set of weights. the
             w(i) must be strictly positive. unchanged on exit.
             see also further comments.
     xb,xe : real values. on entry xb and xe must specify the boundaries
             of the approximation interval. xb<=x(1), xe>=x(m).
             unchanged on exit.
     k     : integer. on entry k must specify the degree of the spline.
             1<=k<=5. it is recommended to use cubic splines (k=3).
             the user is strongly dissuaded from choosing k even,together
             with a small s-value. unchanged on exit.
     s     : real.on entry (in case iopt>=0) s must specify the smoothing
             factor. s >=0. unchanged on exit.
             for advice on the choice of s see further comments.
     nest  : integer. on entry nest must contain an over-estimate of the
             total number of knots of the spline returned, to indicate
             the storage space available to the routine. nest >=2*k+2.
             in most practical situation nest=m/2 will be sufficient.
             always large enough is  nest=m+k+1, the number of knots
             needed for interpolation (s=0). unchanged on exit.
     n     : integer.
             unless ier =10 (in case iopt >=0), n will contain the
             total number of knots of the spline approximation returned.
             if the computation mode iopt=1 is used this value of n
             should be left unchanged between subsequent calls.
             in case iopt=-1, the value of n must be specified on entry.
     t     : real array of dimension at least (nest).
             on successful exit, this array will contain the knots of the
             spline,i.e. the position of the interior knots t(k+2),t(k+3)
             ...,t(n-k-1) as well as the position of the additional knots
             t(1)=t(2)=...=t(k+1)=xb and t(n-k)=...=t(n)=xe needed for
             the b-spline representation.
             if the computation mode iopt=1 is used, the values of t(1),
             t(2),...,t(n) should be left unchanged between subsequent
             calls. if the computation mode iopt=-1 is used, the values
             t(k+2),...,t(n-k-1) must be supplied by the user, before
             entry. see also the restrictions (ier=10).
     c     : real array of dimension at least (nest).
             on successful exit, this array will contain the coefficients
             c(1),c(2),..,c(n-k-1) in the b-spline representation of s(x)
     fp    : real. unless ier=10, fp contains the weighted sum of
             squared residuals of the spline approximation returned.
     wrk   : real array of dimension at least (m*(k+1)+nest*(7+3*k)).
             used as working space. if the computation mode iopt=1 is
             used, the values wrk(1),...,wrk(n) should be left unchanged
             between subsequent calls.
     lwrk  : integer. on entry,lwrk must specify the actual dimension of
             the array wrk as declared in the calling (sub)program.lwrk
             must not be too small (see wrk). unchanged on exit.
     iwrk  : integer array of dimension at least (nest).
             used as working space. if the computation mode iopt=1 is
             used,the values iwrk(1),...,iwrk(n) should be left unchanged
             between subsequent calls.
     ier   : integer. unless the routine detects an error, ier contains a
             non-positive value on exit, i.e.
      ier=0  : normal return. the spline returned has a residual sum of
               squares fp such that abs(fp-s)/s <= tol with tol a relat-
               ive tolerance set to 0.001 by the program.
      ier=-1 : normal return. the spline returned is an interpolating
               spline (fp=0).
      ier=-2 : normal return. the spline returned is the weighted least-
               squares polynomial of degree k. in this extreme case fp
               gives the upper bound fp0 for the smoothing factor s.
      ier=1  : error. the required storage space exceeds the available
               storage space, as specified by the parameter nest.
               probably causes : nest too small. if nest is already
               large (say nest > m/2), it may also indicate that s is
               too small
               the approximation returned is the weighted least-squares
               spline according to the knots t(1),t(2),...,t(n). (n=nest)
               the parameter fp gives the corresponding weighted sum of
               squared residuals (fp>s).
      ier=2  : error. a theoretically impossible result was found during
               the iteration process for finding a smoothing spline with
               fp = s. probably causes : s too small.
               there is an approximation returned but the corresponding
               weighted sum of squared residuals does not satisfy the
               condition abs(fp-s)/s < tol.
      ier=3  : error. the maximal number of iterations maxit (set to 20
               by the program) allowed for finding a smoothing spline
               with fp=s has been reached. probably causes : s too small
               there is an approximation returned but the corresponding
               weighted sum of squared residuals does not satisfy the
               condition abs(fp-s)/s < tol.
      ier=10 : error. on entry, the input data are controlled on validity
               the following restrictions must be satisfied.
               -1<=iopt<=1, 1<=k<=5, m>k, nest>2*k+2, w(i)>0,i=1,2,...,m
               xb<=x(1)<x(2)<...<x(m)<=xe, lwrk>=(k+1)*m+nest*(7+3*k)
               if iopt=-1: 2*k+2<=n<=min(nest,m+k+1)
                           xb<t(k+2)<t(k+3)<...<t(n-k-1)<xe
                         the schoenberg-whitney conditions, i.e. there
                         must be a subset of data points xx(j) such that
                           t(j) < xx(j) < t(j+k+1), j=1,2,...,n-k-1
               if iopt>=0: s>=0
                           if s=0 : nest >= m+k+1
               if one of these conditions is found to be violated,control
               is immediately repassed to the calling program. in that
               case there is no approximation returned.
  
