
SUN/263.1

Starlink Project
Starlink User Note 263.1

Malcolm J. Currie
D.S. Berry

2009 August 16

Copyright c© 2009 Science and Technology Facilities Council.

LPG — Loop processing of groups
Version 3.0

Programmer’s Manual

SUN/263.1 —Abstract ii

Abstract

This document describes the routines provided within the LPG subroutine library for looping of
monolith tasks to process a group of catalogues or NDFs in sequence.

Copyright c© 2009 Science and Technology Facilities Council.

iii SUN/263.1—Contents

Contents

1 Introduction 1

2 Interaction Between LPG and GRP 1

3 Using LPG 2
3.1 Monolith . 2
3.2 Tuning . 2
3.3 Applications . 3
3.4 Other Parameters . 4
3.5 Output Parameters . 4

4 Compiling and Linking with LPG 4
4.1 ADAM Applications . 4

A List of Routines 6

B Full Fortran Routine Specifications 7
LPG_AGAIN . 8
LPG_ASSOC . 10
LPG_CATASSOC . 11
LPG_CATCREAT . 12
LPG_CREA1 . 13
LPG_CREAT . 14
LPG_CREP1 . 15
LPG_CREP . 16
LPG_CREPL . 17
LPG_PROP1 . 18
LPG_PROP . 19
LPG_REPLA . 20
LPG_START . 21
LPG_CRPL1 . 22
LPG_STATE . 23

C Changes Introduced in LPG Version 3.0 24

SUN/263.1—List of Figures iv

List of Figures

1 SUN/263.1 —Interaction Between LPG and GRP

1 Introduction

When an application prompts the user for a catalogue or NDF using the facilities of the CAT (see
SUN/181) or NDF (see SUN/33) libraries, the user may only reply with the name of a single
catalogue or NDF respectively. If the user has many files to process in the same fashion, it can
prove tedious to repeat the commands for each input dataset. Now one solution is to write
a script that loops, executing the various applications for each input file. More elegant and
convenient to users would be to allow a group of files to be processed in a single command. This
is what LPG offers. The group or list is supplied to the relevant ADAM parameter, possibly
defined using wildcards. Using LPG enhances your application package to users.

Note the rôle of LPG is different from NDG or CTG libraries. While these supply groups of
NDFs and catalogues, again with wildcards (via the underlying GRP library) these are processed
in the same invocation of an application. Examples of this method include forming a flat field
from a series of CCD image NDFs, and merging catalogues.

2 Interaction Between LPG and GRP

LPG uses the facilities of the GRP package and programmers incorporating LPG should be
familiar with the content of SUN/150 which describes the GRP package. Examples of the GRP
wildcards and indirection through text files are presented in SUN/95, and in addition advice for
users.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun2.htx/sun2.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun262.htx/sun262.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_se_multinvoc

SUN/263.1 —Using LPG 2

3 Using LPG

To introduce the looping facility into an applications package a number of steps are required.
These affect the monolith routine, individual applications and possibly their interface files, and
documentation.

3.1 Monolith

You must modify both the monolith to loop. The basic arrangement is shown below.

* External References:
LOGICAL LPG_AGAIN ! Invoke the application again?

: : : : :

* Obtain the command from the environment. This returns uppercase
* names.

CALL TASK_GET_NAME(ACTION, STATUS)

* Initialise the common blocks used to control multiple invocation of
* applications to process lists of NDFs or catalogues.

CALL LPG_START(VERB, DELAY, DISAB, STATUS)

* Loop round invoking the task for each set of NDFS or catalogues
* specified by the user.

DO WHILE (LPG_AGAIN(STATUS))

IF (ACTION .EQ. ’ADD’) THEN
CALL ADD(STATUS)

ELSE IF (ACTION .EQ. ’BIND’) THEN
CALL BIND(STATUS)

ELSE IF...
...

END IF
END DO

LPG_AGAIN returns .TRUE. value until the list of data files is exhausted.

The additional code is the LPG_START call, the testing of LPG_AGAIN for any further files to
process in a DO WHILE . . . END DO loop (or use IF .. END IF with a GOTO if you prefer), and
the declaration of LPG_AGAIN.

