
SUN/209.11

Starlink Project
Starlink User Note 209.11

P.M. Allan
A.J. Chipperfield

R.F. Warren-Smith
P.W. Draper

D.S. Berry

12 May 2011

CNF and F77
Mixed Language Programming –

FORTRAN and C
Version 4.3

Programmer’s Manual

SUN/209.11 —Abstract ii

Abstract

The CNF package comprises two sets of software which ease the task of writing portable pro-
grams in a mixture of FORTRAN and C. F77 is a set of C macros for handling the FORTRAN/C
subroutine linkage in a portable way, and CNF is a set of functions to handle the difference
between FORTRAN and C character strings, logical values and pointers to dynamically allocated
memory.

iii SUN/209.11—Contents

Contents

1 How to read this document 1

2 Cookbook 1
2.1 Calling C from FORTRAN . 1
2.2 Calling FORTRAN from C . 3
2.3 Building the Program . 5

3 Representation of Data 5
3.1 Numeric Types . 5
3.2 Characters . 6
3.3 Logical Types . 6
3.4 Pointer Types . 6
3.5 Arrays . 7
3.6 Same Language – Different Compiler . 8

4 Communication Between Routines 8
4.1 Arguments . 8
4.2 Function Values . 9
4.3 Global Data . 9

5 More on Calling C from FORTRAN 10
5.1 General Description . 13
5.2 Declaration of a Function . 13
5.3 Declaration of Arguments . 14
5.4 Arguments – and Pointers to Them . 15
5.5 Type Specifiers . 16
5.6 Logical Values . 17
5.7 External Names . 17
5.8 Common Blocks . 17

6 Converting Between FORTRAN and C Strings 18
6.1 The CNF Functions . 18
6.2 Handling Byte Strings (HDS Locators) . 19
6.3 Using Dynamic FORTRAN Character Strings . 19

7 Pointers 21
7.1 Pointer Registration and Conversion . 21
7.2 Allocating Exportable Dynamic Memory . 22
7.3 Accessing Dynamic Memory from C and FORTRAN 23
7.4 Registering Your Own Pointers . 24

8 More on Calling FORTRAN from C 24
8.1 Thread Safety . 27

9 More on Arrays 27
9.1 CHARACTER and LOGICAL Arrays . 28
9.2 Arrays of pointer to char . 31
9.3 POINTER Arrays . 31

SUN/209.11 —Contents iv

10 The IMPORT and EXPORT Macros 32

11 Subroutines and Functions as Arguments 34

12 Other Approaches to Mixed Language Programming 36

13 Compiling and Linking 37

A Implementation Specific Details 39
A.1 Sun . 39

A.1.1 General . 39
A.1.2 Data Types . 39
A.1.3 External Names . 39
A.1.4 Arguments . 40
A.1.5 Function Values . 43
A.1.6 Global Data . 44

A.2 DEC Unix . 45
A.2.1 General . 45
A.2.2 LOGICAL Values . 45
A.2.3 POINTERS on Alphas . 45

A.3 VAX/VMS . 46
A.3.1 General . 46
A.3.2 Data Types . 46
A.3.3 Arguments . 47
A.3.4 Function Values . 50
A.3.5 Global Data . 51

A.4 Other Operating Systems . 52

B Rationale for Mixed Language Programming 53

C Alphabetical List of F77 Macros 55

D Classified List of F77 Macros 57
D.1 Declaration of a C Function . 57
D.2 Arguments of a C Function . 58
D.3 Generate Pointers to Arguments . 58
D.4 Data Type Macros . 58
D.5 Logical Value Macros . 59
D.6 External Name Macro . 59
D.7 Common Block Macros . 59
D.8 Declaring Variables for Passing to a FORTRAN Routine 59
D.9 Importing and Exporting Arguments . 60
D.10 Passing Arguments to a FORTRAN Routine . 61
D.11 Thread Safety . 61

E Full Description of F77 Macros 61
E.1 Generic Descriptions . 63

DECLARE_type . 64
DECLARE_type_ARRAY . 65

v SUN/209.11 —Contents

DECLARE_type_ARRAY_DYN . 66
F77_ASSOC_type_ARRAY . 67
F77_CREATE_type_ARRAY . 68
F77_EXPORT_type . 69
F77_EXPORT_type_ARRAY . 70
F77_FREE_type . 71
F77_IMPORT_type . 72
F77_IMPORT_type_ARRAY . 73
F77_type_FUNCTION . 74
GENPTR_type . 75
GENPTR_type_ARRAY . 76
GENPTR_type_FUNCTION . 77
type . 78
type_ARG . 79
type_ARRAY . 80
type_ARRAY_ARG . 81
type_FUNCTION . 82
type_FUNCTION_ARG . 83

E.2 Specific Descriptions . 84
CHARACTER . 85
CHARACTER_ARG . 86
CHARACTER_ARRAY . 87
CHARACTER_ARRAY_ARG . 88
CHARACTER_RETURN_ARG . 89
CHARACTER_RETURN_VALUE . 90
DECLARE_CHARACTER . 91
DECLARE_CHARACTER_ARRAY . 92
DECLARE_CHARACTER_DYN . 93
F77_BLANK_COMMON . 94
F77_BYTE_TYPE . 95
F77_CALL . 96
F77_CHARACTER_ARG_TYPE . 97
F77_CHARACTER_ARRAY_ARG_TYPE . 98
F77_CHARACTER_TYPE . 99
F77_CREATE_CHARACTER . 100
F77_CREATE_CHARACTER_ARRAY . 101
F77_CREATE_CHARACTER_ARRAY_M . 102
F77_CREATE_LOGICAL_ARRAY_M . 103
F77_DOUBLE_TYPE . 104
F77_EXPORT_CHARACTER . 105
F77_EXPORT_CHARACTER_ARRAY . 106
F77_EXPORT_CHARACTER_ARRAY_P . 107
F77_EXTERNAL_NAME . 108
F77_FALSE . 109
F77_IMPORT_CHARACTER . 110
F77_IMPORT_CHARACTER_ARRAY . 111
F77_IMPORT_CHARACTER_ARRAY_P . 112
F77_INTEGER_TYPE . 113

SUN/209.11 —Contents vi

F77_ISFALSE . 114
F77_LOCK . 115
F77_ISTRUE . 116
F77_LOGICAL_TYPE . 117
F77_NAMED_COMMON . 118
F77_POINTER_TYPE . 119
F77_REAL_TYPE . 120
F77_SUBROUTINE . 121
F77_TRUE . 122
F77_UBYTE_TYPE . 123
F77_UWORD_TYPE . 124
F77_WORD_TYPE . 125
GENPTR_CHARACTER . 126
GENPTR_CHARACTER_ARRAY . 127
GENPTR_SUBROUTINE . 128
SUBROUTINE . 129
SUBROUTINE_ARG . 130
TRAIL . 131
TRAIL_ARG . 132

F Classified List of CNF Functions 133
F.1 Import a FORTRAN String to C . 133
F.2 Export a C String to FORTRAN . 133
F.3 String Lengths . 133
F.4 Miscellaneous String Handling . 134
F.5 LOGICAL Array Handling . 134
F.6 Memory and Pointer Handling . 134

G CNF C Routine Descriptions 135
cnfCalloc . 136
cnfCopyf . 137
cnfCptr . 138
cnfCreat . 139
cnfCref . 140
cnfCrefa . 141
cnfCreib . 142
cnfCreim . 143
cnfCrela . 144
cnfExpch . 145
cnfExpla . 146
cnfExpn . 147
cnfExprt . 148
cnfExprta . 149
cnfExprtap . 150
cnfFptr . 151
cnfFree . 152
cnfFreef . 153
cnfImpb . 154

vii SUN/209.11 —Contents

cnfImpbn . 155
cnfImpch . 156
cnfImpla . 157
cnfImpn . 158
cnfImprt . 159
cnfImprta . 160
cnfImprtap . 161
cnfLenc . 162
cnfLenf . 163
cnfMalloc . 164
cnfRegp . 165
cnfUregp . 166

H CNF FORTRAN Function Description 167
CNF_PVAL . 168
CNF_CVAL . 170

I References 171

1 SUN/209.11 —Cookbook

1 How to read this document

This document tells a programmer how to mix program segments written in FORTRAN and
C in a portable way. It provides information on several levels from a quick “how to get started”
cookbook, down to machine-specific details. The cookbook will tell you how to write programs,
but without much of the background information of what is really going on. After you have
tried a few programs, you will probably want to read the rest of the document.

Before you embark upon mixed language programming, it may be worth reading the Rationale
for mixed language programming in Appendix B which discusses the problems and offers some
alternatives.

The current system is supported for Sun systems running Solaris, DEC Alphas running OSF/1,
and PC’s running Linux but in the past has run successfully on SunOS, Ultrix and VAX/VMS.
Reference is made to the VAX/VMS system in this document as it is in many respects very
different from the Unix systems and so provides a useful comparison. You should consult the
VMS Starlink documentation set about the VAX/VMS version however, as not all the facilities
described here are available in it, even if a VAX/VMS example is given.

Full descriptions of the C macros and functions involved are

provided in appendices E and G. The macro names in the text will often include the legend
type to indicate a generic macro name. In this case, type may normally be one of INTEGER,
REAL, DOUBLE, LOGICAL or CHARACTER. Types BYTE and WORD and their unsigned versions UBYTE
and UWORD are also available but do not correspond to standard FORTRAN types so should be
avoided. type may also be POINTER – again this is not a standard FORTRAN type but it is more
commonly used in Starlink software (see Section 7).

For consistency with other Starlink libraries the CNF function names were changed (at Version
4.0) from the form cnf_name to the form cnfName. The old names are still permitted via macros
defined in the f77.h header file.

There is also a section (13) on how to compile and link the programs.

2 Cookbook

This section introduces mixed language programming. It skips over many of the details and
concentrates on how to get programs going. For a fuller explanation of mixed language pro-
gramming, you should read the rest of this document.

2.1 Calling C from FORTRAN

Why would you want to call a C function from a FORTRAN program? Typically this will be to
do something in the C function that cannot be done from FORTRAN, at least not in the way that
you would like. On account of this, realistic examples of calling C from FORTRAN can be rather
involved. After all, you can do most simple things from FORTRAN itself. So as not to obscure
how to go about writing mixed language programs with complex C functions, the examples in

SUN/209.11 —Cookbook 2

this section concentrate on what to do when mixing C and FORTRAN rather than on providing
realistic examples of this.

Here is an example of a FORTRAN program that calls a C function which sets various arguments.

Example 1 – Calling C from FORTRAN.

FORTRAN program:

PROGRAM COOK1
INTEGER I,J
REAL A,B
CHARACTER*(80) LINE
LOGICAL X

I = 1
A = 5.0
X = .FALSE.
LINE = ’ ’
CALL SILLY1(A, B, I, J, LINE, LEN(LINE), X)
PRINT *, LINE

END

C function:

#include "f77.h"

F77_SUBROUTINE(silly1)(REAL(a), REAL(b), INTEGER(i), INTEGER(j),
CHARACTER(line), INTEGER(line_l), LOGICAL(x) TRAIL(line))

{
GENPTR_REAL(a)
GENPTR_REAL(b)
GENPTR_INTEGER(i)
GENPTR_INTEGER(j)
GENPTR_CHARACTER(line)
GENPTR_INTEGER(line_l)
GENPTR_LOGICAL(x)

char str[] = "This is a string";

if(F77_ISTRUE(*x))
{

*b = *a;
*j = *i;

}
else
{

cnfExprt(str, line, *line_l);
}

}

This is a rather silly example, but it does illustrate all of the important points of calling C from
FORTRAN. The FORTRAN program is completely standard. The name of the C function

3 SUN/209.11 —Cookbook

is declared using a macro F77_SUBROUTINE. Do not leave any spaces around the name of the
routine as this can cause problems on some systems. The dummy arguments of the function are
declared using macros named after the FORTRAN type of the actual argument. The only odd
thing is the macro called TRAIL. Each argument of type CHARACTER should have a corresponding
TRAIL added to the end of the argument list. N.B. TRAIL macros must not have a comma in front
of them. All C functions that are to be called from FORTRAN should be declared in a similar
manner.

There then follows a set of GENPTR_type macros; one for each argument of the function. TRAIL
arguments are not counted as being true arguments and so there are no GENPTR statements for
them. Note that there are no semicolons at the end of these lines.

The only other macro used is F77_ISTRUE. This should be used whenever an argument is treated
as a logical value, and takes into account the different ways that FORTRAN and C may interpret
bit patterns as logical values.

Note that all explicit function arguments are pointer arguments. This is necessary if their value
is to be modified in the function. The consequence of this is that scalar arguments must be
referred to by *arg within the function.

FORTRAN and C store character strings in different ways. FORTRAN stores them as fixed-
length, blank-filled strings while C stores them as variable-length, null-terminated strings. If a
C function needs to work with character strings that have been passed from a calling FORTRAN
routine, then the FORTRAN string must be copied into an equivalent local copy. Similarly,
a C function may need to return a string to the calling FORTRAN routine. This is a very
common occurrence, so some “CNF functions” are provided to do this. Essentially they are just
C functions which copy a FORTRAN string to a C string and vice versa. (They are more fully
described in Section 6.1.)

In the above example, the function cnfExprt copies the C string str into the FORTRAN string
line. Function cnfImprt performs the converse operation in “Calling FORTRAN from C”
example in Section 2.2.

2.2 Calling FORTRAN from C

Why would you want to call a FORTRAN subprogram from a C routine? Typically this would
be because you want to use a precompiled library of routines that were written in FORTRAN.
The NAG library is a prime example. This can be bought in a C callable version, but this is not
available on Starlink machines.

To see how to call FORTRAN from C, let us consider the above example, but now with the roles
of FORTRAN and C exchanged.

Example 2 – Calling FORTRAN from C.

C program:

#include "f77.h"

#define FLINE_LENGTH 80

extern F77_SUBROUTINE(silly2)(REAL(a), REAL(b), INTEGER(i), INTEGER(j),

SUN/209.11 —Cookbook 4

CHARACTER(line), INTEGER(line_l), LOGICAL(x) TRAIL(line));

main()
{

DECLARE_INTEGER(i);
DECLARE_INTEGER(j);
DECLARE_INTEGER(fline_l);
DECLARE_REAL(a);
DECLARE_REAL(b);
DECLARE_LOGICAL(x);
DECLARE_CHARACTER(fline,FLINE_LENGTH);

char line[FLINE_LENGTH+1];

fline_l = FLINE_LENGTH;

i = 1;
a = 5.0;
x = F77_FALSE;

F77_CALL(silly2)(REAL_ARG(&a), REAL_ARG(&b), INTEGER_ARG(&i),
INTEGER_ARG(&j), CHARACTER_ARG(fline), INTEGER_ARG(&fline_l),
LOGICAL_ARG(&x) TRAIL_ARG(fline));

cnfImprt(fline, FLINE_LENGTH, line);

printf("%s\n", line);
}

FORTRAN function:

SUBROUTINE SILLY2(A, B, I, J, LINE, LINE_L, X)
REAL A, B
INTEGER I, J
CHARACTER * (*) LINE
INTEGER LINE_L
LOGICAL X

IF(X) THEN
B = A
J = I

ELSE
LINE = ’This is a string’

END IF

END

In the above C main program, the variable fline_l is declared and set equal to the constant
FLINE_LENGTH. At first sight this is unnecessary. However, this is not the case, as we need to
pass the value of FLINE_LENGTH to the subroutine and it is not possible to pass constants to
FORTRAN subroutines. Only variables can be passed.

5 SUN/209.11 —Representation of Data

2.3 Building the Program

The final step is compiling and linking the program.

Suppose, on Unix, the main FORTRAN program is in the file cook1.f and the C function is in
the file silly1.c, then the commands might be:

% cc -c -I/star/include silly1.c
% f77 cook1.f silly1.o -L/star/lib ‘cnf_link‘

Note that the compiling and linking commands are somewhat machine-specific – compiling
the FORTRAN routine first and then trying to link the routine using the cc command generally
does not work. More details are given in Compiling and Linking (see Section 13).

Armed with the above examples, you should be in a position to start experimenting with mixed
language programming. For further information, read on.

3 Representation of Data

Different languages have differing fundamental data types on which they can operate. FOR-
TRAN has the types INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL and CHARACTER. The
only aggregate data type that it supports is the array, although a character variable can store
many characters. C supports the fundamental types int, float, double, char, and void. It also
allows int to be modified by the type specifiers short or long, signed or unsigned, char to be
modified by signed or unsigned and double to be modified by long. However, on any given
machine, some of the short, normal and long types may be represented in the same way. C also
provides a range of pointer types which may, for purposes of interchange with FORTRAN, all
be condensed into the generic pointer type void*. Note that, unlike FORTRAN, a C character
variable can only store a single character. Also unlike FORTRAN, a C character variable is
treated as a type of integer rather than as a separate type. Finally, ANSI C has the type enum, an
enumerated list of values. The aggregate data types are the array, structure and union. New
types can be defined in terms of the basic types by means of a typedef statement.

When writing mixed language programs, it is clearly important to know which FORTRAN types
map on to which C types; in particular, which similar types use the same amount of storage.
This is discussed more fully in the machine dependent sections in appendix A; however, there
are some general points to be considered first.

3.1 Numeric Types

If data are to be passed between routines that have been written in different languages, then it is
important that those languages represent the data in the same way. The FORTRAN standard
makes no statements about how any of the data types should be implemented and there is
almost nothing in the C standard either. For example, if a certain bit pattern was interpreted
as the integer −2 by FORTRAN, yet the same bit pattern was interpreted by C as −1, then
there are going to be serious problems trying to communicate between routines written in
different languages. Fortunately, the hardware on which the program is running provides a

SUN/209.11 —Representation of Data 6

constraint for those data types that are implemented directly in the hardware. For example, all
reasonable computers have instructions for operating on integers and it would be a particularly
perverse compiler writer who chose not to use the hardware representation. Something that
is slightly more likely to be a problem is the way that floating point numbers are represented.
If the hardware supports floating point arithmetic, then you are in the same situation as for
integers and all should be well. However, if the hardware does not support floating point
arithmetic, then there could be problems. Some older PCs do not have floating point hardware,
although modern PCs either support floating point operations directly in hardware, or there is a
recognised way of representing floating point numbers that is generally adhered to. The bottom
line on numerical data types is that it is most unlikely that different languages will represent the
same number in a different manner on the same hardware.

3.2 Characters

When considering character data, things are a bit more complicated in that the hardware does
not impose a meaning on a given bit pattern. It is the operating system that does that. The
character codes that are in common use are the ASCII collating sequence and the EBCDIC
collating sequence. EBCDIC is only used by IBM mainframe and minicomputers (and their
clones), but there are a lot of IBM computers around. (The IBM PC does not use EBCDIC.)
Again it would be rather perverse if, on a given computer, FORTRAN and C used a different
representation of characters, so that is not really worth worrying about. What certainly is worth
paying attention to is the possibility that any given program may be run on several different
computers, some using ASCII characters and some using EBCDIC. That is not a concern that is
particular to mixed language programming though.

An important point about character data is that they are stored differently in FORTRAN and C.
FORTRAN stores character data as a fixed-length string padded with trailing blanks whereas C
stores character data as a variable-length, null-terminated string. The difference is standardized,
so it does not lead to problems with portability, but it is something that will involve extra work
when passing character data between routines written in different languages.

3.3 Logical Types

So far all seems well. However, a place that can certainly cause problems is the representation
of logical values. In principle, it is completely up to the compiler writer to chose how logical
values are represented. What is even worse as far as C is concerned is that there is no logical
type at all! In C, a numerical value of zero represents false and anything else represents true, but
these are numeric data types, not logical types. On a VAX/VMS system, FORTRAN represents a
logical value of false by an integer zero and true by an integer minus one; however, only the
bottom bit is tested, so if an integer value of 2 were to be treated as a logical value, then it would
be taken as false. C, on the other hand, would treat it as true.

3.4 Pointer Types

The main reason for passing pointer information between C and FORTRAN is to pass references
to dynamically allocated memory, which is especially useful given FORTRAN 77’s lack of
dynamic memory allocation. In addition, the referenced memory may contain data values which

7 SUN/209.11 —Representation of Data

are, in effect, also being exchanged and which we must therefore be able to reference from both
languages.

C provides a wide range of pointer types which can be constructed to refer to any other C type.
Each of these pointer types can, at least in principle, have different storage requirements. Indeed,
on some machines and operating systems there are variations in pointer length according to
the type of data being referenced, and even variations in the way bit patterns are interpreted
according to where the referenced data are stored in memory. Fortunately, the more arcane of
these schemes are now regarded as historical anomalies and are unlikely to be met in future.

C provides the generic pointer type void*, to which all pointer types may be cast, and from
which the original pointer may later be recovered by casting back to the original type. Since the
void* type must therefore cater for the “lowest common denominator” of C pointer types, it
is very likely to contain just a simple memory address for the referenced data (or something
equivalent) on all machines. Therefore, exchanging the void* type is the key to interchanging
pointers between C and FORTRAN.

However, FORTRAN 77 does not have a pointer type, and its INTEGER data type must be pressed
into service in order to store pointer values passed from C. Unfortunately, on some platforms, a
C pointer is longer than a FORTRAN INTEGER, which means that there is no suitable standard
(and therefore portable) FORTRAN data type of sufficient length to store an address in memory.
To overcome this limitation, some trickery in required, the upshot of which is that there are
some restrictions on the particular pointer values which may be passed from C to FORTRAN.

In practice, this means that pointer exchange between C and FORTRAN is really only safe
when referring to dynamically allocated memory (and not, for example, when referring to static
memory allocated in C, where you have no control over the address used). It also means that
CNF must provide special facilities for allocating dynamic memory from C which will later be
passed to FORTRAN, and for “registering” the associated pointers. It also provides functions
for converting between the C and FORTRAN representations of these pointers.

3.5 Arrays

Although the representation of a single numerical value is unlikely to cause a problem, the way
that arrays of numbers are stored is different between different languages. One dimensional
arrays are the least problem, but even then there are differences. In C, all arrays subscripts start
at zero, and this cannot be changed. In FORTRAN, subscripts start at one by default, but this
can be modified so that the lower bound of a dimension of an array can be any integer. What
must be remembered is that the array element with the lowest subscript in a FORTRAN array
will map on to the array element with a zero subscript when treated as a C array. This is not a
serious problem as long as you remember it.

Multi-dimensional arrays are a well known problem since FORTRAN stores consecutive array
elements in column-major order (this is specified in the FORTRAN standard) whereas other
languages store them in row-major order. For example, in FORTRAN, the order of elements
in a 2 x 2 array called A are A(1,1), A(2,1), A(1,2), A(2,2), whereas in C this would be
A[0][0], A[0][1], A[1][0], A[1][1]. In practice this is rarely a serious problem as long as
you remember to take account of the reversed order when writing a program. However, when
coupled with the difference in default lower bounds (zero in C, one in FORTRAN) it is a fruitful
source of bugs.

SUN/209.11 —Communication Between Routines 8

There are additional problems with FORTRAN character arrays. This is because C handles a
one dimensional FORTRAN character array as a two dimensional array of type char, i.e. the
FORTRAN statement:

CHARACTER * (NCHAR) NAMES(DIM)

is equivalent to the C statement:

char names[dim][nchar]

3.6 Same Language – Different Compiler

In the preceding sections, reference is often made to “the way that FORTRAN does something”
or “the way that C does something”. However, even different compilers for the same language
can do things in a different way if the standard does not specify how that something should
be done. A reasonable example is that one FORTRAN compiler might represent a true logical
value by the integer 1, whereas another might just as reasonably use −1. This is not just a
hypothetical problem; the FORTRAN for RISC compiler from MIPS and the DEC FORTRAN
for RISC compiler both work on the DECstation and interpret the same number as different
logical values. I shall continue to refer to “the way that FORTRAN does it”, even though it is
more correct to refer to “the way that FORTRAN compiler XYZ implements it”. The distinction
is rarely important, but should be borne in mind.

4 Communication Between Routines

There are three ways of passing data between a program and a subprogram: (i) the argument
list of the subprogram, (ii) the return value of the subprogram if it is a function and (iii) global
variables. The concept of arguments and return values of subprograms are common to many
programming languages including FORTRAN and C. The ways in which global variables are
handled are rather different. In FORTRAN there are common blocks whereas in C there are
external variables or structures. Each of these will be considered in turn.

4.1 Arguments

This is the main method for passing data between a calling program and the called subprogram.
The calling program takes the actual arguments of the call to the subprogram, constructs an
argument list and then passes execution to that routine. The subprogram then uses the values in
the argument list to access the actual arguments. It may pass data back to the calling program
by modifying the data in some or all of the arguments. As far as passing arguments between a
program and a subprogram is concerned, the principal difference between FORTRAN and C is
the method used for passing the arguments.

Note that the above paragraph refers to modifying arguments. On all the machines we support,
the actual contents of the argument list is never modified. What may be modified is the contents

9 SUN/209.11 —Communication Between Routines

of the location pointed to by an element of the argument list. This is not to say that other
computers would not modify the argument list itself.

There are three commonly used methods for passing subprogram arguments: call by value, call
by reference and call by descriptor. Call by value passes the actual value of the argument to the
called routine, call by reference passes a pointer to the value of the argument (i.e. the address of
the argument) and call by descriptor passes a pointer to a structure describing the argument.

Although these are the basic methods of passing arguments, a particular type of argument may
be passed by a combination of these. For example, some compilers use a combination of call by
reference and call by value to pass character arguments. What is common is that all arguments
are passed by exchanging data values. It is how those values are to be interpreted that gives rise
to the different mechanisms.

The FORTRAN standard does not specify how arguments should be passed to subprograms and
indeed different compilers for different machines do use different methods. It is most usual for
numeric data types to be passed by reference since the subprogram may modify the value of the
argument. This is most easily achieved by passing a pointer to the storage location containing
the data value, rather than a copy of the value itself. On the other hand, the C standard explicitly
states that values cannot be returned to the calling routine directly through arguments and so
call by value is most commonly used. It is worth recalling that the argument list of a routine
is simply a sequence of computer words. If these are a list of addresses of data values then
everything is simple. However, suppose that an array was passed by value. This would mean
that the compiler would have to arrange for a copy of the entire array to be placed in the
argument list that was passed to the called subprogram. Consequently, arrays are invariably
passed by reference or by descriptor, never by value.

