
SUN/229.2

Starlink Project
Starlink User Note 229.2

Tim Jenness, Remo Tilanus,
Horst Meyerdierks, Jon Fairclough

30 November 2014

The Global Section Datafile (GSD)
access library

1.0
Programmer’s Manual

SUN/229.2 —Abstract i

Abstract

This document describes the Global Section Datafile (GSD) access library. This library provides
read-only access to GSD files created at the James Clerk Maxwell Telescope. A description of
GSD itself is presented in addition to descriptions of the library routines.

ii SUN/229.2—Contents

Contents

1 History 1

2 Introduction 1

3 C interface 1

4 Fortran interface 1

5 Perl interface 2

6 Programming Notes 2

7 Programming Tools 2

8 Release Notes 3

References 3

A Technical Overview 3

B Subroutine List 4

C Routine Descriptions 5
gsdClose . 6
gsdFind . 7
gsdGet0x . 9
gsdGet1x . 11
gsdInqSize . 13
gsdItem . 15
gsdOpenRead . 17

D Mapping 19

iii SUN/229.2—List of Figures

List of Figures

SUN/229.2 —Fortran interface 1

1 History

The Global Section Datafile (GSD) subroutine library package was written in 1987 by Jon
Fairclough [1] to permit the fast reading and writing of data at the James Clerk Maxwell
Telescope. Development was stimulated by the need to provide fast filing of data in the so-called
“General Single Dish Data” (GSDD) format developed by MRAO, IRAM and NRAO. The JCMT
used the GSD format for data storage from all instrumentation until the arrival of SCUBA [2]
in 1996 (which uses NDF [3]) and data files in this format will continue to be written by the
heterodyne system until the delivery of ACSIS in 2001.

The original GSD I/O library was written in VAX Fortran and has never been ported to a Unix
environment. With the move from VMS to Unix in 1994/1995 it was clear that a version of the
GSD library was required that would be able to read GSD files (those in the archive as well as
new files) without having to change the existing telescope acquisition system or require the use
of a VMS application to convert the format on demand. A read-only version of the library was
written in C by Remo Tilanus and Horst Meyerdierks in 1994 and was incorporated into the
Starlink releases of JCMTDR [4] and SPECX [5].

2 Introduction

The JCMT uses the GSD file format for its current heterodyne acquisition system (via the Dutch
Autocorrelation Spectrometer (DAS)) and for its archive of pre-SCUBA data. This document
describes the C version of the GSD library (a FORTRAN interface is layered on top), now
distributed as a standalone package and not part of an application. The current library cannot
be used for creating or modifying GSD files.

3 C interface

The fundamental calling interface is from C and this is documented in appendix C. Routine
prototypes can be found in the gsd.h include file. An example C program that lists the contents
of a GSD file (gsdprint) is provided in the distribution.

4 Fortran interface

A Fortran interface is provided that uses the original names of the subroutines rather than
C function names. For example, the C routine gsdOpenRead should be called from Fortran as
gsd_open_read. The Fortran binding is incomplete (only covering the supplied C routines) and
existing Fortran code may have to be changed before this library can be used. An example
routine (gsd_print.f) is provided to demonstrate the interface. Additional changes:

SUN/229.2 —Programming Tools 2

• The Fortran include file is now called GSD_PAR to fit in with the Starlink naming convention
(as opposed to GSDPARS in the original VAX library).

• GSD_PAR is incomplete. Prior inclusion of PRM_PAR is required before GSD_PAR can be
included.

• Error status values have changed. Zero is good status, non-zero is bad status, but no
particular status value can be expected.

• gsd_inquire_array is not implemented. Instead gsd_inq_size must be used, although it
was previously labelled “obsolete”.

5 Perl interface

A Perl interface to the GSD library is available, but is not part of this distribution. Please contact
Tim Jenness (t.jenness@jach.hawaii.edu) for more information.

6 Programming Notes

This section describes some of the basic features of the library in comparison with the VAX
version:

• The library provides only read access.

• Only VAX binary GSD files can be read.

• Bad values in the file are converted to PRIMDAT bad values[6], which differ from the
traditional VAX/GSD bad values. (This conversion is in memory only, the file itself is
unchanged.)

• Type conversion is possible only between numeric types (including logical). Numeric to
character or character to numeric conversion is not provided by the library.

7 Programming Tools

The distribution comes with the following programming tools:

gsd_link

Link script used during the link phase to make sure that the correct libraries are used:

f77 gsd_print.f -L/star/lib ‘gsd_link‘

The math library (-lm) is required when using the C interface.

SUN/229.2 —Technical Overview 3

8 Release Notes

This section provides the release notes for the GSD package.

VAX implementation

Implemented in VAX Fortran for the JCMT by Jon Fairclough (1987-1989).

SpecxV6.7

C read-only version released as part of Specx V6.7 in 1995.

V1.0

First version released to Starlink standalone. Unbundled from the SPECX and JCMTDR
distributions. First release for Linux.

