
SUN/261.3

Starlink Project
Starlink User Note 261.3

D.S. Berry & Malcolm J. Currie

7th October July 2019

Copyright c© 2009 Science and Technology Facilities Council.

IRQ — Handling of QUALITY in NDFs
Version 5.0

User’s Guide

SUN/261.3 —Abstract ii

Abstract

This library is a set of Fortran routines for manipulation of quality information within NDFs.
In particular it uses names that will be more memorable than bits to assign and set quality
attributes of data values within an NDF.

Copyright c© 2009 Science and Technology Facilities Council.

iii SUN/261.3—Contents

Contents

1 Introduction to QUALITY 1

2 Introduction to the facilities provided by the IRQ library 1

3 A Set of Four Typical IRQ Applications 2
3.1 SETQUAL . 2
3.2 REMQUAL . 3
3.3 SHOWQUAL . 3
3.4 QUALTOBAD . 3

4 Quality Names 3

5 Quality Expressions 3

6 Using IRQ routines 4
6.1 Constants and Error Values . 4
6.2 Initialising an NDF for use with IRQ . 5
6.3 Using previously initialised NDFs within IRQ . 5
6.4 Accessing the quality names information stored in an NDF 5
6.5 Assigning and removing qualities to and from NDF pixels 6
6.6 Finding NDF pixels which satisfy a quality expression 6

7 Compiling and Linking with IRQ 7
7.1 Standalone Applications . 7
7.2 ADAM Applications . 7

A Routine Descriptions 8

B Classified List 10
B.1 Gaining Access to Quality Name Information Within an NDF 10
B.2 Storing, Retrieving and Deleting Quality Names 10
B.3 Handling Quality Expressions . 10
B.4 Assigning Qualities to Selected Pixels . 11
B.5 Enquiring Pixel Quality . 11

C Full Routine Specifications 12
IRQ_ADDQN . 13
IRQ_ANNUL . 14
IRQ_CHKQN . 15
IRQ_CLOSE . 16
IRQ_CNTQ . 17
IRQ_CNTQ8 . 18
IRQ_COMP . 19
IRQ_DELET . 21
IRQ_FIND . 22
IRQ_FXBIT . 23
IRQ_GETQN . 24
IRQ_GETQX . 25

SUN/261.3 —Contents iv

IRQ_NEW . 26
IRQ_NUMQN . 27
IRQ_NXTQN . 28
IRQ_RBIT . 30
IRQ_REMQN . 31
IRQ_RESQ . 32
IRQ_RESQL . 33
IRQ_RESQL8 . 34
IRQ_RESQM . 36
IRQ_RESQM8 . 37
IRQ_RLSE . 39
IRQ_RWQN . 40
IRQ_SBADx . 41
IRQ_SBADx . 43
IRQ_SETQ . 45
IRQ_SETQL . 46
IRQ_SETQL8 . 47
IRQ_SETQM . 49
IRQ_SETQM8 . 50
IRQ_SYNTX . 52

D HDS Data Structures 53
D.1 Quality names information stored in an NDF . 53
D.2 Temporary structures used to hold compiled quality expressions 54

E Examples of Using IRQ 55
E.1 Adding a new quality name . 55
E.2 Finding pixels which satisfy a quality expression 57

F Packages Called by IRQ 58

G IRQ Error Codes 59

H Changes Introduced in Version 3.0 of this Document 61

I Changes Introduced in Version 4.0 of this Document 61

J Changes Introduced in Version 5.0 of this Document 61

1 SUN/261.3 —Introduction to the facilities provided by the IRQ library

1 Introduction to QUALITY

A QUALITY structure is one of the standard components of an NDF structure, and is described
fully in SUN/33. Briefly, if an NDF has a QUALITY component which is in a defined state,
then each pixel within the NDF DATA component has a corresponding value in the QUALITY
component. Currently, each QUALITY value consists of an unsigned byte (i.e. 8 bits). In Fortran
the least-significant bit is usually called Bit 0 and the most significant bit is usually called Bit
7. Within the IRQ package the least-significant bit is called Bit 1 and the most-significant bit is
called Bit 8. Each bit within the QUALITY value can be used to indicate if the corresponding
pixel in the DATA component holds some specific quality. For instance, Bit 3 of the QUALITY
component may be used to indicate if any DATA pixels are saturated. A particular pixel in the
QUALITY component would have Bit 3 set (i.e. equal to 1) if the corresponding DATA pixel is
saturated, or cleared (i.e. equal to 0) if the corresponding DATA pixel is not saturated.

Another option for flagging saturated data is to replace saturated DATA pixel values with a
‘bad’ (or ‘magic’) value. This has the disadvantage that the datum is permanently destroyed by
being flagged, and also there is no distinction between data values thst are set bad because of
the fact they were saturated, and pixels set bad for any other reason.

SUN/33 doesn’t specify how the facilities of the QUALITY component are to be used, and
many possibilities exist. Obviously some co-ordination between applications is needed so that
different applications interpret the QUALITY values in a consistent manner ({emphi.e. using the
above example, later applications must know that Bit 3 is a saturation flag). The IRQ package
provides a set of routines for doing this.

You may be are wondering about the name IRQ. The library was originally developed for the
IRAS90 package, and its subroutine libraries had IR prefix.

2 Introduction to the facilities provided by the IRQ library

IRQ provides a system for handling Boolean qualities (i.e. qualities that are either held or not
held by each DATA pixel). From the point of view of an application, each defined quality is
identified by a quality name rather than by a bit number. Information about these quality names
is stored in an NDF extension, so that later applications can determine which pixels within the
NDF hold a given quality (or combination of qualities).

Within IRQ, each defined quality name is usually associated with a bit in the QUALITY array,
and this bit is set if the corresponding DATA pixels are assigned the specified quality. A typical
application need know nothing about which QUALITY bit is associated with which quality
name. For instance, if every pixel in an NDF holds a certain quality (or alternatively, if no pixels
hold the quality), then it is not necessary to reserve a bit in the QUALITY array to represent the
quality. Instead, a single Boolean scalar value can be stored with the quality name in the NDF
extension. This scalar is set to .TRUE. if all pixels hold the quality, and .FALSE. if no pixels hold
the quality. In this way, the number of defined quality names can sometimes exceed the number
of bits in the QUALITY component. The handling of such situations is done within IRQ and is
completely invisible to the calling application.

IRQ provides the following facilities.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_the_quality_component_in_more_detail

SUN/261.3 —A Set of Four Typical IRQ Applications 2

• Add quality name definitions (and associated descriptive comments) to an NDF. There is
a limit to the number of quality names which may be defined within an NDF. The exact
number depends on how many quality names require a QUALITY bit, but it will always
be at least eight.

• Remove quality name definitions from an NDF.

• List all quality names defined within an NDF.

• Assign a given quality to selected pixels.

• Remove a given quality from selected pixels.

• Set ‘bad’ those pixels of a supplied array which hold a certain combination of qualities.

3 A Set of Four Typical IRQ Applications

The KAPPA package contains a set of four typical IRQ applications, which give an indication
of the benefits which IRQ can provide for the user. The A-TASK documentation for these four
applications is included in SUN/95, and they are briefly described in this section.

3.1 SETQUAL

SETQUAL creates quality name definitions and stores them within a specified extension of an
NDF. It also assigns a specified quality to a sub-set of the pixels with the NDF. In its simplest
mode, the user provides an NDF, and a string to use as a quality name (such as SATURATED). If this
quality name is not already defined within the NDF, then it is added to the list of defined quality
names, together with a user-supplied comment describing the quality. The user also provides
another NDF to be used as a ‘mask’. The ‘bad’ pixels within the mask NDF define the pixels
which are to be assigned the given quality. For instance, a user may have an image containing
saturated pixels. If he wants these pixels flagged without being permanently destroyed, he
could proceed as follows.

(1) Produce a mask NDF from the original NDF by setting all DATA pixels above the saturation
value to the ‘bad’ value.

(2) Run SETQUAL on the original NDF, giving some quality name such as SATURATED, and
specifying the mask created in the previous step. This leaves the DATA component of
the original NDF unchanged, but assigns the quality SATURATED to all the pixels which
correspond to ‘bad’ pixels in the mask.

Alternatively, instead of using a mask, the pixels to which the quality is assigned may be
specified by an explicit list of pixel indices stored in a text file.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_qualitymask
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SETQUAL

3 SUN/261.3 —Quality Expressions

3.2 REMQUAL

The REMQUAL application removes quality name definitions from an NDF. This may be
necessary if there is no room for any more quality name definitions within an NDF. In this case
the user may choose to remove some unimportant quality name definitions to make room for
new, more-important quality names. REMQUAL can also remove all quality names information
from an NDF. This can be useful if for any reason the quality-name information becomes
corrupted.

3.3 SHOWQUAL

The SHOWQUAL application displays all currently defined quality names within an NDF,
together with the associated descriptive comments. Optionally, the number of pixels that hold
each quality can be displayed.

3.4 QUALTOBAD

The QUALTOBAD application sets selected pixels within an NDF to the ‘bad’ value on the basis
of the pixel’s quality. In effect, QUALTOBAD performs the reverse operation of SETQUAL For
instance, using the example of saturated data described above, the user may remove some vary-
ing background surface from his original data, and then want to set pixels which were saturated
in the original data to the ‘bad’ value . In this case he would run QUALTOBAD specifying
the background removed NDF as input, and specifying a quality expression of SATURATED. This
would cause all pixels which hold the quality SATURATED to be set bad in the output NDF.

The ‘quality expression’ can be more complex than a single quality name. In fact, a quality
expression can consist of several quality names combined together using the usual operators of
Boolean algebra. For instance, if the quality expression SATURATED.AND..NOT.(SOURCE_A .OR.
SOURCE_B) was given to QUALTOBAD, then pixels would be set ‘bad’ only if they had the
quality SATURATED, but did not have either of the qualities SOURCE_A or SOURCE_B.

4 Quality Names

A quality name must contain 15 or fewer characters. Any leading blanks are removed from sup-
plied quality names, and they are converted to upper case before being stored in the NDF. Quality
names may contain embedded blanks, but may not contain full-stop (".") characters. Certain
names are reserved and may not be used. These are ANY, IRQ_BAD_SLOT and IRQ_FREE_SLOT.

5 Quality Expressions

A ‘Quality Expression’ consists of a set of quality names combined together using Boolean
operators into a legal Boolean expression. See Section 6.6 for a description of the use of quality
expressions within IRQ. In the following, the symbols A and B are used to represent two qualities.
These can be considered as Boolean values; true if a pixel holds the quality, and false otherwise.
The supported Boolean operators are listed below.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_REMQUAL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_SHOWQUAL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_QUALTOBAD
http://www.starlink.ac.uk/cgi-bin/htxserver/SETQUAL.htx/SETQUAL.html?xref_.

