SUN/202.2

Starlink Project
Starlink User Note 202.2

M.]. Bly
19 February 1998

Starlink Subroutine Libraries

A Guide for Program Development and
Linking

SUN/202.2 —Abstract ii

Abstract

This note gives a general overview of the methods available for using Starlink Infrastructure
subroutine libraries with applications. There is an outline of how to use the include files for
a subroutine library, and a guide to the methods available for linking with the subroutine
libraries.

iii SUN/202.2—Contents

Contents

I__Introduction| 1

2 Organisation| 1

{3 Program Development — INCLUDE files| 1

@ Library Link Scripts| 2
41 Background| 2
4.2 Compiling and LinkingonLinux| 3
4.3 StaticLinking| 3
44 DynamicLinking| 0 o o o 4

1 SUN/202.2 —Program Development — INCLUDE files

1 Introduction

This note gives a general overview of the methods available for using Starlink Infrastructure
subroutine libraries with applications. There is an outline of how to use the include files for a
subroutine library, and a guide to the methods available for linking with the subroutine libraries.

All the Starlink Infrastructure libraries are organised in the same way, so it is possible to give
a general guide to the principles involved. However, some libraries do differ, and for precise
details of how to use a particular subroutine library, you should consult the Starlink document
for that library.

2 Organisation

Suppose you wanted to use an Infrastructure library BLY (there isn’t one — this is an example!).
In the Starlink installation, the BLY subroutine library has several components:

(1) alibrary file 1ibbly.a

(2) ashareable library 1ibbly.so

(3) adevelopment script bly_dev

(4) Fortran INCLUDE files bly_err and bly_par

(5) ADAM!|versions of the library and shareable library 1ibbly_adam.a and 1ibbly_adam.so

(6) link scripts bly_link and bly_link_adam
Most of the Infrastructure libraries have all these components, but some have more INCLUDE
files, and some do not have shareable libraries. Those that do not have any INCLUDE files will

lack a development script. A few libraries do not need separate ADAM versions, so will not
have libraries for use with ADAM.

It is best to consult the documentation for a particular library to see what INCLUDE files and
libraries are available.

The components may all be used as part of the development and linking of programs that use
the Starlink Infrastructure subroutine libraries.

3 Program Development — INCLUDE files

If the Infrastructure library you want to use has INCLUDE files, you need to be able to reference
them from your source code.

1See SG/4 ‘ADAM - The Starlink Software Environment’

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_

SUN/202.2 —Library Link Scripts 2

You might wish to use the full PATH name for the INCLUDE file, e.g., /star/include/bly_par.
This is fine, and works, but is not portable, and could lead to problems if you want to use a
development version of the library.

The recommended way to use the INCLUDE files for a particular library is to create links in your
development directory to the INCLUDE files, and reference the links in your source code.

A library ‘dev’ script will create the links for you in your working directory. The links are
UPPER-CASE, and it is these upper-case links you reference in the source code, thus:

PROGRAM MYPROG

demonstrate use of include file

* ¥ ¥

INCLUDE ’BLY_PAR’

END
To generate the links, issue the development command:
% bly_dev
This will create links to ALL the INCLUDE files for the BLY library:

BLY_ERR -> /star/include/bly_err
BLY_PAR -> /star/include/bly_par

To remove the links, issue the command again with the remove option:

% bly_dev remove

You should keep the links in place while developing your program. If you want to move
development directories, simply remove the links and create new ones in the new directory.

The Starlink software building system uses the soft link strategy in its makefiles, though the
makefiles generate the links themselves. The links may easily be changed to pick up a develop-
ment version of a library, without having to edit source code.

4 Library Link Scripts

4.1 Background

The Starlink Infrastructure libraries depend upon one another in a hierarchy of dependencies
that is quite complicated — dependencies that mean one library may need several others at link
time to get a full resolution of all the subroutine calls.

3 SUN/202.2 —Library Link Scripts

So that users do not have to remember the dependencies of a particular library, each library
has a link script that contains references to its own libraries, and all the other libraries that it
depends upon. Most of the other references will be to the link scripts for the other libraries.

This in itself presents a problem — the nested links scripts can generate a long list of libraries,
often with each library occurring more than once.