References

[1] Fairclough J. H., 1989, GSD – Global Section Datafile System, JCMT Note MT/IN/33 1, A

[2] Holland W. S., Robson E.I., Gear W.K., Lightfoot J. F., Jenness T., Ivison R. J., Stevens J. A.,
Cunningham C. R., Ade P. A. R., Griffin M. J., Duncan W. D., Murphy J. A., Naylor D. A.,
1999, MNRAS, 303, 659 1

[3] Warren-Smith R. F., 1998, NDF – Routines for Accessing the Extensible N-Dimensional Data
Format, Starlink User Note 33 1

[4] Lightfoot J. F., Harrison P. A., Meyerdierks H., 1995, JCMTDR – Applications for reducing
JCMT data, Starlink User Note 132 1

[5] Prestage R. M., Meyerdierks H., Lightfoot J. F., 1995, SPECX – A millimetre wave spectral
reduction package, Starlink User Note 17 1

[6] Warren-Smith R. F., 1995, PRIMDAT – processing of primitive numerical data, Starlink User
Note 39 6, A

A Technical Overview

A GSD file has a fairly simple layout. It consists of a ‘prolog’ followed by ‘data’. The prolog
describes the data and can be used for retrieving it. The prolog consists of a single “file descriptor”
and “item descriptors”, one for each data item. The item descriptor locates the required item in
the byte stream. More information on the file structure can be found in [1].

The outermost layer of routines is the Fortran binding. This is in gsd_f77.c. The routines can
only be called from Fortran. They share static external variables amongst themselves (but with
no other routines) to record references to up to 100 open GSD files. The calling code only needs

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun132.htx/sun132.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun17.htx/sun17.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_

SUN/229.2 —Subroutine List 4

to keep the old file identifier returned by gsd_open_read. The routine gsd_inquire_array is
not implemented, gsd_inq_size must be used instead.

The next inner layer is the external C binding. The C binding is similar to the Fortran binding in
that there is a one-to-one relationship between routines. The C binding does not use inherited
status, but returns a status as the function value. Also, given scalar arguments are passed
by value, not by reference. An open GSD file is identfied by no less than four pointers, all of
which must be kept by the calling code. The C binding consists of gsdOpenRead.c, gsdClose.c,
gsdFind.c, gsdItem.c, gsdInqSize.c, gsdGet0x.c, gsdGet1x.c.

The next inner layer contains the gsd1_ routines. There are three routines used by gsdOpenRead
to open the file and read its contents into memory. The fourth routine gsd1_getval returns
information about and values of items to the caller. It retrieves this information from the memory
copy of the file as created by gsdOpenRead.

The innermost layer are the gsd2_ routines. There are the gsd2_nativx routines, which are used
by the gsd1_ routines. They convert VAX binary file contents to equivalent numbers in the
format of the local machine. They also convert VAX/GSD bad values to local/PRIMDAT bad
values[6]. Then there is the gsd2_copya routine, which is used by gsd1_getval to convert from
the data type as copied from the file to the data type as required by the calling routine.

B Subroutine List

gsdClose

Close a GSD file

gsdFind

Find GSD item by name

gsdGet0x

Get a scalar value from a GSD file

gsdGet1x

Get an array from a GSD file

gsdInqSize

Inquire array size

gsdItem

Get GSD item by number

gsdOpenRead

Open a GSD file for reading and map it

SUN/229.2 —Routine Descriptions 5

C Routine Descriptions

This section describes the library interface available to C programmers. The Fortran interface is
similar, except the routine names are of the form GSD_XXX rather than gsdXxx.

6 gsdClose 6

gsdClose
Close a GSD file

Description:
This routine closes a GSD file opened previously with gsdOpenRead. It also releases the
memory that gsdOpenRead allocated in connection to that file. For this purpose this routine
must be given the standard C file pointer, the pointer to the GSD file descriptor, the pointer
to the GSD item descriptors, and the pointer to the data buffer.

Invocation:

int gsdClose(FILE ∗fptr, void ∗file_dsc, void ∗item_dsc, char ∗data_ptr);

Arguments:

FILE ∗fptr (Given)
The file descriptor for the GSD file to be closed.

void ∗file_dsc (Given)
The GSD file descriptor related to the file opened on fptr.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the file opened on fptr.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file opened on fptr.

Returned Value:

int gsdClose();
Status from fclose.

Prototype :

available via #include "gsd.h"

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

7 gsdFind 7

gsdFind
Find GSD item by name

Description:
This routine looks up the GSD item specified by its name and returns the number of the
item. This routine also returns the unit string, the type specification and the array flag.

Invocation:

int gsdFind(void ∗file_dsc, void ∗item_dsc, char ∗name, int ∗itemno, char ∗unit,
char ∗type, char ∗array);

Arguments:

void ∗file_dsc (Given)
The GSD file descriptor related to the file opened on fptr.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the file opened on fptr.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file opened on fptr.

char ∗name (Given)
The name of the item. This should be an array of 16 characters (char name[16]) and a
null-terminated string.

int ∗itemno (Returned)
The number of the item in the GSD file.

char ∗unit (Returned)
The unit of the item. This should be an array of 11 characters (char name[11]) and will be a
null-terminated string.

char ∗type (Returned)
The data type of the item. This is a single character and one of B, L, W, I, R, D, C.

char ∗array (Returned)
The array flag. This is a single character and true (false) if the item is (is not) and array.