SUN/261.3 —Using IRQ routines 4

.AND. - The expression (A.AND.B) is true if and only if both A and B are true.

.OR. - The expression (A.OR.B) is true if and only if either A or B is true.

.XOR. - The expression (A.XOR.B) is true if and only if either A is true and B is false, or A is false
and B is true.

.EQV. - The expression (A.EQV.B) is true if and only if either A is true and B is true, or A is false
and B is false.

.NOT. - The expression (.NOT.A) is true if and only if A is false.

In addition to the above operators, the Boolean constants .FALSE. and .TRUE. can be included
within a quality expression. Expressions may contain several levels of nested parentheses.

The precedence of these operators decreases in the following order; .NOT., .AND., .OR., .XOR.,
.EQV. (the final two have equal precedence). In an expression such as (A.XOR.B.EQV.C.XOR.D)
in which all operators have equal precedence, the evaluation proceeds from left to right., i.e. the
expression is evaluated as (((A.XOR.B).EQV.C).XOR.D). If there is any doubt about the order in
which an expression will be evaluated, parentheses should be used to ensure the required order
of evaluation.

Some attempts are made to simplify a quality expression to reduce the run time needed to
evaluate the expression for every pixel.

Quality expressions can be up to 254 characters long, and must not contain more than forty
symbols (Boolean operators, constants, or quality names).

6 Using IRQ routines

This section gives a brief outline of the IRQ routines which are available to perform some
common tasks. The specific details required to use these routines are not included here but can
be found in the subroutine specifications contained in Appendix C.

6.1 Constants and Error Values

The IRQ package has associated with it various symbolic constants. These values consist of a
name of up to five characters prefixed by “IRQ__” (note the double underscore), and can be made
available to an application by including the following line at the start of the routines which uses
them:

INCLUDE ’IRQ_PAR’

This assumes that the IRQ library has been installed as part of the UNIX Starlink Software
Collection.

The values thus defined are described in the following sections, and also in the subroutine
specifications. Another set of symbolic constants is made available by the statements

5 SUN/261.3 —Using IRQ routines

INCLUDE ’IRQ_ERR’

These values have the same format of those contained in IRQ_PAR, put define various error
conditions which can be generated within the IRQ package. Applications can compare the
STATUS argument with these values to check for specific error conditions. These values are
described in Appendix G.

6.2 Initialising an NDF for use with IRQ

Certain HDS structures must be created within an NDF before the NDF can be used by IRQ.
These structures hold information describing the currently defined quality names within the
NDF. Routine IRQ_FIND can be used to see if such structures exist within an NDF (see below).
If no such structure yet exists within an NDF, routine IRQ_NEW must be called to create the
structure. This structure is held in a specified NDF extension. IRQ_NEW returns an array of
HDS locators which must be passed to subsequent IRQ routines. One of these locators points
to a cloned copy of the NDF identifier. All access to the NDF by subsequent IRQ routines is
achieved through this cloned identifier. Once access to the quality names information is no
longer required, the resources used by these HDS locators (including the cloned NDF identifier)
should be annulled by calling IRQ_RLSE. Note, routines IRQ_ANNUL and IRQ_CLOSE play
no part in releasing resources used for accessing quality name information. These two routines
are only used for releasing resources used to store compiled quality expressions (see Section 6.6).
IRQ_RLSE is the only routine which needs to be called to release resources used for accessing
quality names.

6.3 Using previously initialised NDFs within IRQ

If the NDF has been initialised for use by IRQ, then the structure holding the quality names
information must be found before other IRQ routines can be called. Routine IRQ_FIND does this.
This routine looks through all the NDF extensions until a suitable structure is found. If no such
structure is found the status value IRQ__NOQNI is returned. If more than one extension contains
such a structure, then the status value IRQ__MULT is returned. If the routine runs successfully,
then an array of HDS locators is returned similar to the array returned by IRQ_NEW. Once
access to the quality names information is no longer required, the resources used by these HDS
locators (including the cloned NDF identifier) should be annulled by calling IRQ_RLSE.

6.4 Accessing the quality names information stored in an NDF

To access the quality names information stored within an NDF, a set of HDS locators to the
information must first be obtained by calling either IRQ_NEW or IRQ_FIND (see above). Once
this has been done the information can be read, modified, or added to. IRQ_ADDQN adds a
new quality name definition to an NDF (so long as there is room for it within the structures and
the QUALITY component). IRQ_CHKQN checks to see if a given name is defined. IRQ_GETQN
searches for a specified quality name, and returns various items of information about it (such
as which bit of the QUALITY component it is assigned to). IRQ_NUMQN returns the number
of defined quality names. IRQ_NXTQN returns the next defined quality name. Repeated calls
to IRQ_NXTQN can be made to get a list of all the quality names defined within an NDF.
IRQ_REMQN removes the definition of a quality name from an NDF, so long as the quality
name has not been flagged as ‘read-only’ (see IRQ_RWQN).

SUN/261.3 —Using IRQ routines 6

6.5 Assigning and removing qualities to and from NDF pixels

Once quality names have been defined, they can be assigned to selected pixels within the NDF.
There are two ways of specifying which pixels are ‘selected’. Routine IRQ_SETQM requires
a mask image to be provided in which the ‘bad’ pixels define the pixels in the NDF DATA
component to which the quality is to be assigned. Routine IRQ_SETQL requires a list of pixel
indices to be provided which defines the pixels in the NDF DATA component to which the
quality is to be assigned. The quality of the NDF pixels which are not selected is left unchanged.
Thus, if an unselected pixel already has the specified quality, these routines will not remove the
quality from those pixels.

The routines IRQ_RESQM and IRQ_RESQL, are complementary to IRQ_SETQM and IRQ_SETQL.
Instead of ensuring that the selected pixels hold the specified quality, these routines ensure that
the selected pixels do not hold the specified quality. Again, the quality of unselected pixels is left
unchanged.

Routine IRQ_SETQ ensures that all pixels in an NDF have a specified quality, and routine
IRQ_RESQ ensures that no pixels in an NDF have a specified quality.

The routine IRQ_CNTQ will count the number of bits set in each bit plane in the QUALITY
component.

6.6 Finding NDF pixels which satisfy a quality expression

If a subset of pixels are to be operated on by an application, the application will usually obtain
a quality expression from the user which defines the pixels to be operated on. That is to say,
pixels which have qualities which do not satisfy the quality expression would not usually be
used by the application. The quality expression is usually obtained from the user using the
ADAM parameter system. It is then passed to IRQ_COMP to be compiled. If any problems are
detected with the expression (such as syntax errors, or undefined quality names) IRQ_COMP
will report an error, and it is then up to the applications to decide what to do. Typically, it will
flush the error, and reprompt the user for a new quality expression. The routine IRQ_SYNTX
will check a quality expression for syntax errors without actually compiling it or checking that
the referenced quality names are defined.

If IRQ_COMP successfully compiles the quality expression, it returns an identifier for the
compiled quality expression. This identifier is actually a pointer to a temporary HDS structure
holding information about the quality expression. The identifier is passed to IRQ_SBAD which
locates all NDF pixels that have qualities that satisfy the quality expression. The corresponding
pixels in an array supplied to IRQ_SBAD are set ‘bad’. The other pixels are left unchanged.
Alternatively, pixels with qualities which do not satisfy the quality expression can be set bad in
the supplied array. Note, the array supplied to IRQ_SBAD must be the same shape and size
as the NDF supplied to IRQ_FIND or IRQ_NEW. If an NDF section was used, then the array
supplied to IRQ_SBAD must be the same shape and size as the NDF section, not the base NDF.

Up to ten compiled quality expressions can be active at once. The identifiers for each compiled
quality expression should be annulled when it is no longer needed by calling IRQ_ANNUL.
IRQ_CLOSE should be called when all compiled quality expressions have been finished with.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_

7 SUN/261.3 —Compiling and Linking with IRQ

7 Compiling and Linking with IRQ

This section describes how to compile and link applications which use IRQ subroutines, on
UNIX systems. It is assumed that the IRQ library is installed as part of the Starlink Software
Collection.

7.1 Standalone Applications

Standalone applications which use IRQ_ routines may be linked by including execution of
the command “irq_link” on the compiler command line. Thus, to compile and link a Fortran
application called “prog”, the following might be used:

% f77 -I$STARLINK_DIR/include prog.f -L$STARLINK_DIR/lib ‘irq_link‘ -o prog

Note the use of backward quote characters, which cause the “irq_link” command to be executed
and its result substituted into the compiler command.

7.2 ADAM Applications

Users of the ADAM programming environment (SG/4) should use the alink command (SUN/144)
to compile and link applications, and can access the IRQ_ library by including execution of the
command irq_link_adam on the command line, as follows:

% alink adamprog.f ‘irq_link_adam‘

where adamprog.f is the Fortran source file for the A-TASK. Again note the use of opening
apostrophies (‘) instead of the more usual closing apostrophy (’) in the above alink command.

To build a program written in C (instead of Fortran), simply name the source file adamprog.c,
instead of adamprog.f.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_ADAM_link_scripts
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_

SUN/261.3 —Routine Descriptions 8

A Routine Descriptions

IRQ_ADDQN(LOCS, QNAME, DEFLT, COMMNT, STATUS)
Define a new quality name.

IRQ_ANNUL(IDQ, STATUS)
Annul an identifier for a compiled quality expression.

IRQ_CHKQN(LOCS, QNAME, THERE, STATUS)
Check that a specified quality name is defined.

IRQ_CLOSE(STATUS)
Close down the compiled quality expression identifier system.

IRQ_CNTQ(LOCS, SIZE, SET, STATUS)
Count the number of pixels with each bit set in the QUALITY component.

IRQ_CNTQ8(LOCS, SIZE, SET, STATUS)
Count the number of pixels with each bit set in the QUALITY component - INTEGER*8 interface.

IRQ_COMP(LOCS, SIZE, INFO, QEXP, UNDEF, NUNDEF, ERRPNT, IDQ, STATUS)
Compile a quality expression.

CALL IRQ_DELET(INDF, STATUS)
Delete all quality-name information from an NDF.

IRQ_FIND(INDF, LOCS, XNAME, STATUS)
Find a structure containing quality names information.

IRQ_FXBIT(LOCS, QNAME, BIT, SET, FIXBIT, STATUS)
Assign a fixed bit number to a quality name.

IRQ_GETQN(LOCS, QNAME, FIXED, VALUE, BIT, COMMNT, STATUS)
Get information about a specified quality name.