It may seem tedious to have to think about the actual mechanisms that a compiler uses to
pass data between routines when all you want to do is to get on with your programming.
However, understanding this is the key to mixed language programming. Fortunately the
facilities described in More on Calling C from FORTRAN (Section 5) and More on Calling
FORTRAN from C (Section 8) hide much of this from the programmer.

4.2 Function Values

The second mechanism for passing data between routines is the return value of a function.
FORTRAN makes a distinction between subprograms that return a value (functions) and those
that do not (subroutines), whereas C does not. All C subprograms are functions that return a
value (even the main program), although that value may be void. Since it is simply a value that is
being returned, the mechanisms for returning scalar numeric values tend to be just that – a value
is returned. However, things get more complicated in the case of functions returning things like
character variables. This will be discussed further in appendix A on machine dependencies.

4.3 Global Data

Different languages can have very different ways of dealing with variables that are not local to a
particular routine, but have a more global scope. FORTRAN has common blocks for global data
that are accessed by particular routines. The data values in a common block can be accessed
by different names in different routines, although this is generally considered bad practice. C
functions can access global data by using variables that are not declared in a particular routine,

SUN/209.11 —More on Calling C from FORTRAN 10

but have a scope of all the routines contained in the source file in which the global variables
are defined. If the same variable is needed across several source files, then it can be declared as
extern.

Although these two mechanisms are very different in principle, in practice, computer manufac-
turers tend to implement them in a way such that it is possible to share global data between
routines that have been written in different languages. The details of how this is done are
given in the appendix about specific machines. However, there is an indirect way of accessing
FORTRAN common blocks from C that is also worth considering. The FORTRAN routine that
calls the C function can pass as an argument, the first element of the common block. As long as
FORTRAN passes this argument by reference, then the C function can use this address to access
all of the other elements of the common block. The elements of the common block must be
stored contiguously. Whether this method, or the use of the F77 macros (described in Section 5.8),
achieve a greater degree of portability in this respect is not known at present. On account of
these potential portability problems, you should avoid passing global data between routines
written in different languages, whenever possible.

5 More on Calling C from FORTRAN

As the examples in the appendix on machine specific details show, different computers handle
subroutine interfaces in different ways. This apparently makes it difficult to write portable
programs that are a mixture of FORTRAN and C. However, it is only the C code that differs
and fortunately the differences can be hidden by suitable C macros so that the same code can
be compiled on all types of hardware mentioned in this document. The macros have been
constructed in such a way that they can accommodate other subroutine passing mechanisms;
however, it is not possible to guess all the types of mechanisms that we might come across.

The macros can be used in a C function by including the file f77.h. This file will naturally be
stored in different places on different types of system, even if it is only the syntax of the file
name that is different. It would be a pity if all of the implementation specific details were hidden
away in these macros, only to have to have an implementation specific #include statement in
each C source file. Fortunately there is a way around this problem that is described in Section 13
on compiling and linking.

Let us now consider an example of using the F77 macros to illustrate their use. The following
example generates a banner which consists of some hyphens, followed by some stars and finally
the same number of hyphens again. There are also some blanks between the beginning of the
line and between the hyphens and stars. The work is done in the subroutine BANNER and the
form of the output is governed by the three arguments FIRST, MIDDLE and GAP. For example,
CALL BANNER(LINE, 5, 10, 3) would return with LINE set to the following character string.

----- ********** -----

11 SUN/209.11 —More on Calling C from FORTRAN

Example 3 – Passing arguments between FORTRAN and C.

FORTRAN program:

PROGRAM F1
INTEGER FIRST, MIDDLE, GAP
CHARACTER*(80) LINE

FIRST = 5
MIDDLE = 10
GAP = 3
CALL BANNER(LINE, FIRST, MIDDLE, GAP)
PRINT *, LINE

END

C function:

#include "f77.h"

F77_SUBROUTINE(banner)(CHARACTER(line), INTEGER(first), INTEGER(middle),
INTEGER(gap) TRAIL(line)) {

GENPTR_CHARACTER(line)
GENPTR_INTEGER(first)
GENPTR_INTEGER(middle)
GENPTR_INTEGER(gap)
int i, j; /* Loop counters. */
char *cp; /* Pointer to a character. */

/* Make cp point to the beginning of the string line. */
cp = line;

/* First blanks. */
for(i = 0, j = 0 ; (j < line_length) && (i < *gap) ; i++, j++)

*cp++ = ’ ’;

/* First hyphens. */
for(i = 0 ; (j < line_length) && (i < *first) ; i++, j++)

*cp++ = ’-’;

/* More blanks. */
for(i = 0 ; (j < line_length) && (i < *gap) ; i++, j++)

*cp++ = ’ ’;

/* Middle stars. */
for(i = 0 ; (j < line_length) && (i < *middle) ; i++, j++)

cp++ = ’’;

/* More blanks. */
for(i = 0 ; (j < line_length) && (i < *gap) ; i++, j++)

*cp++ = ’ ’;

/* Last hyphens. */
for(i = 0 ; (j < line_length) && (i < *first) ; i++, j++)

SUN/209.11 —More on Calling C from FORTRAN 12

*cp++ = ’-’;
}

The FORTRAN part of this example is completely standard; it is the C code that need further
explanation. Firstly there is the declaration of the subroutine with the macro F77_SUBROUTINE.
This handles the fact that some computer systems require a trailing underscore to be added to
the name of the C function if it is to be called from FORTRAN. In the same statement there are
the function’s dummy arguments, declared using the macros CHARACTER, INTEGER and TRAIL.
The INTEGER macro declares the appropriate dummy argument to handle an incoming argument
passed from FORTRAN. This will usually be declared to be “pointer to int”. The CHARACTER and
TRAIL macros come in pairs. The CHARACTER macro declares the appropriate argument to handle
the incoming character variable and TRAIL may declare an extra argument to handle those cases
where an extra hidden argument is added to specify the length of a character argument. On
some machines, TRAIL will be null and on account of this there should not be a comma before any
TRAIL macros. When TRAIL is not null, then it will add the comma itself. If there are several
TRAIL macros then there must not be a comma directly in front of any of them.

The next set of macros are the GENPTR_type macros, one for each argument of the FORTRAN
subroutine (TRAIL arguments are not counted as separate arguments for this purpose). These
handle the ways that subprogram arguments may be passed on different machines. They ensure
that a pointer to the argument exists. On most systems, this is exactly what is passed from the
FORTRAN program and so the macros for numeric arguments are null. If a particular system
passed the value of an argument, rather than its address, then these macros would generate the
appropriate pointers.

The CHARACTER, TRAIL and GENPTR_CHARACTER macros have to cope with the different ways
that systems deal with passing character variables. Although the way that these macros are
implemented can be a bit complex, what the programmer sees is essentially simple. For each
character argument, the macros generate a pointer to a character variable and an integer holding
the length of that character variable. The above example will create the variable line of type char
* and variable line_length of type int. If these are available directly as function arguments,
then the macro GENPTR_CHARACTER will be null, otherwise it will generate these two variables
from the arguments. The best way of seeing what is going on is to compile a function with
macro expansion turned on and list the output.

There is an important difference between this example and the one in the cookbook. In this
case, an int variable containing the length of the character argument is generated automatically
whereas in the example in the cookbook the length was passed explicitly. In fact, the int variable
was also generated in the example in the cookbook, but it was not used. It is more portable
to explicitly pass the length of CHARACTER variables and to ignore the automatically generated
length as this will cope with the situation where the length cannot be generated automatically.
No such machines are known to the author at present, but Murphy’s Law would indicate that
the next machine that we desperately need to use will have this problem.

Although the use of these macros does seems a bit strange at first, once any pointers have been
generated, the rest of the code is standard C.

Something that has not yet been considered is whether to write the code in upper or lower
case. All of the examples in this document have the FORTRAN code in upper case and the
C code in lower case, thereby following common practice. Normally it makes no difference
whether code is written in upper case or lower case. Where it does matter is in declaring external

13 SUN/209.11 —More on Calling C from FORTRAN

symbols. External symbols are names of routines and names of common blocks (FORTRAN) or
variables declared extern (C). The linker must be able to recognise that the external symbols in
the FORTRAN routines are the same external symbols in the C functions. On a VMS system,
the VAX C compiler will fold all external symbols to upper case by default, although there is a
compiler option to fold them all to lower case or leave them as written in the source code. The
VAX FORTRAN compiler will generate all external symbols in upper case. On Unix systems,
the FORTRAN compiler will typically fold external names to lower case (and add a trailing
underscore), whereas the C compiler will leave the case unchanged. Consequently, all external
symbols in C functions that might be referenced from FORTRAN should be coded in lower case.

5.1 General Description

Having considered an example of using the macros to write a C function that is to be called
from FORTRAN, let us look at all of the macros in more details. You will notice that some of the
macros are prefixed by F77 while others are not. Those that do not have the F77 prefix are those
that occur in standard places in the source code and so are unlikely to be confused with other
macros. The macros that do have the F77 prefix are those that declare a C function and others
that are less commonly used, and when they are, they can occur anywhere within the body of
the C routine. A full description of each macro is available in appendix E.

The whole ethos of the F77 macros is to try to isolate the FORTRAN/C interface to the beginning
of the C function. Within the body of the C function, the programmer should not need to be
aware of the fact that this function is designed to be called from FORTRAN. It is not possible to
achieve this completely and at the same time retain portability of code, but the intention is there
none the less.

5.2 Declaration of a Function

There are two types of macros involved in declaring a C function that is to be called from
FORTRAN; the function name and the function arguments. If the C function is to be treated as
a FORTRAN subroutine, then it should be declared with the macro F77_SUBROUTINE. This will
declare the C function to be of type void and will generate the correct form of the of the routine
name, handling such things as appending a trailing underscore where required.

If the C function is to be treated as a FORTRAN numerical or logical function, then it should be
declared with one of the macros F77_type _FUNCTION. These macros will declare the function to
be of the appropriate type, e.g. a function declared with F77_INTEGER_FUNCTION is likely to be of
type int.

The declaration of a C function that is to be treated as a FORTRAN character function is more
complex than one that returns a scalar numeric or logical value. The first argument of the
function should be CHARACTER_RETURN_VALUE(return_value), where return_value is a variable
of type “pointer to char”. Although character functions work perfectly well on all current
Starlink hardware, it is one of the more difficult things to guess how other manufacturer might
implement them. Consequently, it is recommended that character functions be avoided where
possible and that a subroutine that returns a character argument be used instead.

SUN/209.11 —More on Calling C from FORTRAN 14

5.3 Declaration of Arguments

Scalar arguments are declared with the macros INTEGER, REAL, DOUBLE, LOGICAL, CHARACTER and
TRAIL. (Or the non-standard BYTE, WORD, UBYTE, UWORD or POINTER.) The macros that declare
numeric and logical arguments take account of the fact that a FORTRAN integer variable may
correspond to a C type of int on one machine, but to long int on another. They also handle
the mechanism that is used to pass the arguments.

Character arguments are more complex as different computers use differing mechanisms for
passing the arguments. To take account of this, for every argument that is declared using the
CHARACTER (or CHARACTER_ARRAY) macro, there should be a corresponding TRAIL macro at the
end of the list of dummy arguments. As mentioned in a preceding example, there should not be a
comma before any TRAIL macros.

C differs from FORTRAN in that it has pointer variables. These are often used to manipulate
arrays, rather than by using array subscripts. The macros that are used to declare array argu-
ments do in fact declare them to be arrays. If programmers wish to manipulate these arrays
by means of pointer arithmetic, then for maximum portability they should declare separate
pointers within the C function that point to the array argument.

Array arguments are declared by one of the macros type _ARRAY. The macros that declare
numeric or logical array arguments declare the arrays to be pointers to type. To enable the
C function to process the array correctly, the dimensions of the array should be passed as
additional arguments.

The F77 macros do not allow you to declare fixed sized dimensions for an array that is a dummy
argument. Normally, it is necessary to pass the dimensions as arguments of the routine anyway,
but there are circumstances where the dimensions of the array will be fixed, e.g. an array might
specify a rotation in space and hence is always 3 x 3. What is gained by declaring the fixed
dimensions of the array is that subscript calculations can be done on arrays of more than one
dimension. Unfortunately, such declarations cannot be made portable as some FORTRAN
systems pass arrays by descriptor. If you really must declare arrays with fixed dimensions, you
can do so as follows:

F77_SUBROUTINE(subname)(F77_INTEGER_TYPE array[3][3])
{

...
elem = array[i][j]
...

}

This example declares the dummy argument to be an INTEGER array of fixed size. Although
the subscript calculation can be performed as the routine knows the size of the array, the sizeof
operator does not return the full size of the array as the complier casts array[3][3] to *array.
All things considered, it is better to have the dimensions of arrays passed as separate arguments
and to do the subscript arithmetic yourself with pointers. Here is an example of initializing an
array of arbitrary size and arbitrary number of dimensions.

15 SUN/209.11 —More on Calling C from FORTRAN

Example 4 – Passing an array of arbitrary size from FORTRAN to C.

FORTRAN program:

PROGRAM ARY

INTEGER NDIMS, DIM1, DIM2, DIM3
PARAMETER(NDIMS = 3, DIM1 = 5, DIM2 = 10, DIM3 = 2)

INTEGER DIMS(NDIMS)
INTEGER A(DIM1, DIM2, DIM3)

DIMS(1) = DIM1
DIMS(2) = DIM2
DIMS(3) = DIM3
CALL INIT(A, NDIMS, DIMS)

END

C function:

#include "f77.h"

F77_SUBROUTINE(init)(INTEGER_ARRAY(a), INTEGER(ndims), INTEGER_ARRAY(dims))
{

GENPTR_INTEGER_ARRAY(a)
GENPTR_INTEGER(ndims)
GENPTR_INTEGER_ARRAY(dims)

int *ptr = &a[0]; /* ptr now points to the first element of a. */
int size = 1; /* Declare and initialize size. */
int i; /* A loop counter. */

/* Find the number of elements in a. */

for(i = 0; i < *ndims ; i++)
size = size * dims[i];

/* Set each element of a to zero. */

for(i = 0 ; i < size ; i++)
*ptr++ = 0;

}

In this example, each element of the array a is accessed via the pointer ptr, which is incremented
each time around the last loop.

5.4 Arguments – and Pointers to Them

When a FORTRAN program calls a subprogram, it is possible for the value of any of its argu-
ments to be altered by that subprogram. In the case of C, a function cannot return modified
values of arguments to the calling routine if what is passed is the value of the argument. If a
C function is to modify one of its argument, then the address must be a pointer to the value

SUN/209.11 —More on Calling C from FORTRAN 16

to be modified rather than the actual value. Consequently in C functions that are designed to
be called from FORTRAN, all function arguments should be treated as though the address of
the actual argument had been passed, not its value. This means that the arguments should be
referenced as *arg from within the C function and not directly as arg. This may seem odd to a
FORTRAN programmer, but is natural to a C programmer.

To ensure that there always exists a pointer to each dummy argument, the first lines of code in
the body of any C function that is to be called from FORTRAN should be GENPTR macros for each
of the function arguments. The macros GENPTR_type always result in there being a C variable
of type “pointer to type” for all non-character variables. For example, GENPTR_INTEGER(first)
ensures that there will be a variable declared as int *first. On all current types of system, this
macro will actually be null since the pointer is available directly as an argument. However, the
macro should be present to guard against future computers working in a different way. For
example, if a particular system passed FORTRAN variables by value rather than by reference,
then this macro would construct the appropriate pointer.

Character arguments are different in that the GENPTR macro ensures that there are two variables
available, one of type “pointer to char” that points to the actual character data, and one of type
int that is the length of the character variable. The name of the variable that holds the length
of the character string is constructed by appending “_length” to the name of the character
variable. For example, if a function is declared to have a dummy argument with the macro
CHARACTER(ch) and a corresponding TRAIL(ch), then after the execution of whatever the macro
GENPTR_CHARACTER(ch) expands into, there will be a “pointer to character” variable called ch
and an integer variable called ch_length. Although the length of a character variable is directly
accessible through the int variable ch_length, it is better to pass the length of the character
variable explicitly if maximum portability is sought. This is because, although it works on
all currently supported platforms, it may not be possible to gain access to the length on some
machines.

It is important to remember that what is available after the execution of what a GENPTR macro
expands into will be a pointer to the dummy argument, not a variable of numeric or character
type. Consequently the body of the code should refer to it as *arg and not as arg . In a long
C function, it may be worth copying scalar arguments into local variables to avoid having
to remember to put the * on each reference to an argument. If the variable is changed in the
function, then it should of course be copied back into the argument at the end of the function.
Alternatively you could define C macros to refer to the pointers, such as

#define STATUS *status

Note that although ANSI C will allow the above as status and STATUS are distinct names, you
should beware of the possibility of a computer that does not have lower case characters. Such
machines used to exist in abundance, but at present, this does seem a remote possibility.

Array arguments should have pointers generated (if necessary) by using the GENPTR_type _ARRAY
macros. All arrays are handled by these macros.

5.5 Type Specifiers

There are macros F77_type _TYPE which expand to the C data type that corresponds to the
FORTRAN data type of the macro name, e.g. on a particular computer F77_INTEGER_TYPE may

17 SUN/209.11 —More on Calling C from FORTRAN

expand to int. These are usually not needed explicitly within user written code, but can be
required when declaring common blocks, casting values from a variable of one type to one of a
different type and when using the sizeof operator.

5.6 Logical Values

The macros F77_FALSE and F77_TRUE expand to the numerical values that FORTRAN treats as
false and true (e.g. 0 and 1). They should be used when setting logical values to be returned to
the calling FORTRAN routine. There are also macros F77_ISFALSE and F77_ISTRUE that should
be used when testing a function argument for truth or falsehood.

5.7 External Names

The macro F77_EXTERNAL_NAME handles the difference between the actual external name of a
function called from FORTRAN and a function that apparently has the same name when called
from C. Typically this involves appending an underscore character to a name. This macro is not
normally needed directly by the programmer, but is called by other macros.

5.8 Common Blocks

There are two macros that deal with common blocks, F77_NAMED_COMMON and F77_BLANK_COMMON.
They are used when declaring external structures that corresponds to FORTRAN common blocks
and when referring to components of those structures in the C code. The following declares a
common block named “block” that contains three INTEGER variables and three REAL variables.

extern struct
{
F77_INTEGER_TYPE i,j,k;
F77_REAL_TYPE a,b,c;

} F77_NAMED_COMMON(block);

The corresponding FORTRAN statements are

INTEGER I,J,K
REAL A,B,C
COMMON /BLOCK/ I,J,K,A,B,C

Within the C function the variables would be referred to as:

F77_NAMED_COMMON(block).i, F77_NAMED_COMMON(block).j, etc.

Note that all that these macros do is to hide the actual name of the external structure from the
programmer. If a computer implemented the correspondence between FORTRAN common
blocks and C global data in a completely different way, then these macros would not provide
portability to such an environment.

On account of this, it is best to avoid using common blocks where possible, but of course, if you
need to interface to existing FORTRAN programs, this may not be practical.

SUN/209.11 —Converting Between FORTRAN and C Strings 18

6 Converting Between FORTRAN and C Strings

6.1 The CNF Functions

FORTRAN stores CHARACTER strings as fixed-length strings filled with trailing blanks, whereas
C stores them as a variable-length strings each terminated by the null character. Although
C strings are of variable length, there must of course be enough space reserved to store the
maximum length that the string ever reaches plus one more character for the trailing null.

To aid the programmer in converting between the two forms of character strings, a number of
C functions are provided in the CNF library. These handle all aspects of converting between
the two types of string and provide options such as creating temporary strings, including the
trailing blanks in the C version of a string and only copying a maximum number of characters.
The process of converting from FORTRAN to C strings is known as “importing” and from C to
FORTRAN as “exporting”.

None of the functions are very complicated and some of them are just a tidier way of achieving
what could be done with a few lines of C in the calling program. Consequently in a time critical
application it may be appropriate to include the source of a CNF function in your code, rather
than incur the overheads of a making a function call.

Full descriptions of the CNF functions are provided in Appendix G.

Here is an example of how to use them. This is the same as an example from the machine specific
section of this document. The use of the F77 macros and the CNF functions have made the C
code easier to write and completely portable to all Starlink systems.

Example 5 – Converting character arguments between FORTRAN and C.

FORTRAN program:

PROGRAM STRING
CHARACTER STR*20

CALL GETSTR(STR)
PRINT *,STR

END

C function:

#include "f77.h"

F77_SUBROUTINE(getstr)(CHARACTER(fortchar) TRAIL(fortchar))
{

GENPTR_CHARACTER(fortchar) /* Generate pointer to fortchar */

char *string = "This is a string"; /* A string to be printed */

/* Copy the string to the function argument */
cnfExprt(string, fortchar, fortchar_length);

}

19 SUN/209.11 —Converting Between FORTRAN and C Strings

Other examples in this document illustrate the use of CNF functions for importing strings and
calling FORTRAN from C.

6.2 Handling Byte Strings (HDS Locators)

Sometimes FORTRAN CHARACTER variables are used to contain strings of bytes rather than
normal, printable character strings – a particular case of this is HDS locators (see SUN/92). In
this case, special characters, such as NULL, cease to have their normal meaning and this could
confuse the standard CNF import and export functions. For this reason, functions cnfImpch and
cnfExpch are provided. These functions just import and export a given number of characters.

6.3 Using Dynamic FORTRAN Character Strings

The DECLARE_CHARACTER macro used in an earlier example (2) assumes that the length of the
required FORTRAN character string is a constant, known at compile time. This is not always
the case – for example, the character argument to be passed to the FORTRAN subroutine may
be derived from an argument of the calling C function as in the case of a C wrap-around for a
FORTRAN subroutine. To cater for this situation, macros are provided which will allocate and
free space for the FORTRAN character string at run time. They make use of the CNF functions
cnfCref and cnfFreef.

The following example illustrates their use for both input and output of strings from a FORTRAN
subroutine which takes a given string, modifies it and returns the result.

Example 6 – Dynamic CHARACTER Arguments.

C main program

void strStrip(char *in, char *out, int maxout);

main(){
char in[20]="Hello there !";
char out[20];

printf("Input string is: %s\n", in);
strStrip(in, out, 20);
printf("Output string is: %s.\n", out);
}

C wrap-around for a FORTRAN subroutine

/* strStrip - A C wrap-around for FORTRAN subroutine STR_STRIP */
#include "f77.h"

extern F77_SUBROUTINE(str_strip)
(CHARACTER(fin), CHARACTER(fout) TRAIL(fin) TRAIL(fout));

void strStrip(char *in, char *out, int maxout){
DECLARE_CHARACTER_DYN(fin);
DECLARE_CHARACTER_DYN(fout);

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_using_locators

SUN/209.11 —Converting Between FORTRAN and C Strings 20

F77_CREATE_CHARACTER(fin,strlen(in));
F77_CREATE_CHARACTER(fout,maxout-1);

cnfExprt(in, fin, fin_length);

F77_CALL(str_strip)
(CHARACTER_ARG(fin), CHARACTER_ARG(fout)

TRAIL_ARG(fin) TRAIL_ARG(fout));

cnfImprt(fout, fout_length, out);

F77_FREE_CHARACTER(fin);
F77_FREE_CHARACTER(fout);

}

which is a C wrapper for the FORTRAN subroutine:

SUBROUTINE STR_STRIP(FIN, FOUT)
* Remove multiple spaces from a string

IMPLICIT NONE
INTEGER I, J
CHARACTER*(*) FIN
CHARACTER*(*) FOUT

FOUT = FIN(1:1)
I = 2
J = 1

DOWHILE (I .LE. LEN(FIN))
IF (FIN(I:I) .NE. ’ ’) THEN

J = J + 1
FOUT(J:J) = FIN(I:I)

ELSE IF (FOUT(J:J) .NE. ’ ’)
J = J + 1
FOUT(J:J) = FIN(I:I)

END IF

I = I + 1

ENDDO

END

Here, DECLARE_CHARACTER_DYN is used in place of DECLARE_CHARACTER. It declares pointers
rather than allocating space for the FORTRAN character strings to be passed to the FORTRAN
subroutine. A variable to hold the string length is also declared.

The F77_CREATE_CHARACTER expands to executable statements which allocate space and set the
pointers and string length. The F77_FREE_CHARACTER macro expands to executable statements
which free the previously allocated space.

21 SUN/209.11 —Pointers

7 Pointers

FORTRAN 77 does not have the concept of a pointer. However, FORTRAN INTEGERs are widely
used in Starlink software as a replacement for pointers when passing the address of a data array
from one routine to another. Typically, a FORTRAN program calls a subroutine that returns a
value in an INTEGER variable that represents the address of an array, which will usually have
been dynamically allocated. The value of this variable (as opposed to its address) is then passed
on to another routine where the contents of the array are accessed.

C, of course, does provide pointers – in fact you can hardly avoid using them – and they are
distinct from C integers (ints). To take account of this, a macro POINTER is defined to declare C
function arguments that the calling FORTRAN program declares as an INTEGER but will actually
treat as a pointer. The FORTRAN routine should not process a POINTER variable in any way. The
only valid operations it may perform are to copy it, to pass it to a subprogram using the normal
parameter passing mechanism, or to pass its value to a subprogram using the %VAL facility (as
described in Section 7.3) in order to access the contents of the array to which it points.

Unfortunately, this scheme of using FORTRAN INTEGERs to hold pointer values only works
cleanly if the length of an INTEGER is the same as the length of the C generic pointer type void*.
Where this is not the case (on DEC Alphas for instance), some way around the problem has to
be found.

On some systems, the linker may have flags to control the size of the address space in which a
program runs, and this can provide a simple solution. For example, although addresses on DEC
Alphas are normally 64 bits long (the length of a C pointer), it is possible to force programs to use
addresses in which only the lowest 32 bits have non-zero values. It then becomes a simple matter
to convert C pointers into FORTRAN INTEGERs (which are 32 bits long) because discarding the
most significant bits has no effect. The standard Starlink link scripts on DEC Alpha systems
supply the necessary command-line flags to produce this behaviour automatically.

However, this simple solution is not always applicable. Apart from the possibility that future
64-bit operating systems (of which there are likely to be an increasing number) may not provide
this option of running programs in “lower memory”, even on those that do the option cannot
always be exercised. For example, some software packages make use of “dynamic loading” of
routines stored in shareable libraries as a way of allowing their capabilities to be extended. This
is a very flexible facility, but it means that the loaded routines must execute in the address space
of the main program, which means that the writer of the shareable library no longer has any
control over the number of bits used in pointers. The only option is then to re-build the main
software package with the required linker options. This is at best inconvenient, but in the case
of commercial software packages it may be impossible.