3.2 Tuning

LPG_START has three tuning arguments.

• VERB set to .TRUE. causes multi-valued parameters (i.e. ones for accessing data files) to
report their value at each invocation; in essence this presents the names of the data file at
each invocation. Single-valued parameters are not shown. Set

3 SUN/263.1 —Using LPG

• A pause of DELAY seconds occurs betwen invocations for each NDF or catalogue.

• DISAB set to .TRUE. disables the looping. Thus LPG_AGAIN would only return .TRUE.
at the first invocation. Thus the package behaves as if LPG looping was not present. The
application corresponding to the required action will always be invoked at least once.

These tuning options are best controlled through environment variables accessed in the
monolith. For example, KAPPA invokes KAPLIBS calls

* See if NDF names should be reported when looping.
CALL KPG1_ENVDF(’KAPPA_REPORT_NAMES’, VERB, STATUS)

* See if looping should be disabled.
CALL KPG1_ENVDF(’KAPPA_LOOP_DISABLE’, DISAB, STATUS)

* See if a delay should be included between invocations.
DELAY = 0.0
CALL KPG1_ENV0R(’KAPPA_LOOP_DELAY’, DELAY, STATUS)

where KPG1_ENVDF inquires whether an environment variable is defined or not, and
KPG1_ENV0R obtains a floating-point value, but using the default of 0.0 seconds should
KAPPA_LOOP_DELAY be undefined.

There is a further tuning possibility. Some users like to be able supply the same data for output
as input, although this is potentially hazardous. Here is another extract from KAPPA showing
how this is switched using LPG_REPLA.

* See if input NDFs are allowed to be overwritten by output NDFs.
CALL KPG1_ENVDF(’KAPPA_REPLACE’, REPL, STATUS)
CALL LPG_REPLA(REPL, STATUS)

Variable REPL is boolean. The environment variable need just have a value, any value for this
switch to be enabled.

3.3 Applications

The applications should use the routines LPG_ASSOC, LPG_PROP, LPG_CREAT, and
LPG_CREP to get identifier for NDFs, in place of the corresponding routines (i.e. replace
LPG with NDF in the names) from the NDF library.

For catalogues, routines LPG_CATASSOC and LPG_CATCREAT should be used in place of
CAT_ASSOC and CAT_CREAT.

On the first invocation of the application, groups of data files are obtained whenever one of the
above LPG routines is used to get an NDF or CAT identifier, and an identifier corresponding
to the first name in each group is returned to the application. On subsequent invocations,
the names in the groups obtained during the first invocation are used without obtaining new
parameter values from the environment. The index of the returned data file within each group
is incremented by 1 each time the application is invoked.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun95.htx/sun95.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun238.htx/sun238.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun238.htx/sun238.html?xref_KPG1_ENVDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun238.htx/sun238.html?xref_KPG1_ENV0x
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_ASSOC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_CREAT

SUN/263.1 —Compiling and Linking with LPG 4

3.4 Other Parameters

If an application is invoked more than once, all other parameters retain the values they had
at the end of the first invocation. Applications that use this scheme should avoid having
parameters with VPATH=DYNAMIC in the interface file (described in SUN/115), since the dynamic
default calculated on the first invocation will then be re-used for all subsequent invocations;
that may be inappropriate. A better scheme is to have VPATH=DEFAULT, PPATH=DYNAMIC and
DEFAULT=!. The code should then annul any PAR__NULL status after accessing the parameter,
and use the previously calculated dynamic default value for the parameter. In this scheme, the
parameter value is ! at the end of the first invocation, and so retains this value for all subsequent
invocations, resulting in appropriate dynamic defaults being used.

A situation in which the above suggestion does not work is if an application sometimes sets a
dynamic default, and sometimes does not. In this case, you do not want to have VPATH=DEFAULT,
DEFAULT=! because this would require the application to abort in the cases where there is
no dynamic default available. It is probably better in these cases to have VPATH=PROMPT,
PPATH=DYNAMIC and accept the fact that the user will be prompted for a parameter that was
previously defaulted.