CALL IRQ_GETQX(PARAM, QEXP, STATUS)
Get a quality expression from the user and check for syntax errors.

IRQ_NEW(INDF, XNAME, LOCS, STATUS)
Create a structure to hold quality names information.

IRQ_NUMQN(LOCS, NAMES, STATUS)
Return the number of defined quality names.

IRQ_NXTQN(LOCS, CONTXT, QNAME, FIXED, VALUE, BIT, COMMNT, DONE, STATUS
)

Return information about the next defined quality name.

IRQ_RBIT(LOCS, QNAME, BIT, STATUS)
Reserve a bit number for a given quality name.

IRQ_REMQN(LOCS, QNAME, STATUS)
Remove the definition of a quality name.

IRQ_RESQ(LOCS, QNAME, STATUS)
Ensure no pixels hold a specified quality.

9 SUN/261.3 —Routine Descriptions

IRQ_RESQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list do not hold a specified quality.

IRQ_RESQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list do not hold a specified quality - INTEGER*8 interface.

IRQ_RESQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask do not hold a specified quality.

IRQ_RESQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask do not hold a specified quality - INTEGER*8 interface.

IRQ_RLSE(LOCS, STATUS)
Release the resource used to locate quality name information.

IRQ_RWQN(LOCS, QNAME, SET, NEWVAL, OLDVAL, STATUS)
Get and/or set the read-only flag for a quality name.

IRQ_SBADx(IDQ, HELD, SIZE, VEC, ALLBAD, NOBAD, STATUS)
Set pixels bad which satisfy a given quality expression.

IRQ_SETQ(LOCS, QNAME, STATUS)
Ensure all pixels hold a specified quality.

IRQ_SETQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list hold a specified quality.

IRQ_SETQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list hold a specified quality - INTEGER*8 interface.

IRQ_SETQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask hold a specified quality.

IRQ_SETQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask hold a specified quality - INTEGER*8 interface.

IRQ_SYNTX(QEXP, ERRPNT, STATUS)
Check a quality expression for syntax errors.

SUN/261.3 —Classified List 10

B Classified List

B.1 Gaining Access to Quality Name Information Within an NDF

IRQ_FIND(INDF, LOCS, XNAME, STATUS)
Find a structure containing quality names information.

IRQ_NEW(INDF, XNAME, LOCS, STATUS)
Create a structure to hold quality names information.

IRQ_RLSE(LOCS, STATUS)
Release the resource used to locate quality name information.

B.2 Storing, Retrieving and Deleting Quality Names

IRQ_ADDQN(LOCS, QNAME, DEFLT, COMMNT, STATUS)
Define a new quality name.

IRQ_CHKQN(LOCS, QNAME, THERE, STATUS)
Check that a specified quality name is defined.

CALL IRQ_DELET(INDF, STATUS)
Delete all quality-name information from an NDF

IRQ_FXBIT(LOCS, QNAME, BIT, SET, FIXBIT, STATUS)
Assign a fixed bit number to a quality name.

IRQ_GETQN(LOCS, QNAME, FIXED, VALUE, BIT, COMMNT, STATUS)
Get information about a specified quality name.

IRQ_NUMQN(LOCS, NAMES, STATUS)
Return the number of defined quality names.

IRQ_NXTQN(LOCS, CONTXT, QNAME, FIXED, VALUE, BIT, COMMNT, DONE, STATUS
)

Return information about the next defined quality name.

IRQ_RBIT(LOCS, QNAME, BIT, STATUS)
Reserve a bit number for a given quality name.

IRQ_REMQN(LOCS, QNAME, STATUS)
Remove the definition of a quality name.

IRQ_RWQN(LOCS, QNAME, SET, NEWVAL, OLDVAL, STATUS)
Get and/or set the read-only flag for a quality name.

B.3 Handling Quality Expressions

IRQ_ANNUL(IDQ, STATUS)
Annul an identifier for a compiled quality expression.

IRQ_CLOSE(STATUS)
Close down the compiled quality expression identifier system.

11 SUN/261.3 —Classified List

IRQ_COMP(LOCS, SIZE, INFO, QEXP, UNDEF, NUNDEF, ERRPNT, IDQ, STATUS)
Compile a quality expression.

IRQ_GETQN(LOCS, QNAME, FIXED, VALUE, BIT, COMMNT, STATUS)
Get information about a specified quality name.

IRQ_SBADx(IDQ, HELD, SIZE, VEC, ALLBAD, NOBAD, STATUS)
Set pixels bad which satisfy a given quality expression.

IRQ_SYNTX(QEXP, ERRPNT, STATUS)
Check a quality expression for syntax errors.

B.4 Assigning Qualities to Selected Pixels

IRQ_RESQ(LOCS, QNAME, STATUS)
Ensure no pixels hold a specified quality.

IRQ_RESQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list do not hold a specified quality.

IRQ_RESQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list do not hold a specified quality - INTEGER*8 interface.

IRQ_RESQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask do not hold a specified quality.

IRQ_RESQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask do not hold a specified quality - INTEGER*8 interface.

IRQ_SETQ(LOCS, QNAME, STATUS)
Ensure all pixels hold a specified quality.

IRQ_SETQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list hold a specified quality.

IRQ_SETQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)
Ensure pixels selected by a list hold a specified quality - INTEGER*8 interface.

IRQ_SETQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask hold a specified quality.

IRQ_SETQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)
Ensure pixels selected by a mask hold a specified quality - INTEGER*8 interface.

B.5 Enquiring Pixel Quality

IRQ_CNTQ(LOCS, SIZE, SET, STATUS)
Count the number of pixels with each bit set in the QUALITY component.

IRQ_CNTQ8(LOCS, SIZE, SET, STATUS)
Count the number of pixels with each bit set in the QUALITY component - INTEGER*8 interface.

SUN/261.3 —Full Routine Specifications 12

C Full Routine Specifications

13 IRQ_ADDQN SUN/261.3 —Full Routine Specifications

IRQ_ADDQN
Define a new quality name

Description:
This routine adds the quality name specified by QNAME to the NDF specified by LOCS.
LOCS must previously have been assigned values by one of the routines IRQ_FIND or
IRQ_NEW. If the quality name is already defined, an error is reported. Note, this routine
does not reserve a bit in the QUALITY component for the new quality name, it mearly
established a default value for the quality which will be used for all pixels in the NDF if
no subsequent call to IRQ_SETQL or IRQ_SETQM is made. Note, the string ANY cannot
be used as a quality name. Also, quality names may not contain any full stops.

An error is reported if only READ access is available to the NDF.

Invocation:

CALL IRQ_ADDQN(LOCS, QNAME, DEFLT, COMMNT, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The new quality name to store. The maximum length of this string is given by symbolic
constant IRQ__SZQNM which currently has the value 15. Leading spaces are ignored, and
the stored name is converted to upper case.

DEFLT = LOGICAL (Given)
If true, then by default all pixels are assumed to hold the quality specified by QNAME. If
false, then it is assumed that no pixels hold the quality.

COMMNT = CHARACTER ∗ (∗) (Given)
A descriptive comment to store with the quality name. The maximum length of this
string is given by symbolic constant IRQ__SZCOM, which currently has the value 50. Any
characters beyond this length are ignored.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 14 IRQ_ANNUL

IRQ_ANNUL
Release an IRQ identifier

Description:
All internal resources used by the specified compiled quality expression identifier (created
by IRQ_COMP) are released.

This routine attempts to execute even if STATUS is bad on entry, although no further error
report will be made if it subsequently fails under these circumstances.

Invocation:

CALL IRQ_ANNUL(IDQ, STATUS)

Arguments:

IDQ = INTEGER (Given)
An IRQ identifier for a compiled quality expression.

STATUS = INTEGER (Given and Returned)
The global status.

15 IRQ_CHKQN SUN/261.3 —Full Routine Specifications

IRQ_CHKQN
Check a specified quality name to see if it is defined

Description:
This routine searches for a specified quality name in the quality name specified by LOCS.
If it is found, THERE is returned true. Otherwise THERE is returned false.

Invocation:

CALL IRQ_CHKQN(LOCS, QNAME, THERE, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to search for. Leading blanks are ignored and the search is case-
insensitive. The maximum allowed length for quality names is given by symbolic constant
IRQ__SZQNM which currently has the value of 15.

THERE = LOGICAL (Returned)
If true, then the quality name is defined within the NDF specified by LOCS. If false, then
the quality name is undefined.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 16 IRQ_CLOSE

IRQ_CLOSE
Close down the IRQ identifier system

Description:
This routine must be called once all use of compiled quality expression identifiers (as
generated by IRQ_COMP) has been completed. All internal resources used by any such
identifiers currently in use are released. Note, this routine does not release the locators
created by IRQ_NEW or IRQ_FIND. IRQ_RLSE must be called to release these locators.

This routine attempts to execute even if STATUS is bad on entry, although no further error
report will be made if it subsequently fails under these circumstances.

Invocation:

CALL IRQ_CLOSE(STATUS)

Arguments:

STATUS = INTEGER (Given and Returned)
The global status.

17 IRQ_CNTQ SUN/261.3 —Full Routine Specifications

IRQ_CNTQ
Count the number of pixels which are set in each bit-plane of the

QUALITY component

Description:
Each bit plane of the NDF QUALITY component corresponds to a different quality, de-
scribed by a name stored in the quality names information structure in an NDF extension.
A pixel is set in a bit plane of the QUALITY component if the pixel has the quality as-
sociated with the bit plane. This routine counts the number of such pixels in each bit
plane.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_CNTQ(LOCS, SIZE, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

SIZE = INTEGER (Given)
The number of bit planes for which a count of set pixels is required.

SET(SIZE) = INTEGER (Returned)
The number of pixels holding the corresponding quality in each of bit planes 1 to SIZE. The
least-significant bit is Bit 1. If SIZE is larger than the number of bit planes in the QUALITY
component, the unused elements are set to zero.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 18 IRQ_CNTQ8

IRQ_CNTQ8
Count the number of pixels which are set in each bit-plane of the

QUALITY component

Description:
This routine is equivalent to IRQ_CNTQ except that variable SET, is stored in an INTEGER∗8
array rather than INTEGER.

Each bit plane of the NDF QUALITY component corresponds to a different quality, de-
scribed by a name stored in the quality names information structure in an NDF extension.
A pixel is set in a bit plane of the QUALITY component if the pixel has the quality as-
sociated with the bit plane. This routine counts the number of such pixels in each bit
plane.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_CNTQ8(LOCS, SIZE, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

SIZE = INTEGER (Given)
The number of bit planes for which a count of set pixels is required.