There is also an increasing likelihood that programs may need to access data arrays of such size
that 32 bits of address space (the usual length of FORTRAN INTEGERs) is insufficient.

7.1 Pointer Registration and Conversion

To overcome these problems, some method is needed of converting between (say) 64-bit C
pointers and the typical 32 bits of a FORTRAN INTEGER. The same method must also work if
the two pointer representations are actually of equal length. To allow this, CNF maintains an

SUN/209.11 —Pointers 22

internal table which contains all the C pointers which will be exported and used from FORTRAN.
The pointers stored in this table are said to have been “registered” for use from both C and
FORTRAN.

When converting a C pointer into a FORTRAN pointer, it is sufficient simply to mask out all
bits except those that will fit into a FORTRAN INTEGER. This is performed by the function
cnfFptr. When converting in the opposite direction, the internal table must be searched to
locate a pointer which has the same value stored in the set of masked bits (e.g. the lowest 32
bits) as the FORTRAN pointer value. The full value of the C pointer can then be read from the
table. This conversion is performed by cnfCptr.

Apart from the requirement that all pointers which will be used from both C and FORTRAN
must be registered by entering them in the internal table, this scheme also requires that all
registered pointers should be unique in their lowest 32 bits (or whatever length a FORTRAN
INTEGER has) in order for the conversion from FORTRAN to C to select a unique pointer from
the table. In practice, these requirements are most easily fulfilled by providing a set of memory
allocation functions in CNF which mirror the standard C run time library functions malloc,
calloc and free.

7.2 Allocating Exportable Dynamic Memory

The CNF functions cnfMalloc and cnfCalloc should be used whenever you wish to dynamically
allocate memory in a C function and export the resulting pointer for use from FORTRAN. You
might also want to use them if you are writing a subroutine library that returns pointers to
dynamic memory through its public interface, since the caller might then decide to pass these
pointers on to a FORTRAN routine.

For example, here is how you should allocate space for an array of N FORTRAN REAL values in a
C function and pass back the resulting pointer to FORTRAN:

F77_POINTER_FUNCTION(ralloc)(INTEGER(N))
{

GENPTR_INTEGER(N)

/* Allocate the memory and return the converted pointer. */
return cnfFptr(cnfMalloc(*N*sizeof(F77_REAL_TYPE)));

}

When the allocated memory is no longer required, it should be freed using cnfFree. This is how
you might import the FORTRAN pointer value allocated above back into C in order to free it:

F77_SUBROUTINE(rfree)(POINTER(FPNTR))
{

GENPTR_POINTER(FPNTR)

/* Convert back to a C pointer and then free it. */
cnfFree(cnfCptr(*FPNTR));

}

Externally, these CNF memory allocation functions behave exactly like their standard C equiv-
alents malloc, calloc and free. Internally, however, they perform two important additional
functions:

23 SUN/209.11 —Pointers

• They maintain the internal table of “registered” pointers, so that the conversion functions
cnfFptr and cnfCptr can operate (if you use malloc to obtain a pointer, for instance, then
these conversion functions will fail and return zero).

• They ensure that all memory allocation results in pointers whose lowest 32 bits (or the
length of a FORTRAN INTEGER) are unique, so that conversion between FORTRAN and C
pointer values is a well-defined operation.

For convenience, cnfFree is also able to free pointers which have not been registered, in which
case it behaves exactly like free.

7.3 Accessing Dynamic Memory from C and FORTRAN

Of course, exchanging pointers to dynamic memory between C and FORTRAN is only part of
the story. We must also be able to access the memory from both languages.

When importing a FORTRAN pointer into C, the first step is to use cnfCptr to convert it to a
C pointer of type void*. You can then use a cast to convert to the appropriate C pointer type
(which you must know in advance) in order to access the values stored in the memory. For
example, to print out the contents of a dynamically allocated array of FORTRAN REAL data from
a C function, you might use the following:

F77_SUBROUTINE(rprint)(INTEGER(N), POINTER(FPNTR))
{

GENPTR_INTEGER(N)
GENPTR_POINTER(FPNTR)
F77_REAL_TYPE *cpntr;

/* Convert to a C pointer of the required type. */
cpntr=(F77_REAL_TYPE)cnfCptr(*FPNTR);

/* Access the data. */
for(i=0;i<*N;i++) printf("%g\n",cpntr[i]);

}

Accessing dynamically allocated memory via a pointer from FORTRAN requires two steps.
First, the pointer value stored in a FORTRAN INTEGER must be expanded to its full value (if
necessary), equivalent to the full equivalent C pointer. This value must then be turned into a
FORTRAN array which can be accessed. This requires that the pointer be passed to a separate
FORTRAN routine using the %VAL facility.1 For example, to convert a pointer into a REAL array,
you might call an auxiliary routine RWRITE as follows:

INCLUDE ’CNF_PAR’

...

CALL RWRITE(N,%VAL(CNF_PVAL(PNTR)))

1This is a non-standard facility which originated in VAX FORTRAN but is now available on most FORTRAN
compilers. It is a compiler directive, rather than a function, and works by instructing the compiler to pass the
argument by value rather than by address. The routine receiving this argument is then tricked into thinking that it
has received an array starting at the address given by the pointer value. There are other ways of achieving this effect,
such as by addressing an array outside of its bounds, but the %VAL method is the one most widely used in Starlink
software.

SUN/209.11 —More on Calling FORTRAN from C 24

and the RWRITE routine could then access the array of values as follows:

SUBROUTINE RWRITE(N, RDATA)
INTEGER I, N
REAL RDATA(N)
DO 1 I = 1, N

WRITE(*,*) RDATA(I)
1 CONTINUE

END

Note how the argument of the %VAL directive is CNF_PVAL(PNTR). The FORTRAN-callable
CNF_PVAL function serves to expand the pointer value out to its full length (equivalent to
calling cnfCptr from C). The data type returned by this function will depend on the length of C
pointers on the machine being used and may not be a standard FORTRAN type (for instance, on
DEC Alphas it is an INTEGER*8 function). However, the data type declaration for this function is
encapsulated in the CNF_PAR include file, so you need not include non-standard type declarations
directly in your own software.

7.4 Registering Your Own Pointers

CNF also provides two functions, cnfRegp and cnfUregp, for registering and un-registering
pointers – i.e. for entering and removing them from the internal table which is used for pointer
conversion between C and FORTRAN. You will probably never need to use these, since pointer
registration is normally managed completely automatically by the memory allocation functions
which CNF provides.

The reason for providing them is that there may be ways of creating new memory, for which
cnfMalloc or cnfCalloc cannot be used. For example, mapping data files directly into memory.
If the resulting C pointers are to be exported to FORTRAN, they must be accessible to CNF for
conversion purposes, so they must be registered in CNF’s internal table.

If you should ever need to use this facility, then the main point to note is that attempting to
register a C pointer can potentially fail (cnfRegp returns -1 to indicate this). This will occur if,
when the C pointer is converted to a FORTRAN INTEGER, it clashes with a FORTRAN pointer
value which is already in use. In such a case you cannot safely export your pointer to FORTRAN,
so you must obtain a new pointer and re-register it. Typically, this may involve allocating a new
block of memory at a different location and freeing the original. The consolation is that such
clashes are extremely rare.

8 More on Calling FORTRAN from C

The operations needed to write a C routine that can call a FORTRAN subroutine or function
are fairly similar to those needed when calling C from FORTRAN. Many of the macros that are
used are the same, so you should read

Section 5 before reading this.

A typical reason to call FORTRAN from C is to use a pre-existing subroutine library. Here is an
example of calling PGPLOT from a C main program.

25 SUN/209.11 —More on Calling FORTRAN from C

Example 7 – Passing arguments from C to FORTRAN.

C main program:

#include "f77.h"

extern F77_SUBROUTINE(pgbegin)
(INTEGER(unit), CHARACTER(file), INTEGER(nxsub), INTEGER(nysub)

TRAIL(file));

extern F77_SUBROUTINE(pgenv)
(REAL(xmin), REAL(xmax), REAL(ymin), REAL(ymax), INTEGER(just),

INTEGER(axis));

extern F77_SUBROUTINE(pglabel)
(CHARACTER(xlab), CHARACTER(ylab), CHARACTER(toplab)

TRAIL(xlab) TRAIL(ylab) TRAIL(toplab));

extern F77_SUBROUTINE(pgpoint)
(INTEGER(n), REAL_ARRAY(xs), REAL_ARRAY(ys), INTEGER(symbol));

extern F77_SUBROUTINE(pgend) ();

extern F77_SUBROUTINE(pgline)
(INTEGER(n), REAL_ARRAY(xpnts), REAL_ARRAY(ypnts));

main()
{

int i;
float xs[] = {1.,2.,3.,4.,5.};
float ys[] = {1.,4.,9.,16.,25.};

DECLARE_INTEGER(unit);
DECLARE_CHARACTER(file,10);
DECLARE_INTEGER(nxsub);
DECLARE_INTEGER(nysub);
DECLARE_REAL(xmin);
DECLARE_REAL(xmax);
DECLARE_REAL(ymin);
DECLARE_REAL(ymax);
DECLARE_INTEGER(just);
DECLARE_INTEGER(axis);
DECLARE_CHARACTER(xlab,50);
DECLARE_CHARACTER(ylab,50);
DECLARE_CHARACTER(toplab,50);
DECLARE_INTEGER(n);
DECLARE_REAL_ARRAY(xpnts,60);
DECLARE_REAL_ARRAY(ypnts,60);
DECLARE_INTEGER(symbol);

unit = 0; cnfExprt("?", file, file_length); nxsub = 1; nysub = 1;
F77_CALL(pgbegin) (INTEGER_ARG(&unit), CHARACTER_ARG(file),

INTEGER_ARG(&nxsub), INTEGER_ARG(&nysub)

SUN/209.11 —More on Calling FORTRAN from C 26

TRAIL_ARG(file));

xmin = 0.0; xmax = 10.0; ymin = 0.0; ymax = 20.0; just = 0; axis = 1;
F77_CALL(pgenv) (REAL_ARG(&xmin), REAL_ARG(&xmax), REAL_ARG(&ymin),

REAL_ARG(&ymax), INTEGER_ARG(&just), INTEGER_ARG(&axis));

cnfExprt("(x)", xlab, xlab_length);
cnfExprt("(y)", ylab, ylab_length);
cnfExprt("PGPLOT Example 1 - y = x\\u2", toplab, toplab_length);
F77_CALL(pglabel) (CHARACTER_ARG(xlab), CHARACTER_ARG(ylab),

CHARACTER_ARG(toplab)
TRAIL_ARG(xlab) TRAIL_ARG(ylab) TRAIL_ARG(toplab));

n = 5;
for(i=0 ; i<n ; i++)
{

xpnts[i] = xs[i];
ypnts[i] = ys[i];

}
symbol = 9;
F77_CALL(pgpoint) (INTEGER_ARG(&n), REAL_ARRAY_ARG(xpnts),

REAL_ARRAY_ARG(ypnts), INTEGER_ARG(&symbol));

n = 60;
for(i=0 ; i<n ; i++)
{

xpnts[i] = 0.1 * i;
ypnts[i] = xpnts[i]*xpnts[i];

}
F77_CALL(pgline) (INTEGER_ARG(&n), REAL_ARRAY_ARG(xpnts),

REAL_ARRAY_ARG(ypnts));

F77_CALL(pgend)();

}

This is a realistic example of calling PGPLOT routines from C. The module begins with a set of
function prototypes for the FORTRAN routines that will be called in the C main program. All
variables that need to be passed to FORTRAN subroutines are declared using DECLARE_type
macros. These macros ensure that the variables are declared to be of the correct type and storage
size expected by the FORTRAN subroutine. There then follow the calls to the subroutines that
do the actual plotting. The most notable things about these calls is that the actual arguments are
explicitly passed by address. This seems strange to a FORTRAN programmer, but is natural to a
C programmer. Arguments that may be modified must always have their addresses passed, not
their values. It may be thought that the type _ARG macros should add the & character where it is
needed. However, this gives rise to problems when calling FORTRAN from C from FORTRAN,
as well as being rather misleading. Note that scalar arguments need the ampersand character
adding, whereas array arguments do not. This is exactly what would be typed if the called
routine were a C function.

What is clear from this example is that the inability to put arguments that are constant expressions
directly in the call to the routine makes the program a lot more verbose than the equivalent
FORTRAN program. Unfortunately, the obvious solution of writing an actual argument as

27 SUN/209.11 —More on Arrays

something like INTEGER_ARG(&5) does not work as you cannot take the address of a constant.
This is not a failing of the F77 macros, but is inherent in the C language. For routines that are
called in many places, it will be more convenient to write a wrap-up function in C that is to be
called from the C main program and to put all of the F77 macros required into that function.
This produces less efficient code, since there is an extra level of subroutine call. However, in
many situations, the extra cost will be outweighed by the benefits of more transparent code.

The macro F77_CALL actually expands to the same thing as the macro F77_EXTERNAL_NAME, but
is included as it is more descriptive of what is being done when calling a FORTRAN routine
from C.

8.1 Thread Safety

Fortran code is not thread-safe, and therefore any C code that calls Fortran code will not be
thread-safe unless extra work is done to make it so. The F77_LOCK macro is provided for this
purpose. The argument to the macro is a block of code to be run. CNF defines a single global
pthread mutex. The F77_LOCK macro firsts locks this mutex, then executes the code specified in
its argument, then unlocks the mutex. If another thread already has the mutex locked, then the
calling thread will block until the mutex is unlocked.

So any C code that may potentially need to be executed in a threaded context (for instance,
C wrappers for Fortran subroutine libraries) should use the F77_LOCK macro to invoke each
Fortran call:

F77_LOCK (F77_CALL(silly2)(REAL_ARG(&a), REAL_ARG(&b),
INTEGER_ARG(&i), INTEGER_ARG(&j),
CHARACTER_ARG(fline), INTEGER_ARG(&fline_l),
LOGICAL_ARG(&x) TRAIL_ARG(fline));)

If this is done consistently, then it ensures that no two threads will attempt to run any Fortran
code simultaneously.

9 More on Arrays

For most data types arrays are handled simply, using pointers as already demonstrated. How-
ever, for arrays of some types the data in the arrays must be converted back and forth between C
and FORTRAN representations. Macros and functions are provided to facilitate the conversions.

Very often, the actual size of the FORTRAN array required will not be known until runtime so
space for it must be allocated dynamically in a similar way to dynamic character strings.

Macros DECLARE_type _ARRAY_DYN and F77_CREATE_type_ARRAY are defined to do this. They
are designed for 1-dimensional arrays, having just the name and the number of elements as
parameters, but for Unix systems, at least, will work for multi-dimensional arrays.

For most types on all current systems, the CREATE_ARRAY macros will not actually allocate space
as no conversion of data is necessary, but they are provided for contingency and completeness.

SUN/209.11 —More on Arrays 28

9.1 CHARACTER and LOGICAL Arrays

There are two versions of the macros for creating dynamic CHARACTER and LOGICAL arrays:
F77_CREATE_CHARACTER_ARRAY will create a 1-dimensional array with the given number of
elements, and F77_CREATE_CHARACTER_ARRAY_M will create an array whose size is defined by an
integer specifying the number of dimensions and an array of integers specifying each dimension.
Similarly F77_CREATE_LOGICAL_ARRAY and F77_CREATE_LOGICAL_ARRAY_M

Consider the following example of a C program which calls a FORTRAN subroutine which
returns a CHARACTER array produced by setting to blank every non-blank element of a given
array for which the corresponding element of a given LOGICAL array is TRUE. A LOGICAL output
array is produced with TRUE in the element corresponding with each element of the CHARACTER
array which has been reset, and FALSE elsewhere.

Example 8 – Import and export of arrays..

#include <stdio.h>
#include "f77.h"
F77_SUBROUTINE(str_reset)(CHARACTER_ARRAY(in), LOGICAL_ARRAY(lin),

INTEGER(dim1), INTEGER(dim2),
CHARACTER_ARRAY(out), LOGICAL_ARRAY(lout)
TRAIL(in) TRAIL(out));

void main(){
char inarr[3][2][4]={{"Yes","No "},{" "," "},{"No ","Yes"}};
int inarr_length=4;
char outarr[3][2][4];
int outarr_length=4;
int lin[3][2]={{1,0},{1,1},{0,1}};
int lout[3][2];
DECLARE_CHARACTER_ARRAY(fin,3,2][4);
DECLARE_CHARACTER_ARRAY_DYN(fout);
DECLARE_LOGICAL_ARRAY(flin,3][2);
DECLARE_LOGICAL_ARRAY_DYN(flout);
DECLARE_INTEGER(dim1);
DECLARE_INTEGER(dim2);
int ndims=2;
int dims[2]={3,2};
int i,j;

F77_CREATE_CHARACTER_ARRAY_M(fout,3,ndims,dims);
F77_CREATE_LOGICAL_ARRAY_M(flout,ndims,dims);

(void) cnfExprta(
(char *)inarr, inarr_length, (char *)fin, fin_length, ndims, dims);

(void) cnfExpla((int *)lin, (F77_LOGICAL_TYPE *)flin, ndims, dims);

dim1 = dims[0];
dim2 = dims[1];

F77_CALL(str_reset)(CHARACTER_ARRAY_ARG(fin), LOGICAL_ARRAY_ARG(flin),
INTEGER_ARG(&dim1), INTEGER_ARG(&dim2),
CHARACTER_ARRAY_ARG(fout), LOGICAL_ARRAY_ARG(flout)

29 SUN/209.11 —More on Arrays

TRAIL_ARG(fin) TRAIL_ARG(fout));

(void) cnfImprta
(fout, fout_length, outarr[0][0], outarr_length, ndims, dims);

(void) cnfImpla((F77_LOGICAL_TYPE *)flout, (int *)lout, ndims, dims);

F77_FREE_CHARACTER(fout);
F77_FREE_LOGICAL(flout);

printf("i j in lin out lout\n");
for (j=0;j<3;j++){

for (i=0;i<2;i++){
printf("%d %d %c %s %c %s\n",

i, j, lin[j][i]?’T’:’F’, inarr[j][i],
lout[j][i]?’T’:’F’, outarr[j][i]);

}
}

}

SUBROUTINE STR_RESET(ARRAY, LIN, DIM1, DIM2, OUT, LOUT)
* Purpose:
* Reset elements of an array

* Arguments:
* ARRAY(2,3)=CHARACTER*(*) (Given)
* The array to be altered
* LIN(2,3)=LOGICAL (Given)
* The given LOGICAL array
* DIM1=INTEGER (Given)
* The first dimension of the arrays
* DIM2=INTEGER (Given)
* The second dimension of the arrays
* OUT(2,3)=CHARACTER*(*) (Returned)
* LOUT(2,3)=LOGICAL (Returned)

IMPLICIT NONE
INTEGER I, J
INTEGER DIM1, DIM2
CHARACTER*(*) ARRAY(2,3)
CHARACTER*(*) OUT(2,3)
LOGICAL LIN(2,3)
LOGICAL LOUT(2,3)

DO 20, J = 1, 3
DO 10, I = 1, 2

IF(LIN(I,J) .AND. (ARRAY(I,J) .NE. ’ ’))THEN
OUT(I,J) = ’ ’
LOUT(I,J) = .TRUE.

ELSE
OUT(I,J) = ARRAY(I,J)
LOUT(I,J) = .FALSE.

END IF
10 ENDDO
20 ENDDO

SUN/209.11 —More on Arrays 30

END

As an example of how to write a C function to be called from FORTRAN with array arguments,
the above subroutine could be re-written in C as follows:

#include "f77.h"

F77_SUBROUTINE(str_reset)(CHARACTER_ARRAY(in_f), LOGICAL_ARRAY(lin_f),
INTEGER(dim1), INTEGER(dim2),
CHARACTER_ARRAY(out_f), LOGICAL_ARRAY(lout_f)
TRAIL(in_f) TRAIL(out_f))

{
GENPTR_CHARACTER_ARRAY(in_f)
GENPTR_LOGICAL_ARRAY(lin_f)
GENPTR_INTEGER(dim1)
GENPTR_INTEGER(dim2)
GENPTR_CHARACTER_ARRAY(out_f)
GENPTR_LOGICAL_ARRAY(lout_f)

int i, j, nels, cpt;
char *in_c, *out_c;
int *lin_c, *lout_c;
int ndims=2;
int dims[2];

dims[0] = *dim1;
dims[1] = *dim2;
nels = *dim1 * *dim2;

in_c = cnfCreat(nels*(in_f_length+1));
out_c = cnfCreat(nels*(out_f_length+1));
lin_c = (int *)malloc(nels*sizeof(int));
lout_c = (int *)malloc(nels*sizeof(int));
cnfImprta(in_f, in_f_length, in_c, in_f_length+1, ndims, dims);
cnfImpla(lin_f, lin_c, ndims, dims);

cpt = 0;
for(i=0;i<nels;i++){

if(*(lin_c+i) && strlen(in_c+cpt)) {
strcpy(out_c+cpt,"");
*(lout_c+i) = 1;

} else {
strcpy(out_c+cpt, in_c+cpt);
*(lout_c+i) = 0;

}
cpt += in_f_length+1;

}

cnfExprta(out_c, out_f_length+1, out_f, out_f_length, ndims, dims);
cnfExpla(lout_c, lout_f, ndims, dims);

cnfFree(in_c);
cnfFree(out_c);

31 SUN/209.11 —More on Arrays

free(lin_c);
free(lout_c);

}

9.2 Arrays of pointer to char

In C, arrays of character strings are often held as arrays of pointer to char. This allows
strings of varying length and not necessarily in contiguous memory. CNF functions cnfImprtap
and cnfExprtap can be used to import/export arrays of pointer to char from/to FORTRAN
CHARACTER arrays. The following example shows how to do this. The FORTRAN subroutine,
PRARR, prints the given CHARACTER array and returns it set to blank strings. The C program
prints the strings before and after the call to PRARR.

Example 9 – IMPORT/EXPORT with arrays of pointers to char.

rlsaxp_101% more temp.c
#include "f77.h"
F77_SUBROUTINE(prarr)(CHARACTER_ARRAY(arr) TRAIL(arr));
main() {
DECLARE_CHARACTER_ARRAY(arr,12,3);
char *ptr[3]={"ajc","hello there","TEXT"};
int dims[1]=3;
int i;

for (i=0;i<3;i++) printf("%d:%s:\n",i,ptr[i]);
cnfExprtap(ptr,arr[0],12,1,dims);
F77_CALL(prarr)(CHARACTER_ARRAY_ARG(arr) TRAIL_ARG(arr));
cnfImprtap(arr[0],12,ptr,1,1,dims);
for(i=0;i<3;i++) printf("%d:%s:\n",i,ptr[i]);
}

SUBROUTINE PRARR(ARR)
CHARACTER*(*) ARR(3)
INTEGER I

DO 10
PRINT *, ’:’, ARR(I), ’:’
ARR(I) = ’ ’

10 CONTINUE
END

9.3 POINTER Arrays

An array of pointers would need to be converted back and forth between the C and FORTRAN
representations to cope with the possibility that the length of a C pointer is not the same as
the length of a FORTRAN INTEGER. This can be done by declaring a suitably-sized FORTRAN
array and converting each element using either cnfCptr or cnfFptr, according to the direction
of conversion.
For example, to call a FORTRAN subroutine which returns an array of three pointers to real, the
C code would need to be something like:

SUN/209.11 —The IMPORT and EXPORT Macros 32

F77_REAL_TYPE * pntr[3]
DECLARE_POINTER_ARRAY(fpntr,3)

F77_CALL(getptr)(POINTER_ARRAY_ARG(fpntr))
/* Import the pointers to C */
for (i=0;i<3;i++) pntr[i]=(F77_REAL_TYPE *)cnfCptr(fpntr[i]);

See also The IMPORT and EXPORT macros (Section 10).

10 The IMPORT and EXPORT Macros

We have already seen that character strings and LOGICAL and POINTER variables have to be
converted between the different forms used by FORTRAN and C, and the idea of “importing”
a FORTRAN value to a C value, and “exporting” a C value to a FORTRAN value has been
introduced with the CNF routines..

Potentially all the other types could differ so macros F77_IMPORT_type , F77_IMPORT_type _-
ARRAY, F77_EXPORT_type and F77_EXPORT_type _ARRAY are defined to copy the data as required
– they will use CNF routines where appropriate. An additional type of LOCATOR is allowed
for the IMPORT/EXPORT macros to handle character strings used as HDS locators. There are
also macros F77_IMPORT_CHARACTER_ARRAY_P and F77_EXPORT_CHARACTER_ARRAY_P to handle
the CHARACTER conversion if the C array is an array of pointers to char.

The IMPORT/EXPORT_ARRAY macros have arguments giving pointers to the data and the number of
elements to be converted. This is assumed to be sufficient for both single and multi-dimensional
arrays.

These macros impose a slight overhead in that they require both the FORTRAN and C variables
to be set up and some copying done, even when this is not strictly necessary. However, they do
protect against possible future problems and ease the problem of deciding whether and how the
import/export should be done.

In the case of arrays, only pointers are copied unless a conversion really is required (as in the
case of CHARACTER and LOGICAL arrays, for example).

A complication arises where the actual argument for a FORTRAN subroutine to be called from C
is an array which is only returned. In that case, no exporting is required but the FORTRAN array
must still be associated with the C array so that the FORTRAN subroutine knows where to store
the results. For those types which require genuine conversion, a pointer to the FORTRAN array
will have been set when the space was allocated but for others the pointer must be set to point to
the actual C array. Macros F77_ASSOC_type _ARRAY are defined to do this where necessary. They
are complementary to the F77_CREATE_type _ARRAY macros so you can include both to ensure
that the pointer to the FORTRAN array is set correctly.

After use, the memory holding the FORTRAN array should be returned using an F77_FREE_type
macro (which will do nothing if the CREATE macros for the type do not allocate space).

So, a C wrapper for the FORTRAN routine str_reset in the section on Handling CHARACTER
and LOGICAL arrays could be written as follows:

Example 10 – Use of IMPORT/EXPORT macros.

