Coordinate system used to describe positions within the domain
"
Cartesian"
, and may not be altered.
"
Compound"
, and may not be altered. In addition, the CmpFrame class allows the System
attribute to be referenced for a component Frame by including the index of an axis
within the required component Frame. For instance, "
System(3)"
refers to the
System attribute of the component Frame which includes axis 3 of the CmpFrame.
"
AZEL"
: Horizon coordinates. The longitude axis is azimuth such that
geographic north has an azimuth of zero and geographic east has an azimuth of
+PI/2 radians. The zenith
has elevation +PI/2.
When converting to and from other celestial coordinate systems, no corrections are
applied for atmospheric refraction or polar motion (however, a correction for diurnal
aberattion is applied). Note, unlike most other celestial coordinate systems, this
system is right handed. Also, unlike other SkyFrame systems, the AzEl system
is sensitive to the timescale in which the Epoch value is supplied. This is
because of the gross diurnal rotation which this system undergoes, causing a
small change in time to translate to a large rotation. When converting to or
from an AzEl system, the Epoch value for both source and destination SkyFrames
should be supplied in the TDB timescale. The difference between TDB and TT
is between 1 and 2 milliseconds, and so a TT value can usually be supplied
in place of a TDB value. The TT timescale is related to TAI via TT = TAI
+
32.184 seconds.
"
ECLIPTIC"
: Ecliptic coordinates (IAU 1980), referred to the ecliptic and mean
equinox specified by the qualifying Equinox value.
"
FK4"
: The old FK4 (barycentric) equatorial coordinate system, which should be
qualified by an Equinox value. The underlying model on which this is based is
non-inertial and rotates slowly with time, so for accurate work FK4 coordinate systems
should also be qualified by an Epoch value.
"
FK4-NO-E"
or "
FK4_NO_E"
: The old FK4 (barycentric) equatorial system but without
the "
E-terms of aberration"
(e.g. some radio catalogues). This coordinate system
should also be qualified by both an Equinox and an Epoch value.
"
FK5"
or "
EQUATORIAL"
: The modern FK5 (barycentric) equatorial coordinate system.
This should be qualified by an Equinox value.
"
GALACTIC"
: Galactic coordinates (IAU 1958).
"
GAPPT"
, "
GEOCENTRIC"
or "
APPARENT"
: The geocentric apparent equatorial coordinate
system, which gives the apparent positions of sources relative to the true plane of the
Earth’
s equator and the equinox (the coordinate origin) at a time specified by the
qualifying Epoch value. (Note that no Equinox is needed to qualify this coordinate
system because no model "
mean equinox"
is involved.) These coordinates give the
apparent right ascension and declination of a source for a specified date of
observation, and therefore form an approximate basis for pointing a telescope. Note,
however, that they are applicable to a fictitious observer at the Earth’
s
centre, and therefore ignore such effects as atmospheric refraction and the
(normally much smaller) aberration of light due to the rotational velocity of the
Earth’
s surface. Geocentric apparent coordinates are derived from the standard
FK5 (J2000.0) barycentric coordinates by taking account of the gravitational
deflection of light by the Sun (usually small), the aberration of light caused by
the motion of the Earth’
s centre with respect to the barycentre (larger),
and the precession and nutation of the Earth’
s spin axis (normally larger
still).
"
HELIOECLIPTIC"
: Ecliptic coordinates (IAU 1980), referred to the ecliptic and mean
equinox of J2000.0, in which an offset is added to the longitude value which results in
the centre of the sun being at zero longitude at the date given by the Epoch attribute.
Attempts to set a value for the Equinox attribute will be ignored, since this system is
always referred to J2000.0.
"
ICRS"
: The Internation Celestial Reference System, realised through the Hipparcos
catalogue. Whilst not an equatorial system by definition, the ICRS is very close to
the FK5 (J2000) system and is usually treated as an equatorial system. The
distinction between ICRS and FK5 (J2000) only becomes important when accuracies of 50
milli-arcseconds or better are required. ICRS need not be qualified by an Equinox
value.