SET(SIZE) = INTEGER∗8 (Returned)
The number of pixels holding the corresponding quality in each of bit planes 1 to SIZE. The
least-significant bit is Bit 1. If SIZE is larger than the number of bit planes in the QUALITY
component, the unused elements are set to zero.

STATUS = INTEGER (Given and Returned)
The global status.

19 IRQ_COMP SUN/261.3 —Full Routine Specifications

IRQ_COMP
Compile a quality expression

Description:
All the quality names referenced in the given quality expression (QEXP) are identified.
If all quality names referenced in QEXP are defined within the NDF specified in LOCS,
then the quality expression is ‘compiled’ , i.e. converted into a form that can be used by
IRQ_SBADx. The compiled quality expression is identified by the returned IRQ identifier
which should be released using IRQ_ANNUL when no longer needed. If any error is
reported, then IRQ is returned set to the value IRQ__NOID.

If any quality names referenced in the quality expression are not defined in the NDF
specified by LOCS, they are returned in UNDEF, the number of such undefined quality
names is returned in NUNDEF, an error is reported and STATUS is returned with value
IRQ__NOQNM. Additionally, if INFO is true, then a message is generated identifying
each undefined quality name.

If any of the STATUS values IRQ__BADSY, IRQ__MSOPT or IRQ__MSOPD are returned
(all of which correspond to various forms of syntax error in the quality expression, see
ID6 appendix E), a pointer to the approximate position of the error within the quality
expression is returned in ERRPNT.

Invocation:

CALL IRQ_COMP(LOCS, SIZE, INFO, QEXP, UNDEF, NUNDEF, ERRPNT, IDQ, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

SIZE = INTEGER (Given)
The size of the UNDEF array. This should be at least equal to the value of the symbolic
constant IRQ__QNREF

INFO = LOGICAL (Given)
If set to .TRUE., then messages are produced identifying any undefined quality names.

QEXP = CHARACTER∗(∗) (Given and Returned)
A quality expression. See ID6 section 5 for details of the allowed formats for quality
expressions. On exit, the string is converted to upper case and any leading blanks are
removed.

UNDEF(SIZE) = CHARACTER ∗ (∗) (Returned)
An array holding any undefined quality names referenced in the quality expression. The
array should have at least IRQ__QNREF elements, each element being a string of length
IRQ__SZQNM.

SUN/261.3 —Full Routine Specifications 20 IRQ_COMP

NUNDEF = INTEGER (Returned)
The number of undefined quality names referenced in the quality expression.

ERRPNT = INTEGER (Returned)
If any of the STATUS values IRQ__BADSY(" Unrecognised logical operator or constant"
), IRQ__MSOPT (" Missing operator") or IRQ__MSOPD (" Missing operand") are
returned, then ERRPNT returns the offset within the quality expression at which the error
was detected. Note, the offset refers to the returned form of QEXP, not the given form.
These will be different if the given form of QEXP has any leading blanks. An offset of zero
is returned if none of the errors associated with the above STATUS values occur.

IDQ = INTEGER (Returned)
An IRQ identifier for the compiled quality expression. This identifier can be passed to
IRQ_SBADx. This identifier should be annulled using routine IRQ_ANNUL or IRQ_CLOSE
when it is no longer needed. If an error is reported, then an invalid identifier (equal to
IRQ__NOID) is returned.

STATUS = INTEGER (Given and Returned)
The global status.

21 IRQ_DELET SUN/261.3 —Full Routine Specifications

IRQ_DELET
Delete all quality-name information from an NDF

Description:
A search is made through the extensions contained within the supplied NDF for an HDS
structure containing quality-name information. If found, the QUALITY_NAMES structure
containing the quality names is deleted.

Invocation:

CALL IRQ_DELET(INDF, STATUS)

Arguments:

INDF = INTEGER (Given)
The input NDF.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 22 IRQ_FIND

IRQ_FIND
Find quality name information within an NDF

Description:
A search is made through the extensions contained within the supplied NDF for an HDS
structure containing quality name information. Such information is held in an HDS object
named QUALITY_NAMES (these objects can be created using IRQ_NEW). If no such
object is found, an error is reported and the status IRQ__NOQNI is returned (if more than
one such object is found, an error is reported and the status IRQ__MULT is returned). The
name of the NDF extension in which the object was found is returned in XNAME. An
array of five HDS locators is returned which is needed when calling other IRQ routines.
The first locator points to a temporary object which holds a cloned identifier for the NDF,
the other four point to components of the QUALITY_NAMES structure contained in the
NDF. IRQ_RLSE should be called to annul these locators (and the NDF identifier) when
no further access to the NDFs quality names information is required.

The LOCS argument returned by this routine specifies the NDF which will be operated on
by subsequent IRQ routines. Specifically, LOCS determines the bounds of the NDF. Care
should therefore be taken that subsequent calls to IRQ routines refer to the NDF specified
by the INDF argument to this routine, and not for instance to a section of the NDF which
will in general have different bounds.

Invocation:

CALL IRQ_FIND(INDF, LOCS, XNAME, STATUS)

Arguments:

INDF = INTEGER (Given)
The input NDF.

LOCS(5) = CHARACTER ∗ (∗) (Returned)
A set of HDS locators as described above. The character variables supplied for this
argument should have a declared length equal to symbolic constant DAT__SZLOC. These
locator are annuled by calling IRQ_RLSE.

XNAME = CHARACTER ∗ (∗) (Returned)
The name of the NDF extension in which the quality name information was found. The
character variable supplied for this argument should have a declared length equal to
symbolic constant DAT__SZNAM.

STATUS = INTEGER (Given and Returned)
The global status.

23 IRQ_FXBIT SUN/261.3 —Full Routine Specifications

IRQ_FXBIT
Assign a fixed bit number to a quality name

Description:
This routine associates a fixed bit number with a specified quality name. Normally, IRQ
manages the allocation of bit numbers to named qualities, but this routine allows the
calling application to specify which bit is to be used for a given quality.

By default, a QUALITY-array bit is associated with a quality name only if some pixels
hold the quality and some do not hold the quality (i.e. there is a mix of values). Otherwise,
a flag is stored in the QUALITY_NAMES structure indicating this, and any quality bit
previously associated with the quality name is released for re-use.

This default behaviour is changed by calling this routine. The specified bit number will
continue to be associated with the quality name even if all pixels do, or do not, hold the
quality.

An error will be returned if the named quality is already associated with a different bit
number when this routine is called. An error will also be reported if the specified bit
number is already associated with a different quality name.

Invocation:

CALL IRQ_FXBIT(LOCS, QNAME, BIT, SET, FIXBIT, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to use. Leading blanks are ignored and the search is case-insensitive. The
maximum allowed length for quality names is given by symbolic constant IRQ__SZQNM
which currently has the value of 15.

BIT = INTEGER (Given)
The bit number to use. The least significant bit is Bit 1, not Bit 0. If a value below 0 or
above 8 is supplied, the properties of the quality name are left unchanged, but the FIXBIT
value is still returned.

FIXBIT = LOGICAL (Returned)
Returned .TRUE. if the specified quality name had a fixed bit number on entry to this
routine, and .FALSE. otherwise.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 24 IRQ_GETQN

IRQ_GETQN
Search for a specified quality name

Description:
This routine searches for a specified quality name in the quality name specified by LOCS,
and returns information related to the quality name. If the quality name is not defined
then an error is reported and STATUS returned equal to IRQ__NOQNM.

Invocation:

CALL IRQ_GETQN(LOCS, QNAME, FIXED, VALUE, BIT, COMMNT, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to search for. Leading blanks are ignored and the search is case-
insensitive. The maximum allowed length for quality names is given by symbolic constant
IRQ__SZQNM which currently has the value of 15.

FIXED = LOGICAL (Returned)
If true, then the quality is either held by all pixels, or by no pixels. In this case the quality
may not have a corresponding bit in the QUALITY component. If false, then some pixels
have the quality and some do not, as indicated by the corresponding bit in the QUALITY
component.

VALUE = LOGICAL (Returned)
If FIXED is true, then VALUE specifies whether all pixels hold the quality (VALUE =
.TRUE.), or whether no pixels hold the quality (VALUE = .FALSE.). If FIXED is false, then
VALUE is indeterminate.

BIT = INTEGER (Returned)
BIT holds the corresponding bit number in the QUALITY component. The least-significant
bit is called Bit 1 (not Bit 0). If there is no corresponding bit, a value of zero is returned,
and FIXED is returned .TRUE.

COMMNT = CHARACTER ∗ (∗) (Returned)
The descriptive comment which was stored with the quality name. The supplied character
variable should have a declared length given by symbolic constant IRQ__SZCOM.

STATUS = INTEGER (Given and Returned)
The global status.

25 IRQ_GETQX SUN/261.3 —Full Routine Specifications

IRQ_GETQX
Get a quality expression from the user and check for syntax errors

Description:
A string is obtained from the environment using the supplied ADAM parameter. This
string is check to see if it has correct syntax for a quality expression (no checks are made
to ensure that the quality names referenced within the expression are defined within
any specific NDF). If a syntax error is detected, the quality expression is displayed with
an exclamation mark under the position at which the syntax error was detected. If
any problem is found with the supplied expression, a new value is obtained from the
environment. The returned string is converted to upper case and leading blanks are
removed.

Invocation:

CALL IRQ_GETQX(PARAM, QEXP, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
The name of an ADAM parameter of type LITERAL.

QEXP = CHARACTER ∗ (∗) (Returned)
The returned quality expression.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 26 IRQ_NEW

IRQ_NEW
Create a new structure to hold quality name information within an

NDF extension

Description:
An HDS object (named QUALITY_NAMES) is created to hold quality name information
within the specified NDF extension. An error is reported if the NDF extension does
not exist. If the extension does exist, an array of five HDS locators is returned which is
needed when calling other IRQ routines. The first locator points to a temporary object
which holds a cloned identifier for the NDF, the other four point to components of the
QUALITY_NAMES structure contained in the NDF. IRQ_RLSE should be called to annul
these locators (and the NDF identifier) when no further access to the NDFs quality names
information is required.

The QUALITY component of the NDF is reset to an undefined state by this routine.
Therefore, the QUALITY component should not be mapped for access prior to calling this
routine.

The LOCS argument returned by this routine specifies the NDF which will be operated on
by subsequent IRQ routines. Specifically, LOCS determines the bounds of the NDF. Care
should therefore be taken that subsequent calls to IRQ routines refer to the NDF specified
by the INDF argument to this routine, and not for instance to a section of the NDF which
will in general have different bounds.

Note, an error is reported if only READ access is available to the NDF.