33 SUN/209.11 —The IMPORT and EXPORT Macros

#include "f77.h"
F77_SUBROUTINE(str_reset)(CHARACTER_ARRAY(array),

LOGICAL_ARRAY(lin),
INTEGER(dim1),
INTEGER(dim2),
CHARACTER_ARRAY(out),
LOGICAL_ARRAY(lout)
TRAIL(array)
TRAIL(out));

void strReset(char *array,
int array_length,
int *lin,
int dim1,
int dim2,
char *out,
int out_length,
int *lout) {

DECLARE_CHARACTER_ARRAY_DYN(farray);
DECLARE_LOGICAL_ARRAY_DYN(flin);
DECLARE_INTEGER(fdim1);
DECLARE_INTEGER(fdim2);
DECLARE_CHARACTER_ARRAY_DYN(fout);
DECLARE_LOGICAL_ARRAY_DYN(flout);
int nels;

/* The dimensions of the arrays are being lied about */
/* calculate the number of elements */

nels = dim1 * dim2;

/* Set up "given" arguments */
F77_CREATE_CHARACTER_ARRAY(farray, array_length-1, nels);
F77_EXPORT_CHARACTER_ARRAY(array, array_length, farray, farray_length, nels);
F77_CREATE_LOGICAL_ARRAY(flin, nels);
F77_EXPORT_LOGICAL_ARRAY(lin, flin, nels);
F77_EXPORT_INTEGER(dim1, fdim1);
F77_EXPORT_INTEGER(dim2, fdim2);

/* Set up "returned" arguments */
F77_CREATE_CHARACTER_ARRAY(fout, out_length-1, nels);
F77_ASSOC_CHARACTER_ARRAY(fout, out);
F77_CREATE_LOGICAL_ARRAY(flout, nels);
F77_ASSOC_LOGICAL_ARRAY(flout, lout);

F77_CALL(str_reset)(CHARACTER_ARRAY_ARG(farray),
LOGICAL_ARRAY_ARG(flin),
INTEGER_ARG(&fdim1),
INTEGER_ARG(&fdim2),
CHARACTER_ARRAY_ARG(fout),
LOGICAL_ARRAY_ARG(flout)
TRAIL_ARG(farray)
TRAIL_ARG(fout));

F77_FREE_CHARACTER(farray);

SUN/209.11 —Subroutines and Functions as Arguments 34

F77_FREE_LOGICAL(flin);
F77_IMPORT_CHARACTER_ARRAY(fout, fout_length, out, out_length, nels);
F77_FREE_CHARACTER(fout);
F77_IMPORT_LOGICAL_ARRAY(flout, lout, nels);
F77_FREE_LOGICAL(flout);

return;
}

and the corresponding main routine would be:

#include <stdio.h>
#include "f77.h"
void strReset(char *array,

int array_length,
int *lin,
int dim1,
int dim2,
char *out,
int out_length,
int *lout);

void main(){
char inarr[3][2][4]={{"Yes","No "},{" "," "},{"No ","Yes"}};
int inarr_length=4;
char outarr[3][2][4];
int outarr_length=4;
int lin[3][2]={{1,0},{1,1},{0,1}};
int lout[3][2];
int i,j;

strReset(&inarr[0][0][0], 4, &lin[0][0], 3, 2,
&outarr[0][0][0], 4, &lout[0][0]);

printf("i j in lin out lout\n");
for (j=0;j<3;j++){

for (i=0;i<2;i++){
printf("%d %d %c %s %c %s\n",

i, j, lin[j][i]?’T’:’F’, inarr[j][i],
lout[j][i]?’T’:’F’, outarr[j][i]);

}
}

}

11 Subroutines and Functions as Arguments

Macros are provided to handle subroutine and function names passed as arguments. They
correspond closely to the macros for handling normal data type arguments. The following
example shows how to pass the name of an INTEGER function from a C program to a FORTRAN
subroutine.

35 SUN/209.11 —Subroutines and Functions as Arguments

Example 11 – Passing names from C to FORTRAN.

A C program which calls a FORTRAN subroutine which needs the name of an INTEGER
function as an argument.

#include "f77.h"

extern F77_SUBROUTINE(tst_ifun)(INTEGER_FUNCTION(name),
INTEGER(status));

extern F77_INTEGER_FUNCTION(ifun)();

main(){
DECLARE_INTEGER(status);

status = 0;

F77_CALL(tst_ifun)(INTEGER_FUNCTION_ARG(ifun),
INTEGER_ARG(&status));

printf("Status set is: %d\n", status);

}

The FORTRAN subroutine:

*+ TST_IFUN - Call an integer function
SUBROUTINE TST_IFUN(NAME, STATUS)

INTEGER NAME
EXTERNAL NAME
INTEGER STATUS

INTEGER I

STATUS = NAME(STATUS)

END

The INTEGER function:

*+ IFUN - A very simple FORTRAN INTEGER FUNCTION
INTEGER FUNCTION IFUN(STATUS)

INTEGER STATUS

IFUN = STATUS + 99

END

Corresponding macros are defined for other types of function and for FORTRAN subroutines.

Now suppose in the above example the subroutine TST_IFUN was written in C to be called
from FORTRAN. The code would be something like:

SUN/209.11 —Other Approaches to Mixed Language Programming 36

Example 12 – Passing names from FORTRAN to C.

*+ TESTIFUN - Call a SUBROUTINE which requires a function name argument.
PROGRAM TSTIFUN

EXTERNAL IFUN
INTEGER STATUS

CALL TST_IFUN(IFUN, STATUS)
PRINT *, ’STATUS is: ’, STATUS

END

#include "f77.h"

F77_INTEGER_FUNCTION(ifun)();

F77_SUBROUTINE(tst_ifun)(INTEGER_FUNCTION(name), INTEGER(status)){

GENPTR_INTEGER_FUNCTION(name)
GENPTR_INTEGER(status)

*status = F77_EXTERNAL_NAME(name)(INTEGER_ARG(status));

12 Other Approaches to Mixed Language Programming

The F77 macros and CNF functions described in this document provide a complete way of
writing portable programs in a mixture of FORTRAN and C. All of the work necessary to
provide the correct interface goes into writing the C routines. It is relatively painless to call C
from FORTRAN, since the work of writing the interface need only be done once, but it can be
annoying to have to write a lot of extra code every time that a FORTRAN routine is called from
a C one. As mentioned in More on Calling FORTRAN from C (Section 8), it may be appropriate
to write wrap-around routines when calling FORTRAN from C.

Another package that tackles the problem of mixing C and FORTRAN is one called CFORTRAN,
written by Burkhard Burow of the University of Toronto. This will be available as part of the
CERN library and could be provided on Starlink if required. This package allows you to write
an interface layer between a user’s code and a subroutine package such that neither side need
be aware that the other is written in a foreign language. This is a crucial difference from the F77
macros, where the C code is written in the full knowledge that the function is being called from,
or is to call, a FORTRAN routine. It is certainly possible to write a package that can be called
either from FORTRAN or C using the F77 macros, but this does not occur automatically.

When using CFORTRAN, an extra level of subroutine call is always involved over what is
strictly necessary using the macros described in this document. This results in less efficient
code. However, when this is not a serious problem, there may be situations in which it is more
appropriate to use the CFORTRAN system in preference to F77.

37 SUN/209.11 —Compiling and Linking

13 Compiling and Linking

Unless they are passing pointers to subprograms, FORTRAN programs do not need to be
compiled in any special way when employing mixed language programming since they are not
aware that the subprogram that they are calling is not written in FORTRAN. However, when
pointers are passed using the mechanism described in Accessing Dynamic Memory from C and
FORTRAN (Section 7.3), the FORTRAN code must include the statement:

INCLUDE ’CNF_PAR’

to define the function CNF_PVAL.

Type:

% cnf_dev

to define the link, CNF_PAR, to the required include file.

When compiling a C function that is to be called from FORTRAN, it should contain the line:

#include "f77.h"

to define the F77 macros and CNF functions2.

On a Unix system, you can usually tell the C compiler where to look for header files with the -I
qualifier to the cc command, e.g.:

% cc -I/star/include -c func.c

All FORTRAN INCLUDE and C header files for Starlink software are stored in the directory
/star/include, and the object files for all Starlink libraries reside in /star/lib.

To link a FORTRAN program prog.f and a C function sub.c with the CNF library, first compile
the C function and then compile and link the FORTRAN program:

% cc -c -I/star/include sub.c
% f77 prog.f sub.o -L/star/lib ‘cnf_link‘ -o prog

To link a C program prog.c with a FORTRAN subroutine sub.f, the procedure varies depending
upon the system being used. It is usually best to try to do the link with the f77 command as the
correct FORTRAN libraries will then be searched. However, in some cases there is confusion
over the main routine and either cc or ld must be used specifying all the required libraries.

For example, on Alpha/OSF1 it might be:

% f77 -c sub.f
% cc prog.c sub.o -L/star/lib ‘cnf_link‘ -lfor -lots -o prog

2The two CNF header files, cnf.h and f77.h are now identical. For legacy reasons it is acceptable to #include
either or both in the code – just f77.h is preferred.

SUN/209.11 —Compiling and Linking 38

For ADAM tasks (see SG/4), much of the complication is removed by the task linking scripts
alink and ilink which will accept a mixture of FORTRAN and C modules to compile. For
example:

% alink task.f subr.c ...

or

% alink task.c subr.f ...

The CNF library will be linked automatically and /star/include searched for any required C
header files.

The first program module specified for the ADAM link script must be the main routine of the
ADAM task, which is written as a FORTRAN subroutine or C function with a single INTEGER, or
int *, argument (see SUN/144 for details).

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_ADAM_link_scripts
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_ADAM_link_scripts

39 SUN/209.11 —Implementation Specific Details

A Implementation Specific Details

As indicated several times earlier, many of the details of mixed language programming are
implementation dependent. This section will deal in turn with each type of hardware that
Starlink possesses. Given that programs can be written in a portable way, you may wonder if
you need to know about the implementation specific details at all. This is in fact necessary when
debugging programs, since the debugger will be working on the output of any macros that hide
the implementation specific details from the programmer.

There is some duplication between the following subsections, one for each type of operating
system, particularly in the examples. This has been done so that each section can be read
separately from any other.

A.1 Sun

A.1.1 General

A Sun computer is based on a 32 bit architecture. Data can be addressed in multiples of 1, 2, 4, 8
or 16 bytes, a byte being 8 bits. References to FORTRAN and C in this subsection refer to the
Sun FORTRAN and ANSI C compilers.

A.1.2 Data Types

There is a simple correspondence between Sun FORTRAN and C numeric variable types. The
standard types are given in the upper part of

Table 1 and non-standard extensions in the lower part. These should generally be avoided for
reasons of portability, however, they are provided since HDS (see SUN/92) has corresponding
data types.

Although C defines unsigned data types of unsigned char (range 0 to 255), unsigned short
(range 0 to 32767) and unsigned int (range 0 to 232 − 1), there are no corresponding unsigned
data types in FORTRAN. There is also a C type called long int, however on Suns, this is the
same as an int.

The C language does not specify whether variables of type char should be stored as signed or
unsigned values. On Suns, they are stored as signed values in the range -128 to 127.

Similarly there is no C data type that corresponds to the FORTRAN data type of COMPLEX.
However, since Sun FORTRAN passes all numeric variable by reference, a COMPLEX variable
could be passed to a C subprogram where it might be handled as a structure consisting of two
variables of type float.

A Sun FORTRAN LOGICAL value can be passed to a C int. Sun FORTRAN and C both use zero
to represent a false value and anything else to represent a true value, so there is no problem with
converting the data values.

A.1.3 External Names

The Sun FORTRAN compiler appends an underscore character to all external names that it
generates. This applies to the names of subroutines, functions, labelled common blocks and
block data subprograms.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

SUN/209.11 —Implementation Specific Details 40

type Sun FORTRAN Sun C

INTEGER INTEGER int

REAL REAL float

DOUBLE DOUBLE PRECISION double

LOGICAL LOGICAL int

CHARACTER*1 char

CHARACTER CHARACTER*n char[n]

BYTE BYTE signed char

WORD INTEGER*2 short int

UBYTE unsigned char

UWORD unsigned short int

POINTER INTEGER unsigned int

Table 1: Corresponding data types for Sun Solaris

A.1.4 Arguments

To understand how to pass arguments between Sun FORTRAN and C programs, it is necessary
to understand the possible methods that the operating system can use for passing arguments
and how each language makes use of them. There are three ways that an actual argument may
be passed to a subroutine. What is actually passed as an argument should always be a four byte
word. It is the interpretation of that word that is where the differences arise.

Sun FORTRAN passes all data types other than CHARACTER by reference, i.e. the address of the
variable or array is put in the argument list. CHARACTER variables are passed by a mixture of
reference and value. The argument list contains the address of the character variable being
passed, but there is also an extra argument added at the end of the argument list for each
character variable. This gives the actual length of the FORTRAN CHARACTER variable and so
this datum is being passed by value. These extra arguments are hidden from the FORTRAN
programmer, but must be explicitly included in any C routines.

C uses call by value to pass all variables, constants (except string constants), expressions, array
elements, structures and unions that are actual arguments of functions. It uses call by reference
to pass whole arrays, string constants and functions. C never uses call by descriptor as a default.

To pass a C variable of type double by value requires the use of two longwords in the argument
list. Similarly, if a C structure is passed by value, then the number of bytes that it takes up in
the argument list can be large. This is a dangerous practice and all structures should be passed
by reference. Since, by default, Sun FORTRAN does not pass variables by value anyway, this
should not give rise to any problems.

In Sun FORTRAN, the default argument passing mechanism can be overridden by use of the
%VAL and %REF functions. These functions are not portable and should be avoided whenever
possible. The %DESCR function provided in VAX FORTRAN is not provided on a Sun. In C there

41 SUN/209.11 —Implementation Specific Details

is no similar way of “cheating” as there is in FORTRAN; however, this is not necessary as the
language allows more flexibility itself. For example, if you wish to pass a variable named x by
reference rather than by value, you simply put &x as the actual argument instead of x.

Since C provides more flexibility in the mechanism of passing arguments than does FORTRAN,
it is C that ought to shoulder the burden of handling the different mechanisms. All numeric
variables and constants, array elements, whole arrays and function names should be passed into
and out of C functions by reference. Numeric expressions will be passed from FORTRAN to C
by reference and so the corresponding dummy argument in the C function should be declared
to be of type “pointer to type”. When C has a constant or an expression as an actual argument
in a function call, it can only pass it by value. Sun FORTRAN cannot cope with this and so in a
C program, all expressions should be assigned to variables before being passed to a FORTRAN
routine.

Here are some examples to illustrate these points.

Example 13 – Passing arguments from Sun FORTRAN to C.

FORTRAN program:

PROGRAM FORT1
INTEGER A
REAL B
A = 1
B = 2.0
CALL C1(A, B)
END

C function:

void c1_(int *a, float *b)
{

int x;
float y;

x = *a; /* x is now equal to 1 */
y = *b; /* y is now equal to 2.0 */

printf("x = %d\n", x);
printf("y = %f\n", y);

}

The C function name requires the underscore as the FORTRAN compiler generates this automat-
ically.

In this first example, a Sun FORTRAN program passes an INTEGER and REAL variable to a C
function. The values of these arguments are then assigned to two local variables. They could just
as well have been used directly in the function by referring to the variables *a and *b instead of
assigning their values to the local variables x and y. Since the FORTRAN program passes the
actual arguments by reference, the dummy arguments used in the declaration of the C function
should be a pointer to the variable that is being passed.

Now an example of calling a Sun FORTRAN subroutine from C.

SUN/209.11 —Implementation Specific Details 42

Example 14 – Passing arguments from C to Sun FORTRAN.

C main program:

main()
{
int i = 2; /* Declare i and initialize it. */
void fort2_(int *i); /* Declare function fort2_. */

fort2_(&i); /* Call fort2. */
}

FORTRAN subroutine:

SUBROUTINE FORT2(I)
INTEGER I

PRINT *,I

END

The C main function declares and initializes a variable, i, and declares a function fort2_ (note
the underscore). It calls fort2_, passing the address of the variable i rather than its value, as
this is what the FORTRAN subroutine will be expecting.

As we have seen, the case of scalar numeric arguments is fairly straightforward, however, the
passing of character variables between Sun FORTRAN and C is more complicated. Sun FOR-
TRAN passes character variables by passing the address of the character variable and then
adding an extra value to the argument list that is the size of the character variable. Furthermore,
there is the point that FORTRAN deals with fixed-length, blank-padded strings, whereas C
deals with variable-length, null-terminated strings. The simplest possible example of a character
argument is given here as an illustration. Don’t worry if it looks complicated, the F77 macros
described in Section 5 hide all of these details from the programmer, and in a portable manner
as well!

Example 15 – Passing character arguments from Sun FORTRAN to C.

FORTRAN program:

PROGRAM FORT3
CHARACTER STR*20

CALL C3(STR)
PRINT *,STR

END

C function:

#include <stdio.h> /* Standard I/O functions */

void c3_(char *fortchar, int length)

43 SUN/209.11 —Implementation Specific Details

{
int i; /* A loop counter */
char *string = "This is a string"; /* A string to be printed */

/* Copy the string to the function argument */
strncpy(fortchar, string, length);

/* Pad the character argument with trailing blanks */
for(i = strlen(string) ; i < length ; i++)

fortchar[i] = ’ ’;
}

The second variable declaration in the C subprogram declares a local variable to be a string
and initializes it. This string is then copied to the storage area that the subprogram argument
points to, taking care not to copy more characters than the argument has room for. Finally any
remaining space in the argument is filled with blanks, the null character being overwritten. You
should always fill any trailing space with blanks in this way.

A.1.5 Function Values

The way that the return value of a function is handled is very much like a simple assignment
statement. The value is actually returned in one or two of the registers of the CPU, depending
on the size of the data type. Consequently there is no problem in handling the value of any
function that returns a numerical value as long as the storage used by the value being returned
and the value expected correspond (see Table 1 on page 40).

The case of a function that returns a character string is more complex. The way that Sun FOR-
TRAN returns a character variable as a function value is to add two hidden extra entries to
the beginning of the argument list. These are a pointer to a character variable and the value of
the length of this variable. If a C function wishes to emulate a FORTRAN CHARACTER function,
then you must explicitly add these two extra arguments to the C function. Any value that the C
function returns will be ignored. Here is an example to illustrate this.

Example 16 – Use of a Sun FORTRAN character function.

FORTRAN program:

PROGRAM CFUNC
CHARACTER*(10) VAR, FUNC

VAR = FUNC(6)
PRINT *, VAR

END

C function:

void func_(char *retval, int length, int *n)
{

char *cp;
int i, max;

SUN/209.11 —Implementation Specific Details 44

/* Find the number of characters to be copied. */
if(*n < length)

max = *n;
else

max = length;

/* Set a local character pointer equal to the return address. */
cp = retval;

/* Copy some asterisks to the "return value". */
for(i = 0 ; i < max ; i++)

cp++ = ’’;

/* Fill the rest of the string with blanks. */
for(; i < length ; i++)

*cp++ = ’ ’;
}

The C function copies some asterisks into the location that Sun FORTRAN will interpret as the
return value of the FORTRAN CHARACTER function. The number of such asterisks is specified by
the single argument of the FORTRAN function and the rest of the string is filled with blanks.

A.1.6 Global Data

Although FORTRAN and C use different method for representing global data, it is actually very
easy to mix them. If a Sun FORTRAN common block contains a single variable or array, then
the corresponding C variable simply needs to be declared as extern and the two variables will
use the same storage.

Example 17 – A labelled Sun FORTRAN common block containing a single variable.

FORTRAN common block:

CHARACTER*(10) STRING
COMMON /BLOCK/ STRING

C external variable:

extern char block_[10];

Note that the name of the C variable corresponds to the name of the FORTRAN common block,
not the name of the FORTRAN variable. This example shows that you can use the same storage
area for both Sun FORTRAN and C strings, however, you must still beware of the different way
in which FORTRAN and C handle the end of a string.

If the FORTRAN common block contains more than one variable or array, then the C variables
must be contained in a structure.

If you wish to access the Sun FORTRAN blank common block, then the corresponding C
structure should be called _BLNK__.

45 SUN/209.11 —Implementation Specific Details

Example 18 – A labelled Sun FORTRAN common block containing several variables.

FORTRAN common block:

INTEGER I,J,K
COMMON /NUMS/ I,J,K

C external variable:

extern struct { int i,j,k; } nums_;

A.2 DEC Unix

A.2.1 General

This section applies for Alpha OSF/1, Ultrix/RISC and possibly other DEC Unix systems.

The machine specific details relating to mixed language programming are almost identical to
those for the Sun and so the previous subsection should be consulted for more details. This is
not to say that there are no differences between the DECstation and Sun compilers, merely that
they do not generally impinge on the question of mixed language programming.

A.2.2 LOGICAL Values

One place where the DEC system may differ from the Sun is in how logical values are handled.
The original FORTRAN compiler for the DECstation (FORTRAN for RISC) used the Sun inter-
pretation of logical values, i.e. zero is false, non-zero is true. The more recent DEC FORTRAN
compiler uses the VMS convention that only checks the lowest bit of a value, so 0 is false, 1 is
true, 2 is false, 3 is true, etc. When DEC FORTRAN sets a LOGICAL variable to TRUE, all the bits in
the data are set to 1, resulting in a numerical equivalent value of -1. Unfortunately this means
that the correct value of the macros F77_ISFALSE and F77_ISTRUE used in a C function, depend
on which FORTRAN compiler you are using. It is not possible to handle this automatically, so
you must be sure to use the right values for the macros. The default assumption is that you
are using the newer DEC FORTRAN compiler. Fortunately this is unlikely to be a problem in
practice, since a TRUE value will normally be 1 or -1, and these values will be handled correctly
by either compiler.

A.2.3 POINTERS on Alphas

The DEC Alpha machines can use addresses up to 64 bits long, but where FORTRAN INTEGERs
are used to hold an address, only 32 bits can be held. However, the linker has flags -T and -D
which can be used to ensure that allocated memory addresses will fit into 32 bits. The user
generally does not have to worry about these, as they are inserted automatically if the relevant
Starlink library link script (e.g. hds_link) is used.

SUN/209.11 —Implementation Specific Details 46

A.3 VAX/VMS

A.3.1 General

A VAX computer is based on a 32 bit architecture. Data can be addressed as bytes (8 bits), words
(16 bits), longwords (32 bits), quadwords (64 bits) or octawords (128 bits). The terminology is
a hangover from the PDP-11 series of computers and the basic unit of storage on a VAX is the
longword. References to FORTRAN and C in this subsection refer to the VAX FORTRAN and
VAX C compilers produced by DEC.

A.3.2 Data Types

There is a simple correspondence between VAX FORTRAN and VAX C numeric variable types.
The standard types are given in the upper part of

Table 2 and non-standard extensions in the lower part. These should generally be avoided for
reasons of portability. However, they are provided since HDS (see SUN/92) has corresponding
data types.

type VAX FORTRAN VAX C

INTEGER INTEGER int

REAL REAL float

DOUBLE DOUBLE PRECISION double

LOGICAL LOGICAL int

CHARACTER*1 char

CHARACTER CHARACTER*n char[n]

BYTE BYTE char

WORD INTEGER*2 short int

UBYTE unsigned char

UWORD unsigned short int

POINTER INTEGER unsigned int

Table 2: Corresponding data types for VAX/VMS

Although VAX C defines unsigned data types of unsigned char (range 0 to 255), unsigned
short (range 0 to 32767) and unsigned int (range 0 to 232 − 1), there are no corresponding
unsigned data types in FORTRAN. There is also a C type called long int; however in VAX C,
this is the same as an int.

The C language does not specify whether variables of type char should be stored as signed or
unsigned values. On VMS, they are stored as signed values in the range -128 to 127.

Similarly there is no C data type that corresponds to the FORTRAN data type of COMPLEX.
However, since VAX FORTRAN passes all numeric variable by reference, a COMPLEX variable

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

47 SUN/209.11 —Implementation Specific Details

could be passed to a VAX C subprogram where it might be handled as a structure consisting of
two variables of type float.

A VAX FORTRAN LOGICAL value can be passed to a VAX C int, but care must be taken over the
interpretation of the value since VAX FORTRAN only considers the lower bit of the longword to
be significant (0 is false, 1 is true) whereas VAX C treats any numerical value other than 0 as
true. When VAX FORTRAN sets a logical value to true, it sets all the bits. This corresponds to a
numerical value of minus one.

A.3.3 Arguments

To understand how to pass arguments between VAX FORTRAN and VAX C programs, it is
necessary to understand the possible methods that VMS can use for passing arguments and how
each language makes use of them. VMS defines a procedure calling standard that is used by all
compilers written by DEC for the VMS operating system. This is described in the “Introduction
to the VMS Run-Time Library” manual with additional information in the “Introduction to
VMS System Services” manual. If you have a third party compiler that does not conform to
this standard then you will not be able to mix the object code that it produces with that from
DEC compilers. There are three ways that an actual argument may be passed to a subroutine.
What is actually passed as an argument should always be a longword. It is the interpretation
of that longword that is where the differences arise. Note the word should in the last but one
sentence. VAX C will occasionally generate an argument that is longer than one longword. This
is a violation of the VAX procedure calling standard. It causes no problems for pure VAX C
programs, but is a potential source of problems for mixed language programs.

VAX FORTRAN passes all data types other than CHARACTER by reference, i.e. the address of the
variable or array is put in the argument list. CHARACTER variables are passed by descriptor. The
descriptor contains the type and class of descriptor, the length of the string and the address
where the characters are actually stored.

VAX C uses call by value to pass all variables, constants (except string constants), expressions,
array elements, structures and unions that are actual arguments of functions. It uses call by
reference to pass whole arrays, string constants and functions. VAX C never uses call by
descriptor as a default method of passing arguments.

To pass a VAX C variable of type double by value requires the use of two longwords in the
argument list and so is a violation of the VAX procedure calling standard. The passing of a
VAX C structure that is bigger that one longword is a similar violation. It is always better to pass
C structures by reference, although this should not be a problem in practice since in the case
of a pure VAX C program, everything is handled consistently and in the case of a mixture of
FORTRAN and C, you would not normally pass variables by value anyway.

In VAX FORTRAN, the default argument passing mechanism can be overridden by use of
the %VAL, %REF and %DESCR functions. These functions are not portable and should be avoided
whenever possible. The only exception is that %VAL is used in Starlink software for passing
pointer variables. In VAX C there is no similar way of “cheating” as there is in VAX FORTRAN;
however, this is not necessary as the language allows more flexibility itself. For example, if
you wish to pass a variable named x by reference rather than by value, you simply put &x as
the actual argument instead of x. To pass something by descriptor, you need to construct the
appropriate structure and pass the address of that. See the DEC manual “Guide to VAX C” for
further details.