Returned Value:

int gsdFind();
Status.

• [1:] If the named item cannot be found.

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

8 gsdFind 8

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

9 gsdGet0x 9

gsdGet0x
Get a scalar value from a GSD file

Description:
This routine returns the value of a scalar GSD item. The item must be specified by the file
desciptor, item descriptor array, data array and item number.

<t> <type> Fortran GSD

b char byte byte

l char logical∗1 logical

w short integer∗2 word

i int integer∗4 integer

r float real∗4 real

d double real∗8 double

c char[17] character∗16 char

This routine will convert between numeric types (all but GSD type char). That is to say,
the calling routine can request, say, an integer value by calling gsdGet0i, even if the item
in the GSD file has a different numeric type, say real. C casting rules are applied, which
may differ from Fortran truncation rules. No test for conversion errors is performed.

Invocation:

int gsdGet0{blwirdc}(void ∗file_dsc, void ∗item_dsc, char ∗data_ptr, int itemno,
<type> ∗value);

Arguments:

void ∗file_dsc (Given)
The GSD file descriptor.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the GSD file.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file.

int itemno (Given)
The number of the item in the GSD file.

<type> ∗value (Returned)
The data value. For gsdGet0c value should be declared with length 17 at least. The
returned string is null-terminated in value[16].

10 gsdGet0x 10

Returned Value:

int gsdGet0<t>();
Status.

• [1:] Failure to read the item value.

• [2:] Numbered item cannot be found.

• [3:] Item is not scalar.

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

11 gsdGet1x 11

gsdGet1x
Get an array from a GSD file

Description:
This routine returns the value of a scalar GSD item. The item must be specified by the file
desciptor, item descriptor array, data array and item number.

<t> <type> Fortran GSD

b char byte byte

l char logical∗1 logical

w short integer∗2 word

i int integer∗4 integer

r float real∗4 real

d double real∗8 double

c char[16] character∗16 char

This routine does not convert between types. If the type of the GSD item does not match
the type of the routine, then it returns with an error.

It is possible to get only part of the array. Although the part can be specified in terms
of an N-dimensional array, this routine does not take a proper N-D section of the array.
The caller can specify the start pixel in N dimensions and the end pixel in N dimensions.
These two pixels will be converted to memory locations and all memory between the two
is returned. This emulates the old GSD library. It is useful really only for parts of 1-D
arrays, parts of rows, or single pixels.

Invocation:

int gsdGet1{blwird}(void ∗file_dsc, void ∗item_dsc, char ∗data_ptr, int itemno,
int ndims, int ∗dimvals, int ∗start, int ∗end, <type> ∗values, int ∗actvals
);

Arguments:

void ∗file_dsc (Given)
The GSD file descriptor.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the GSD file.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file.

12 gsdGet1x 12

int itemno (Given)
The number of the item in the GSD file.

int ndims (Given)
The dimensionality the calling routine uses to specify the start and end elements.

int ∗dimvals (Given)
The array of ndims dimensions (array sizes along each axis).

int ∗start (Given)
The array indices for the first element.

int ∗end
The array indices for the last element.

<type> ∗value (Returned)
The data values. The calling routine must make sure that sufficient memory is provided.
Thus it must find out the data type and array size before calling this routine. If the data
type is character, then the routine returns a byte buffer with all strings concatenated. There
are no string terminators in the buffer and there is none at the end. Each string is 16 byte
long and immediately followed by the next string.

int ∗actvals (Returned)
The number of array values returned. This saves the caller to work out how many array
elements correspond to start and end given the dimvals.

Returned Value:

int gsdGet1<t>();
Status.

• [1:] Failure to read the item values.

• [2:] Numbered item cannot be found.

• [4:] Given start and end are inconsistent.

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

13 gsdInqSize 13

gsdInqSize
Inquire array size

Description:
This routine returns information about the specified array. Returned are the names and
units of each dimension, the size along each dimension, and the overall size.

Invocation:

int gsdInqSize(void ∗file_dsc, void ∗item_dsc, char ∗data_ptr, int itemno, int
maxdims, char ∗∗dimnames, char ∗∗dimunits, int ∗dimvals, int ∗actdims, int ∗size
);

Arguments:

void ∗file_dsc (Given)
The GSD file descriptor.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the GSD file.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file.

int itemno (Given)
The number of the item in the GSD file.

int maxdims (Given)
The number of dimensions required and accommodated by the calling routine.

char ∗∗dimnames (Returned)
The names for each dimension. The calling routine must provide maxdims pointers to
strings. It must also provide the space for the strings, 16 bytes. See Notes for how to
declare and pass dimnames.

char ∗∗dimunits (Returned)
The units for each dimension. The calling routine must provide maxdims pointers to
strings. It must also provide the space for the strings, 11 bytes. See Notes for how to
declare and pass dimunits.

int ∗dimvals (Returned)
The values for each dimension. The calling routine must provide an array of maxdims
integers. This would probably be declared as int dimvals[MAXDIMS];

int ∗actdims (Returned)
The actual number of dimensions. If actdims is less than maxdims, then only actims
elements are returned in dimnames, dimunits, dimvals. Further elements declared by the
caller are unchanged by this routine.