Some applications test to see if a parameter was specified on the command line, and vary
their behaviour accordingly. This is achieved by checking the state of the parameter before
accessing it, a state of PAR__ACTIVE (or SUBPAR__ACTIVE) indicating that the parameter already
has a value. This is correct on the first invocation, but not on subsequent invocations because the
first invocation may have set a parameter value, resulting in subsequent invocations thinking
that the parameter was given on the command line. To avoid this, applications should call
LPG_STATE in place of PAR_STATE. LPG_STATE remembers the state of the parameter on the
first invocation, and returns that state, rather than the current parameter state, on subsequent
invocations. The arguments are the same.

3.5 Output Parameters

One disadvantage of LPG is that any parameters written by the application, such the results of
some analysis or statistics, will only record the values for the last data file processed.

4 Compiling and Linking with LPG

This section describes how to compile and link applications that use LPG subroutines, on UNIX
systems. It is assumed that the LPG library is installed as part of the Starlink Software Collection.

The library only has an ADAM interface to obtain the groups of catalogues.

4.1 ADAM Applications

Users of the ADAM programming environment (SG/4) should use the alink command (SUN/144)
to compile and link applications, and can access the LPG_ library by including execution of the
command lpg_link_adam on the command line, as follows:

% alink prog.f ‘lpg_link_adam‘

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_the_vpath_field
http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_the_ppath_field
http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_the_default_field
http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_the_default_field
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_STATE
http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_ADAM_link_scripts
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_

5 SUN/263.1 —Compiling and Linking with LPG

where prog.f is the Fortran source file for the A-TASK. Again note the use of opening apostro-
phies (‘) instead of the more usual closing apostrophy (’) in the above alink command.

To build a program written in C (instead of Fortran), simply name the source file prog.c, instead
of prog.f.

SUN/263.1 —List of Routines 6

A List of Routines

RESULT = LPG_AGAIN(STATUS)
Decide if the application should be executed again.

CALL LPG_ASSOC(PARAM, MODE, INDF, STATUS)
Obtain an identifier for an existing NDF via the parameter system.

CALL LPG_CATASSOC(PARAM, MODE, CI, STATUS)
Obtain an identifier for an existing catalogue via the parameter system.

CALL LPG_CATCREAT(PARAM, CI, STATUS)
Creat a new catalogue via the parameter system.

CALL LPG_CREA1(PARAM, FTYPE, NDIM, LBND, UBND, INDF, NAME, STATUS)
Create a single new simple NDF using a specified parameter.

CALL LPG_CREAT(PARAM, FTYPE, NDIM, LBND, UBND, INDF, STATUS)
Create a new simple NDF via the parameter system.

CALL LPG_CREP1(PARAM, FTYPE, NDIM, UBND, INDF, NAME, STATUS)
Create a single new primitive NDF using a specified parameter.

CALL LPG_CREP(PARAM, FTYPE, NDIM, UBND, INDF, STATUS)
Create a new primitive NDF via the parameter system.

CALL LPG_CRPL1(PARAM, PLACE, NAME, STATUS)
Create a single new NDF placeholder using a specified parameter

CALL LPG_PROP1(INDF1, CLIST, PARAM, INDF2, NAME, STATUS)
Create a single new NDF by propagation using a specified parameter.

CALL LPG_PROP(INDF1, CLIST, PARAM, INDF2, STATUS)
Propagate NDF information to create a new NDF via the parameter system.

CALL LPG_REPLA(REPLAC, STATUS)
Indicate if input NDFs can be replaced.

CALL LPG_START(VERBO, DELAYO, DISABO, STATUS)
Initialise the contents of the LPG common blocks.

CALL LPG_STATE(PARAM, STATE, STATUS)
Return the original PAR state of a parameter.

7 SUN/263.1 —Full Fortran Routine Specifications

B Full Fortran Routine Specifications

SUN/263.1 —Full Fortran Routine Specifications 8 LPG_AGAIN

LPG_AGAIN
Decide if the application should be executed again

Description:
This routine is used to allow multiple invocations of an application within an Starlink
monolith to process a group of data files. The initialization routine LPG_START should be
called prior to this routine. This routine returns a logical flag indicating if the application
should be invoked again. A typical way to use this routine within a monolith is as follows:

CALL LPG_START(VERB, DELAY, DISAB, STATUS)
DO WHILE (LPG_AGAIN(STATUS))

IF (ACTION .EQ. ’ADD’) THEN
CALL ADD(STATUS)

ELSE IF (ACTION .EQ. ’SUB’) THEN
CALL SUB(STATUS)

ELSE IF...
...