SUN/209.11 —Implementation Specific Details 48

Since C provides more flexibility in the mechanism of passing arguments than does FORTRAN,
it is C that ought to shoulder the burden of handling the different mechanisms. All numeric
variables and constants, array elements, whole arrays and function names should be passed into
and out of C functions by reference. Numeric expressions will be passed from VAX FORTRAN
to VAX C by reference and so the corresponding dummy argument in the C function should be
declared to be of type “pointer to type”. When C has a constant or an expression as an actual
argument in a function call, it can only pass it by value. VAX FORTRAN cannot cope with this
and so in a VAX C program, all expressions should be assigned to variables before being passed
to a FORTRAN routine.

Here are some examples to illustrate these points.

Example 19 – Passing arguments from VAX FORTRAN to VAX C.

FORTRAN program:

PROGRAM FORT1
INTEGER A
REAL B
A = 1
B = 2.0
CALL C1(A, B)
END

C function:

void c1(int *a, float *b)
{

int x;
float y;

x = *a; /* x is now equal to 1 */
y = *b; /* y is now equal to 2.0 */

printf("x = %d\n", x);
printf("y = %f\n", y);

}

In this first example, a FORTRAN program passes an INTEGER and REAL variable to a C function.
The values of these arguments are then assigned to two local variables. They could just as
well have been used directly in the function by referring to the variables *a and *b instead of
assigning their values to the local variables x and y. Since the VAX FORTRAN program passes
the actual arguments by reference, the dummy arguments used in the declaration of the VAX C
function should be a pointer to the variable that is being passed.

Now an example of calling a VAX FORTRAN subroutine from VAX C.

Example 20 – Passing arguments from VAX C to VAX FORTRAN.

C main program:

49 SUN/209.11 —Implementation Specific Details

main()
{
int i = 2; /* Declare i and initialize it. */
void fort2(int *i); /* Declare function fort2. */

fort2(&i); /* Call fort2. */
}

FORTRAN subroutine:

SUBROUTINE FORT2(I)
INTEGER I

PRINT *,I

END

The VAX C main function declares and initializes a variable, i, and declares a function fort2.
It calls fort2, passing the address of the variable i rather than its value, as this is what the
VAX FORTRAN subroutine will be expecting.

As we have seen, the case of scalar numeric arguments is fairly straightforward. However,
the passing of CHARACTER variables between VAX FORTRAN and VAX C is more complicated.
VAX FORTRAN passes CHARACTER variables by descriptor and VAX C must handle these de-
scriptors. Furthermore, there is the point that FORTRAN deals with fixed-length, blank-padded
strings, whereas C deals with variable-length, null-terminated strings. It is also worth noting
that VAX/VMS machines handle CHARACTER arguments in a manner which is different from the
usual Unix way. The simplest possible example of a CHARACTER argument is given here in all
of its gory detail. You will be pleased to discover that this example is purely for illustration.
The important point is that it is different from the Sun example and, anyway, the F77 macros
described in Section 5 hide all of these differences from the programmer, thereby making the
code portable.

Example 21 – Passing character arguments from VAX FORTRAN to VAX C.

FORTRAN program:

PROGRAM FORT3
CHARACTER STR*20

CALL C3(STR)
PRINT *,STR

END

C function:

#include <descrip.h> /* VMS Descriptors */
#include <stdio.h> /* Standard I/O functions */

void c3(struct dsc$descriptor_s *fortchar)
{

SUN/209.11 —Implementation Specific Details 50

int i; /* A loop counter */
char *string = "This is a string"; /* A string to be printed */

/* Copy the string to the function argument */
strncpy(fortchar->dsc$a_pointer, string, fortchar->dsc$w_length);

/* Pad the character argument with trailing blanks */
for(i = strlen(string) ; i < fortchar->dsc$w_length ; i++)

fortchar->dsc$a_pointer[i] = ’ ’;
}

The second variable declaration in the C subprogram declares a local variable to be a string
and initializes it. This string is then copied to the storage area that the subprogram argument
points to, taking care not to copy more characters than the argument has room for. Finally any
remaining space in the argument is filled with blanks, the null character being overwritten. You
should always fill any trailing space with blanks in this way. What should definitely not be done
is to modify the descriptor to indicate the number of non blank characters that it now holds. The
VAX FORTRAN compiler will not expect this to happen and it is likely to cause run-time errors.
See the DEC manual “Guide to VAX C” for more details of handling descriptors in VAX C.

If an actual argument in a VAX FORTRAN routine is an array of characters, rather than just a
single character variable, the descriptor that describes the data is different. It is defined by the
macro dsc$descriptor_a instead of dsc$descriptor_s. This contains extra information about
the number of dimensions and their bounds; however, this can generally be ignored since the
first part of the dsc$descriptor_a descriptor is the same as the dsc$descriptor_s descriptor.
This extra information can be unpacked from the descriptor, however, to do so would lead to
non-portable code. It is generally better to use the address of the array that is passed in the
descriptor and to pass any array dimensions as separate arguments. The C subroutine then has
all of the information that it requires and can handle the data as an array or by using pointers,
as the programmer sees fit. See example 4 for an illustration of this.

A.3.4 Function Values

The way that the return value of a function is handled is very much like a simple assignment
statement. In practice, the value is actually returned in one or two of the registers of the CPU,
depending on the size of the data type. Consequently there is no problem in handling the value
of any function that returns a numerical value as long as the storage used by the value being
returned and the value expected correspond (see Table 2 on page 46). If a VAX C function is
treated as a LOGICAL function by VAX FORTRAN, there is no problem as long as the VAX C
function ensures that it returns a value that will be interpreted correctly. The best thing to do is
to make sure that the C function can only return zero (for false) or minus one (for true).

The case of a function that returns a character string is more complex. The way that VAX FOR-
TRAN returns a CHARACTER variable as a function value is to add a hidden extra entry to the
beginning of the argument list. This is a pointer to a character descriptor. If a VAX C function
wishes to return a function value that VAX FORTRAN will interpret as a character string, then
you must explicitly add an extra argument to the VAX C function and build the appropriate
structure in your C function. This may seem rather complicated, but what it boils down to is that
the following two segments of VAX FORTRAN are equivalent (but only in VAX FORTRAN).

51 SUN/209.11 —Implementation Specific Details

Example 22 – Equivalence of a VMS character function and a VMS subroutine.

CHARACTER*(10) RETURN
CALL CHARFN(RETURN, A, B)

or

CHARACTER*(10) RETURN, CHARFN
RETURN = CHARFN(A, B)

If written as a function, CHARFN returns a value of type CHARACTER. It is left as an exercise for
the reader to demonstrate that the above assertion is true using just FORTRAN.

A.3.5 Global Data

Although FORTRAN and C use different methods for representing global data, it is actually very
easy to mix them. If a VAX FORTRAN common block contains a single variable or array, then
the corresponding VAX C variable simply needs to be declared as extern and the two variables
will use the same storage.

Example 23 – A VAX FORTRAN labelled common block containing a single variable

FORTRAN common block:

CHARACTER*(10) STRING
COMMON /BLOCK/ STRING

C external variable:

extern char block[10];

Note that the name of the C variable corresponds to the name of the FORTRAN common block,
not the name of the FORTRAN variable. This example shows that you can use the same storage
area for both VAX FORTRAN and VAX C strings. However, you must still beware of the different
way in which FORTRAN and C handle the end of a string.

If the FORTRAN common block contains more than one variable or array, then the C variables
must be contained in a structure.

If you wish to access the VAX FORTRAN blank common block, then the corresponding VAX C
structure should be called $BLANK.

Example 24 – A VAX FORTRAN labelled common block containing several variables.

FORTRAN common block:

INTEGER I,J,K
COMMON /NUMS/ I,J,K

C external variable:

extern struct { int i,j,k; } nums;

SUN/209.11 —Implementation Specific Details 52

A.4 Other Operating Systems

The F77 macros have been designed to cope with other systems as far as is possible. It should be
possible to modify the include file f77.h to cope with most computers. The places where this
may prove difficult, or even impossible, are likely to be due to arguments being passed in an
unforeseen way.

The include file also declares the functions used for handling character strings. The declarations
are written as function prototypes and assume that the C compiler will handle this feature of
ANSI C. If a particular C compiler does not support this feature, then the header file could easily
be modified to take this into account.

53 SUN/209.11 —Rationale for Mixed Language Programming

B Rationale for Mixed Language Programming

Starlink has historically been a “FORTRAN only” project. There are several reasons for this.
Primarily it is because scientists have been brought up with FORTRAN and for most purposes
it is perfectly adequate for our needs. However, there are some tasks for which FORTRAN is
not really suitable. In such situations it may be better to write programs in a language other
than FORTRAN, rather than try to persuade FORTRAN to do something that it is not suited
to. Writing recursive procedures is the classic example, but there are many more. Starlink
has recognised the need for a language other than FORTRAN by providing C compilers at all
Starlink nodes.

There are in fact good reasons to avoid diversifying into trendy new languages unless it is
absolutely necessary. Any substantial piece of software will require someone to support it long
after the original author has moved on to other things and it is not reasonable to expect that
person to have expertise in a large number of programming languages. However, for some
purposes, FORTRAN 77 is simply not adequate. In fact some major parts of Starlink software
have been written in other languages because of this. HDS. (See SUN/92.) is written in C (it
was originally written in Bliss, in the days when even C was impractical because of restrictions
in the early compilers). In the future, FORTRAN 90 will overcome many of the limitations that
FORTRAN 77 has but, until that becomes readily available (and even after), some things are
simply better written in C.

It is often the case that most of a program can be written in FORTRAN, leaving only a few tricky
parts that cannot be written using standard (or even non standard) FORTRAN. An example of a
task that cannot be performed using standard FORTRAN is getting some memory for use in your
program. Admittedly, there are often system service subroutines available but these are virtually
guaranteed to be non portable to other computers. Often a better approach is to write the tricky
parts in C. This is exactly the approach that has been adopted for HDS. The problem then is
how to pass data between FORTRAN routines and C functions. This document will describe
how to do this. Clearly the details of passing information between program segments written
in different languages will be machine dependent; however, there are also many important
similarities. Despite any problems that may arise, it is easier to port programs written in a
mixture of FORTRAN and C to other computer systems than to port programs written purely in
FORTRAN that make use of machine-specific routines for system services.

How to mix FORTRAN and C in a way that is portable to all current Starlink hardware is
described in

Sections 5 and 8.

It is quite likely that you will often want to use C to make use of something that the C run time
library provides, such as allocating memory. This requirement is sufficiently common that a
library of FORTRAN callable routines has already been provided to do exactly that. It is called
PSX and is described in SUN/121. In many programs, use of the PSX library will remove the
need to write any C code at all.

You may think that if you want to use C for part of a program then you should use C for all of the
program. This may indeed be the best option; however, if you also want to call subroutines that
are written in FORTRAN (e.g. just about any Starlink library), then you are going to be involved
in mixed language programming anyway. The correct choice will depend on the circumstances.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun121.htx/sun121.html?xref_

SUN/209.11 —Rationale for Mixed Language Programming 54

Writing mixed language programs is not something that should be embarked upon lightly.
There might be a better way of achieving the same result using just FORTRAN. The source code
may not look as pretty, but if it runs effectively and efficiently then that is all that is required.
If you can achieve what you want using standard FORTRAN then you should do so. If you
cannot, then this document will tell you how to mix FORTRAN and C in a portable way. The
programming language manuals of the computer manufacturers tell you how to mix languages
on their own hardware, but achieving portability needs a little more thought.

Finally, if you are new to C, you should be aware that the way that things are normally done in
C can be rather different from the way that they are normally done in FORTRAN. When I was
new to C, I proudly showed someone one of my first C programs. “That’s not a C program,”
they said, “That’s a FORTRAN program that’s written in C.” They were, of course, right. A
useful book an C programming is Banahan [3]. This describes how to write programs in ANSI
standard C and is written in an easy-going style. The author is not averse to criticizing C when
he thinks that a feature of the language is not appropriate.

55 SUN/209.11 —Alphabetical List of F77 Macros

C Alphabetical List of F77 Macros

The list is alphabetical except that the generic type has highest priority. type may be one of:
CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD, UBYTE, UWORD or
POINTER.

type
Declare a C function argument of the specified type

type_ARG
Pass an argument of the specified type to a FORTRAN routine

type_ARRAY
Declare a C function argument as an array of the specified type

type_ARRAY_ARG
Pass an array argument of the specified type to a FORTRAN routine

type_FUNCTION
Declare a C function argument as a FORTRAN-callable FUNCTION of the specified type

type_FUNCTION_ARG
Pass a FORTRAN-callable FUNCTION of the specified type as an argument to a FORTRAN routine

CHARACTER_RETURN_ARG
Pass an argument that will be the return value of a CHARACTER FUNCTION

CHARACTER_RETURN_VALUE
Declare an argument that will be the return value of a CHARACTER FUNCTION

DECLARE_type
Declare a variable of the specified type

DECLARE_type_ARRAY
Declare an array of the specified type

DECLARE_type_ARRAY_DYN
Declare a dynamic array of the specified type

DECLARE_CHARACTER_DYN
Declare a dynamic FORTRAN CHARACTER variable

F77_type_FUNCTION
Declare a FORTRAN-callable function that returns a value of the specified type

F77_BLANK_COMMON
Refer to blank common

F77_BYTE_TYPE
Define the C type corresponding to the FORTRAN type BYTE

F77_CALL
Call a FORTRAN routine from C

F77_CHARACTER_ARG_TYPE
Define the type passed as a CHARACTER argument

SUN/209.11 —Alphabetical List of F77 Macros 56

F77_CHARACTER_ARRAY_ARG_TYPE
Define the type passed as a CHARACTER array argument

F77_CHARACTER_TYPE
Define the C type corresponding to the FORTRAN type CHARACTER

F77_CREATE_type_ARRAY
Create a dynamic FORTRAN array of type

F77_CREATE_CHARACTER
Create a dynamic FORTRAN CHARACTER variable

F77_CREATE_CHARACTER_ARRAY
Create a dynamic FORTRAN CHARACTER 1-D array

F77_CREATE_CHARACTER_ARRAY_M
Create a dynamic FORTRAN CHARACTER n-D array

F77_CREATE_LOGICAL_ARRAY_M
Create a dynamic FORTRAN LOGICAL n-D array

F77_DOUBLE_TYPE
Define the C type corresponding to the FORTRAN type DOUBLE PRECISION

F77_EXPORT_type
Export a C variable of the specified type to FORTRAN

F77_EXPORT_type_ARRAY
Export a C array of the specified type to FORTRAN

F77_EXPORT_CHARACTER_ARRAY_P
Export an array of pointers to char

F77_EXTERNAL_NAME
The external name of a function

F77_FALSE
The FORTRAN logical value FALSE

F77_FREE_type
Free a dynamic FORTRAN array or CHARACTER variable

F77_IMPORT_type
Import a FORTRAN variable of the specified type to C

F77_IMPORT_type_ARRAY
Import a FORTRAN array of the specified type to C

F77_IMPORT_CHARACTER_ARRAY_P
Import an array of pointers to char

F77_INTEGER_TYPE
Define the C type corresponding to the FORTRAN type INTEGER

F77_ISFALSE
Is this the FORTRAN logical value false?

F77_ISTRUE
Is this the FORTRAN logical value true?

57 SUN/209.11 —Classified List of F77 Macros

F77_LOCK
Prevents code from being run simultaneously in two separate threads

F77_LOGICAL_TYPE
Define the C type corresponding to the FORTRAN type LOGICAL

F77_NAMED_COMMON
Refer to a named common block

F77_REAL_TYPE
Define the C type corresponding to the FORTRAN type REAL

F77_SUBROUTINE
Declare a FORTRAN-callable SUBROUTINE

F77_TRUE
The FORTRAN logical value TRUE

GENPTR_type
Generate a pointer to an argument of the specified type

GENPTR_type_ARRAY
Generate a pointer to an array argument of the specified type

GENPTR_type_FUNCTION
Generate a pointer to an argument which is a FORTRAN-callable FUNCTION of the specified type

GENPTR_SUBROUTINE
Generate a pointer to an argument which is a FORTRAN-callable SUBROUTINE

SUBROUTINE
Declare a C function argument as a FORTRAN-callable SUBROUTINE name

SUBROUTINE_ARG
Pass a FORTRAN-callable SUBROUTINE name as an argument to a FORTRAN routine

TRAIL
Declare hidden trailing arguments

TRAIL_ARG
Pass the length of a CHARACTER argument to a FORTRAN routine

D Classified List of F77 Macros

This appendix contains a list of the F77 macros, arranged by functionality.

D.1 Declaration of a C Function

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

F77_type_FUNCTION
Declare a FORTRAN-callable function that returns a value of the specified type

F77_SUBROUTINE
Declare a FORTRAN-callable SUBROUTINE

SUN/209.11 —Classified List of F77 Macros 58

D.2 Arguments of a C Function

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

type
Declare a C function argument of the specified type

type_ARRAY
Declare a C function argument as an array of the specified type

type_FUNCTION
Declare a C function argument as a FORTRAN-callable FUNCTION of the specified type

CHARACTER_RETURN_VALUE
Declare an argument that will be the return value of a CHARACTER FUNCTION

SUBROUTINE
Declare a C function argument as a FORTRAN-callable SUBROUTINE name

TRAIL
Declare hidden trailing arguments

D.3 Generate Pointers to Arguments

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

GENPTR_type
Generate a pointer to an argument of the specified type

GENPTR_type_ARRAY
Generate a pointer to an array argument of the specified type

GENPTR_type_FUNCTION
Generate a pointer to an argument which is a FORTRAN-callable FUNCTION of the specified type

GENPTR_SUBROUTINE
Generate a pointer to an argument which is a FORTRAN-callable SUBROUTINE

D.4 Data Type Macros

F77_BYTE_TYPE
Define the C type corresponding to the FORTRAN type BYTE

F77_CHARACTER_TYPE
Define the C type corresponding to the FORTRAN type CHARACTER

F77_DOUBLE_TYPE
Define the C type corresponding to the FORTRAN type DOUBLE PRECISION

F77_INTEGER_TYPE
Define the C type corresponding to the FORTRAN type INTEGER

F77_LOGICAL_TYPE
Define the C type corresponding to the FORTRAN type LOGICAL

59 SUN/209.11 —Classified List of F77 Macros

F77_POINTER_TYPE
Define the C type corresponding to the type POINTER

F77_REAL_TYPE
Define the C type corresponding to the FORTRAN type REAL

F77_UBYTE_TYPE
Define the C type corresponding to the type UBYTE

F77_UWORD_TYPE
Define the C type corresponding to the type UWORD

F77_WORD_TYPE
Define the C type corresponding to the type WORD

D.5 Logical Value Macros

F77_FALSE
The FORTRAN logical value FALSE

F77_ISFALSE
Is this the FORTRAN logical value false?

F77_ISTRUE
Is this the FORTRAN logical value true?

F77_TRUE
The FORTRAN logical value TRUE

D.6 External Name Macro

F77_EXTERNAL_NAME
The external name of a function

D.7 Common Block Macros

F77_BLANK_COMMON
Refer to blank common

F77_NAMED_COMMON
Refer to a named common block

D.8 Declaring Variables for Passing to a FORTRAN Routine

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

DECLARE_type
C declaration of a FORTRAN variable of the specified type

DECLARE_type_ARRAY
C declaration of a FORTRAN array of the specified type

SUN/209.11 —Classified List of F77 Macros 60

DECLARE_type_ARRAY_DYN
C declaration of a dynamic FORTRAN array of the specified type

F77_CREATE_type_ARRAY
Create a dynamic FORTRAN array of type

DECLARE_CHARACTER_DYN
C declaration of a dynamic FORTRAN CHARACTER variable

F77_CREATE_CHARACTER
Create a dynamic FORTRAN CHARACTER variable

F77_CREATE_CHARACTER_ARRAY
Create a dynamic FORTRAN CHARACTER 1-D array

F77_CREATE_CHARACTER_ARRAY_M
Create a dynamic FORTRAN CHARACTER n-D array

F77_CREATE_LOGICAL_ARRAY_M
Create a dynamic FORTRAN LOGICAL n-D array

F77_FREE_type
Free a dynamic FORTRAN array or CHARACTER variable

D.9 Importing and Exporting Arguments

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

F77_EXPORT_type
Export a C variable to a FORTRAN variable of type

F77_EXPORT_type_ARRAY
Export a C array to a FORTRAN array of type

F77_EXPORT_CHARACTER_ARRAY_P
Export an array of pointers to char to a FORTRAN CHARACTER array

F77_IMPORT_type
Import a FORTRAN variable of type to a C variable

F77_IMPORT_type_ARRAY
Import a FORTRAN array of type to a C array

F77_IMPORT_CHARACTER_ARRAY_P
Import a FORTRAN CHARACTER array to a C array of pointer to char

F77_ASSOC_type_ARRAY
Associate a FORTRAN array of type with a C array

61 SUN/209.11 —Full Description of F77 Macros

D.10 Passing Arguments to a FORTRAN Routine

type may be one of: CHARACTER, DOUBLE, INTEGER, LOGICAL, REAL, BYTE, WORD,
UBYTE, UWORD or POINTER.

type_ARG
Pass an argument of the specified type to a FORTRAN routine

type_ARRAY_ARG
Pass an array argument of the specified type to a FORTRAN routine

type_FUNCTION_ARG
Pass a FORTRAN-callable FUNCTION of the specified type as an argument to a FORTRAN routine

CHARACTER_RETURN_ARG
Pass an argument that will be the return value of a CHARACTER FUNCTION

F77_CALL
Call a FORTRAN routine from C

SUBROUTINE_ARG
Pass a FORTRAN-callable SUBROUTINE name as an argument to a FORTRAN routine

TRAIL_ARG
Pass the length of a CHARACTER argument to a FORTRAN routine

D.11 Thread Safety

F77_LOCK
Prevents code from being run simultaneously in two separate threads

E Full Description of F77 Macros

This appendix contains a full description of each macro. It is in two sections: Generic Descrip-
tions containing those macros which may be described generically for the various types and
Specific Descriptions for those which need a specific description.

The effect of each macro is described and the expansion of the macro on each of the supported
systems is given. The following classes are defined for the examples:

All systems All supported systems

All Unix All supported Unix systems

Not all the facilities listed here are available for VAX/VMS even if a VMS example is given. In some
cases the macro expansions described here will not be correct for VAX/VMS. Consult the VMS Starlink
documentation set for information on the VMS release.

N.B. It is important not to leave spaces around arguments in macros calls as these spaces are
then included in the macro expansion on some systems, i.e. write F77_SUBROUTINE(fred), not

SUN/209.11 —Full Description of F77 Macros 62

F77_SUBROUTINE(fred). This seems to be a bug in the offending compilers, but the problem
is there none the less.

Many macros currently expand to an empty string on all currently supported systems. Nev-
ertheless, the macros should still be used to guard against them being necessary on future
systems.

63 SUN/209.11 —Full Description of F77 Macros

E.1 Generic Descriptions

Unless otherwise stated, type is one of CHARACTER, INTEGER, REAL, DOUBLE, LOGICAL,
BYTE, WORD, UBYTE, UWORD, LOCATOR or POINTER.

SUN/209.11 —Full Description of F77 Macros 64 DECLARE_type

DECLARE_type
Declare a FORTRAN variable

Description:
Declare a variable that will be passed to a FORTRAN routine. This variable will be the
actual argument of a call to a FORTRAN routine. (type not CHARACTER or LOCATOR.)

Invocation:

DECLARE_type (arg)

Arguments:

arg The variable being declared.

Examples:
DECLARE_type (arg)

will expand as follows:

All systems: F77_type _TYPE arg

where F77_type _TYPE expands to the appropriate C type.

Associated macro::

DECLARE_CHARACTER

65 DECLARE_type_ARRAY SUN/209.11 —Full Description of F77 Macros

DECLARE_type_ARRAY
Declare a FORTRAN array

Description:
Declare an array of the appropriate type that will be passed to a FORTRAN routine. This
array will be the actual argument of a call to a FORTRAN routine. (type not CHARACTER
or LOCATOR.)

Invocation:

DECLARE_type _ARRAY(arg,dims)

Arguments:

arg The array being declared.

dims
The dimensions of the array.

Examples:
DECLARE_type _ARRAY(arg,10)

will expand as follows:

All systems: F77_type _TYPE arg[10]

DECLARE_type _ARRAY(arg,2][3][4)

will expand as follows:

All systems: F77_type _TYPE arg[2][3][4]

where F77_type _TYPE expands to the appropriate C type.

Associated macro::

DECLARE_CHARACTER_ARRAY

SUN/209.11 —Full Description of F77 Macros 66 DECLARE_type_ARRAY_DYN

DECLARE_type_ARRAY_DYN
Declare a dynamic type array

Description:
Declare a dynamic type array that will be passed to a FORTRAN routine using the
type_ARRAY_ARG macro. Use this macro, in combination with the F77_CREATE_type_-
ARRAY and F77_FREE_type macros, where the size of the array is not known until run
time. (type not LOCATOR.)

Invocation:

DECLARE_type _ARRAY_DYN(arg)

Arguments:

arg The variable being declared.

Examples:
DECLARE_type _ARRAY_DYN(farg)

will expand as follows:

All systems: F77_type _TYPE *farg

DECLARE_CHARACTER_ARRAY_DYN(fstring)

will expand as follows:

All Unix: char *fstring; int fstring_length

VAX/VMS: char *fstring; int fstring_length

struct dsc$descriptor_a fstring_arg

Notes:

On VMS, for CHARACTER, the expansion of the macro is quite complex. A pointer to a
descriptor structure is declared in addition to a pointer to char (used to point to the actual
string of characters) and an int variable to store the length of the array. The address of the
descriptor is what is actually passed to the called FORTRAN routine.

67 F77_ASSOC_type_ARRAY SUN/209.11 —Full Description of F77 Macros

F77_ASSOC_type_ARRAY
Associate a FORTRAN array with a C array.

Description:
For types which do not require separate memory allocated to hold the FORTRAN array,
this macro ensures that the pointer to the FORTRAN array points to the memory allocated
for the C array. (type not LOCATOR.)

Invocation:

F77_ASSOC_type _ARRAY(farg,carg)

Arguments:

farg
A pointer to the FORTRAN array

carg
A pointer to the C array

Examples:
F77_ASSOC_type _ARRAY(farg,carg)

type not CHARACTER, LOGICAL or POINTER will expand as follows:

All systems: farg=carg

type CHARACTER, LOGICAL or POINTER will expand as follows:

All systems:

SUN/209.11 —Full Description of F77 Macros 68 F77_CREATE_type_ARRAY

F77_CREATE_type_ARRAY
Create an array of type.