Invocation:

CALL IRQ_NEW(INDF, XNAME, LOCS, STATUS)

Arguments:

INDF = INTEGER (Given)
The NDF identifier.

XNAME = CHARACTER ∗ (∗) (Given)
The name of the NDF extension in which the quality name information is to be stored. If
this extension does not exist then an error is reported.

LOCS(5) = CHARACTER ∗ (∗) (Returned)
A set of HDS locators as described above. The character variables supplied for this
argument should have a declared length equal to symbolic constant DAT__SZLOC. These
locator are annulled by calling IRQ_RLSE.

STATUS = INTEGER (Given and Returned)
The global status.

27 IRQ_NUMQN SUN/261.3 —Full Routine Specifications

IRQ_NUMQN
Return number of defined quality names

Description:
The number of quality names defined in the NDF specified by LOCS is returned.

Invocation:

CALL IRQ_NUMQN(LOCS, NAMES, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

NAMES = INTEGER (Returned)
The number of quality names defined in the structure located by LOCS.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 28 IRQ_NXTQN

IRQ_NXTQN
Return the next quality name

Description:
This routine returns the next quality name defined in the NDF specified by LOCS, together
with supplementary information. The next quality name is determined by the value of
CONTXT. If CONTXT is zero on entry then the first quality name is returned. On exit,
CONTXT is set to a value which indicates where the next quality name is stored within the
NDF. This value can be passed to a subsequent call to this routine to retrieve information
about the next quality name.

Invocation:

CALL IRQ_NXTQN(LOCS, CONTXT, QNAME, FIXED, VALUE, BIT, COMMNT, DONE, STATUS
)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of 5 HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

CONTXT = INTEGER (Given and Returned)
The context of the current call. This should be set to zero before the first call to this routine,
and then left unchanged between subsequent calls.

QNAME = CHARACTER ∗ (∗) (Returned)
The next quality name. The character variable supplied for this argument should have a
declared length equal to the symbolic constant IRQ__SZQNM.

FIXED = LOGICAL (Returned)
If true, then the quality is either held by all pixels, or by no pixels. In this case the quality
may not have a corresponding bit in the QUALITY component. If false, then some pixels
have the quality and some do not, as indicated by the corresponding bit in the QUALITY
component.

VALUE = LOGICAL (Returned)
If FIXED is true, then VALUE specifies whether all pixels hold the quality (VALUE =
.TRUE.), or whether no pixels hold the quality (VALUE = .FALSE.). If FIXED is false, then
VALUE is indeterminate.

BIT = INTEGER (Returned)
BIT holds the corresponding bit number in the QUALITY component. The least-significant
bit is called Bit 1 (not Bit 0). A value of zero is returned if the quality has no associated bit
in the quality array. In this case, the FIXED argument will indicate if all pixels do, or do
not, hold the quality.

29 IRQ_NXTQN SUN/261.3 —Full Routine Specifications

COMMNT = CHARACTER ∗ (∗) (Returned)
The descriptive comment which was stored with the quality name. The supplied character
variable should have a declared length given by symbolic constant IRQ__SZCOM.

DONE = LOGICAL (Returned)
Returned true if this routine is called when no more names remain to be returned.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 30 IRQ_RBIT

IRQ_RBIT
Reserve a bit number for a given quality name

Description:
If the supplied quality name already has a bit number associated with it, the bit number is
returned. Otherwise, the next available plane in the quality array is asigned to the quality
name, and its bit number is returned.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance).

Invocation:

CALL IRQ_RBIT(LOCS, QNAME, BIT, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name. This quality name must be defined in the NDF specified by LOCS.
Name definitions can be added to the NDF using routine IRQ_ADDQN.

BIT = INTEGER (Returned)
The bit number used by the quality name within the quality array. Note, the least-
significant bit is Bit 1, not Bit 0.

STATUS = INTEGER (Given and Returned)
The global status.

31 IRQ_REMQN SUN/261.3 —Full Routine Specifications

IRQ_REMQN
Remove the definition of a specified quality name

Description:
The specified quality name is removed from the NDF specified by LOCS. Any associated
bit in the QUALITY array is freed for future use. If the name is not defined an error is
reported. A value of ANY for the quality names causes all defined quality names to be
removed.

Note, an error is reported if only read access is available to the NDF, or if the quality name
has been flagged as read-only using routine IRQ_RWQN.

Invocation:

CALL IRQ_REMQN(LOCS, QNAME, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to remove, or ’ ANY’ if all quality names are to be removed.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 32 IRQ_RESQ

IRQ_RESQ
Remove a given quality from all pixels in the NDF

Description:
The quality specified by QNAME is removed from all pixels in the NDF specified by LOCS
(LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported
if the quality name is undefined within the NDF.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance).

Invocation:

CALL IRQ_RESQ(LOCS, QNAME, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to be removed from all pixels in the NDF. This quality name must be
defined in the NDF specified by LOC. Name definitions can be added to the NDF using
routine IRQ_ADDQN.

STATUS = INTEGER (Given and Returned)
The global status.

33 IRQ_RESQL SUN/261.3 —Full Routine Specifications

IRQ_RESQL
Remove a quality from a list of pixels, leaving unlisted pixels

unchanged

Description:
The quality specified by QNAME is removed from all pixels included in (or, if LISTED
is false, not included in) the supplied list of pixel indices. The quality of other pixels is
left unaltered. The quality name must be defined in the NDF specified by LOCS (LOCS
should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported if the
quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component must not be mapped on entry to this routine.

Invocation:

CALL IRQ_RESQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

LISTED = LOGICAL (Given)
If true, then the quality is removed from all pixels included in the list given by LIST. If
false, then the quality is removed from all pixels not included in the list given by LIST.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to be removed from the selected pixels. This quality name must be
defined in the NDF specified by LOC. Name definitions can be added to the NDF using
routine IRQ_ADDQN.

NDIM = INTEGER (Given)
The number of values required to specify a pixel position (i.e. the number of dimensions
in the NDF).

NCOORD = INTEGER (Given)
The number of pixels included in the input list.

LIST(NDIM, NCOORD) = INTEGER (Given)
The list of pixel indices. Any indices which lie outside the bounds of the NDF are ignored.

SET = INTEGER (Returned)
The number of pixels which hold the quality.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 34 IRQ_RESQL8

IRQ_RESQL8
Remove a quality from a list of pixels, leaving unlisted pixels

unchanged

Description:
This routine is equivalent to IRQ_RESQL except that variables LIST, NCOORD and SET
are stored in INTEGER∗8 values rather than INTEGER.

The quality specified by QNAME is removed from all pixels included in (or, if LISTED
is false, not included in) the supplied list of pixel indices. The quality of other pixels is
left unaltered. The quality name must be defined in the NDF specified by LOCS (LOCS
should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported if the
quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component must not be mapped on entry to this routine.

Invocation:

CALL IRQ_RESQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

LISTED = LOGICAL (Given)
If true, then the quality is removed from all pixels included in the list given by LIST. If
false, then the quality is removed from all pixels not included in the list given by LIST.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to be removed from the selected pixels. This quality name must be
defined in the NDF specified by LOC. Name definitions can be added to the NDF using
routine IRQ_ADDQN.

NDIM = INTEGER (Given)
The number of values required to specify a pixel position (i.e. the number of dimensions
in the NDF).

NCOORD = INTEGER∗8 (Given)
The number of pixels included in the input list.

LIST(NDIM, NCOORD) = INTEGER∗8 (Given)
The list of pixel indices. Any indices which lie outside the bounds of the NDF are ignored.

SET = INTEGER∗8 (Returned)
The number of pixels which hold the quality.

35 IRQ_RESQL8 SUN/261.3 —Full Routine Specifications

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 36 IRQ_RESQM

IRQ_RESQM
Remove a quality from pixels selected using a mask image, leaving

unselected pixels unchanged

Description:
The quality specified by QNAME is removed from all NDF pixels which either do (or, if
BAD is false, do not) correspond to ‘bad’ pixels in the input mask array. The quality of all
other pixels is left unchanged. The quality name must be defined in the NDF specified by
LOCS (LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is
reported if the quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_RESQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

BAD = LOGICAL (Given)
If true, then the quality is removed from all NDF pixels corresponding to ‘bad’ pixels in
the mask. If false, then the quality is removed from all NDF pixels corresponding to pixels
which are not ‘bad’ in the mask.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to be removed from the selected pixels. This quality name must be
defined in the NDF specified by LOC. Name definitions can be added to the NDF using
routine IRQ_ADDQN.

SIZE = INTEGER (Given)
The total number of pixels in the MASK array.

MASK(SIZE) = REAL (Given)
A vector which defines the pixels from which the quality specified by QNAME is to be
removed. It is assumed that this vector corresponds pixel-for-pixel with the vectorised
NDF as supplied to routine IRQ_FIND or IRQ_NEW.

SET = INTEGER (Returned)
The number of pixels in the NDF which hold the quality.

STATUS = INTEGER (Given and Returned)
The global status.

37 IRQ_RESQM8 SUN/261.3 —Full Routine Specifications

IRQ_RESQM8
Remove a quality from pixels selected using a mask image, leaving

unselected pixels unchanged

Description:
This routine is equivalent to IRQ_RESQM except that arguments SET and SIZE are stored
in INTEGER∗8 variables instead of INTEGER.

The quality specified by QNAME is removed from all NDF pixels which either do (or, if
BAD is false, do not) correspond to ‘bad’ pixels in the input mask array. The quality of all
other pixels is left unchanged. The quality name must be defined in the NDF specified by
LOCS (LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is
reported if the quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_RESQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

BAD = LOGICAL (Given)
If true, then the quality is removed from all NDF pixels corresponding to ‘bad’ pixels in
the mask. If false, then the quality is removed from all NDF pixels corresponding to pixels
which are not ‘bad’ in the mask.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to be removed from the selected pixels. This quality name must be
defined in the NDF specified by LOC. Name definitions can be added to the NDF using
routine IRQ_ADDQN.

SIZE = INTEGER∗8 (Given)
The total number of pixels in the MASK array.

MASK(SIZE) = REAL (Given)
A vector which defines the pixels from which the quality specified by QNAME is to be
removed. It is assumed that this vector corresponds pixel-for-pixel with the vectorised
NDF as supplied to routine IRQ_FIND or IRQ_NEW.

SET = INTEGER∗8 (Returned)
The number of pixels in the NDF which hold the quality.

SUN/261.3 —Full Routine Specifications 38 IRQ_RESQM8

STATUS = INTEGER (Given and Returned)
The global status.