14 gsdInqSize 14

int ∗size (Returned)
The total number of elements in the array.

Returned Value:

int gsdInqSize();
Status.

• [1:] Failed to get a dimension value and name.

• [2:] Numbered item does not exist.

• [3:] Array has more dimensions than accommodated by calling routine.

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

Note :

The calling routine will probably allocate storage for dimension names by declaring a
two-dimensional array. That is not suitable for passing to this routine though. The pointers
to each string must be copied into an array of pointers. For example:

char actual_space[MAXDIMS][16];
char ∗pointr_array[MAXDIMS];
for (i = 0; i < MAXDIMS; i++) pointr_array[i] = actual_space[i];
status = gsdInqSize(..., pointr_array, ...);

The reason why this call works but passing actual_space does not work, is that gsdInqSize
uses the given value as a char ∗∗. So in this routine given[1] goes forward in memory by
the size of a char ∗ or the number of bytes needed to store a pointer. actual_space would
need a step in memory by 16 bytes, i.e. the distance from one string to the next. The main
routine knows about this, because it declared actual_space _and_ pointr_array.

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

15 gsdItem 15

gsdItem
Get GSD item by number

Description:
This routine looks up the GSD item specified by its number and returns the name of the
item. This routine also returns the unit string, the type specification and the array flag.

Invocation:

int gsdItem(void ∗file_dsc, void ∗item_dsc, int itemno, char ∗name, char ∗unit,
char ∗type, char ∗array);

Arguments:

void ∗file_dsc (Given)
The GSD file descriptor related to the file opened on fptr.

void ∗item_dsc (Given)
The array of GSD item descriptors related to the file opened on fptr.

char ∗data_ptr (Given)
The buffer with all the data from the GSD file opened on fptr.

int itemno (Given)
The number of the item in the GSD file.

char ∗name (Returned)
The name of the item. This should be an array of 16 characters (char name[16]) and will be
a null-terminated string.

char ∗unit (Returned)
The unit of the item. This should be an array of 11 characters (char name[11]) and will be a
null-terminated string.

char ∗type (Returned)
The data type of the item. This is a single character and one of B, L, W, I, R, D, C.

char ∗array (Returned)
The array flag. This is a single character and true (false) if the item is (is not) and array.

Returned Value:

int gsdFind();
Status.

• [1:] If the named item cannot be found.

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

16 gsdItem 16

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

17 gsdOpenRead 17

gsdOpenRead
Open a GSD file for reading and map it

Description:
This routine opens the named GSD file and reads its contents into memory. It returns
a standard C file descriptor, a GSD file descriptor, a pointer to the array of GSD item
descriptors, and a pointer to the collective data.

This routine allocates memory to accommodate the GSD file descriptor, the GSD item
descriptors, and the data from the GSD file. It also leaves the GSD file open. Any call to
this routine must be matched with a call to gsdClose with the information returned by
this routine. gsdClose will close the file and release the memory allocated by this routine.

Invocation:

int gsdOpenRead(char ∗file, float ∗version, char ∗label, int ∗no_items, FILE
∗∗fptr, void ∗∗file_dsc, void ∗∗item_dsc, char ∗∗data_ptr);

Arguments:

char ∗file (Given)
The name of the GSD file to be opened.

float ∗version (Returned)
The GSD file version number.

char ∗label (Returned)
The GSD file label. This is a null-terminated string. It should be declared by the calling
routine with length 41.

int ∗no_items (Returned)
The number of items in the GSD file.

FILE ∗∗fptr (Returned)
The file descriptor for the GSD file opened.

void ∗∗file_dsc (Returned)
The GSD file descriptor. This routine allocates the memory necessary and fills it with the
relevant information from the GSD file. A call to gsdClose will release this memory (given
the pointer).

void ∗∗item_dsc (Returned)
The array of GSD item descriptors. This routine allocates the memory necessary and fills
it with the relevant information from the GSD file. A call to gsdClose will release this
memory (given the pointer). The number of array elements is returned in no_items.

char ∗∗data_ptr (Returned)
The buffer with all the data from the GSD file. This routine allocates the memory nec-
essary and reads the data into it. A call to gsdClose will release this memory (given
the pointer). The size of this buffer does not matter, but it can be calculated in bytes as

18 gsdOpenRead 18

file_dsc->end_data - file_dsc->str_data + 1 if you know what a struct file_descriptor
looks like.

Returned Value:

int gsdOpenRead();
Status. Status is set to

• [1:] Failure to open named file,

• [2:] Failure to read file_dsc from file,

• [3:] Failure to allocate memory for item_dsc,

• [4:] Failure to read item_dsc from file,

• [6:] Failure to read data_ptr from file,

• [7:] Failure to allocate memory for data_ptr,

• [0:] Otherwise.