Description:
These macros ensure that memory is available for arrays to be used as actual arguments
for FORTRAN subroutines, assuming that space is already allocated for a corresponding
C array. That is, they will only allocate additional memory for those types which require a
non-null export or import. (type not CHARACTER or LOCATOR.)

Invocation:

F77_CREATE_type _ARRAY(farg,nels)

Arguments:

carg
A pointer to the C array

farg
A pointer to the FORTRAN array

nels
The number of elements required

Examples:
F77_CREATE_type _ARRAY(farg,n)

type LOGICAL will expand as follows:

All systems: {int f77dims[1];f77dims[0]=n;

farg=cnfCrela(1,f77dims);}

type POINTER will expand as follows:

All systems: farg=

(F77_POINTER_TYPE *)malloc(n*sizeof(F77_POINTER_TYPE))

All other types (except CHARACTER) will expand as follows:

All systems:

Associated macros::

F77_CREATE_CHARACTER_ARRAY, F77_ASSOC_type _ARRAY, F77_EXPORT_type _ARRAY,
F77_IMPORT_type _ARRAY

69 F77_EXPORT_type SUN/209.11 —Full Description of F77 Macros

F77_EXPORT_type
Export a C variable to a FORTRAN variable.

Description:
Copies a C variable to a FORTRAN variable making any required changes to the data.
(type not CHARACTER.)

Invocation:

F77_EXPORT_type (carg,farg)

Arguments:

carg
The C value

farg
The FORTRAN variable

Examples:
F77_EXPORT_type (carg,farg)

type LOGICAL will expand as follows:

All systems: farg=carg?F77_TRUE:F77_FALSE

type POINTER will expand as follows:

All systems: farg=cnfFptr(carg)

type LOCATOR will expand as follows:

All systems: cnfExpch(carg,farg,DAT__SZLOC)

All other types will expand as follows:

All systems: farg=carg

Associated macro::

F77_EXPORT_CHARACTER

SUN/209.11 —Full Description of F77 Macros 70 F77_EXPORT_type_ARRAY

F77_EXPORT_type_ARRAY
Export an array of type from C to FORTRAN

Description:
Depending upon the type and system, the C array will be copied to the FORTRAN array,
making any required changes to the data, or the pointer to the FORTRAN array will be set
to point to the C array. (type not CHARACTER.)

Invocation:

F77_EXPORT_type _ARRAY(carg,farg,nels)

Arguments:

carg
A pointer to the C array

farg
A pointer to the FORTRAN array

nels
The number of elements to be exported

Examples:
F77_EXPORT_type _ARRAY(farg,carg,nels)

type LOGICAL will expand as follows:

All systems: {int f77dims[1];f77dims[0]=nels;

cnfExpla(carg,farg,1,f77dims);}

type POINTER will expand as follows:

All systems: { int f77i; for(f77i=0;nels>f77i;f77i++) {

farg[f77i]=cnfFptr(carg[f77i]); }}

All other types will expand as follows:

All systems: farg=carg

Associated macro::

F77_EXPORT_CHARACTER_ARRAY

71 F77_FREE_type SUN/209.11 —Full Description of F77 Macros

F77_FREE_type
Free a dynamic variable of type

Description:
Frees the space obtained by a previous F77_CREATE_type_ARRAY or F77_CREATE_-
CHARACTER macro). Makes use of cnf functions where appropriate. If the associated
CREATE macro was null, the FREE macro will be null.

Invocation:

F77_FREE_type (arg)

Arguments:

arg The variable as passed to the FORTRAN subroutine.

Examples:
F77_FREE_LOGICAL(flog)

will expand as follows:

All systems: cnfFree((char *)flog)

SUN/209.11 —Full Description of F77 Macros 72 F77_IMPORT_type

F77_IMPORT_type
Import a FORTRAN variable to a C variable.

Description:
Copies a FORTRAN variable to a C variable making any required changes to the data.
(type not CHARACTER.)

Invocation:

F77_IMPORT_type (farg,carg)

Arguments:

farg
The C value

carg
The FORTRAN variable

Examples:
F77_IMPORT_type (farg,carg)

type LOGICAL will expand as follows:

All systems: carg=F77_ISTRUE(farg)

type POINTER will expand as follows:

All systems: carg=cnfCptr(farg)

type LOCATOR will expand as follows:

All systems: cnfImpch(farg,DAT__SZLOC,carg)

All other types will expand as follows:

All systems: carg=farg

Associated macro::

F77_IMPORT_CHARACTER

73 F77_IMPORT_type_ARRAY SUN/209.11 —Full Description of F77 Macros

F77_IMPORT_type_ARRAY
Import an array of type from FORTRAN to C

Description:
Depending upon the type and system, the FORTRAN array will be copied to the C array,
making any required changes to the data, or the pointer to the C array will be set to point
to the FORTRAN array. (type not CHARACTER.)

Invocation:

F77_IMPORT_type _ARRAY(farg,carg,nels)

Arguments:

farg
A pointer to the FORTRAN array

carg
A pointer to the C array

nels
The number of elements to be exported

Examples:
F77_IMPORT_type _ARRAY(carg,farg,nels)

type LOGICAL will expand as follows:

All systems: { int f77dims[1];f77dims[0]=nels;

cnfImpla(farg,carg,1,f77dims);}

type POINTER will expand as follows:

All systems: { int f77i;for(f77i=0;nels>f77i;f77i++){

carg[f77i]=cnfCptr(farg[f77i]); }}

All other types will expand as follows:

All systems: carg=farg

Associated macro::

F77_IMPORT_CHARACTER_ARRAY

SUN/209.11 —Full Description of F77 Macros 74 F77_type_FUNCTION

F77_type_FUNCTION
Declare a FORTRAN function

Description:
Declare a C function that will be called from FORTRAN as though it were a FORTRAN
function of the appropriate type. (type not LOCATOR.)

Invocation:

F77_type _FUNCTION(name)

Arguments:

name
The name of the function to be declared.

Examples:
F77_type _FUNCTION(name)

will expand as follows:

All Unix: F77_type _TYPE name_

VAX/VMS: F77_type _TYPE name

where F77_type _TYPE expands to the appropriate C type.

75 GENPTR_type SUN/209.11 —Full Description of F77 Macros

GENPTR_type
Generate a pointer to an argument

Description:
Ensure that there exists a pointer of the appropriate type to the variable that has been
passed as an actual argument from FORTRAN to a C routine. Since FORTRAN usu-
ally passes arguments by reference, the pointer is commonly available directly from the
argument list, so this macro is null. (type not LOCATOR.)

Invocation:

GENPTR_type (arg)

Arguments:

arg The dummy argument.

Examples:
GENPTR_type (arg)

will expand as follows:

All systems:

Associated macro::

GENPTR_CHARACTER

SUN/209.11 —Full Description of F77 Macros 76 GENPTR_type_ARRAY

GENPTR_type_ARRAY
Generate a pointer to an array argument

Description:
Ensure that there exists a pointer of the appropriate type to the array that has been passed
as an actual argument to the C routine. Since FORTRAN usually passes arguments by
reference, the pointer is commonly available directly from the argument list, so this macro
is null. (type not LOCATOR.)

Invocation:

GENPTR_type _ARRAY(arg)

Arguments:

arg The dummy argument.

Examples:
GENPTR_type _ARRAY(arg)

will expand as follows:

All systems:

Associated macro::

GENPTR_CHARACTER_ARRAY

77 GENPTR_type_FUNCTION SUN/209.11 —Full Description of F77 Macros

GENPTR_type_FUNCTION
Generate a pointer to a FUNCTION argument

Description:
Ensure that there exists a pointer of the appropriate type to the FORTRAN FUNCTION that
has been passed as an actual argument from FORTRAN to a C routine. Since FORTRAN
usually passes arguments by reference, the pointer is commonly available directly from
the argument list, so this macro is null. (type not LOCATOR.)

Invocation:

GENPTR_type _FUNCTION(name)

Arguments:

name
The dummy argument.

Examples:
GENPTR_type _FUNCTION(name)

will expand as follows:

All systems:

Notes:

The dummy argument should have been declared with the type_FUNCTION macro.

SUN/209.11 —Full Description of F77 Macros 78 type

type
Declare a type argument

Description:
Declare a C function argument, given that the actual argument will be a variable of the
appropriate type, passed from a FORTRAN program. (type not LOCATOR.)

Invocation:

type (arg)

Arguments:

arg The dummy argument to be declared.

Examples:
type (arg)

will expand as follows:

All Unix: F77_type _TYPE ∗arg

VAX/VMS: F77_type _TYPE ∗const arg

where F77_type _TYPE expands to the appropriate C type.

Associated macro::

CHARACTER

79 type_ARG SUN/209.11 —Full Description of F77 Macros

type_ARG
Pass a type argument to a FORTRAN routine

Description:
Pass an argument of the appropriate type to a FORTRAN routine. The argument should
be the address of the variable. (type not LOCATOR.)

Invocation:

type _ARG(p_arg)

Arguments:

p_arg
A pointer to the actual argument being passed.

Examples:
type _ARG(&arg)

will expand as follows:

All systems: &arg

Associated macro::

CHARACTER_ARG

SUN/209.11 —Full Description of F77 Macros 80 type_ARRAY

type_ARRAY
Declare a array argument

Description:
Declare a C function argument, given that the actual argument will be an array of the
appropriate type, passed from a FORTRAN program. (type not LOCATOR.)

Invocation:

type _ARRAY(arg)

Arguments:

arg The dummy argument to be declared.

Examples:
type _ARRAY(arg)

will expand as follows:

All Unix: F77_type _TYPE ∗arg

VAX/VMS: F77_type _TYPE ∗const arg

where F77_type _TYPE expands to the appropriate C type.

Associated macro::

CHARACTER_ARRAY

81 type_ARRAY_ARG SUN/209.11 —Full Description of F77 Macros

type_ARRAY_ARG
Pass an array argument to a FORTRAN routine

Description:
Pass an array argument of the appropriate type to a FORTRAN routine. The argument
should be the address of the array. (type not LOCATOR.)

Invocation:

type _ARRAY_ARG(p_arg)

Arguments:

p_arg
A pointer to the actual array being passed.

Examples:
type _ARRAY_ARG(arg)

will expand as follows:

All systems: (F77_type _TYPE *)arg

Notes:

The cast in the expansion for Unix ensures that multi-dimensional arrays (arrays of arrays),
for example as declared by DECLARE_type_ARRAY, may be passed.

Associated macro::

CHARACTER_ARRAY_ARG

SUN/209.11 —Full Description of F77 Macros 82 type_FUNCTION

type_FUNCTION
Declare a FUNCTION argument

Description:
Declare a C function argument, to be a FORTRAN-callable FUNCTION of the specified
type, passed from a FORTRAN program. (type is one of CHARACTER, INTEGER, REAL,
DOUBLE, LOGICAL, BYTE, WORD, UBYTE, UWORD or POINTER.)

Invocation:

type _FUNCTION(arg)

Arguments:

arg The dummy argument to be declared.

Examples:
type _FUNCTION(arg)

will expand as follows:

All Systems: F77_type _TYPE (∗F77_EXTERNAL_NAME(arg))()
where F77_type _TYPE and F77_EXTERNAL_NAME expand appropriately for the platform.

83 type_FUNCTION_ARG SUN/209.11 —Full Description of F77 Macros

type_FUNCTION_ARG
Pass a FUNCTION argument to a FORTRAN routine

Description:
Pass a FORTRAN-callable FUNCTION of the appropriate type to a FORTRAN routine. The
argument should be the address of the function being passed. (type is one of CHARACTER,
INTEGER, REAL, DOUBLE, LOGICAL, BYTE, WORD, UBYTE, UWORD or POINTER.)

Invocation:

type _FUNCTION_ARG(p_arg)

Arguments:

p_arg
A pointer to the FUNCTION being passed.

Examples:
type _FUNCTION_ARG(arg)

will expand as follows:

All systems: F77_EXTERNAL_NAME(arg)

where F77_EXTERNAL_NAME expands appropriately for the platform.

SUN/209.11 —Full Description of F77 Macros 84 E.2 Specific Descriptions

E.2 Specific Descriptions

85 CHARACTER SUN/209.11 —Full Description of F77 Macros

CHARACTER
Declare a CHARACTER argument

Description:
Declare a C function argument, given that the actual argument will be a CHARACTER
variable passed from a FORTRAN program.

Invocation:

CHARACTER(arg)

Arguments:

arg The dummy argument to be declared.

Examples:
CHARACTER(x)

will expand as follows:

All Unix: char ∗x

VAX/VMS: struct dsc$descriptor_s ∗x_arg

Notes:

On a VAX/VMS system, the macro expands to a pointer to a descriptor whereas on other
systems it expands to a pointer to char.

SUN/209.11 —Full Description of F77 Macros 86 CHARACTER_ARG

CHARACTER_ARG
Pass a CHARACTER argument to a FORTRAN routine

Description:
Pass a CHARACTER argument to a FORTRAN routine. The argument should be the
address of a CHARACTER variable.

Invocation:

CHARACTER_ARG(p_arg)

Arguments:

p_arg
A pointer to the actual argument being passed.

Examples:
CHARACTER_ARG(charg)

will expand as follows:

All Unix: charg

VAX/VMS: charg_arg

87 CHARACTER_ARRAY SUN/209.11 —Full Description of F77 Macros

CHARACTER_ARRAY
Declare a CHARACTER array argument

Description:
Declare a C function argument, given that the actual argument will be a CHARACTER
array passed from a FORTRAN program.

Invocation:

CHARACTER_ARRAY(arg)

Arguments:

arg The dummy argument to be declared.

Examples:
CHARACTER_ARRAY(x)

will expand as follows:

All Unix: char ∗x

VAX/VMS: struct dsc$descriptor_a ∗x_arg

SUN/209.11 —Full Description of F77 Macros 88 CHARACTER_ARRAY_ARG

CHARACTER_ARRAY_ARG
Pass a CHARACTER array argument to a FORTRAN routine

Description:
Pass a CHARACTER array argument to a FORTRAN routine. The argument should be the
address of a CHARACTER array.

Invocation:

CHARACTER_ARRAY_ARG(p_arg)

Arguments:

p_arg
A pointer to the actual array being passed.

Examples:
CHARACTER_ARRAY_ARG(charg)

will expand as follows:

All Unix: (char *)charg

VAX/VMS: charg_arg

Notes:

The cast in the expansion for Unix ensures that multi-dimensional arrays (arrays of arrays),
for example as declared by DECLARE_type_ARRAY, may be passed.

89 CHARACTER_RETURN_ARG SUN/209.11 —Full Description of F77 Macros

CHARACTER_RETURN_ARG
Pass argument(s) that will be the return value of a FORTRAN

CHARACTER FUNCTION

Description:
Pass the function return value argument(s) to a FORTRAN CHARACTER FUNCTION.
There is no corresponding dummy argument in the FORTRAN FUNCTION, but the
compiler generates an extra argument specifying the address and possibly another one,
specifying the length of the value to be returned. The argument should be the address of a
FORTRAN CHARACTER variable.

Invocation:

CHARACTER_RETURN_ARG(arg)

Arguments:

arg The hidden dummy argument to be declared.

Examples:
CHARACTER_RETURN_ARG(x)

will expand as follows:

All Unix: x ,int x_length

VAX/VMS: x_arg

SUN/209.11 —Full Description of F77 Macros 90 CHARACTER_RETURN_VALUE

CHARACTER_RETURN_VALUE
Declare argument(s) that will be the return value of a FORTRAN

CHARACTER FUNCTION

Description:
Declare the C function argument(s) to return the value of a FORTRAN CHARACTER
FUNCTION. There is no corresponding actual argument in the FORTRAN call but the
compiler generates an extra argument specifying the address and possibly another one,
specifying the length of the value to be returned.

Invocation:

CHARACTER_RETURN_VALUE(arg)

Arguments:

arg The hidden dummy argument to be declared.

Examples:
CHARACTER_RETURN_VALUE(x)

will expand as follows:

All Unix: char ∗x ,int x_length

VAX/VMS: struct dsc$descriptor_s ∗x_arg

91 DECLARE_CHARACTER SUN/209.11 —Full Description of F77 Macros

DECLARE_CHARACTER
Declare a CHARACTER variable

Description:
Declare a CHARACTER variable that will be passed to a FORTRAN routine. This variable
will be the actual argument of a call to a FORTRAN routine.

Invocation:

DECLARE_CHARACTER(arg,length)

Arguments:

arg The variable being declared.

length
The length of the character string.

Examples:
DECLARE_CHARACTER(C,50)

will expand as follows:

All Unix: char C[50]; const int C_length = 50

VAX/VMS: char C[50]; const int C_length = 50;

struct dsc$descriptor_s C_descr =

{50, DSCK_DTYPE_T, DSCK_CLASS_S, C };

struct dsc$descriptor_s ∗C_arg =&C_descr

Notes:

On VMS, the expansion of the macro is quite complex. A char array is declared as well
as an int variable to store the length of the array. There is also a descriptor and a pointer
to that descriptor. The address of the descriptor is what is actually passed to the called
FORTRAN routine.

SUN/209.11 —Full Description of F77 Macros 92 DECLARE_CHARACTER_ARRAY

DECLARE_CHARACTER_ARRAY
Declare a CHARACTER array

Description:
Declare a CHARACTER array that will be passed to a FORTRAN routine. This array will
be the actual argument of a call to a FORTRAN routine.

Invocation:

DECLARE_CHARACTER_ARRAY(arg,length,dims)

Arguments:

arg The array being declared.

length
The length of the character string.

dims
The dimensions of the array.

Examples:
DECLARE_CHARACTER_ARRAY(C,50,10)

will expand as follows:

All Unix: char C[10][50]; const int C_length

VAX/VMS: char C[10][50]; const int C_length = 50;

struct dsc$descriptor_s C_descr =

{50, DSCK_DTYPE_T, DSCK_CLASS_S, C };

struct dsc$descriptor_s ∗C_arg =&C_descr

Notes:

On VMS, the expansion of the macro is quite complex. A char array is declared as well
as an int variable to store the length of the array. There is also a descriptor and a pointer
to that descriptor. The address of the descriptor is what is actually passed to the called
FORTRAN routine.

93 DECLARE_CHARACTER_DYN SUN/209.11 —Full Description of F77 Macros

DECLARE_CHARACTER_DYN
Declare a CHARACTER variable

Description:
Declare a CHARACTER variable that will be passed to a FORTRAN routine using the
CHARACTER_ARG macro. Use this macro, in combination with the F77_CREATE_-
CHARACTER and F77_FREE_CHARACTER macros, where the length of the CHARAC-
TER string is not known until run time.

Invocation:

DECLARE_CHARACTER_DYN(arg)

Arguments:

arg The variable being declared.

Examples:
DECLARE_CHARACTER_DYN(fstring)

will expand as follows:

All Unix: char *fstring; int fstring_length

VAX/VMS: char *fstring; int fstring_length

struct dsc$descriptor_s *fstring_arg

Notes:

On VMS, the expansion of the macro is quite complex. A pointer to a descriptor structure
is declared in addition to a pointer to char (used to point to the actual string of characters)
and an int variable to store the length of the array. The address of the descriptor is what is
actually passed to the called FORTRAN routine.

SUN/209.11 —Full Description of F77 Macros 94 F77_BLANK_COMMON

F77_BLANK_COMMON
Refer to blank common

Description:
Expands to the external name of blank common on the computer in use. This is used in
declaring an external structure in C that overlays the FORTRAN blank common block.

Invocation:

F77_BLANK_COMMON

Examples:
F77_BLANK_COMMON

will expand as follows:

All Unix _BLNK__

VAX/VMS: $BLANK

extern struct { int i,j,k;} F77_BLANK_COMMON;

declares an external structure to use the same storage as the FORTRAN blank
common.

F77_BLANK_COMMON.i

refers to component i of the above structure.

95 F77_BYTE_TYPE SUN/209.11 —Full Description of F77 Macros

F77_BYTE_TYPE
Define the type BYTE

Description:
Define the C type that corresponds to the FORTRAN type BYTE.

Invocation:

F77_BYTE_TYPE

Examples:
F77_BYTE_TYPE

will expand as follows:

All Unix: signed char

VAX/VMS: char

SUN/209.11 —Full Description of F77 Macros 96 F77_CALL

F77_CALL
Call a FORTRAN routine from C

Description:
Call a FORTRAN subroutine or function from a C routine.

Invocation:

F77_CALL(name)

Arguments:

name
The name of the FORTRAN routine being called.

Examples:
F77_CALL(suba)

will expand as follows:

All Unix: suba_

VAX/VMS: suba

Notes:

This macro is just a shorthand for F77_EXTERNAL_NAME. It is more expressive to use
F77_CALL rather than F77_EXTERNAL_NAME when calling a routine.

97 F77_CHARACTER_ARG_TYPE SUN/209.11 —Full Description of F77 Macros

F77_CHARACTER_ARG_TYPE
Define the type of a FORTRAN CHARACTER argument

Description:
Defines the C type that corresponds to the type of a FORTRAN CHARACTER argument.

Invocation:

F77_CHARACTER_ARG_TYPE

Examples:
F77_CHARACTER_ARG_TYPE

will expand as follows:

All Unix: char

VAX/VMS: struct dsc$descriptor_s

Notes:

The type of the CHARACTER argument passed to a FORTRAN subroutine is not the same
as the CHARACTER_TYPE on VMS so this macro is provided. It is unlikely to be used
directly.

SUN/209.11 —Full Description of F77 Macros98 F77_CHARACTER_ARRAY_ARG_TYPE

F77_CHARACTER_ARRAY_ARG_TYPE
Define the type of a FORTRAN CHARACTER array argument

Description:
Defines the C type that corresponds to the type of a FORTRAN CHARACTER array
argument.

Invocation:

F77_CHARACTER_ARRAY_ARG_TYPE

Examples:
F77_CHARACTER_ARRAY_ARG_TYPE

will expand as follows:

All Unix: char

VAX/VMS: struct dsc$descriptor_a

Notes:

The type of the CHARACTER array argument passed to a FORTRAN subroutine is not
the same as the CHARACTER_TYPE on VMS so this macro is provided. It is unlikely to
be used directly.

99 F77_CHARACTER_TYPE SUN/209.11 —Full Description of F77 Macros

F77_CHARACTER_TYPE
Define the type CHARACTER

Description:
Define the C type that corresponds to the FORTRAN type CHARACTER.

Invocation:

F77_CHARACTER_TYPE

Examples:
F77_CHARACTER_TYPE

will expand as follows:

All systems: char

SUN/209.11 —Full Description of F77 Macros 100 F77_CREATE_CHARACTER

F77_CREATE_CHARACTER
Create a FORTRAN CHARACTER variable

Description:
Create a CHARACTER variable that will be passed to a FORTRAN routine using the
CHARACTER_ARG macro. Use this macro, in combination with the DECLARE_CHARACTER_-
DYN and F77_FREE_CHARACTER macros, where the length of the CHARACTER string
is not known until run time. A pointer to the actual string of characters and an integer
variable giving the length of the string are set.

Invocation:

F77_CREATE_CHARACTER(arg,length)

Arguments:

arg The variable being created.

length
The length of the character string. This will usually be a variable name or expression of
type int.

Examples:
F77_CREATE_CHARACTER(fstring,strlen(cstring))

will expand as follows:

All Unix: fstring_length = strlen(cstring);

fstring = cnfCref(fstring_length)

VAX/VMS: fstring_arg = cnfCref(strlen(cstring));

fstring = fstring_arg->pointer;

fstring_length = fstring_arg->length

Notes:

On VMS, the expansion of the macro is quite complex. A descriptor structure and a pointer
to it are set up in addition to the pointer to the actual string of characters and the length of
the string. (The address of the descriptor is what is actually passed to the called FORTRAN
routine.)

101 F77_CREATE_CHARACTER_ARRAY SUN/209.11 —Full Description of F77 Macros

F77_CREATE_CHARACTER_ARRAY
Create a FORTRAN CHARACTER array

Description:
Create a CHARACTER array that will be passed to a FORTRAN routine using the
CHARACTER_ARRAY_ARG macro. Use this macro, in combination with the DECLARE_-
CHARACTER_ARRAY_DYN and F77_FREE_CHARACTER macros, where the size of
the CHARACTER array is not known until run time. A pointer to the actual string of
characters and an integer variable giving the length of the string are set.

Invocation:

F77_CREATE_CHARACTER_ARRAY(arg,length,nels)

Arguments:

arg The variable being created.

length
The length of the character string. This will usually be a variable name or expression of
type int.

nels
The number of elements.

Examples:
F77_CREATE_CHARACTER_ARRAY(fstring,strlen(cstring),nels)

will expand as follows:

All Unix: { int f77dims[1];f77dims[0]=nels;

fstring=cnfCrefa(strlen(cstring),1,f77dims);

fstring_length=strlen(cstring);}

VAX/VMS: { int f77dims[1];f77dims[0]=nels;

fstring_arg = cnfCrefa(strlen(cstring),1,f77dims);

fstring = fstring_arg->pointer;

fstring_length = fstring_arg->length;}

Notes:

On VMS, the expansion of the macro is quite complex. A descriptor structure and a pointer
to it are set up in addition to the pointer to the actual array of strings and the length of the
strings. (The address of the descriptor is what is actually passed to the called FORTRAN
routine.)

SUN/209.11 —Full Description of F77 Macros102 F77_CREATE_CHARACTER_ARRAY_M

F77_CREATE_CHARACTER_ARRAY_M
Create a FORTRAN CHARACTER array (n-D)

Description:
Create an n-D CHARACTER array that will be passed to a FORTRAN routine using the
CHARACTER_ARRAY_ARG macro. Use this macro, in combination with the DECLARE_-
CHARACTER_ARRAY_DYN and F77_FREE_CHARACTER macros, where the size of
the CHARACTER array is not known until run time. A pointer to the actual string of
characters and an integer variable giving the length of the string are set.

Invocation:

F77_CREATE_CHARACTER_ARRAY_M(arg,length,ndims,dims)

Arguments:

arg The variable being created.

length
The length of the character string. This will usually be a variable name or expression of
type int.

ndims
The number of dimensions.

dims
A 1-D array holding the ndims dimensions.