39 IRQ_RLSE SUN/261.3 —Full Routine Specifications

IRQ_RLSE
Release a temporary structure created by IRQ_NEW or IRQ_FIND

Description:
This routine releases the resources reserved by a call to IRQ_NEW or IRQ_FIND. The
cloned NDF identifier held in LOCS(1) is annulled, and then all the five HDS locators in
LOCS are annulled. If no defined quality names exist within the NDF, then the structure
used to hold such names is deleted and the QUALITY component of the NDF is reset to
an undefined state.

Note, this routine attempts to execute even if STATUS is set on entry, although no further
error report will be made if it subsequently fails under these circumstances.

Invocation:

CALL IRQ_RLSE(LOCS, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 40 IRQ_RWQN

IRQ_RWQN
Get and/or set the read-only flag for a quality name

Description:
This routine returns the current value of the read-only flag associated with a quality name,
and optionally assigns a new value to the flag.

If the read-only flag is set for a quality name, any attempt to remove the quality name
using IRQ_REMQN will result in an error being reported.

Invocation:

CALL IRQ_RWQN(LOCS, QNAME, SET, NEWVAL, OLDVAL, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to use. Leading blanks are ignored and the search is case-insensitive. The
maximum allowed length for quality names is given by symbolic constant IRQ__SZQNM
which currently has the value of 15.

SET = LOGICAL (Given)
If true, then the read-only flag for the quality name will be set to the value supplied in
NEWVAL. Otherwise, the current value of the flag will be left unchanged.

NEWVAL = LOGICAL (Given)
The new value for the read-only flag. Only accessed if SET is true.

OLDVAL = LOGICAL (Returned)
The value of the read-only flag on entry to this routine. If the old value is of no interest, it is
safe to supply the same variable for OLDVAL as for NEWVAL since OLDVAL is updated
after NEWVAL is used.

STATUS = INTEGER (Given and Returned)
The global status.

41 IRQ_SBADx SUN/261.3 —Full Routine Specifications

IRQ_SBADx
Set pixels ‘bad’ which satisfy a given quality expression

Description:
IRQ_COMP should be called before this routine to produce the compiled quality ex-
pression identified by IDQ. The QUALITY component of the NDF to which the quality
expression refers (see IRQ_COMP argument LOCS) is mapped as a one-dimensional vec-
tor. The supplied array VEC must correspond pixel-for-pixel with the mapped QUALITY
vector. All pixels which hold a QUALITY satisfying the quality expression are found. If
HELD is true, then the corresponding pixels in VEC are set to the ‘bad’ value (other pixels
are left unaltered). If HELD is false, the corresponding pixels in VEC are left as they are,
but all the other pixels in VEC are set to the ‘bad’ value. ALLBAD and NOBAD indicate if
the output VEC values are either all bad or all good.

Note, if the QUALITY component of the NDF is mapped for WRITE or UPDATE access on
entry to this routine, an error is reported.

Invocation:

CALL IRQ_SBADx(IDQ, HELD, SIZE, VEC, ALLBAD, NOBAD, STATUS)

Arguments:

IDQ = INTEGER (Given)
An identifier for a compiled quality expression, produced by routine IRQ_COMP. This
identifier determines the NDF to which the expression refers.

HELD = LOGICAL (Given)
If true then those VEC pixels which hold a quality satisfying the supplied quality expres-
sion are set ‘bad’ . Otherwise, those pixels which don’ t hold such a quality are set ‘bad’
.

SIZE = INTEGER (Given)
The total number of pixels in VEC. An error is reported if this is not the same as the total
number of pixels in the NDF determined by IDQ.

VEC(SIZE) = ? (Given and Returned)
The data to be set ‘bad’ , depending on the corresponding quality values stored in the
NDF. It must be the same size as the NDF, and must correspond pixel-for-pixel with the
vectorised NDF. Pixels which are not explicitly set ‘bad’ by this routine retain the values
they had on entry.

ALLBAD = LOGICAL (Returned)
Returned true if all pixels in VEC are returned with ‘bad’ values, and false if any returned
pixel values are not ‘bad’ .

NOBAD = LOGICAL (Returned)
Returned true if no pixels in VEC are returned with ‘bad’ values. False if any ‘bad’ pixel
values are returned.

SUN/261.3 —Full Routine Specifications 42 IRQ_SBADx

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

• There is a routine for each numeric data type: replace " x" in the routine name by D,
R, I, W, UW, B or UB as appropriate. The VEC array supplied to the routine must
have the data type specified.

43 IRQ_SBADx SUN/261.3 —Full Routine Specifications

IRQ_SBADx
Set pixels ‘bad’ which satisfy a given quality expression

Description:
This function is equivalent to IRQ_SBADx except that argument SIZE is held in an INTE-
GER88 instead of a 4-byte INTEGER.

IRQ_COMP should be called before this routine to produce the compiled quality ex-
pression identified by IDQ. The QUALITY component of the NDF to which the quality
expression refers (see IRQ_COMP argument LOCS) is mapped as a one-dimensional vec-
tor. The supplied array VEC must correspond pixel-for-pixel with the mapped QUALITY
vector. All pixels which hold a QUALITY satisfying the quality expression are found. If
HELD is true, then the corresponding pixels in VEC are set to the ‘bad’ value (other pixels
are left unaltered). If HELD is false, the corresponding pixels in VEC are left as they are,
but all the other pixels in VEC are set to the ‘bad’ value. ALLBAD and NOBAD indicate if
the output VEC values are either all bad or all good.

Note, if the QUALITY component of the NDF is mapped for WRITE or UPDATE access on
entry to this routine, an error is reported.

Invocation:

CALL IRQ_SBAD8x(IDQ, HELD, SIZE, VEC, ALLBAD, NOBAD, STATUS)

Arguments:

IDQ = INTEGER (Given)
An identifier for a compiled quality expression, produced by routine IRQ_COMP. This
identifier determines the NDF to which the expression refers.

HELD = LOGICAL (Given)
If true then those VEC pixels which hold a quality satisfying the supplied quality expres-
sion are set ‘bad’ . Otherwise, those pixels which don’ t hold such a quality are set ‘bad’
.

SIZE = INTEGER∗8 (Given)
The total number of pixels in VEC. An error is reported if this is not the same as the total
number of pixels in the NDF determined by IDQ.

VEC(SIZE) = ? (Given and Returned)
The data to be set ‘bad’ , depending on the corresponding quality values stored in the
NDF. It must be the same size as the NDF, and must correspond pixel-for-pixel with the
vectorised NDF. Pixels which are not explicitly set ‘bad’ by this routine retain the values
they had on entry.

ALLBAD = LOGICAL (Returned)
Returned true if all pixels in VEC are returned with ‘bad’ values, and false if any returned
pixel values are not ‘bad’ .

SUN/261.3 —Full Routine Specifications 44 IRQ_SBADx

NOBAD = LOGICAL (Returned)
Returned true if no pixels in VEC are returned with ‘bad’ values. False if any ‘bad’ pixel
values are returned.

STATUS = INTEGER (Given and Returned)
The global status.

Notes:

• There is a routine for each numeric data type: replace " x" in the routine name by D,
R, I, W, UW, B or UB as appropriate. The VEC array supplied to the routine must
have the data type specified.

45 IRQ_SETQ SUN/261.3 —Full Routine Specifications

IRQ_SETQ
Assign a given quality to all pixels in the NDF

Description:
The quality specified by QNAME is assigned to all pixels in the NDF specified by LOCS
(LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported
if the quality name is undefined within the NDF.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance).

Invocation:

CALL IRQ_SETQ(LOCS, QNAME, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to assign to all pixels in the NDF. This quality name must be defined
in the NDF specified by LOC. Name definitions can be added to the NDF using routine
IRQ_ADDQN.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 46 IRQ_SETQL

IRQ_SETQL
Assign a given quality to a list of pixels, leaving unlisted pixels

unchanged

Description:
The quality specified by QNAME is assigned to all pixels included (or, if LISTED is
false, not included) in the supplied list of pixel indices. The quality of other pixels is left
unaltered. The quality name must be defined in the NDF specified by LOCS (LOCS should
be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported if the quality
name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component must not be mapped on entry to this routine.

Invocation:

CALL IRQ_SETQL(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

LISTED = LOGICAL (Given)
If true, then the quality is assigned to all pixels included in the list given by LIST. If false,
then the quality is assigned to all pixels not included in the list given by LIST.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to assign to the selected pixels. This quality name must be defined
in the NDF specified by LOC. Name definitions can be added to the NDF using routine
IRQ_ADDQN.

NDIM = INTEGER (Given)
The number of values required to specify a pixel position (i.e. the number of dimensions
in the NDF).

NCOORD = INTEGER (Given)
The number of pixels included in the input list.

LIST(NDIM, NCOORD) = INTEGER (Given)
The list of pixel indices. Any indices which lie outside the bounds of the NDF are ignored.

SET = INTEGER (Returned)
The number of pixels in the NDF which hold the quality.

STATUS = INTEGER (Given and Returned)
The global status.

47 IRQ_SETQL8 SUN/261.3 —Full Routine Specifications

IRQ_SETQL8
Assign a given quality to a list of pixels, leaving unlisted pixels

unchanged

Description:
This routine is equivalent to IRQ_SETQL except that variables LIST, NCOORD and SET
are stored in INTEGER∗8 values rather than INTEGER.

The quality specified by QNAME is assigned to all pixels included (or, if LISTED is
false, not included) in the supplied list of pixel indices. The quality of other pixels is left
unaltered. The quality name must be defined in the NDF specified by LOCS (LOCS should
be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported if the quality
name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component must not be mapped on entry to this routine.

Invocation:

CALL IRQ_SETQL8(LOCS, LISTED, QNAME, NDIM, NCOORD, LIST, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

LISTED = LOGICAL (Given)
If true, then the quality is assigned to all pixels included in the list given by LIST. If false,
then the quality is assigned to all pixels not included in the list given by LIST.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to assign to the selected pixels. This quality name must be defined
in the NDF specified by LOC. Name definitions can be added to the NDF using routine
IRQ_ADDQN.

NDIM = INTEGER (Given)
The number of values required to specify a pixel position (i.e. the number of dimensions
in the NDF).

NCOORD = INTEGER∗8 (Given)
The number of pixels included in the input list.

LIST(NDIM, NCOORD) = INTEGER∗8 (Given)
The list of pixel indices. Any indices which lie outside the bounds of the NDF are ignored.

SET = INTEGER∗8 (Returned)
The number of pixels in the NDF which hold the quality.

SUN/261.3 —Full Routine Specifications 48 IRQ_SETQL8

STATUS = INTEGER (Given and Returned)
The global status.