END IF
END DO

The application corresponding to the required action will always be invoked once. The ap-
plications should use the routines LPG_ASSOC, LPG_PROP, LPG_CREAT and LPG_CREP
to get identifiers for NDFs, in place of their equivalent routines from the NDF library.

For catalogues, routines LPG_CATASSOC and LPG_CATCREAT should be used in place
of CAT_ASSOC and CAT_CREAT.

LPG_AGAIN returns a .TRUE. value until a group of data files is exhausted, whereupon it
deletes all its groups and returns a .FALSE. value.

On the first invocation of the application, groups of data files are obtained whenever
one of the above LPG routines is used to get an NDF or CAT identifier, and an identifier
corresponding to the first name in each group is returned to the application. On subsequent
invocations, the names in the groups obtained during the first invocation are used without
obtaining new parameter values from the environment. The index of the returned data file
within each group is increment by 1 each time the application is invoked.

If an application is invoked more than once, all other parameters retain the values they
had at the end of the first invocation. Applications that use this scheme should avoid
having parameters with "VPATH=DYNAMIC" in the interace file, since the dynamic default
calculated on the first invocation will then be re-used for all subsequent invocations, which
may be inappropriate. A better scheme is to have "VPATH=DEFAULT", "PPATH=DYNAMIC"
and "DEFAULT=!". The code should then annul any PAR__NULL status after accessing the
parameter, and use the previously calculated dynamic default value for the parameter.
With this scheme, the parameter value is "!" at the end of the first invocation, and so

http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_ASSOC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_CREAT

9 LPG_AGAIN SUN/263.1 —Full Fortran Routine Specifications

retains this value for all subsequent invocations, resulting in appropriate dynamic defaults
being used.

A situation in which the above suggestion does not work is if an application sometimes
sets a dynamic default, and sometimes does not. In this case, you do not want to have
VPATH=DEFAULT, DEFAULT=! because this would require the application to abort in the cases
where there is no dynamic default available. It is probably better in these cases to have
VPATH=PROMPT,PPATH=DYNAMIC and accept the fact that the user will be prompted for a
parameter that was previously defaulted.

Some applications test to see if a parameter was specified on the command line, and
vary their behaviour accordingly. This is done by checking the state of the parameter
before accessing it, a state of PAR__ACTIVE (or SUBPAR__ACTIVE) indicating that the
parameter already has a value. This is correct on the first invocation, but not on subsequent
invocations because the first invocation may have set a parameter value, resulting in
subsequent invocations thinking that the parameter was given on the command line. To
avoid this, applications should use LPG_STATE in place of PAR_STATE. LPG_STATE
remembers the state of the parameter on the first invocation, and returns that state, rather
than the current parameter state, on subsequent invocations.

Invocation:

RESULT = LPG_AGAIN(STATUS)

Arguments:

STATUS = INTEGER (Given and Returned)
The global status.

Returned Value:

LPG_AGAIN = LOGICAL
This is .TRUE. if the application should be executed again.

SUN/263.1 —Full Fortran Routine Specifications 10 LPG_ASSOC

LPG_ASSOC
Obtain an identifier for an existing NDF via the parameter system

Description:
This routine should be called in place of NDF_ASSOC within applications that process
groups of NDFs.

On the first invocation of the application, a group of names of existing NDFs will be
obtained from the environment using the specified parameter, and an NDF identifier for
the first one will be returned. If more than one NDF was supplied for the parameter then
the application may be invoked again (see LPG_AGAIN), in which case this routine will
return an identifier for the next NDF in the group supplied on the first invocation.

If an application attempts to get a new NDF by cancelling the parameter (PAR_CANCL),
the returned NDF is NOT the next one in the group, but is obtained by prompting the user
for a single NDF.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its NDF parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_ASSOC(PARAM, MODE, INDF, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

MODE = CHARACTER ∗ (∗) (Given)
Type of NDF access required: ’READ’, ’UPDATE’ or ’WRITE’.