To avoid this, each link script has an internal mechanism that trims unnecessary occurrences of
a library out of the list.

The link script writes a list of libraries to its standard output, so to get the list into your compile
or link command, you need to run the script as part of the compile or link command. To do this
you just back-quote the link script name thus: ‘bly_link*.

The result is that when using the link scripts, you do not have to worry about remembering
which libraries that the one you need depends upon, and the linker is provided with a simple
list of dependant libraries in the correct order to resolve all external references in your source
code.

4.2 Compiling and Linking on Linux

This section applies to Linux systems only.

The Starlink libraries on Linux systems are compiled so that they are compatible with the GNU
gcc/gT77 system and the £2c compiler. To do this, the ¢ -fno-second-underscore’ compiler flag
is used.

This means that to compile and link code with the Starlink libraries on Linux systems, you must
use the ‘-fno-second-underscore’ flag for the g77 compiler/linker, thus:

% g77 -0 -fno-second-underscore myprog.f -o myprog

4.3 Static Linking

Your application depends upon the BLY library, so when you link (or compile and link — it does
not matter), you need to tell it to link with the 1ibbly.a library.

In a one-stage compile and link, you would use the following:
% £77 -0 myprog.f -o myprog -L/star/lib ‘bly_link*
In a two stage compile and link, you would use the following:

% £77 -0 -c myprog.f
% £77 -0 myprog.o -o myprog -L/star/1lib ‘bly_link*

To use the ADAM versions of the library, if you are developing an ADAM application, use the
following:

% alink myprog.f -o myprog -L/star/lib ‘bly_link_adam®

SUN/202.2 —Library Link Scripts 4

or:

% £77 -0 -c myprog.f
% alink myprog.o -o myprog -L/star/lib ‘bly_link_adam®

You should also include in the link phase any other library link scripts for those libraries that
your application calls directly, and any libraries of your own e.g.:

% £77 -0 myprog.f -o myprog ./libmine.a -L/star/lib \
‘bly_link‘ ‘other_lib_link‘¢ -1lmine2

where ‘other_lib_link‘ causes linking with another library using the link script system, and
-1mine2 causes a link with a library 1ibmine2.a.

4.4 Dynamic Linking

If you use the link scripts and the -L/star/1ib tag in your link chain, your executable will
be created using the ordinary libraries available in /star/1ib (unless the linker discovers a
shareable version of a library in /star/1ib which it will use by default).

A statically linked binary includes all the necessary object code. This can create very large
binaries, but at at load time, startup is quite fast, because the runtime linker only has to resolve
the system library references.

In contrast, dynamically linked executables are much smaller — the linker just notes in the binary
which shareable libraries were used to resolve which references, and leaves it at that.

When the binary is loaded for execution, the runtime linker looks for the shared libraries for
which it finds references in the binary, and then does a ‘fixup” to resolve all the external references
using the libraries. For executables with a large list of shared libraries, this process can take a
considerable time. What you save in link time during development and in disk space, you may
pay for when waiting for the binary to load.

Since your binary will need the shared libraries at install time, your binary will only be portable
to systems containing the Starlink shared library set.

Starlink builds its applications statically linked against the Infrastructure libraries, and dynam-
ically linked with the system libraries. The alink command for ADAM applications triggers
static linking by default.

If you want to take advantage of the speed of dynamic linking and the disk space savings, you
can use the shared libraries in /star/share to link with:

% £77 -0 myprog.f -L/star/share ‘bly_link¢
There are some caveats (apart from portability already mentioned):

(1) This facility is only available on Intel Linux and SPARC Solaris 2 machines — shareable
Infrastructure libraries are not provided for DEC Alpha Digital Unix machines.

SUN/202.2 —Library Link Scripts

(2) At run time, the loader needs to find the shared libraries. On a Starlink system your
LD_LIBRARY_PATH will have been set to enable this to occur (if you use the Starlink login
files). If not, you should add /star/share to your LD_LIBRARY_PATH.

(3) Some Infrastructure libraries do not have shared versions because it is not possible to
generate them, even on Intel Linux and SPARC Solaris 2 systems.

	Introduction
	Organisation
	Program Development – INCLUDE files
	Library Link Scripts
	Background
	Compiling and Linking on Linux
	Static Linking
	Dynamic Linking