49 IRQ_SETQM SUN/261.3 —Full Routine Specifications

IRQ_SETQM
Assign a quality to pixels selected using a mask image, leaving

unselected pixels unchanged

Description:
The quality specified by QNAME is assigned to all NDF pixels which either do (or, if BAD
is false, do not) correspond to ‘bad’ pixels in the input mask array. The quality of all other
pixels is left unchanged. The quality name must be defined in the NDF specified by LOCS
(LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported
if the quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_SETQM(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

BAD = LOGICAL (Given)
If true, then the quality is assigned to all NDF pixels corresponding to ‘bad’ pixels in the
mask. If false, then the quality is assigned to all NDF pixels corresponding to pixels which
are not ‘bad’ in the mask.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to assign to the selected pixels. This quality name must be defined
in the NDF specified by LOC. Name definitions can be added to the NDF using routine
IRQ_ADDQN.

SIZE = INTEGER (Given)
The total number of pixels in the MASK array.

MASK(SIZE) = REAL (Given)
A vector which defines the pixels to which the quality specified by QNAME is to be
assigned. It is assumed that this vector corresponds pixel-for-pixel with the vectorised
NDF supplied to IRQ_NEW or IRQ_FIND.

SET = INTEGER (Returned)
The number of pixels in the NDF which hold the quality.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 50 IRQ_SETQM8

IRQ_SETQM8
Assign a quality to pixels selected using a mask image, leaving

unselected pixels unchanged

Description:
This routine is equivalent to IRQ_SETQM except that arguments SET and SIZE are stored
in INTEGER∗8 variables instead of INTEGER.

The quality specified by QNAME is assigned to all NDF pixels which either do (or, if BAD
is false, do not) correspond to ‘bad’ pixels in the input mask array. The quality of all other
pixels is left unchanged. The quality name must be defined in the NDF specified by LOCS
(LOCS should be obtained either by calling IRQ_FIND or IRQ_NEW). An error is reported
if the quality name is undefined.

Note, write or update access must be available for the NDF (as set up by routine LPG_ASSOC
for instance), and the QUALITY component of the NDF must not be mapped on entry to
this routine.

Invocation:

CALL IRQ_SETQM8(LOCS, BAD, QNAME, SIZE, MASK, SET, STATUS)

Arguments:

LOCS(5) = CHARACTER ∗ (∗) (Given)
An array of five HDS locators. These locators identify the NDF and the associated quality
name information. They should have been obtained using routine IRQ_FIND or routine
IRQ_NEW.

BAD = LOGICAL (Given)
If true, then the quality is assigned to all NDF pixels corresponding to ‘bad’ pixels in the
mask. If false, then the quality is assigned to all NDF pixels corresponding to pixels which
are not ‘bad’ in the mask.

QNAME = CHARACTER ∗ (∗) (Given)
The quality name to assign to the selected pixels. This quality name must be defined
in the NDF specified by LOC. Name definitions can be added to the NDF using routine
IRQ_ADDQN.

SIZE = INTEGER∗8 (Given)
The total number of pixels in the MASK array.

MASK(SIZE) = REAL (Given)
A vector which defines the pixels to which the quality specified by QNAME is to be
assigned. It is assumed that this vector corresponds pixel-for-pixel with the vectorised
NDF supplied to IRQ_NEW or IRQ_FIND.

SET = INTEGER∗8 (Returned)
The number of pixels in the NDF which hold the quality.

51 IRQ_SETQM8 SUN/261.3 —Full Routine Specifications

STATUS = INTEGER (Given and Returned)
The global status.

SUN/261.3 —Full Routine Specifications 52 IRQ_SYNTX

IRQ_SYNTX
Check the syntax of a quality expression

Description:
The syntax of the supplied quality expression is checked, and an error is reported if a
syntax error is detected. If any of the STATUS values IRQ__BADSY, IRQ__MSOPT or
IRQ__MSOPD are returned (all of which correspond to various forms of syntax error in
the quality expression, see ID6 appendix E), a pointer to the approximate position of the
error within the quality expression is returned in ERRPNT. Note, in order for a quality
expression to compile successfully (using IRQ_COMP), it must not only contain no syntax
errors, but must also contain no undefined quality names. IRQ_SYNTX cannot check for
undefined quality names.

Invocation:

CALL IRQ_SYNTX(QEXP, ERRPNT, STATUS)

Arguments:

QEXP = CHARACTER∗(∗) (Given and Returned)
A quality expression. See ID6 section 5 for details of the allowed formats for quality
expressions. On exit, the string is converted to upper case and any leading blanks are
removed.

ERRPNT = INTEGER (Returned)
If any of the STATUS values IRQ__BADSY(" Unrecognised logical operator or constant"
), IRQ__MSOPT (" Missing operator") or IRQ__MSOPD (" Missing operand") are
returned, then ERRPNT returns the offset within the quality expression at which the error
was detected. Note, the offset refers to the returned form of QEXP, not the given form.
These will be different if the given form of QEXP has any leading blanks. An offset of zero
is returned if none of the errors associated with the above STATUS values occur.

STATUS = INTEGER (Given and Returned)
The global status.

53 SUN/261.3 —HDS Data Structures

D HDS Data Structures

The IRQ package uses several different HDS data structures. These are described in this
appendix. HDS names are indicated by being placed within square brackets ([]), and HDS types
are indicated by being placed within angled brackets (< >).

D.1 Quality names information stored in an NDF

Information describing the quality names which are defined within an NDF is stored in a
structure called [QUALITY_NAMES], with HDS type <QUALITY_NAMES>. This structure
can be stored in any extension within the NDF. The components of this structure are shown in
Table 1.

Table 1: Components of a <QUALITY_NAMES> structure

Component Name TYPE Brief Description

[QUAL] <IRQ_QUAL> Vector of quality name definitions

[LAST_USED] <_INTEGER> Highest used index within [QUAL]

[NFREE] <_INTEGER> No. of un-used cells within [QUAL]

[FREE(NFREE)] <_INTEGER> Vector holding indices of un-used cells in [QUAL]

The [QUAL] component is a vector in which each cell is a structure holding various items of
information needed to define a single quality name. The array has an initial size of 8 but is
increased if necessary. There will usually be some unused cells within [QUAL], and the other
components of the [QUALITY_NAMES] structure listed in Table 1 are used to locate these
unused cells. In particular, [FREE] is a vector which holds the indices of all unused cells within
[QUAL]. These indices may appear in any order within in [FREE].

The set of five HDS locators returned by routines IRQ_NEW and IRQ_FIND include locators to
each of the four components of the [QUALITY_NAMES] structure, together with a locator for a
temporary HDS structure holding a single <_INTEGER> scalar used to store the cloned NDF
identifier.

The information describing each individual quality name is stored in a single cell of the [QUAL]
vector. The components within each cell of this array are listed in Table 2.

If all pixels hold a given quality, or if no pixels hold the quality, then a true value is stored for
[FIXED]. A true value is stored for [VALUE] if all pixels hold the quality, and a false value
if no pixels hold the quality. In either case, [BIT] is ignored since no QUALITY bit needs to
be reserved for the quality name, thus allowing more than eight quality names to be defined
simultaneously.

If some pixels do hold the quality but some do not, then a false value is stored for [FIXED] and
[VALUE] is ignored. In this case, a QUALITY bit is reserved to represent the quality and its bit
number (in the range 1 to 8) is stored in [BIT].

SUN/261.3 —HDS Data Structures54 D.2 Temporary structures used to hold compiled quality expressions

Table 2: Components of a <IRQ_QUAL> structure

Component Name TYPE Brief Description

[NAME] <_CHAR∗15> A quality name (maximum of

[FIXED] <_LOGICAL> True if all pixels are in the same state

[VALUE] <_LOGICAL> The state of all pixels, if fixed

[BIT] <_INTEGER> QUALITY bit used to store this quality

[COMMENT] <_CHAR∗> A descriptive comment for the quality

D.2 Temporary structures used to hold compiled quality expressions

When routine IRQ_COMP is called to compile a quality expression, the resulting information
(known as a ‘compiled quality expression’) is stored in a temporary HDS structure. Up to ten
compiled quality expressions can exist simultaneously, each being stored in one cell of an array
of temporary structures. The identifier returned by IRQ_COMP is just an index within this array.
Each cell of the array has an HDS name of [QEXP] and an HDS type of <QEXP>, and contains
the components listed in Table 3.

Table 3: Components of a <QEXP> structure

Component Name TYPE Brief Description

[MASKS] <_INTEGER> A vector of bit masks

[OPCODE] <_INTEGER> A vector of instruction codes

Each bit mask held in [MASKS] specifies a set of QUALITY bits which are to be tested as part of
the evaluation of a quality expression performed by routine IRQ_SBAD. The instruction codes
held in [OPCODE] represent the operations which must be performed on a “First In - Last Out”
stack in order to evaluate a quality expression. The sizes of theses vectors are held in common.

55 SUN/261.3 —Examples of Using IRQ

E Examples of Using IRQ

E.1 Adding a new quality name

This example shows a code fragment which adds the quality name SATURATED to an NDF and
then assigns the quality to all pixels with value greater than 10.0. An error is reported if the
quality name is already in use.

* Include ADAM, IRQ and NDF symbolic constants.
INCLUDE ’SAE_PAR’
INCLUDE ’IRQ_PAR’
INCLUDE ’IRQ_ERR’
INCLUDE ’NDF_PAR’

* Declare local INTEGER variables.
INTEGER NDFIN, NDF2, NDIM, LBND(NDF__MXDIM), NEL,

: UBND(NDF__MXDIM), PNT, PNT2, PLACE,
: STATUS

* Declare local LOGICAL variables.
INTEGER FOUND

* Declare local CHARACTER variables.
CHARACTER*(DAT__SZLOC) LOCS(5),XLOC
CHARACTER*(DAT__SZNAM) XNAME

* Start an NDF context.
CALL NDF_BEGIN

* Obtain an identifier for the input NDF.
CALL NDF_ASSOC(’IN’, ’READ’, NDFIN, STATUS)

* Attempt to locate any existing quality name
* information in the input NDF. If such information is
* found, LOCS is returned holding a set of five HDS
* locators which identify the NDF and various items of
* quality information. XNAME is returned holding the
* name of the NDF extension in which the information
* was found. If no quality name information is found,
* then an error is reported.

CALL IRQ_FIND(NDFIN, LOCS, XNAME, STATUS)

* If no quality name information was found, annul the
* error. New quality names information will be set up
* in the "IRAS" NDF extension.