INDF = INTEGER (Returned)
NDF identifier.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_ASSOC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_CANCL

11 LPG_CATASSOC SUN/263.1 —Full Fortran Routine Specifications

LPG_CATASSOC
Obtain an identifier for an existing catalogue via the parameter

system

Description:
This routine should be called in place of CAT_ASSOC within applications that process
groups of catalogues.

On the first invocation of the application, a group of names of existing catalogues will be
obtained from the environment using the specified parameter, and a CAT identifier for the
first one will be returned. If more than one catalogue was supplied for the parameter then
the application may be invoked again (see LPG_AGAIN), in which case this routine will
return an identifier for the next catalogue in the group supplied on the first invocation.

If an application attempts to get a new catalogue by cancelling the parameter (PAR_CANCL),
the returned catalogue is NOT the next one in the group, but is obtained by prompting the
user for a single catalogue.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its catalogue parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_CATASSOC(PARAM, MODE, CI, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

MODE = CHARACTER ∗ (∗) (Given)
Type of catalogue access required: ’READ’, or ’WRITE’.

CI = INTEGER (Returned)
The catalogue identifier.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_ASSOC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_CANCL

SUN/263.1 —Full Fortran Routine Specifications 12 LPG_CATCREAT

LPG_CATCREAT
Create a new catalogue via the parameter system

Description:
This routine should be called in place of CAT_CREAT within applications that process
lists of catalogues.

On the first invocation of the application, a group of names for some new catalogues will
be obtained from the environment using the specified parameter. The first name will be
used to create an catalogue with the requested attributes, and an identifier for the new
catalogue will be returned. If more than one name was supplied for the parameter then
the application may be invoked again (see LPG_AGAIN), in which case this routine will
return an identifier for a new catalogue with the next name in the group supplied on the
first invocation.

If a modification element is included in the group expression supplied for the parameter on
the first invocation of the application, the new catalogue names are based on the names of
the first group of existing data files (catalogues or NDFs) to be accessed by the application.

If an application attempts to get a new catalogue by cancelling the parameter (PAR_CANCL),
the name used to create the returned catalogue is NOT the next one in the group, but is
obtained by prompting the user for a single new catalogue.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its catalogue parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_CATCREAT(PARAM, CI, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

CI = INTEGER (Returned)
The catalogue identifier.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_CAT_CREAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_CANCL

13 LPG_CREA1 SUN/263.1 —Full Fortran Routine Specifications

LPG_CREA1
Create a single new simple NDF using a specified parameter

Description:
This routine is equivalent to NDF_CREAT except that it allows the NDF to be specified
using a GRP group expression (for instance, its name may be given within a text file,
etc.). The first NDF in the group expression is returned. Any other names in the group
expression are ignored. Any modification elements in the supplied group expression will
be treated literally.

Invocation:

CALL LPG_CREA1(PARAM, FTYPE, NDIM, LBND, UBND, INDF, NAME, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the ADAM parameter.

FTYPE = CHARACTER ∗ (∗) (Given)
Full data type of the NDF’s DATA component (e.g. ’_DOUBLE’ or ’COMPLEX_REAL’).

NDIM = INTEGER (Given)
Number of NDF dimensions.

LBND(NDIM) = INTEGER (Given)
Lower pixel-index bounds of the NDF.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the NDF.

INDF = INTEGER (Returned)
NDF identifier.

NAME = CHARACTER ∗ (∗) (Returned)
The full file specification for the NDF.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_CREAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/263.1 —Full Fortran Routine Specifications 14 LPG_CREAT

LPG_CREAT
Create a new simple NDF via the parameter system

Description:
This routine should be called in place of NDF_CREAT within applications which process
lists of NDFs.

On the first invocation of the application, a group of names for some new NDFs will be
obtained from the environment using the specified parameter. The first name will be used
to create an NDF with the requested attributes, and an identifier for the new NDF will be
returned. If more than one name was supplied for the parameter then the application may
be invoked again (see LPG_AGAIN), in which case this routine will return an identifier
for a new NDF with the next name in the group supplied on the first invocation.