Examples:
F77_CREATE_CHARACTER_ARRAY_M(fstring,strlen(cstring),ndims,dims)

will expand as follows:

All Unix: fstring=cnfCrefa(strlen(cstring),ndims,dims);

fstring_length=strlen(cstring)

VAX/VMS: fstring_arg = cnfCrefa(strlen(cstring),ndims,dims);

fstring = fstring_arg->pointer;

fstring_length = fstring_arg->length

Notes:

On VMS, the expansion of the macro is quite complex. A descriptor structure and a pointer
to it are set up in addition to the pointer to the actual array of strings and the length of the
strings. (The address of the descriptor is what is actually passed to the called FORTRAN
routine.)

103 F77_CREATE_LOGICAL_ARRAY_M SUN/209.11 —Full Description of F77 Macros

F77_CREATE_LOGICAL_ARRAY_M
Create a FORTRAN LOGICAL array (n-D)

Description:
Create a LOGICAL array that will be passed to a FORTRAN routine using the LOGICAL_-
ARRAY_ARG macro. Use this macro, in combination with the DECLARE_LOGICAL_-
ARRAY_DYN and F77_FREE_LOGICAL macros, where the size of the LOGICAL array is
not known until run time.

Invocation:

F77_CREATE_LOGICAL_ARRAY_M(arg,ndims,dims)

Arguments:

arg The array being created.

ndims
The number of dimensions.

dims
A 1-D array holding the ndims dimensions.

Examples:
F77_CREATE_LOGICAL_ARRAY_M(flog,ndims,dims)

will expand as follows:

All systems: flog=cnfCrela(ndims,dims);

SUN/209.11 —Full Description of F77 Macros 104 F77_DOUBLE_TYPE

F77_DOUBLE_TYPE
Define the type DOUBLE PRECISION

Description:
Define the C type that corresponds to the FORTRAN type DOUBLE PRECISION.

Invocation:

F77_DOUBLE_TYPE

Examples:
F77_DOUBLE_TYPE

will expand as follows:

All systems: double

105 F77_EXPORT_CHARACTER SUN/209.11 —Full Description of F77 Macros

F77_EXPORT_CHARACTER
Export a C variable to a FORTRAN variable.

Description:
Copies a C variable to a FORTRAN variable making any required changes to the data.

Invocation:

F77_EXPORT_CHARACTER(carg,farg,len)

Arguments:

carg
The C value

farg
The FORTRAN variable

len The length of the FORTRAN string

Examples:
F77_EXPORT_CHARACTER(carg,farg,len)

will expand as follows:

All systems: cnfExprt(carg,farg,len)

Associated macro::

F77_IMPORT_CHARACTER

SUN/209.11 —Full Description of F77 Macros 106 F77_EXPORT_CHARACTER_ARRAY

F77_EXPORT_CHARACTER_ARRAY
Export a CHARACTER array from C to FORTRAN

Description:
The C array will be copied to the FORTRAN array, making any required changes to the
data

Invocation:

F77_EXPORT_CHARACTER_ARRAY(carg,lc,farg,lf,nels)

Arguments:

carg
A pointer to the C array

lc The length of the C strings

farg
A pointer to the FORTRAN array

lf The length of the FORTRAN strings

nels
The number of elements to be exported

Examples:
F77_EXPORT_CHARACTER_ARRAY(farg,lf,carg,lc,nels)

will expand as follows:

{ int f77dims[1];f77dims[0]=nels;

cnfExprta(carg,lc,farg,lf,1,f77dims);}

Associated macro::

F77_IMPORT_CHARACTER_ARRAY

107 F77_EXPORT_CHARACTER_ARRAY_PSUN/209.11 —Full Description of F77 Macros

F77_EXPORT_CHARACTER_ARRAY_P
Export an array of pointers to char from C to a FORTRAN

CHARACTER array.

Description:
The strings pointed to by the specified number of elements of the C array will be copied to
the FORTRAN array, making any required changes to the data.

Invocation:

F77_EXPORT_CHARACTER_ARRAY_P(carg,farg,lf,nels)

Arguments:

carg
A pointer to the C array

farg
A pointer to the FORTRAN array

lf The length of the FORTRAN strings

nels
The number of elements to be exported

Examples:
F77_EXPORT_CHARACTER_ARRAY_P(carg,farg,lc,nels)

will expand as follows:

All systems: { int f77dims[1];f77dims[0]=nels;

cnfExprtap(carg,farg,lf,1,f77dims);}

Associated macro::

F77_IMPORT_CHARACTER_ARRAY_P

SUN/209.11 —Full Description of F77 Macros 108 F77_EXTERNAL_NAME

F77_EXTERNAL_NAME
The external name of a function

Description:
Define the external name of a C function. This may have such things as trailing under-
scores.

Invocation:

F77_EXTERNAL_NAME

Examples:
F77_EXTERNAL_NAME(name)

will expand as follows:

All Unix: name_

VAX/VMS: name

109 F77_FALSE SUN/209.11 —Full Description of F77 Macros

F77_FALSE
The logical value FALSE

Description:
Expand to the number that FORTRAN treats as a logical value of FALSE.

Invocation:

F77_FALSE

Examples:
F77_FALSE

will expand as follows:

All systems: 0

Notes:

FORTRAN and C might not interpret the same numerical value as the same logical value.

SUN/209.11 —Full Description of F77 Macros 110 F77_IMPORT_CHARACTER

F77_IMPORT_CHARACTER
Import a FORTRAN variable to a C variable.

Description:
Copies a FORTRAN CHARACTER string to a C string, making any necessary changes to
the data

Invocation:

F77_IMPORT_CHARACTER(farg,len,carg)

Arguments:

farg
The FORTRAN string

len The length of the FORTRAN string

carg
The C string

Examples:
F77_IMPORT_CHARACTER(farg,len,carg)

will expand as follows:

All systems: cnfImprt(farg,len,carg)

Associated macro::

F77_EXPORT_CHARACTER

111 F77_IMPORT_CHARACTER_ARRAY SUN/209.11 —Full Description of F77 Macros

F77_IMPORT_CHARACTER_ARRAY
Import a CHARACTER array from FORTRAN to C.

Description:
The FORTRAN array will be copied to the the C array, making any required changes to
the data.

Invocation:

F77_IMPORT_CHARACTER_ARRAY(farg,len_f,carg,len_c,nels)

Arguments:

farg
A pointer to the FORTRAN array

len_f
The length of each element of the FORTRAN array

carg
A pointer to the C array

len_c
The length of each element of the C array

nels
The number of elements to be exported

Examples:
F77_IMPORT_CHARACTER_ARRAY(farg,lf,carg,lc,nels)

will expand as follows:

All systems: { int f77dims[1];f77dims[0]=nels;

cnfImprta(farg,lf,carg,lc,1,f77dims);}

Associated macro::

F77_EXPORT_CHARACTER_ARRAY

SUN/209.11 —Full Description of F77 Macros112 F77_IMPORT_CHARACTER_ARRAY_P

F77_IMPORT_CHARACTER_ARRAY_P
Import a FORTRAN CHARACTER array to a C array of pointers to

char.

Description:
The FORTRAN array will be copied to the series of C strings pointed at by the elements of
the C array of pointers. If there is room (determined by the given maximum string length)
strings will be null-terminated. Any required changes to the data will be made.

Invocation:

F77_IMPORT_CHARACTER_ARRAY_P(farg,len_f,carg,len_c,nels)

Arguments:

farg
A pointer to the FORTRAN array

len_f
The length of each element of the FORTRAN array

carg
A pointer to the C array

len_c
The maximum length of the C strings, including terminating null if required.

nels
The number of elements to be exported

Examples:
F77_IMPORT_CHARACTER_ARRAY_P(farg,lf,carg,lc,nels)

will expand as follows:

All systems: { int f77dims[1];f77dims[0]=nels;

cnfImprtap(farg,lf,carg,lc,f77dims);}

Associated macro::

F77_EXPORT_CHARACTER_ARRAY_P

113 F77_INTEGER_TYPE SUN/209.11 —Full Description of F77 Macros

F77_INTEGER_TYPE
Define the type INTEGER

Description:
Define the C type that corresponds to the FORTRAN type INTEGER.

Invocation:

F77_INTEGER_TYPE

Examples:
F77_INTEGER_TYPE

will expand as follows:

All systems: int

SUN/209.11 —Full Description of F77 Macros 114 F77_ISFALSE

F77_ISFALSE
Is this the FORTRAN logical value false?

Description:
Does the argument of the macro evaluate to a value that FORTRAN would treat as a
LOGICAL false?

Invocation:

if(F77_ISFALSE(var)) ...

Arguments:

var The name of the value to be tested.

Examples:
F77_ISFALSE(var)

will expand as follows:

Solaris: (! (var))

OSF/1: (! ((var)&1))

VAX/VMS: (! ((var)&1))

Notes:

• The VAX FORTRAN and DEC FORTRAN for RISC compilers only use the lowest bit
for the logical flag. Hence 0 = false, 1 = true, 2 = false, 3 = true, etc.

• The Sun FORTRAN compiler uses zero = false, non zero = true.

• The FORTRAN for RISC compiler (from MIPS) on the DECstation uses zero = false,
non zero = true. This means that the correct value of this C macro depends on which
FORTRAN compiler is being used.

115 F77_LOCK SUN/209.11 —Full Description of F77 Macros

F77_LOCK
Prevents code from being run simultaneously in two separate threads

Description:
Any C code that may need to be used in a threaded context should use this macro should to
prevent Fortran code being run simultaneously in two separate threads, with consequent
danger of unsynchronised memory access. The macro locks the global CNF mutex, then
executes the code specified in the argument, and then unlocks the mutex. If the mutex is
currently locked by another thread (e.g. due to the use of F77_LOCK in the other thread),
then the calling thread blocks until the other thread releases the mutex.

Invocation:

F77_LOCK(code)

Arguments:

code
Any arbitrary C code. Typically, this will be an invocation of a Fortran subroutine.

Examples:
F77_LOCK(result = F77_CALL(sim)(nel, data, status);)

Notes:

This macro invokes the cnfLock and cnfUnlock functions to lock and unlock the global
mutex.

SUN/209.11 —Full Description of F77 Macros 116 F77_ISTRUE

F77_ISTRUE
Is this the FORTRAN logical value true?

Description:
Does the argument of the macro evaluate to a value that FORTRAN would treat as a
LOGICAL true?

Invocation:

if(F77_ISTRUE(var)) ...

Arguments:

var The name of the value to be tested.

Examples:
F77_ISTRUE(var)

will expand as follows:

Solaris: (var)

OSF/1: ((var)&1)

VAX/VMS: ((var)&1)

Notes:

• The VAX FORTRAN and DEC FORTRAN for RISC compilers only use the lowest bit
for the logical flag. Hence 0 = false, 1 = true, 2 = false, 3 = true, etc.

• The Sun FORTRAN compiler uses zero = false, non zero = true.

• The FORTRAN for RISC compiler (from MIPS) on the DECstation uses zero = false,
non zero = true. This means that the correct value of this C macro depends on which
FORTRAN compiler is being used.

117 F77_LOGICAL_TYPE SUN/209.11 —Full Description of F77 Macros

F77_LOGICAL_TYPE
Define the type LOGICAL

Description:
Define the C type that corresponds to the FORTRAN type LOGICAL.

Invocation:

F77_LOGICAL_TYPE

Examples:
F77_LOGICAL_TYPE

will expand as follows:

All systems: int

SUN/209.11 —Full Description of F77 Macros 118 F77_NAMED_COMMON

F77_NAMED_COMMON
Refer to a named common block

Description:
Expand to the external name of a named common block on the computer in use. This is
used in declaring an external structure in C that overlays a FORTRAN named common
block.

Invocation:

F77_NAMED_COMMON(name)

Arguments:

name
The name of the common block.

Examples:
F77_NAMED_COMMON(name)

will expand as follows:

All Unix: name_

VAX/VMS: name

extern struct {int i,j,k;} F77_NAMED_COMMON(block);

declares an external structure to use the same storage as the FORTRAN named
common block.

F77_NAMED_COMMON(block).i

refers to component i of the above structure.

119 F77_POINTER_TYPE SUN/209.11 —Full Description of F77 Macros

F77_POINTER_TYPE
Define the type POINTER

Description:
Define the C type that corresponds to a FORTRAN integer used as a pointer.

Invocation:

F77_POINTER_TYPE

Examples:
F77_POINTER_TYPE

will expand as follows:

All systems: unsigned int

SUN/209.11 —Full Description of F77 Macros 120 F77_REAL_TYPE

F77_REAL_TYPE
Define the type REAL

Description:
Define the C type that corresponds to the FORTRAN type REAL.

Invocation:

F77_REAL_TYPE

Examples:
F77_REAL_TYPE

will expand as follows:

All systems: float

121 F77_SUBROUTINE SUN/209.11 —Full Description of F77 Macros

F77_SUBROUTINE
Declare a SUBROUTINE

Description:
Declare a C function that will be called from FORTRAN as though it were a subroutine.

Invocation:

F77_SUBROUTINE(name)

Arguments:

name
The name of the function to be declared.

Examples:
F77_SUBROUTINE(name)

will expand as follows:

All Unix: void name_

VAX/VMS: void name

SUN/209.11 —Full Description of F77 Macros 122 F77_TRUE

F77_TRUE
The logical value TRUE

Description:
Expand to the number that FORTRAN treats as a logical value of TRUE.

Invocation:

F77_TRUE

Examples:
F77_TRUE

will expand as follows:

Solaris: 1

OSF/1: -1

VAX/VMS: -1

Notes:

FORTRAN and C might not interpret the same numerical value as the same logical value.

123 F77_UBYTE_TYPE SUN/209.11 —Full Description of F77 Macros

F77_UBYTE_TYPE
Define the type UBYTE

Description:
Define the C type that corresponds to the type UBYTE.

Invocation:

F77_UBYTE_TYPE

Examples:
F77_UBYTE_TYPE

will expand as follows:

All systems: unsigned char

SUN/209.11 —Full Description of F77 Macros 124 F77_UWORD_TYPE

F77_UWORD_TYPE
Define the type UWORD

Description:
Define the C type that corresponds to the type UWORD.

Invocation:

F77_UWORD_TYPE

Examples:
F77_UWORD_TYPE

will expand as follows:

All systems: unsigned short int

125 F77_WORD_TYPE SUN/209.11 —Full Description of F77 Macros

F77_WORD_TYPE
Define the type WORD

Description:
Define the C type that corresponds to the FORTRAN type WORD.

Invocation:

F77_WORD_TYPE

Examples:
F77_WORD_TYPE

will expand as follows:

All systems: short int

SUN/209.11 —Full Description of F77 Macros 126 GENPTR_CHARACTER

GENPTR_CHARACTER
Generate a pointer to a CHARACTER argument

Description:
Ensure that there exists a pointer to the character variable that has been passed as an actual
argument to the C routine. Also generate a variable that contains the length of the actual
character argument and call it ‘arg_length’.

Invocation:

GENPTR_CHARACTER(arg)

Arguments:

arg The dummy argument.

Examples:
GENPTR_CHARACTER(x)

will expand as follows:

All Unix:

VAX/VMS: char ∗x = x_arg->dsc$a_pointer;

int x_length = x_arg->dsc$w_length;

Notes:

On Unix systems, this macro is null, but on a VAX/VMS system, this macro actually
declares the variables that are the pointer to the character string and the integer that
contains its length.

127 GENPTR_CHARACTER_ARRAY SUN/209.11 —Full Description of F77 Macros

GENPTR_CHARACTER_ARRAY
Generate a pointer to a CHARACTER array argument

Description:
Ensure that there exists a pointer to the character array that has been passed as an actual
argument to the C routine. Also generate a variable that contains the length of the actual
character argument and call it ‘arg_length’.

Invocation:

GENPTR_CHARACTER_ARRAY(arg)

Arguments:

arg The dummy argument.

Examples:
GENPTR_CHARACTER_ARRAY(x)

will expand as follows:

All Unix:

VAX/VMS: char ∗x = x_arg->dsc$a_pointer;

int x_length = x_arg->dsc$w_length;

Notes:

On Unix systems, this macro is null, but on a VAX/VMS system, this macro actually
declares the variables that are the pointer to the character string and the integer that
contains its length.

SUN/209.11 —Full Description of F77 Macros 128 GENPTR_SUBROUTINE

GENPTR_SUBROUTINE
Generate a pointer to a SUBROUTINE argument.

Description:
Ensure that there exists a pointer to the subroutine that has been passed as an actual
argument from FORTRAN to the C function. Since FORTRAN usually passes arguments
by reference, the pointer is commonly available directly from the argument list, so this
macro is null.

Invocation:

GENPTR_SUBROUTINE(name)

Arguments:

name
The dummy argument.

Examples:
GENPTR_SUBROUTINE(name)

will expand as follows:

All systems:

Notes:

The dummy argument should have been declared with the SUBROUTINE macro.

129 SUBROUTINE SUN/209.11 —Full Description of F77 Macros

SUBROUTINE
Declare a SUBROUTINE argument.

Description:
Declare a C function argument, given that the actual argument will be a SUBROUTINE
name passed from a FORTRAN program.

Invocation:

SUBROUTINE(name)

Arguments:

name
The dummy argument to be declared.

Examples:
SUBROUTINE(name)

will expand as follows:

All systems: void (*name)()

SUN/209.11 —Full Description of F77 Macros 130 SUBROUTINE_ARG

SUBROUTINE_ARG
Pass a SUBROUTINE argument to a FORTRAN routine.

Description:
Pass a SUBROUTINE argument to a FORTRAN routine. The argument should be a pointer
to a subroutine designed to be called from a FORTRAN program.

Invocation:

SUBROUTINE_ARG(p_name)

Arguments:

p_name
A pointer to the actual subroutine to be used.

Examples:
SUBROUTINE_ARG(name)

will expand as follows:

All systems: name

131 TRAIL SUN/209.11 —Full Description of F77 Macros

TRAIL
Declare hidden trailing arguments

Description:
Declare an argument on those machines that put an extra value at the end of the argument
list to specify the length of a CHARACTER variable or array element.

Invocation:

TRAIL(arg)

Arguments:

arg The name of the CHARACTER or CHARACTER array dummy argument.

Examples:
TRAIL(arg)

will expand as follows:

32bit Unix: ,int arg_length

Some 64bit Unix: ,long arg_length

VAX/VMS:

SUN/209.11 —Full Description of F77 Macros 132 TRAIL_ARG

TRAIL_ARG
Pass the length of a CHARACTER argument to a FORTRAN routine

Description:
Pass the length of a CHARACTER argument or a CHARACTER array argument element
length to a FORTRAN routine if the FORTRAN routine expects to receive it as a separate
argument. The corresponding integer variable is handled automatically where it is needed.

Invocation:

TRAIL_ARG(arg)

Arguments:

arg The name of the CHARACTER or CHARACTER array actual argument being passed.

Examples:
TRAIL_ARG(arg)

will expand as follows:

All Unix: ,arg_length

VAX/VMS:

133 SUN/209.11 —Classified List of CNF Functions

F Classified List of CNF Functions

F.1 Import a FORTRAN String to C

cnfCreib
Create a temporary C string and import a blank filled FORTRAN string into it

cnfCreim
Create a temporary C string and import a FORTRAN string into it

cnfImpb
Import a FORTRAN string into a C string, retaining trailing blanks

cnfImpbn
Import no more than max characters from a FORTRAN string into a C string, retaining trailing blanks

cnfImpch
Import a given number of characters from a FORTRAN string into an array of char

cnfImpn
Import no more than max characters from a FORTRAN string into a C string

cnfImprt
Import a FORTRAN string into a C string

cnfImprta
Import a FORTRAN CHARACTER array into a C array

cnfImprtap
Import a FORTRAN CHARACTER array into a C array of pointers to char

F.2 Export a C String to FORTRAN

cnfExpch
Export a given number of characters from an array of char into a FORTRAN string

cnfExpn
Export a C string to a FORTRAN string, copying given a maximum number of characters

cnfExprt
Export a C string to a FORTRAN string

cnfExprta
Export a C string array to a FORTRAN CHARACTER array

cnfExprtap
Export a C array of pointers to char, to a FORTRAN CHARACTER array

F.3 String Lengths

cnfLenc
Find the length of a C string

cnfLenf
Find the length of a FORTRAN string

SUN/209.11 —Classified List of CNF Functions 134 F.4 Miscellaneous String Handling

F.4 Miscellaneous String Handling

cnfCopyf
Copy one FORTRAN string to another FORTRAN string

cnfCreat
Create a temporary C string and return a pointer to it

cnfCref
Create a temporary FORTRAN string and return a pointer to it

cnfCrefa
Create a temporary FORTRAN CHARACTER array and return a pointer to it

cnfFree
Free allocated space

cnfFreef
Return temporary FORTRAN string space

F.5 LOGICAL Array Handling

cnfCrela
Create a temporary FORTRAN LOGICAL array and return a pointer to it

cnfImpla
Import a FORTRAN LOGICAL array into a C int array

cnfExpla
Export a C int array into a FORTRAN LOGICAL array

F.6 Memory and Pointer Handling

cnfCalloc
Allocate space that may be accessed from C and FORTRAN

cnfCptr
Convert a FORTRAN pointer to a C pointer

cnfFptr
Convert a C pointer to a FORTRAN pointer

cnfFree
Free allocated space

cnfMalloc
Allocate space that may be accessed from C and FORTRAN

cnfRegp
Register a pointer for use from both C and FORTRAN

cnfUregp
Unregister a pointer previously registered using cnfRegp

CNF_PVAL
Expand a FORTRAN pointer to its full value (FORTRAN function)

135 SUN/209.11 — CNF C Routine Descriptions

G CNF C Routine Descriptions

SUN/209.11 — CNF C Routine Descriptions 136 cnfCalloc

cnfCalloc
Allocate space that may be accessed from C and FORTRAN

Description:
This function allocates space in the same way as the standard C calloc() function, except
that the pointer to the space allocated is automatically registered (using cnfRegp) for use
from both C and FORTRAN. This means that the returned pointer may subsequently be
converted into a FORTRAN pointer of type F77_POINTER_TYPE (using cnfFptr) and
back into a C pointer (using cnfCptr). The contents of the space may therefore be accessed
from both languages.

Invocation:

cpointer = cnfCalloc(nobj, size);

Arguments:

size_t nobj (Given)
The number of objects for which space is required.

size_t size (Given)
The size of each object.

Returned Value:

void ∗cnfCalloc
A registered pointer to the allocated space, or NULL if the space could not be allocated.

Notes:

• As with calloc(), the allocated space is initialised to zero bytes.

• The space should be freed using cnfFree when no longer required.

137 cnfCopyf SUN/209.11 — CNF C Routine Descriptions

cnfCopyf
Copy one FORTRAN string to another FORTRAN string

Description:
The FORTRAN string in source_f is copied to dest_f. The destination string is filled with
trailing blanks or truncated as necessary.

Invocation:

cnfCopyf(source_f, source_len, dest_f, dest_len)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

char ∗dest_f (Returned via pointer)
A pointer to the output FORTRAN string

int dest_len (Given)
The length of the output FORTRAN string

SUN/209.11 — CNF C Routine Descriptions 138 cnfCptr

cnfCptr
Convert a FORTRAN pointer to a C pointer

Description:
Given a FORTRAN pointer, stored in a variable of type F77_POINTER_TYPE, this function
returns the equivalent C pointer. Note that this conversion is only performed if the C
pointer has originally been registered (using cnfRegp) for use from both C and FORTRAN.
All pointers to space allocated by cnfCalloc and cnfMalloc are automatically registered
in this way.

Invocation:

cpointer = cnfCptr(fpointer)

Arguments:

F77_POINTER_TYPE fpointer (Given)
The FORTRAN pointer value.

Returned Value:

void ∗cnfCptr
The equivalent C pointer.

Notes:

• A NULL value will be returned if the C pointer has not previously been registered for
use from both C and FORTRAN, or if the FORTRAN pointer value supplied is zero.

139 cnfCreat SUN/209.11 — CNF C Routine Descriptions

cnfCreat
Create a temporary C string and return a pointer to it

Description:
Create a temporary C string and return a pointer to it. The space allocated to the C string
is ‘length’ characters and is initialized to the null string.

Invocation:

pointer = cnfCreat(length)

Arguments:

int length (Given)
The length of the space to be allocated in characters.

Returned Value:

char ∗cnfCreat
A pointer to the storage that has been allocated by this routine.

Notes:

• If the argument is given as N then there is room to store N-1 characters plus a trailing
null character in a C string.

• If the routine could not create the space, then it returns a null pointer.

SUN/209.11 — CNF C Routine Descriptions 140 cnfCref

cnfCref
Create a temporary FORTRAN CHARACTER string and return a

pointer to it.

Description:
Memory is obtained for a FORTRAN CHARACTER string of the specified length and a
pointer is returned which may be passed from C to a FORTRAN subroutine. The string is
not initialised to blanks.

Invocation:

string_f = cnfCref(string_f_len)

Arguments:

int string_f_len (Given)
The required length of the FORTRAN string.

Returned Value:

F77_CHARACTER_ARG_TYPE ∗cnfCref
A pointer to the storage that has been allocated by this routine. Note that this is not
necessarily the location of the string of characters.

Notes:

• If the routine could not create the space, then it returns a null pointer.

• This function will usually be called via the F77 F77_CREATE_CHARACTER macro
which will also provide a pointer to the actual string of characters.

141 cnfCrefa SUN/209.11 — CNF C Routine Descriptions

cnfCrefa
Create a temporary FORTRAN CHARACTER array and return a

pointer to it.

Description:
Memory is obtained for a FORTRAN CHARACTER array, of the specified dimensions and
a pointer is returned which may be passed from C to a FORTRAN subroutine. The array is
not initialised to blanks.

Invocation:

string_f = cnfCrefa(string_f_len, ndims, dims)

Arguments:

int string_f_len (Given)
The maximum length of the FORTRAN string elements of the array.

int ndims (Given)
The number of dimensions of the FORTRAN array

const int ∗dims (Given)
A 1-D array giving the dimensions of the FORTRAN array.

Returned Value:

F77_CHARACTER_ARRAY_ARG_TYPE ∗cnfCrefa
A pointer to the storage that has been allocated by this routine. Note that this is not
necessarily the location of the strings of characters.

Notes:

• If the routine could not create the space, then it returns a null pointer.

• This function will usually be called via the F77 F77_CREATE_CHARACTER_ARRAY
macro which will also provide a pointer to the actual strings of characters.

SUN/209.11 — CNF C Routine Descriptions 142 cnfCreib

cnfCreib
Create a temporary C string and import a FORTRAN string into it

including trailing blanks

Description:
Create a temporary C string, import a FORTRAN string into it, retaining trailing blanks
and return a pointer to this C string. The length of the C string that is created is just
long enough to hold the FORTRAN string (including any trailing blanks), plus the null
terminator.