Prototype :

available via #include "gsd.h"

Copyright :

Copyright (C) 1986-1999 Particle Physics and Astronomy Research Council. All Rights
Reserved.

19 19

D Mapping

The following tables define the mapping (in version 5.3 of the JCMT storage task) from item
names that will be found in the data files (the “NRAO” name) to the JCMT name. Also included
is the nominal FITS header equivalent, emphasis indicating a JCMT-specific variant, and a text
description of the field.

20
20

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

CELL_V2Y CELL_V2Y YPOSANG Position angle of cell y axis (CCW)

UAZ SDIS(36) UXPNT User az correction

UEL SDIS(37) UYPNT User el correction

C1BKE BACKEND BACKEND Name of the backend

C1BTYP BE_TYPE BACKTYPE Type of backend

C1DP DATA_PRECISION PRECIS Precision of the data from the backend

C1FTYP FE_TYPE FRONTYPE Type of frontend

C1HGT TEL_HEIGHT HEIGHT Height of telescope above sea level

C1IFS IF_DEVICE IFDEVICE Name of the IF device

C1LAT TEL_LATITUDE LATITUDE Geodetic latitude of telescope (North +ve)

C1LONG TEL_LONGITUDE LONGITUD Geographical longitude of telescope (West +ve)

C1OBS PROJECT_OBS_1 OBSID Name of the primary observer

C1ONA PROJECT_OBS_1 OBSERVER Name of the primary observer

C1ONA1 PROJECT_OBS_2 OBSERVER Name of the support scientist

C1ONA2 PROJECT_OBS_3 OPERATOR Name of the telescope operator

C1PID PROJECT PROJID Identifies the observing program

C1RCV FRONTEND FRONTEND Name of the frontend

C1SNA1 CENTRE_NAME_1 OBJECT Source name part 1

C1SNA2 CENTRE_NAME_2 OBJECT2 Source name part 2 or altern. name

C1SNO NOBS SCAN Observation number

C1STC OBS_TYPE OBSTYPE Type of observation

C1TEL TEL_NAME TELESCOP Telescope name

21
21

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C2FL DY FOCUSL Secondary mirror y displacement from nominal at observation start

C2FR DZ FOCUSR Secondary mirror z displacement from nominal at observation start

C2FV DX FOCUSV Secondary mirror x displacement from nominal at observation start

C2ORI SECONDARY_ORI ORIENT Rotation or polarization angle orientation of the frontend/reflector

C2PC1 TEL_PC_LAN PTCON1 Angle by which lower axis is north of ideal

C2PC2 TEL_PC_LAE PTCON2 Angle by which lower axis is east of ideal

C2PC3 TEL_PC_UANP PTCON3 Angle by which upper axis is not perpendicular to lower

C2PC4 TEL_PC_BNP PTCON4 Angle by which beam is not perpendicular to upper axis

C2XPC TEL_PC_LAZ AXPOINT Azimuth/RA enc.zero; enc.reading = az + pc_laz

C2YPC TEL_PC_UAZ AYPOINT Altitude/DEC enc.zero; enc.reading = az + pc_uaz

C3BEFENULO BES_FE_NULO BEFENULO Copy of frontend LO frequency per backend section

C3BEFESB BES_FE_SB_SIGN BEFESB Copy of frontend sideband sign per backend section

C3BEINCON BE_IN_CONN BEINCON IF output channels connected to BE input channels

C3BESCONN BES_CONN BESCON BE input channels connected to this section

C3BESSPEC BES_SPECTRUM BESSPEC Subsystem nr to which each backend section belongs.

C3BETOTIF BES_TOT_IF BETOTIF Total IF per backend section

C3CAL OBS_CALIBRATION OBSCAL Calibration observation?

C3CEN OBS_CENTRE OBSCEN Centre moves between scans?

C3CL CYCLE_TIME CYCLLEN Duration of each cycle

C3CONFIGNR DAS_CONF_NR CONFIG Backend configuration

C3DASCALSRC DAS_CAL_SOURCE CALSRC DAS calibration source for backend calibration (POWER or DATA)

C3DASOUTPUT DAS_OUTPUT OUTPUT Description of output in DAS DATA (SPECTRUM, T_REC, T_SYS, etc.)

C3DASSHFTFRAC DAS_SHIFT_FRAC SHFTFRAC DAS calibration source for backend calibration (POWER or DATA)

22
22

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C3DAT OBS_UT1D UTDATE UT1 date of observation

C3FLY OBS_CONTINUOUS OBSFLY Data taken on the fly or in discrete mode?

C3FOCUS OBS_FOCUS OBSFOCUS Focus observation?

C3INTT INTGRN_TIME INTGR Scan integration time

C3LSPC NO_BES_O_CH NOBESDCH Number of channels per backend section

C3LST OBS_LST LST Local sidereal time at the start of the observation

C3MAP OBS_MAP OBSMAP Map observation?