    further comments:
     by means of the parameter s, the user can control the tradeoff
     between closeness of fit and smoothness of fit of the approximation.
     if s is too large, the spline will be too smooth and signal will be
     lost ; if s is too small the spline will pick up too much noise. in
     the extreme cases the program will return an interpolating spline if
     s=0 and the weighted least-squares polynomial of degree k if s is
     very large. between these extremes, a properly chosen s will result
     in a good compromise between closeness of fit and smoothness of fit.
     to decide whether an approximation, corresponding to a certain s is
     satisfactory the user is highly recommended to inspect the fits
     graphically.
     recommended values for s depend on the weights w(i). if these are
     taken as 1/d(i) with d(i) an estimate of the standard deviation of
     y(i), a good s-value should be found in the range (m-sqrt(2*m),m+
     sqrt(2*m)). if nothing is known about the statistical error in y(i)
     each w(i) can be set equal to one and s determined by trial and
     error, taking account of the comments above. the best is then to
     start with a very large value of s ( to determine the least-squares
     polynomial and the corresponding upper bound fp0 for s) and then to
     progressively decrease the value of s ( say by a factor 10 in the
     beginning, i.e. s=fp0/10, fp0/100,...and more carefully as the
     approximation shows more detail) to obtain closer fits.
     to economize the search for a good s-value the program provides with
     different modes of computation. at the first call of the routine, or
     whenever he wants to restart with the initial set of knots the user
     must set iopt=0.
     if iopt=1 the program will continue with the set of knots found at
     the last call of the routine. this will save a lot of computation
     time if pda_curfit is called repeatedly for different values of s.
     the number of knots of the spline returned and their location will
     depend on the value of s and on the complexity of the shape of the
     function underlying the data. but, if the computation mode iopt=1
     is used, the knots returned may also depend on the s-values at
     previous calls (if these were smaller). therefore, if after a number
     of trials with different s-values and iopt=1, the user can finally
     accept a fit as satisfactory, it may be worthwhile for him to call
     pda_curfit once more with the selected value for s but now with iopt=0.
     indeed, pda_curfit may then return an approximation of the same quality
     of fit but with fewer knots and therefore better if data reduction
     is also an important objective for the user.
  
    other subroutines required:
      pda_fpback,pda_fpbspl,pda_fpchec,pda_fpcurf,pda_fpdisc,
      pda_fpgivs,pda_fpknot,pda_fprati,pda_fprota
  
    references:
     dierckx p. : an algorithm for smoothing, differentiation and integ-
                  ration of experimental data using spline functions,
                  j.comp.appl.maths 1 (1975) 165-184.
     dierckx p. : a fast algorithm for smoothing data on a rectangular
                  grid while using spline functions, siam j.numer.anal.
                  19 (1982) 1286-1304.
     dierckx p. : an improved algorithm for curve fitting with spline
                  functions, report tw54, dept. computer science,k.u.
                  leuven, 1981.
     dierckx p. : curve and surface fitting with splines, monographs on
                  numerical analysis, oxford university press, 1993.
  
    author:
      p.dierckx
      dept. computer science, k.u. leuven
      celestijnenlaan 200a, b-3001 heverlee, belgium.
      e-mail : Paul.Dierckx@cs.kuleuven.ac.be
  
    creation date : may 1979
    latest update : march 1987