If a modification element is included in the group expression supplied for the parameter
on the first invocation of the application, the new NDF names are based on the names of
the first group of existing data files (NDFs or catalogues) to be accessed by the application.

If an application attempts to get a new NDF by cancelling the parameter (PAR_CANCL),
the name used to create the returned NDF isNOT the next one in the group, but is obtained
by prompting the user for a single new NDF.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its NDF parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_CREAT(PARAM, FTYPE, NDIM, LBND, UBND, INDF, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

FTYPE = CHARACTER ∗ (∗) (Given)
Full data type of the NDF’s DATA component (e.g. ’_DOUBLE’ or ’COMPLEX_REAL’).

NDIM = INTEGER (Given)
Number of NDF dimensions.

LBND(NDIM) = INTEGER (Given)
Lower pixel-index bounds of the NDF.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the NDF.

INDF = INTEGER (Returned)
NDF identifier.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_CREAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_CANCL

15 LPG_CREP1 SUN/263.1 —Full Fortran Routine Specifications

LPG_CREP1
Create a single new primitive NDF using a specified parameter

Description:
This routine is equivalent to NDF_CREP except that it allows the NDF to be specified using
a GRP group expression (for instance, its name may be given within a text file, etc.). The
first NDF in the group expression is returned. Any other names in the group expression
are ignored. Any modification elements in the supplied group expression will be treated
literally.

Invocation:

CALL LPG_CREP1(PARAM, FTYPE, NDIM, UBND, INDF, NAME, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the ADAM parameter.

FTYPE = CHARACTER ∗ (∗) (Given)
Type of the NDF’s DATA component (e.g. ’_REAL’). Note that complex types are not
permitted when creating a primitive NDF.

NDIM = INTEGER (Given)
Number of NDF dimensions.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the NDF (the lower bound of each dimension is taken to be
1).

INDF = INTEGER (Returned)
NDF identifier.

NAME = CHARACTER ∗ (∗) (Returned)
The full file specification for the NDF.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_CREP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

SUN/263.1 —Full Fortran Routine Specifications 16 LPG_CREP

LPG_CREP
Create a new primitive NDF via the parameter system

Description:
This routine should be called in place of NDF_CREP within applications that process lists
of NDFs.

On the first invocation of the applicaton, a group of names for some new NDFs will be
obtained from the environment using the specified parameter. The first name will be used
to create an NDF with the requested attributes, and an identifier for the new NDF will be
returned. If more than one name was supplied for the parameter then the application may
be invoked again (see LPG_AGAIN), in which case this routine will return an identifier
for a new NDF with the next name in the group supplied on the first invocation.

If a modification element is included in the group expression supplied for the parameter
on the first invocation of the application, the new NDF names are based on the names of
the first group of existing data files (NDFs or catalogues) to be accessed by the application.

If an application attempts to get a new NDF by cancelling the parameter (PAR_CANCL),
the name used to create the returned NDF is NOT the next one in the group, but is obtained
by prompting the user for a single new NDF.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its NDF parameters have been exhausted (i.e. all its values used). See NDF_AGAIN.

Invocation:

CALL LPG_CREP(PARAM, FTYPE, NDIM, UBND, INDF, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

FTYPE = CHARACTER ∗ (∗) (Given)
Type of the NDF’s DATA component (e.g. ’_REAL’). Note that complex types are not
permitted when creating a primitive NDF.

NDIM = INTEGER (Given)
Number of NDF dimensions.

UBND(NDIM) = INTEGER (Given)
Upper pixel-index bounds of the NDF (the lower bound of each dimension is taken to be
1).

INDF = INTEGER (Returned)
NDF identifier.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_CREP

17 LPG_CREPL SUN/263.1 —Full Fortran Routine Specifications

LPG_CREPL
Create a new NDF placeholder via the parameter system

Description:
This routine should be called in place of NDF_CREPL within applications that process
lists of NDFs.