C3MXP NO_SCAN_PNTS NOSCNPTS Maximum number of map points done in a phase

C3NCH NO_BE_O_CH NOBEOCH No.backend output channels

C3NCI NO_CYCLES NOCYCLES Maximum number of cycles in the scan

C3NCP NO_CYCLE_PNTS NOCYCPTS Total number of xy positions observed during a cycle

C3NCYCLE NCYCLE NCYCLE Number of cycles done in the scan

C3NFOC NO_FE_O_CH NOFCHAN NO_FE_O_CH:No. of frontend output channels

C3NIS NO_SCANS NOSCANS Number of scans

C3NLOOPS NO_SCANS NSCANS Number of scans per observation commanded at observation start

C3NMAP NO_MAP_PNTS NOPTS Number of map points

C3NOIFPBES NO_IF_PER_BES NOIFPBES Number of IF inputs to each section (2 for correlator, 1 for AOS)

C3NO_SCAN_VARS1 NO_SCAN_VARS1 NOSCNVR1 Number of scan table 1 variables

C3NO_SCAN_VARS2 NO_SCAN_VARS2 NOSCNVR2 Number of scan table 2 variables

C3NPP NO_MAP_DIMS NOMAPDIM Number of dimension in the map table

C3NRC NRC NORCHAN NO_BE_I_CH:No.backend input channels

C3NRS NO_BES NORSECT Number of backend sections

C3NSAMPLE NSCAN NSCAN Number of scans done

23
23

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C3NSV NO_PHASE_VARS NOSWVAR Number of phase table variables

C3OVERLAP BES_OVERLAP OVERLAP Subband overlap

C3PPC NO_PHASES NOPHASE Number of phases per cycle

C3SRT SCAN_TIME SAMPRAT Total time of scan (=total integration time if OBS_CONTINUOUS = .FALSE.)

C3UT OBS_UT1H UT UT1 hour of observation

C3UT1C OBS_UT1C UT1C UT1-UTC correction interpolated from time service telex (in days)

C4AMPL_EW AMPL_EW CHOPAZ Secondary mirror chopping amplitude parallel to lower axis

C4AMPL_NS AMPL_NS CHOPEL Secondary mirror chopping amplitude parallel to upper axis

C4AXY CELL_X2Y XYANGLE Angle between cell y axis and x-axis (CCW)

C4AZ CENTRE_AZ AZ Azimuth at observation date

C4AZERR SDIS(7) XPOINT DAZ:Net Az offset at start (inc.tracker ball setting and user correction)

C4CECO CENTRE_CODE COORDCD2 centre coords. AZ= 1;EQ=3;RD=4;RB=6;RJ=7;GA=8

C4CSC CENTRE_COORDS COORDCD Character code of commanded centre or source coordinate system

C4DAZ DAZ_SM XPOINT Telescope lower axis correction for secondary mirror XYZ

C4DECDATE CENTRE_DEC DECDATE Declination of date

C4DEL DEL_SM YPOINT Telescope upper axis correction for secondary mirror XYZ

C4DO1 CELL_X DESORG1 Cell x dimension; descriptive origin item 1

C4DO2 CELL_Y DESORG2 Cell y dimension; descriptive origin item 2

C4DO3 CELL_V2X DESORG3 Angle by which the cell x axis is oriented with respect to local vertical

C4EDC CENTRE_DEC EPOCDEC Declination of date

C4EDEC CENTRE_DEC1950 EPOCDEC Declination of source for EPOCH

C4EDEC2000 CENTRE_DEC2000 DECJ2000 Declination J2000

C4EL CENTRE_EL EL Elevation at observation date

24
24

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C4ELERR SDIS(8) YPOINT DEL:Net El offset at start (inc.tracker ball setting and user correction)

C4EPH CENTRE_EPOCH EPOCH Date of the RA/DEC coordinates (1950)

C4EPT EPOCH_TYPE EPOCHTYP Type of epoch, JULIAN, BESSELIAN or APPARENT

C4ERA CENTRE_RA1950 EPOCRA Right ascension of source for EPOCH

C4EW_ENCODER AMPL_E_SET EW_ENCOD Secondary mirror ew encoder value

C4EW_SCALE EW_AMPL_SCALE EW_SCALE Secondary mirror ew chop scale

C4FRQ FREQUENCY CHOPFREQ Secondary mirror chopping period

C4FUN WAVEFORM WAVEFORM Secondary mirror chopping waveform

C4GB CENTRE_GB GALLAT Galactic latitude

C4GL CENTRE_GL GALLONG Galactic longitude

C4LSC CELL_COORDS FRAME Char. code for local x-y coord.system

C4MCF CENTRE_MOVING CENMOVE Centre moving flag (solar system object)

C4MOCO TEL_COORDS MOUNTING Mounting of telescope; defined as LOWER/UPPER axes, e.g; AZ/ALT

C4NS_ENCODER AMPL_N_SET NS_ENCOD Secondary mirror ns encoder value

C4NS_SCALE NS_AMPL_SCALE NS_SCALE Secondary mirror ns chop scale

C4ODCO CELL_UNIT MAPUNIT Units of cell and mapping coordinates;offset definition code

C4OFFS_EW OFFS_EW EWTILT Secondary mirror offset parallel to lower axis (East-West Tilt)

C4OFFS_NS OFFS_NS NSTILT Secondary mirror offset parallel to upper axis (North-South Tilt)