"
J2000"
: An equatorial coordinate system based on the mean dynamical equator and
equinox of the J2000 epoch. The dynamical equator and equinox differ slightly from
those used by the FK5 model, and so a "
J2000"
SkyFrame will differ slightly from an "
FK5(Equinox=J2000)"
SkyFrame. The J2000 System need not be qualified by an Equinox
value
"
SUPERGALACTIC"
: De Vaucouleurs Supergalactic coordinates.
"
UNKNOWN"
: Any other general spherical coordinate system. No Mapping can be created
between a pair of SkyFrames if either of the SkyFrames has System set to "
Unknown"
.
Currently, the default System value is "
ICRS"
. However, this default may change in
future as new astrometric standards evolve. The intention is to track the most modern
appropriate standard. For this reason, you should use the default only if this is what
you intend (and can tolerate any associated slight change in future). If you intend to
use the ICRS system indefinitely, then you should specify it explicitly.
"
WAVE"
- wavelength). They are all defined in
FITS-WCS paper III:
"
FREQ"
: Frequency (GHz)
"
ENER"
or "
ENERGY"
: Energy (J)
"
WAVN"
or "
WAVENUM"
: Wave-number (1/m)
"
WAVE"
or "
WAVELEN"
: Vacuum wave-length (Angstrom)
"
AWAV"
or "
AIRWAVE"
: Wave-length in air (Angstrom)
"
VRAD"
or "
VRADIO"
: Radio velocity (km/s)
"
VOPT"
or "
VOPTICAL"
: Optical velocity (km/s)
"
ZOPT"
or "
REDSHIFT"
: Redshift (dimensionless)
"
BETA"
: Beta factor (dimensionless)
"
VELO"
or "
VREL"
: Apparent radial ("
relativistic"
) velocity (km/s)
The default value for the Unit attribute for each system is shown in parentheses. Note that the default value for the ActiveUnit flag is non-zero for a SpecFrame, meaning that changes to the Unit attribute for a SpecFrame will result in the SpecFrame being re-mapped within its enclosing FrameSet in order to reflect the change in units (see astSetActiveUnit function for further information).
"
MJD"
):
"
MJD"
: Modified Julian Date (d)
"
JD"
: Julian Date (d)
"
JEPOCH"
: Julian epoch (yr)
"
BEPOCH"
: Besselian (yr)
The default value for the Unit attribute for each system is shown in parentheses.
Strictly, these systems should not allow changes to be made to the units. For instance,
the usual definition of "
MJD"
and "
JD"
include the statement that the values will be
in units of days. However, AST does allow the use of other units with all the
above supported systems (except BEPOCH), on the understanding that conversion
to the "
correct"
units involves nothing more than a simple scaling (1 yr =
365.25 d, 1 d = 24 h, 1 h = 60 min, 1 min = 60 s). Besselian epoch values are
defined in terms of tropical years of 365.2422 days, rather than the usual Julian
year of 365.25 days. Therefore, to avoid any confusion, the Unit attribute is
automatically cleared to "
yr"
when a System value of BEPOCH System is selected, and
an error is reported if any attempt is subsequently made to change the Unit
attribute.
Note that the default value for the ActiveUnit flag is non-zero for a TimeFrame, meaning that changes to the Unit attribute for a TimeFrame will result in the TimeFrame being re-mapped within its enclosing FrameSet in order to reflect the change in units (see astSetActiveUnit function for further information).
"
FLXDN"
: Flux per unit frequency
(W/m
2/Hz)
"
FLXDNW"
: Flux per unit wavelength
(W/m
2/Angstrom)
"
SFCBR"
: Surface brightness in frequency units
(W/m
2/Hz/arcmin∗∗2)
"
SFCBRW"
: Surface brightness in wavelength units
(W/m
2/Angstrom/arcmin∗∗2)
The above lists specified the default units for each System. If an explicit
value is set for the Unit attribute but no value is set for System, then the
default System value is determined by the Unit string (if the units are
not appropriate for describing any of the supported Systems then an error
will be reported when an attempt is made to access the System value). If no
value has been specified for either Unit or System, then System=FLXDN and
Unit=W/m
2/Hz
are used.