IF(STATUS .EQ. IRQ__NOQNI) THEN

SUN/261.3 —Examples of Using IRQ 56 E.1 Adding a new quality name

CALL ERR_ANNUL(STATUS)

* If the "IRAS" extension does not exist, create it.
CALL NDF_XSTAT(NDFIN, ’IRAS’, FOUND, STATUS)
IF(.NOT. FOUND) THEN

CALL NDF_XNEW(NDFIN, ’IRAS’, ’IRAS’, 0, 0,
: XLOC, STATUS)

CALL DAT_ANNUL(XLOC, STATUS)
END IF

* Create a new structure to hold quality information
* in the "IRAS" NDF extension.

CALL IRQ_NEW(NDFIN, ’IRAS’, LOCS, STATUS)
END IF

* Attempt to add the quality name "SATURATED" to the
* NDF. If the name already exists an error will be
* reported.

CALL IRQ_ADDQN(LOCS, ’SATURATED’, .FALSE.,
: ’Pixels with value greater than 10.0’, STATUS)

* Get a temporary NDF which is the same shape as the
* input NDF.

CALL NDF_BOUND(NDFIN, NDF__MXDIM, LBND, UBND,
: NDIM, STATUS)
CALL NDF_TEMP(PLACE, STATUS)
CALL NDF_NEW(’_REAL’, NDIM, LBND, UBND, PLACE,

: NDF2, STATUS)

* Map the DATA array, initialising its contents to
* zero.

CALL NDF_MAP(NDF2, ’DATA’, ’_REAL’,
: ’WRITE/ZERO’, PNT2, NEL, STATUS)

* Map the DATA array of the input NDF.
CALL NDF_MAP(NDFIN, ’DATA’, ’_REAL’, ’READ’,

: PNT, NEL, STATUS)

* Set pixels bad in the temporary array which
* correspond to pixels greater than 10.0 in the input
* NDF.

CALL MASKIT(%VAL(PNT), %VAL(PNT2), NEL, 10.0,
: STATUS)

* Assign the quality SATURATED to all the pixels which
* are bad in the temporary NDF.

CALL IRQ_SETQM(LOCS, .TRUE., ’SATURATED’, NEL,
: %VAL(PNT2), STATUS)

57 E.2 Finding pixels which satisfy a quality expressionSUN/261.3 —Examples of Using IRQ

* Release the resources used by IRQ.
CALL IRQ_RLSE(LOCS, STATUS)

* End the NDF context.
CALL NDF_END(STATUS)

E.2 Finding pixels which satisfy a quality expression

This example produces a copy of an input NDF in which all pixels which do not satisfy the
quality expression “.NOT.(BACKGROUND .OR. SATURATED) ” are set bad.

* Attempt to locate any quality name information in
* the input NDF. If no quality name information is
* found, then an error is reported.

CALL IRQ_FIND(NDFIN, LOCS, XNAME, STATUS) ©1

* Attempt to compile the quality expression.
QEXP = ’.NOT. (SATURATED .OR. BACKGROUND)’
CALL IRQ_COMP(LOCS, IRQ__QNREF, .TRUE., QEXP, ©2

: UNDEF, NUNDEF, ERRPNT, IDQ, STATUS)

* Produce a temporary copy of the input NDF.
CALL NDF_TEMP(PLACE, STATUS)
CALL NDF_COPY(NDFIN, PLACE, NDF2, STATUS)

* Map the DATA array for UPDATE access.
CALL NDF_MAP(NDF2, ’DATA’, ’_REAL’, ’UPDATE’,

: PNT2, NEL, STATUS)

* Find all pixels which do not satisfy the quality
* expression and set them bad in the NDF copy.

CALL IRQ_SBAD(IDQ, .FALSE., NEL, %VAL(PNT2),
: ALLBAD, NOBAD, STATUS)

* Unmap the NDF copy.
CALL NDF_UNMAP(NDFIN, ’DATA’, STATUS)

* Close down the IRQ identifier system.
CALL IRQ_CLOSE(STATUS)

* Release the resources used by IRQ.
CALL IRQ_RLSE(LOCS, STATUS)

Programming notes:

SUN/261.3 —Packages Called by IRQ 58

(1) NDFIN is the NDF identifier for the input NDF and should have been obtained previously.
If the NDF contains no quality name information, then an error will be reported by
IRQ_FIND.

(2) The quality expression must be assigned to a character variable, since the call to IRQ_COMP
updates the expression by removing leading blanks, and converting the expression to up-
per case. An access violation would result if a literal string were supplied as an argument,
instead of a character variable. If either of the quality names SATURATED or BACKGROUND
is not defined in the input NDF, then an error will be reported by IRQ_COMP, and the
undefined names will be returned in the UNDEF array.

F Packages Called by IRQ

IRQ_ makes calls to the following packages:

CHR_ - The CHR character handling package; see SUN/40.

CMP_ - HDS; see SUN/92.

DAT_ - HDS; see SUN/92.

ERR_ - The Starlink error reporting package; see SUN/104.

MSG_ - The Starlink message reporting package; see SUN/104.

NDF_ - The NDF access package; see SUN/33.

VEC_ - The PRIMDAT package; see SUN/39.

Access to these packages, together with packages called from within these packages, is necessary
to use IRQ.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun40.htx/sun40.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_

59 SUN/261.3 —IRQ Error Codes

G IRQ Error Codes

IRQ routines can return any STATUS value generated by the subroutine packages which it calls.
In addition it can return the following IRQ-specific values.

IRQ__BADBT
Bit value outside range [1,8] supplied.

IRQ__BADDM
Incorrect NDF dimensions supplied.

IRQ__BADNM
An illegal quality name has been given.

IRQ__BADQN
Incomplete QUALITY_NAMES structure found.

IRQ__BADSL
Invalid slot number supplied.

IRQ__BADST
Incomplete slot structure found.

IRQ__BADSY
Unrecognised logical operator or constant in quality expression.

IRQ__CMPLX
Too many symbols in quality expression.

IRQ__INCOM
Supplied vector has different size to the NDF

IRQ__INTER
Internal IRQ error (report to maintainer of IRQ).

IRQ__INVID
Invalid IRQ identifier supplied.

IRQ__IVNDF
Invalid NDF identifier found.

IRQ__LSHRT
Character variable too short.

IRQ__MSDOT
Missing delimiter "." in quality expression.

IRQ__MSOPD
Missing operand in quality expression.

IRQ__MSOPT
Missing or invalid operator in quality expression.

SUN/261.3 —IRQ Error Codes 60

IRQ__MSPAR
Unpaired parentheses in quality expression.

IRQ__MULT
More than one structure found holding quality names information.

IRQ__NOMOR
No identifiers left for compiled quality expressions.

IRQ__NOOPS
No operands can be found.

IRQ__NOQNM
A quality name could not be found.

IRQ__NOQNI
No quality names structure found in the NDF.

IRQ__NOSPA
Can’t reclaim space in an instruction array.

IRQ__NOWRT
Write access to the NDF is unavailable.

IRQ__QBAD
BAD values exists in the QUALITY component.

IRQ__QEXPL
Too many characters in quality expression.

IRQ__QIEXS
Extension already contains a quality names structure.

IRQ__QNEXS
Quality name is already defined.

IRQ__QLONG
Quality name too long.

IRQ__QREFS
Too many quality names in quality expression.

IRQ__QUNDF
QUALITY component is undefined.

IRQ__RDONL
An attempt has been made to remove a read-only quality name.

IRQ__STKOV
Evaluation stack overflow.

IRQ__STKUN
Evaluation stack underflow.

IRQ__XBITS
No bits left in QUALITY component.

61 SUN/261.3 —Changes Introduced in Version 5.0 of this Document

H Changes Introduced in Version 3.0 of this Document

• It has a separate identity. It was previously bundled into KAPLIBS after being recovered
from IRAS90.

• There is documentation.

I Changes Introduced in Version 4.0 of this Document

• The “VALID” component in the quality extension was previously intentionally left with
an undefined value. It is now set to the defined value of TRUE.

J Changes Introduced in Version 5.0 of this Document

• The library is no longer restricted to NDFs for which the number of pixel can be represented
by a 4-byte signed integer. Routines that have arguments representing pixel counts now
have two versions - the original version - which continues to used 4-byte INTEGERs to
represent pixel counts - and a new "8-byte" version that uses INTEGER*8 variables for
such arguments. The name of each 8-byte function is the same as the name of the original
4-byte function, but with “8” appended to the end. So for instance, “IRQ_CNTQ8” is the
8-byte verssion of “IRQ_CNTQ”. The routine that have 8-byte interfaces are: IRQ_CNTQ,
IRQ_RESQL, IRQ_RESQM, IRQ_SETQL, IRQ_SETQM and IRQ_SBAD.

	Introduction to QUALITY
	Introduction to the facilities provided by the IRQ library
	A Set of Four Typical IRQ Applications
	SETQUAL
	REMQUAL
	SHOWQUAL
	QUALTOBAD

	Quality Names
	Quality Expressions
	Using IRQ routines
	Constants and Error Values
	Initialising an NDF for use with IRQ
	Using previously initialised NDFs within IRQ
	Accessing the quality names information stored in an NDF
	Assigning and removing qualities to and from NDF pixels
	Finding NDF pixels which satisfy a quality expression

	Compiling and Linking with IRQ
	Standalone Applications
	ADAM Applications

	Routine Descriptions
	Classified List
	Gaining Access to Quality Name Information Within an NDF
	Storing, Retrieving and Deleting Quality Names
	Handling Quality Expressions
	Assigning Qualities to Selected Pixels
	Enquiring Pixel Quality

	Full Routine Specifications
	IRQ_ADDQN
	IRQ_ANNUL
	IRQ_CHKQN
	IRQ_CLOSE
	IRQ_CNTQ
	IRQ_CNTQ8
	IRQ_COMP
	IRQ_DELET
	IRQ_FIND
	IRQ_FXBIT
	IRQ_GETQN
	IRQ_GETQX
	IRQ_NEW
	IRQ_NUMQN
	IRQ_NXTQN
	IRQ_RBIT
	IRQ_REMQN
	IRQ_RESQ
	IRQ_RESQL
	IRQ_RESQL8
	IRQ_RESQM
	IRQ_RESQM8
	IRQ_RLSE
	IRQ_RWQN
	IRQ_SBADx
	IRQ_SBADx
	IRQ_SETQ
	IRQ_SETQL
	IRQ_SETQL8
	IRQ_SETQM
	IRQ_SETQM8
	IRQ_SYNTX

	HDS Data Structures
	Quality names information stored in an NDF
	Temporary structures used to hold compiled quality expressions

	Examples of Using IRQ
	Adding a new quality name
	Finding pixels which satisfy a quality expression

	Packages Called by IRQ
	IRQ Error Codes
	Changes Introduced in Version 3.0 of this Document
	Changes Introduced in Version 4.0 of this Document
	Changes Introduced in Version 5.0 of this Document