C4PER PERIOD CHOPTIME Secondary mirror chopping period

C4POSANG POSANG CHOPDIRN Secondary mirror chop position angle

C4RA2000 CENTRE_RA2000 RAJ2000 Right ascension J2000

C4RADATE CENTRE_RA RADATE Right Ascension of date

C4RX REFERENCE_X XREF Reference x position (JCMT cells wrt to centre; NRAO abs. degrees)

25
25

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C4RY REFERENCE_Y YREF Reference y position (JCMT cells wrt to centre; NRAO abs. degrees)

C4SM CHOPPING CHOPPING Secondary mirror is chopping

C4SMCO COORDS CHOPCOOR Secondary mirror chopping coordinate system

C4SX CENTRE_OFFSET_X XSOURCE Commanded x centre position (JCMT cells wrt to centre; NRAO abs. degrees)

C4SY CENTRE_OFFSET_Y YSOURCE Commanded y centre position (JCMT cells wrt to centre; NRAO abs. degrees)

C4THROW THROW CHOPTHRW Secondary mirror chop throw

C4X X AFOCUSV Secondary mirror absolute X position at observation start

C4Y Y AFOCUSH Secondary mirror absolute Y position at observation start

C4Z Z AFOCUSR Secondary mirror absolute Z position at observation start

C5AT TAMB TAMB Ambient temperature

C5DP DEW_POINT DEW_PT Mean atmospheric dew point

C5IR REF_INDEX REFRAC Mean atmospheric refractive index (alternative)

C5IR1 TEL_REFR_A REFRAC1 Refraction constant A (see MTIN026)

C5IR2 TEL_REFR_B REFRAC2 Refraction constant B (see MTIN026)

C5IR3 TEL_REFR_C REFRAC3 Refraction constant C (see MTIN026)

C5MM VAP_PRESSURE MMH2O Mean atmospheric vapour pressure

C5PRS PAMB PRESSURE Mean atmospheric pressure

C5RH HAMB HUMIDITY Mean atmospheric relative humidity

C6CYCLREV CYCLE_REVERSAL CYCLREV Cycle reversal flag

C6DX CELL_X DELTAX Cell x dim,; descriptive origin item 1

C6DY CELL_Y DELTAY Cell y dimension; descriptive origin item 2

C6FC CELL_CODE FRAME2 Local x-y AZ= 1;EQ=3;RD=4;RB=6;RJ=7;GA=8

C6MODE SWITCH_MODE SWMODE Observation mode

26
26

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C6MSA CELL_V2X SCANANG Scanning angle - angle from local vertical to x axis measured CW

C6NP NCYCLE_PNTS NCYCPTS Number of sky points completed in the observation

C6REV SCAN_REVERSAL REVERSAL Map rows scanned in alternate directions?

C6SD OBS_DIRECTION DIRECTN Map rows are in X (horizontal) or Y(vertical) direction

C6ST OBS_TYPE OBSMODE Type of observation

C6XGC X_MAP_START XCELL0 X coordinate of the first map point

C6XNP NO_X_MAP_PNTS NOXPTS X map dimension; number of points in the x-direction

C6XPOS X_MAP_POSITIVE XSIGN In first row x increases (TRUE) or decreases (FALSE)

C6YGC Y_MAP_START YCELL0 Y coordinate of the first map point

C6YNP NO_Y_MAP_PNTS NOYPTS Y map dimension; number of points in the y-direction

C6YPOS Y_MAP_POSITIVE YSIGN In first row y increases (TRUE) or decreases (FALSE)

C7AP APERTURE APERTURE Aperture

C7BCV BAD_CHANNEL BADCHV Bad channel value

C7CAL CAL_TYPE TYPECAL Calibration type (standard or direct, chopperwheel)

C7FIL FILTER FILTER Filter

C7HP FWHM FWHM of the beam profile (mean)

C7NIF NO_IF_CH NOIFCHAN Number of IF channels

C7OSN OBS_REF_SCAN OFFSCAN Calibration observation number (in which a standard was observed)

C7PHASE PHASE PHASE Lockin phase

C7SEEING SAO_SEEING SEEING Seeing at JCMT

C7SEETIME SAO_YYMMDDHHMM SEETIME SAO seeing time (YYMMDDHHMM)

C7SNSTVTY SENSITIVITY SNSTVTY Lockin sensitivity in scale range units

C7SNTVTYRG RANGE SNTVTYRG Sensitivity range of lockin

27
27

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C7SZVRAD SZVRAD SZVRAD Number of elements of vradial array

C7TAU225 CSO_TAU TAU225 CSO tau at 225GHz

C7TAURMS CSO_TAU_RMS TAURMS CSO tau rms

C7TAUTIME CSO_YYMMDDHHMM TAUTIME CSO tau time (YYMMDDHHMM)

C7TIMECNST TIME_CONSTANT TIMECNST Lockin time constant

C7VC VEL_COR RVSYS Velocity correction

C7VR VELOCITY VELOCITY Radial velocity of the source

C7VRD VEL_DEF VELDEF Velocity definition code; method of computing the velocity

C7VREF VEL_REF VELREF Velocity reference code; reference point for telescope & source velocity