On the first invocation of the application, a group of names for some new NDFs will be
obtained from the environment using the specified parameter. The first name will be
used to create an NDF placeholder with the requested attributes, and an identifier for the
placeholder will be returned. If more than one name was supplied for the parameter then
the application may be invoked again (see LPG_AGAIN), in which case this routine will
return an identifier for another placeholder with the next name in the group supplied on
the first invocation.

If a modification element is included in the group expression supplied for the parameter
on the first invocation of the application, the placeholder are based on the names of the
first group of existing data files (NDFs or catalogues) to be accessed by the application.

If an application attempts to get a new NDF by cancelling the parameter (PAR_CANCL),
the name used to create the returned NDF is NOT the next one in the group, but is obtained
by prompting the user for a single new placeholder.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its NDF parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_CREPL(PARAM, PLACE, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter.

PLACE = INTEGER (Returned)
NDF placeholder identifying the nominated position in the data system.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/263.1 —Full Fortran Routine Specifications 18 LPG_PROP1

LPG_PROP1
Create a single new NDF by propagation using a specified parameter

Description:
This routine is equivalent to NDF_PROP except that it allows the NDF to be specified using
a GRP group expression (for instance, its name may be given within a text file, etc.). The
first NDF in the group expression is returned. Any other names in the group expression
are ignored. Modification elements use the name of the supplied NDF as the basis name.

Invocation:

CALL LPG_PROP1(INDF1, CLIST, PARAM, INDF2, NAME, STATUS)

Arguments:

INDF1 = INTEGER (Given)
Identifier for an existing NDF (or NDF section) to act as a template.

CLIST = CHARACTER ∗ (∗) (Given)
A comma-separated list of the NDF components which are to be propagated to the new
data structure. By default, the HISTORY, LABEL and TITLE components and all extensions
are propagated. See the "Component Propagation" section in the documentation for
routine NDF_PROP within SUN/33 for further details.

PARAM = CHARACTER ∗ (∗) (Given)
Name of the ADAM parameter for the new NDF.

INDF2 = INTEGER (Returned)
Identifier for the new NDF.

NAME = CHARACTER ∗ (∗) (Returned)
The full file specification for the NDF.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_PROP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndf_prop_component_propagation

19 LPG_PROP SUN/263.1 —Full Fortran Routine Specifications

LPG_PROP
Propagate NDF information to create a new NDF via the parameter

system

Description:
This routine should be called in place of NDF_PROP within applications that process
groups of NDFs.

On the first invocation of the application, a group of names for some new NDFs will be
obtained from the environment using the specified parameter. The first name will be used
to create an NDF by propagation from INDF1, and an identifier for the new NDF will be
returned. If more than one name was supplied for the parameter then the application may
be invoked again (see LPG_AGAIN), in which case this routine will return an identifier
for a new NDF with the next name in the group supplied on the first invocation.

If a modification element is included in the group expression supplied for the parameter
on the first invocation of the application, the new NDF names are based on the names of
the first group of existing data files (NDFs or catalogues) to be accessed by the application.

If an application attempts to get a new NDF by cancelling the parameter (PAR_CANCL),
the name used to create the returned NDF is NOT the next one in the group, but is obtained
by prompting the user for a single new NDF.

The monolith routine should arrange to invoke the application repeatedly until one or more
of its NDF parameters have been exhausted (i.e. all its values used). See LPG_AGAIN.

Invocation:

CALL LPG_PROP(INDF1, CLIST, PARAM, INDF2, STATUS)

Arguments:

INDF1 = INTEGER (Given)
Identifier for an existing NDF (or NDF section) to act as a template.

CLIST = CHARACTER ∗ (∗) (Given)
A comma-separated list of the NDF components which are to be propagated to the new
data structure. By default, the HISTORY, LABEL and TITLE components and all extensions
are propagated. See the "Component Propagation" section in the documentation for
routine NDF_PROP within SUN/33 for further details.

PARAM = CHARACTER ∗ (∗) (Given)
Name of the parameter for the new NDF.

INDF2 = INTEGER (Returned)
Identifier for the new NDF.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_PROP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun114.htx/sun114.html?xref_PAR_CANCL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndf_prop_component_propagation

SUN/263.1 —Full Fortran Routine Specifications 20 LPG_REPLA

LPG_REPLA
Indicate if input NDFs can be replaced

Description:
Sets a flag indicating if LPG applications can use a single NDF as both input and output.
If so, a temporary NDF is used to store the output. This NDF is then used to replace
the existing input NDF once the application has completed. If REPLAC is .FALSE. (the
default), an error is reported if an attempt is made to use a single NDF as both input and
output.