Invocation:

pointer = cnfCreib(source_f, source_len)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

Returned Value:

char ∗cnfCreib
A pointer to the temporary storage location

Notes:

If the routine could not create the space, then it returns a null pointer.

143 cnfCreim SUN/209.11 — CNF C Routine Descriptions

cnfCreim
Create a temporary C string and import a FORTRAN string into it

discarding trailing blanks

Description:
Create a temporary C string, import a FORTRAN string into it and return a pointer to this
C string. Any trailing blanks in the FORTRAN string are discarded. The length of the C
string that is created is just long enough to hold the FORTRAN string (less trailing blanks),
plus the null terminator.

Invocation:

pointer = cnfCreim(source_f, source_len)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

Returned Value:

char ∗cnfCreim
A pointer to the storage space allocated by this function.

Notes:

If the routine could not create the space, then it returns a null pointer.

SUN/209.11 — CNF C Routine Descriptions 144 cnfCrela

cnfCrela
Create a temporary FORTRAN LOGICAL array and return a pointer

to it.

Description:
Memory is obtained for a FORTRAN LOGICAL array, of the specified dimensions and a
pointer is returned which may be passed from C to a FORTRAN subroutine. The array is
not initialised.

Invocation:

string_f = cnfCrela(ndims, dims)

Arguments:

int ndims (Given)
The number of dimensions of the FORTRAN array

const int ∗dims (Given)
A 1-D array giving the dimensions of the FORTRAN array.

Returned Value:

F77_LOGICAL_TYPE ∗cnfCrefa
A pointer to the storage that has been allocated by this routine.

Notes:

• If the routine could not create the space, then it returns a null pointer.

145 cnfExpch SUN/209.11 — CNF C Routine Descriptions

cnfExpch
Export a C array of char to a FORTRAN string.

Description:
Export a C array of char to a FORTRAN string, copying ‘nchars’ characters. No characters,
are special so this may be used to export an HDS locator which could contain a null
character.

Invocation:

cnfExpch(source_c, dest_f, nchars)

Arguments:

const char ∗source_c (Given)
A pointer to the input C string

char ∗dest_f (Returned via pointer)
A pointer to the output FORTRAN string

int nchars (Given)
The number of characters to be copied from source_c to dest_f

SUN/209.11 — CNF C Routine Descriptions 146 cnfExpla

cnfExpla
Export a C int array to a FORTRAN LOGICAL array

Description:
Export a C int array to a FORTRAN LOGICAL array setting appropriate TRUE or FALSE
values in the FORTRAN array.

Invocation:

cnfExpla(source_c, dest_f, ndims, dims)

Arguments:

const int ∗source_c (Given)
A pointer to the input C array

F77_LOGICAL_TYPE ∗dest_f (Returned via pointer)
A pointer to the FORTRAN output array

int ndims (Given)
The number of dimensions in the arrays

const int ∗dims (Given)
A pointer to a 1-D array giving the dimensions of the arrays

147 cnfExpn SUN/209.11 — CNF C Routine Descriptions

cnfExpn
Export a C string to a FORTRAN string, copying a given maximum

number of characters

Description:
Export a C string to a FORTRAN string, copying a maximum of ‘max’ characters. If the C
string is shorter than the space allocated to the FORTRAN string, then pad it with blanks,
even if the whole source string was not copied as it had more than ‘max’ characters. If
the C string is longer than the space allocated to the FORTRAN string, then truncate the
string.

Invocation:

cnfExpn(source_c, max, dest_f, dest_len)

Arguments:

const char ∗source_c (Given)
A pointer to the input C string

int max (Given)
The maximum number of character to be copied from source_c to dest_f

char ∗dest_f (Returned via pointer)
A pointer to the FORTRAN output string

int dest_len (Given)
The length of the FORTRAN output string

SUN/209.11 — CNF C Routine Descriptions 148 cnfExprt

cnfExprt
Export a C string to a FORTRAN string

Description:
Export a C string to a FORTRAN string. If the C string is shorter than the space allocated
to the FORTRAN string, then pad it with blanks. If the C string is longer than the space
allocated to the FORTRAN string, then truncate the string.

Invocation:

cnfExprt(source_c, dest_f, dest_len)

Arguments:

const char ∗source_c (Given)
A pointer to the input C string

char ∗dest_f (Returned via pointer)
A pointer to the output FORTRAN string

int dest_len (Given)
The length of the output FORTRAN string

149 cnfExprta SUN/209.11 — CNF C Routine Descriptions

cnfExprta
Export a C string array to a FORTRAN CHARACTER array

Description:
Export a C string array to a FORTRAN CHARACTER array. A null character is assumed
to terminate each C string – it will not be copied. If the C string is shorter than the
space allocated to the FORTRAN string, then pad it with blanks. No more than ‘dest_len’
characters will be copied for each string.

Invocation:

cnfExprta(source_c, source_len, dest_f, dest_len, ndims, dims)

Arguments:

const char ∗source_c (Given)
A pointer to the input C array

int source_len (Given)
The maximum number of characters in a string of the C array (including terminating null
if required). This would be the last declared dimension of a char array.

char ∗dest_f (Returned via pointer)
A pointer to the output FORTRAN array

int dest_len (Given)
The declared maximum number of characters in a element of the FORTRAN array

int ndims (Given)
The number of dimensions of the FORTRAN array

const int ∗dims (Given)
A pointer to a 1-D array specifying the dimensions of the FORTRAN array.

Notes:

The C array is treated as an array of strings but it will actually be an array of char with
one more dimension than the FORTRAN array, the last dimension being source_len. The
other dimensions must be as for the FORTRAN array.

SUN/209.11 — CNF C Routine Descriptions 150 cnfExprtap

cnfExprtap
Export a C array of pointers to char, to a FORTRAN CHARACTER

array

Description:
Export a C array of pointers to char to a FORTRAN CHARACTER array. A null character
is assumed to terminate each C string – it will not be copied. If the C string is shorter
than the space allocated to the FORTRAN string, then pad it with blanks. No more than
‘dest_len’ characters will be copied for each string.

Invocation:

cnfExprtap(source_c, dest_f, dest_len, ndims, dims)

Arguments:

char ∗const ∗source_c (Given)
A pointer to the input C array of pointers to char

char ∗dest_f
A pointer to the output FORTRAN array

int dest_len (Given)
The declared maximum number of characters in a element of the FORTRAN array

int ndims (Given)
The number of dimensions of the arrays

const int ∗dims (Given)
A pointer to a 1-D array specifying the dimensions of the arrays.

Notes:

The array of pointers to char is assumed to point to null-terminated strings. The dimensions
of the array of pointers and the FORTRAN character array must be the same.

Strictly, the input array should be declared as ‘const char ∗const ∗source_c’, but this
would not allow non-constant char to be given.

151 cnfFptr SUN/209.11 — CNF C Routine Descriptions

cnfFptr
Convert a C pointer to a FORTRAN pointer

Description:
Given a C pointer, this function returns the equivalent FORTRAN pointer of type F77_POINTER_TYPE.
Note that this conversion is only performed if the C pointer has originally been registered
(using cnfRegp) for use from both C and FORTRAN. All pointers to space allocated by
cnfCalloc and cnfMalloc are automatically registered in this way.

Invocation:

fpointer = cnfFptr(cpointer)

Arguments:

void ∗cpointer (Given)
The C pointer.

Returned Value:

F77_POINTER_TYPE cnfCptr
The equivalent FORTRAN pointer value.

Notes:

• A value of zero will be returned if the C pointer has not previously been registered
for use from both C and FORTRAN, or if a NULL pointer is supplied.

SUN/209.11 — CNF C Routine Descriptions 152 cnfFree

cnfFree
Free allocated space

Description:
Free space allocated by a call to cnfCalloc, cnfCreat, cnfCreib, cnfCreim or cnfMalloc.

Invocation:

cnfFree(pointer)

Arguments:

void ∗pointer (Given)
A pointer to the space to be freed.

Notes:

• This function is not simply equivalent to the C free() function, since if the pointer
has been registered (using cnfRegp) for use by both C and FORTRAN, then it will be
unregistered before the space is freed. All pointers to space allocated by cnfCalloc
and cnfMalloc are automatically registered in this way, so cnfFree should always be
used to free them.

• It is also safe to free unregistered pointers with this function.

153 cnfFreef SUN/209.11 — CNF C Routine Descriptions

cnfFreef
Free a FORTRAN string

Description:
Return the temporary storage space which was allocated by a previous call to cnfCref or
cnfCrefa.

Invocation:

cnfFreef(string_f)

Arguments:

F77_CHARACTER_ARG_TYPE ∗string_f (Given)
A pointer (as returned by cnfCref or cnfCrefa) to the string to be freed.

Notes:

• This function will usually be called via the F77 macro F77_FREE_CHARACTER.

SUN/209.11 — CNF C Routine Descriptions 154 cnfImpb

cnfImpb
Import a FORTRAN string into a C string, retaining trailing blanks

Description:
Import a FORTRAN string into a C string retaining trailing blanks. The null character is
appended to the C string after all of the blanks in the input string.

Invocation:

cnfImpb(source_f, source_len, dest_c)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

char ∗dest_c (Returned via pointer)
A pointer to the output C string

Notes:

No check is made that there is sufficient space allocated to the C string to hold the
FORTRAN string. It is the responsibility of the programmer to check this.

155 cnfImpbn SUN/209.11 — CNF C Routine Descriptions

cnfImpbn
Import no more than max characters from a FORTRAN string into a C

string, retaining trailing blanks

Description:
Import a FORTRAN string into a C string, up to a maximum of ‘max’ characters, retaining
trailing blanks. The null character is appended to the C string after all of the blanks in the
input string.

Invocation:

cnfImpbn(source_f, source_len, max, dest_c)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

int max (Given)
The maximum number of characters to be copied from the input FORTRAN string to the
output C string

char ∗dest_c (Returned via pointer)
A pointer to the output C string

Notes:

No check is made that there is sufficient space allocated to the C string to hold the
FORTRAN string. It is the responsibility of the programmer to check this.

SUN/209.11 — CNF C Routine Descriptions 156 cnfImpch

cnfImpch
Import a FORTRAN string into a C array of char.

Description:
Import a FORTRAN string into a C array of char, copying ‘nchars’ characters. No charac-
ters, are special so this may be used to import an HDS locator which could contain any
character.

Invocation:

cnfImprt(source_f, nchars, dest_c)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int nchars (Given)
The number of characters to be copied from source_f to dest_c

char ∗dest_c (Returned via pointer)
A pointer to the C array of char

Notes:

No check is made that there is sufficient space allocated to the C array to hold the FOR-
TRAN string. It is the responsibility of the programmer to check this.

157 cnfImpla SUN/209.11 — CNF C Routine Descriptions

cnfImpla
Import a FORTRAN LOGICAL array into a C int array

Description:
Import a FORTRAN LOGICAL array into a C int array setting appropriate TRUE or FALSE
values in the C array.

Invocation:

cnfImpla(source_f, dest_c, ndims, dims)

Arguments:

const F77_LOGICAL_TYPE ∗source_f (Given)
A pointer to the input FORTRAN array

int ∗dest_c (Returned via pointer)
A pointer to the output C array

int ndims (Given)
The number of dimensions in the arrays

const int ∗dims (Given)
A pointer to a 1-D array giving the dimensions of the arrays

SUN/209.11 — CNF C Routine Descriptions 158 cnfImpn

cnfImpn
Import no more than max characters from a FORTRAN string into a C

string

Description:
Import a FORTRAN string into a C string, up to a maximum of ‘max’ characters discarding
trailing blanks. The null character is appended to the C string after the last non-blank
character.

Invocation:

cnfImpn(source_f, source_len, max, dest_c)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

int max (Given)
The maximum number of characters to be copied from the input FORTRAN string to the
output C string

char ∗dest_c (Returned via pointer)
A pointer to the output C string

Notes:

No check is made that there is sufficient space allocated to the C string to hold the
FORTRAN string and a terminating null. It is the responsibility of the programmer to
check this.

159 cnfImprt SUN/209.11 — CNF C Routine Descriptions

cnfImprt
Import a FORTRAN string into a C string

Description:
Import a FORTRAN string into a C string, discarding trailing blanks. The null character is
appended to the C string after the last non-blank character.

Invocation:

cnfImprt(source_f, source_len, dest_c)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length of the input FORTRAN string

char ∗dest_c (Returned via pointer)
A pointer to the output C string

Notes:

No check is made that there is sufficient space allocated to the C string to hold the
FORTRAN string and a terminating null. It is the responsibility of the programmer to
check this.

SUN/209.11 — CNF C Routine Descriptions 160 cnfImprta

cnfImprta
Import a FORTRAN CHARACTER array into a C string array.

Description:
Import a FORTRAN CHARACTER array into a C string array, discarding trailing blanks.
The null character is appended to the C string after the last non-blank character copied
from the FORTRAN string if there is room. No more than ‘dest_len’ characters will be
copied for each string.

Invocation:

cnfImprta(source_f, source_len, dest_c, dest_len, ndims, dims)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN array

int source_len (Given)
The declared maximum number of characters in a element of the FORTRAN array

char ∗dest_c (Returned via pointer)
A pointer to the output C array

int dest_len (Given)
The maximum number of characters in an element of the C array (including terminating
null if required). This would be the last declared dimension of a char array.

int ndims (Given)
The number of dimensions of the FORTRAN array

const int ∗dims (Given)
A pointer to a 1-D array giving the dimensions of the FORTRAN array.

Notes:

The C array is treated as an array of strings but it will actually be a char array with one
more dimension than the FORTRAN array, the last dimension being ‘dest_len’. The other
dimensions must be as for the FORTRAN array.

161 cnfImprtap SUN/209.11 — CNF C Routine Descriptions

cnfImprtap
Import a FORTRAN CHARACTER array into a C array of pointers to

char.

Description:
Import a FORTRAN CHARACTER array into a C array of pointers to char, discarding
trailing blanks. The pointers must each point to an area of allocated memory at least
‘dest_len’ characters long. The null character is appended to the C string after the last
non-blank character copied from the FORTRAN string if there is room. No more than
‘dest_len’ characters will be copied for each string.

Invocation:

cnfImprtap(source_f, source_len, dest_c, dest_len, ndims, dims)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN array

int source_len (Given)
The declared maximum number of characters in a element of the FORTRAN array

char ∗const ∗dest_c
A pointer to the output C array

int dest_len (Given)
The maximum number of characters to be copied for each string (including terminating
null if required).

int ndims (Given)
The number of dimensions of the arrays

const int ∗dims (Given)
A pointer to a 1-D array giving the dimensions of the arrays.

Notes:

The array of pointers and the FORTRAN character array must have the same dimensions.

SUN/209.11 — CNF C Routine Descriptions 162 cnfLenc

cnfLenc
Find the length of a C string

Description:
Find the length (i.e. position of the last non blank character) in a C string.

Invocation:

result = cnfLenc(source_c)

Arguments:

const char ∗source_c (Given)
A pointer to the input C string

Returned Value:

int cnfLenc
The length of the input C string

Notes:

This routine follows the FORTRAN convention of counting positions from one, so with an
input string of "ABCD" the value returned would be 4.

163 cnfLenf SUN/209.11 — CNF C Routine Descriptions

cnfLenf
Find the length of a FORTRAN string

Description:
Find the length (i.e. position of the last non blank character) in a FORTRAN string. This is
not necessarily the same as the value of source_len as trailing blanks are not counted.

Invocation:

result = cnfLenf(source_f, source_len)

Arguments:

const char ∗source_f (Given)
A pointer to the input FORTRAN string

int source_len (Given)
The length (including trailing blanks) of the input FORTRAN string

Returned Value:

int cnfLenf
The length (excluding trailing blanks) of the input FORTRAN string.

Notes:

This routine follows the FORTRAN convention of counting positions from one, so with an
input string of ’ABCD’ the value returned would be 4.

SUN/209.11 — CNF C Routine Descriptions 164 cnfMalloc

cnfMalloc
Allocate space that may be accessed from C and FORTRAN

Description:
This function allocates space in the same way as the standard C malloc() function, except
that the pointer to the space allocated is automatically registered (using cnfRegp) for use
from both C and FORTRAN. This means that the returned pointer may subsequently be
converted into a FORTRAN pointer of type F77_POINTER_TYPE (using cnfFptr), and
back into a C pointer (using cnfCptr). The contents of the space may therefore be accessed
from both languages.

Invocation:

cpointer = cnfMalloc(size);

Arguments:

size_t size (Given)
The size of the required space.

Returned Value:

void ∗cnfMalloc
A registered pointer to the allocated space, or NULL if the space could not be allocated.

Notes:

• The allocated space should be freed using cnfFree when no longer required.

165 cnfRegp SUN/209.11 — CNF C Routine Descriptions

cnfRegp
Register a pointer for use from both C and FORTRAN

Description:
This is a low-level function which will normally only be required if you are implementing
your own memory allocation facilities (all memory allocated by cnfCalloc and cnfMalloc
is automatically registered using this function).

The function attempts to register a C pointer so that it may be used from both C and
FORTRAN. If successful, registration subsequently allows the pointer to be converted into
a FORTRAN pointer of type F77_POINTER_TYPE (using cnfFptr), and then back into a C
pointer (using cnfCptr). These conversions are possible even if the FORTRAN pointer is
stored in a shorter data type than the C pointer.

Not all C pointers may be registered, and registration may fail if the FORTRAN version of
the pointer is indistinguishable from that of a pointer which has already been registered.
In such a case, a new C pointer must be obtained (e.g. by allocating a different region of
memory).

Invocation:

result = cnfRegp(cpointer)

Arguments:

void ∗cpointer (Given)
The C pointer to be registered.

Returned Value:

int cnfRegp
If registration was successful, the function returns 1. If registration was unsuccessful, it
returns zero.

Notes:

• If an internal error occurs (e.g. if insufficient memory is available), the function
returns -1.

SUN/209.11 — CNF C Routine Descriptions 166 cnfUregp

cnfUregp
Unregister a pointer previously registered using cnfRegp

Description:
This is a low-level function which will normally only be required if you are implementing
your own memory allocation facilities.

The function accepts a C pointer which has previously been registered for use from both C
and FORTRAN (using cnfRegp) and removes its registration. Subsequently, conversion
between the C pointer and its FORTRAN equivalent (and vice versa) will no longer be
performed by cnfFptr and cnfCptr.

Invocation:

cnfUregp(cpointer)

Arguments:

void ∗cpointer (Given)
The C pointer to be unregistered.

Notes:

• No action occurs (and no error results) if the C pointer has not previously been
registered for use from both C and FORTRAN.

167 SUN/209.11 —CNF FORTRAN Function Description

H CNF FORTRAN Function Description

SUN/209.11 —CNF FORTRAN Function Description 168 CNF_PVAL

CNF_PVAL
Expand a FORTRAN pointer to its full value

Description:
Given a FORTRAN pointer, stored in an INTEGER variable, this function returns the full
value of the pointer (on some platforms, this may be longer than an INTEGER). Typically,
this is only required when the pointer is used to pass dynamically allocated memory to
another routine using the %VAL facility.

Invocation:

CALL DOIT(..., %VAL(CNF_PVAL(FPTR)), ...)

Arguments:

FPTR = INTEGER (Given)
The FORTRAN pointer value.

Returned Value:

CNF_PVAL
The full pointer value.

Notes:

• The data type of this function will depend on the platform in use and is declared in
the include file CNF_PAR.

169 CNF_PVAL SUN/209.11 —CNF FORTRAN Function Description

SUN/209.11 —CNF FORTRAN Function Description 170 CNF_CVAL

CNF_CVAL
Convert a Fortran INTEGER into the same type as used in the TRAIL

macro.

Description:
When passing dynamically allocated character strings to Fortran or C routines the character
string length is passed as a hidden argument after the visible ones (see TRAIL). With some
compilers this length is a 64bit long (INTEGER*8), whereas for others it is more typically a
32bit int (INTEGER*4). Using this function avoids the need to know which size is used for
the configured compiler.

Invocation:

CALL DOIT(%VAL(CNF_PVAL(FPTR)),..., %VAL(CNF_CVAL(FINT)))

Arguments:

FINT = INTEGER (Given)
The FORTRAN integer value giving the expected length of the strings.

Returned Value:

CNF_CVAL
The string length in the correct type for the configured compiler. Fortran equivalent of the
type used by the TRAIL macro.

Notes:

• The data type of this function will depend on the platform in use and is declared in
the include file CNF_PAR.

• When mixing calls that pass locally declared character strings and dynamically
allocated ones, all the declared strings must preceed all the dynamic ones in the
argument list so that the order of the TRAIL arguments is known.

171 SUN/209.11 —References

I References

References

[1] American National Standard – Programming Language – FORTRAN (ANSI X3.9-1978, ISO
1539-1980(E)). Publ, American National Standards Institute.

[2] American National Standard for Information Systems – Programming Language – C (ANSI
X3.159-1989). Publ, American National Standards Institute.

[3] Banahan, M.F., 1988. The C Book: featuring the draft ANSI C standard. Publ, Addison-Wesley.
B

	How to read this document
	Cookbook
	Calling C from FORTRAN
	Calling FORTRAN from C
	Building the Program

	Representation of Data
	Numeric Types
	Characters
	Logical Types
	Pointer Types
	Arrays
	Same Language – Different Compiler

	Communication Between Routines
	Arguments
	Function Values
	Global Data

	More on Calling C from FORTRAN
	General Description
	Declaration of a Function
	Declaration of Arguments
	Arguments – and Pointers to Them
	Type Specifiers
	Logical Values
	External Names
	Common Blocks

	Converting Between FORTRAN and C Strings
	The CNF Functions
	Handling Byte Strings (HDS Locators)
	Using Dynamic FORTRAN Character Strings

	Pointers
	Pointer Registration and Conversion
	Allocating Exportable Dynamic Memory
	Accessing Dynamic Memory from C and FORTRAN
	Registering Your Own Pointers

	More on Calling FORTRAN from C
	Thread Safety

	More on Arrays
	CHARACTER and LOGICAL Arrays
	Arrays of pointer to char
	POINTER Arrays

	The IMPORT and EXPORT Macros
	Subroutines and Functions as Arguments
	Other Approaches to Mixed Language Programming
	Compiling and Linking
	Implementation Specific Details
	Sun
	General
	Data Types
	External Names
	Arguments
	Function Values
	Global Data

	DEC Unix
	General
	LOGICAL Values
	POINTERS on Alphas

	VAX/VMS
	General
	Data Types
	Arguments
	Function Values
	Global Data

	Other Operating Systems

	Rationale for Mixed Language Programming
	Alphabetical List of F77 Macros
	Classified List of F77 Macros
	Declaration of a C Function
	Arguments of a C Function
	Generate Pointers to Arguments
	Data Type Macros
	Logical Value Macros
	External Name Macro
	Common Block Macros
	Declaring Variables for Passing to a FORTRAN Routine
	Importing and Exporting Arguments
	Passing Arguments to a FORTRAN Routine
	Thread Safety

	Full Description of F77 Macros
	Generic Descriptions
	DECLARE_type
	DECLARE_type_ARRAY
	DECLARE_type_ARRAY_DYN
	F77_ASSOC_type_ARRAY
	F77_CREATE_type_ARRAY
	F77_EXPORT_type
	F77_EXPORT_type_ARRAY
	F77_FREE_type
	F77_IMPORT_type
	F77_IMPORT_type_ARRAY
	F77_type_FUNCTION
	GENPTR_type
	GENPTR_type_ARRAY
	GENPTR_type_FUNCTION
	type
	type_ARG
	type_ARRAY
	type_ARRAY_ARG
	type_FUNCTION
	type_FUNCTION_ARG
	Specific Descriptions
	CHARACTER
	CHARACTER_ARG
	CHARACTER_ARRAY
	CHARACTER_ARRAY_ARG
	CHARACTER_RETURN_ARG
	CHARACTER_RETURN_VALUE
	DECLARE_CHARACTER
	DECLARE_CHARACTER_ARRAY
	DECLARE_CHARACTER_DYN
	F77_BLANK_COMMON
	F77_BYTE_TYPE
	F77_CALL
	F77_CHARACTER_ARG_TYPE
	F77_CHARACTER_ARRAY_ARG_TYPE
	F77_CHARACTER_TYPE
	F77_CREATE_CHARACTER
	F77_CREATE_CHARACTER_ARRAY
	F77_CREATE_CHARACTER_ARRAY_M
	F77_CREATE_LOGICAL_ARRAY_M
	F77_DOUBLE_TYPE
	F77_EXPORT_CHARACTER
	F77_EXPORT_CHARACTER_ARRAY
	F77_EXPORT_CHARACTER_ARRAY_P
	F77_EXTERNAL_NAME
	F77_FALSE
	F77_IMPORT_CHARACTER
	F77_IMPORT_CHARACTER_ARRAY
	F77_IMPORT_CHARACTER_ARRAY_P
	F77_INTEGER_TYPE
	F77_ISFALSE
	F77_LOCK
	F77_ISTRUE
	F77_LOGICAL_TYPE
	F77_NAMED_COMMON
	F77_POINTER_TYPE
	F77_REAL_TYPE
	F77_SUBROUTINE
	F77_TRUE
	F77_UBYTE_TYPE
	F77_UWORD_TYPE
	F77_WORD_TYPE
	GENPTR_CHARACTER
	GENPTR_CHARACTER_ARRAY
	GENPTR_SUBROUTINE
	SUBROUTINE
	SUBROUTINE_ARG
	TRAIL
	TRAIL_ARG

	Classified List of CNF Functions
	Import a FORTRAN String to C
	Export a C String to FORTRAN
	String Lengths
	Miscellaneous String Handling
	LOGICAL Array Handling
	Memory and Pointer Handling

	 CNF C Routine Descriptions
	cnfCalloc
	cnfCopyf
	cnfCptr
	cnfCreat
	cnfCref
	cnfCrefa
	cnfCreib
	cnfCreim
	cnfCrela
	cnfExpch
	cnfExpla
	cnfExpn
	cnfExprt
	cnfExprta
	cnfExprtap
	cnfFptr
	cnfFree
	cnfFreef
	cnfImpb
	cnfImpbn
	cnfImpch
	cnfImpla
	cnfImpn
	cnfImprt
	cnfImprta
	cnfImprtap
	cnfLenc
	cnfLenf
	cnfMalloc
	cnfRegp
	cnfUregp

	CNF FORTRAN Function Description
	CNF_PVAL
	CNF_CVAL

	References