C8AAE APERTURE_EFF APPEFF Ratio total power observed/incident on the telescope

C8ABE BEAM_EFF BEAMEFF Fraction of beam in diffraction limited main beam

C8EF ETAFSS ETAFSS Forward spillover and scattering efficiency

C8EL ETAL ETAL Rear spillover and scattering efficiency

C8GN ANTENNA_GAIN ANTGAIN Antenna gain

C9OT TEL_TOLERANCE OBSTOL Observing tolerance

C11PHA PHASE_TABLE PHASTB Phase table: switching scheme dependent

C11VD PHASE_VARS VARDES Names of the cols. of phase table

C12ALPHA BES_ALPHA ALPHA Ratio of signal sideband to image sideband sky transmission

C12BM BES_BITMODE BM Correlation bit mode

C12BW BANDWIDTH BW Bandwidth

C12CAL DATA_UNITS DATAUNIT Units of spectrum data

C12CALTASK BE_CAL_TASK CALTASK Calibration instrument used (FE, BE, or USER)

C12CALTYPE BE_CAL_TYPE CALTYPE Type of calibration (THREELOADS or TWOLOADS)

28
28

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C12CF FE_NUOBS OBSFREQ Centre frequency

C12CM BES_CORR_MODE CM Correlation function mode

C12CT TCAL TCAL Calibration temperature

C12ETASKY BES_ETA_SKY ETA_SKY Sky transmission from last calibration

C12ETASKYIM BES_ETA_SKY_IM ETA_SKY_ Frontend-derived sky transmission

C12ETATEL BES_ETA_TEL ETA_TEL Telescope transmission

C12FR DELTANU FREQRES Frequency resolution [MHz]

C12GAINS GAIN GAINS Gains

C12GNORM G_NORM GNORM Data normalisation factor

C12GREC GREC Raw data units per Kelvin

C12GS BES_G_S G_S Normalizes signal sideband gain

C12INFREQ BE_NUIN INFREQ BE input frequencies [GHz]

C12NOI NOISE NOISE Noise value

C12REDMODE BE_RED_MODE REDMODE Way of calibrating the data (RATIO or DIFFERENCE)

C12RF FE_NUREST RESTFREQ Rest frequency

C12RST TSYS_OFF RTSYS Reference system temperature

C12RT TREC TRX Receiver temperature

C12SBRAT BE_SB_RATIO SBRATIO Sideband ratio

C12SCAN_TABLE_1 SCAN_TABLE1 SCANTAB1 Begin scan table

C12SCAN_TABLE_2 SCAN_TABLE2 SCANTAB2 End scan table

C12SCAN_VARS1 SCAN_VARS1 SCANVRS1 Names of the cols. of scan table1

C12SCAN_VARS2 SCAN_VARS2 SCANVRS2 Names of the cols. of scan table2

C12SST TSYS_ON STSYS Source system temperature

29
29

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C12TAMB T_HOT THOT Ambient load temperature

C12TASKY BES_TA_SKY TA_SKY Ratio of signal sideband to image sideband sky transmission

C12TCOLD T_COLD TCOLD Cold load temperature

C12TSKY TSKY TSKY Sky temperature at last calibration

C12TSKYIM BES_T_SKY_IM T_SKY_IM Frontend-derived Tsky, image sideband

C12TSYSIM BES_T_SYS_IM T_SYS_IM Frontend-derived Tsys, image sideband

C12TTEL TTEL TTEL Telescope temp. from last skydip

C12VCOLD IF_V_COLD VCOLD

C12VDEF VEL_DEFN Velocity definition code - radio, optical, or relativistic

C12VHOT IF_V_HOT VHOT

C12VREF VEL_REF Velocity frame of reference - LSR, Bary-, Helio-, or Geo- centric

C12VSKY IF_V_SKY VSKY

C12WO H2O_OPACITY TAUH2O Water opacity

C13DAT DATA SPECT Reduced data

C13ERR ERROR TRMS Standard error

C13RAW_ERROR DATA_ERROR RAWERROR

C13RAW_ERROR_OP RAW_ERROR_OP RAWERROR Raw (out of phase) error also to be stored at end scan

C13RESP RESP RESP array of responsivities

C13SPV SAMPLES RAWSPECT

C13SPV_OP SAMPLES_OP RAWSPECT Raw out of phase data samples in each phase

C13STD STDEV STDSPECT Phase data standard deviation

C14PHIST MAP_TABLE MAPTABLE List of xy offsets for each scan

30
30

Table 1: Mapping of GSD names to FITS equivalents.

NRAO JCMT FITS Description

C90T TEL_TOLERANCE OBSTOL Observing tolerance

	History
	Introduction
	C interface
	Fortran interface
	Perl interface
	Programming Notes
	Programming Tools
	Release Notes
	References
	Technical Overview
	Subroutine List
	Routine Descriptions
	gsdClose
	gsdFind
	gsdGet0x
	gsdGet1x
	gsdInqSize
	gsdItem
	gsdOpenRead

	Mapping