Invocation:

CALL LPG_REPLA(REPLAC, STATUS)

Arguments:

REPLAC = LOGICAL (Given)
If .TRUE., a single NDF can be used as both input and output from an application. If
.FALSE., an error will be reported if this is attempted.

STATUS = INTEGER (Given and Returned)
The global status.

21 LPG_START SUN/263.1 —Full Fortran Routine Specifications

LPG_START
Initialise the contents of the LPG common blocks

Description:
Initialises the global variables used by LPG. See LPG_AGAIN.

Invocation:

CALL LPG_START(VERBO, DELAYO, DISABO, STATUS)

Arguments:

VERBO = LOGICAL (Given)
If .TRUE. then the name of the data file being used for each parameter will be displayed
on each invocation of the application at the point where the parameter is accessed. Pa-
rameters which are not multi-valued (i.e. that are associated with the same data file on all
invocations) are not displayed. In addition, a blank line will be displayed on the screen
between each invocation of the application. No text is displayed if VERB is .FALSE..

DELAYO = REAL (Given)
Put a delay of DELAY seconds between invocations.

DISABO = LOGICAL (Given)
If .TRUE., the looping facilities are disabled. LPG_AGAIN returns .TRUE. only on the first
invocation, and LPG_ASSOC, LPG_CREAT, LPG_PROP, LPG_CREP, LPG_CATASSOC
and LPG_CATCREAT make simple calls to the corresponding NDF or CAT routine.

STATUS = INTEGER (Given and Returned)
The global status.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun181.htx/sun181.html?xref_

SUN/263.1 —Full Fortran Routine Specifications 22 LPG_CRPL1

LPG_CRPL1
Create a single new NDF placeholder using a specified parameter

Description:
This routine is equivalent to NDF_CREPL except that it allows the NDF to be specified
using a GRP group expression (for instance, its name may be given within a text file,
etc.). The first NDF in the group expression is returned. Any other names in the group
expression are ignored. Any modification elements in the supplied group expression will
be treated literally.

Invocation:

CALL LPG_CRPL1(PARAM, PLACE, NAME, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
Name of the ADAM parameter.

PLACE = INTEGER (Returned)
NDF placeholder.

NAME = CHARACTER ∗ (∗) (Returned)
The full file specification for the NDF.

STATUS = INTEGER (Given and Returned)
The global status.

23 LPG_STATE SUN/263.1 —Full Fortran Routine Specifications

LPG_STATE
Return the original PAR state of a parameter

Description:
On the first invocation of the application, this routine returns the current PAR state of
specified parameter and stores it in common. On subsequent invocations, the stored state
is returned rather than the current state.

Invocation:

CALL LPG_STATE(PARAM, STATE, STATUS)

Arguments:

PARAM = CHARACTER ∗ (∗) (Given)
The parameter name.

STATE = INTEGER (Returned)
The original PAR state of the parameter.

STATUS = INTEGER (Given and Returned)
The global status.

SUN/263.1 —Changes Introduced in LPG Version 3.0 24

C Changes Introduced in LPG Version 3.0

• It has a separate identity. It was previously bundled into KAPLIBS.

• There is preliminary documentation.

	Introduction
	Interaction Between LPG and GRP
	Using LPG
	Monolith
	Tuning
	Applications
	Other Parameters
	Output Parameters

	Compiling and Linking with LPG
	ADAM Applications

	List of Routines
	Full Fortran Routine Specifications
	LPG_AGAIN
	LPG_ASSOC
	LPG_CATASSOC
	LPG_CATCREAT
	LPG_CREA1
	LPG_CREAT
	LPG_CREP1
	LPG_CREP
	LPG_CREPL
	LPG_PROP1
	LPG_PROP
	LPG_REPLA
	LPG_START
	LPG_CRPL1
	LPG_STATE

	Changes Introduced in LPG Version 3.0

