
SUN/31.5

Starlink Project
Starlink User Note 31.5

R.F. Warren-Smith &
A.J. Chipperfield

27 April 1998

REF
Routines for Handling References to

HDS Objects
Version 1.1

Programmer’s Manual



SUN/31.5 —Abstract ii

Abstract

It is sometimes useful to use the Hierarchical Data System HDS (SUN/92) to store references or
pointers to other HDS objects. For instance, this allows the same data object to be used in several
places without the need to have more than one copy. The REF library is provided to facilitate
this data object referencing process and the subsequent accessing of objects which have been
referenced in this way.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_


iii SUN/31.5—Contents

Contents

1 Introduction 1

2 Facilities 1

3 Using the package 1

4 Implementation 3

5 Error handling 3

6 Compiling and linking 3

A Routine Descriptions 5
REF_ANNUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
REF_CRPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
REF_FIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
REF_GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
REF_NEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
REF_PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B ADAM/Stand-alone Differences 12

C Machine-dependent Features 12

D Software Dependencies 12



1 SUN/31.5 —Using the package

1 Introduction

This package enables the user to store references to HDS objects in special HDS reference objects.
Although it would be possible for users to concoct their own scheme, the use of this package
will assist in portability and will in any case avoid re-inventing the wheel.

2 Facilities

The package allows reference objects to be created and written and it allows locators to referenced
objects to be obtained.

The referenced object may be defined as internal in which case it is assumed to be within the
same container file as the reference object itself, even if the reference object is copied to another
container file. In that case the reference must point to an object which has the same pathname
within the new file as it had in the old one. References which are not internal will point to a
named container file.

Reference objects may be copied and erased using DAT_COPY and DAT_ERASE. Care must
be taken when copying reference objects or referenced objects; otherwise the reference may no
longer point to the referenced object.

Referenced objects must exist at the time the reference is made or used.

The following subroutines are available:

REF_CRPUT — Create a reference object and put a reference in it.

REF_FIND — Obtain locator to an object (possibly via a reference).

REF_GET — Obtain a locator to a referenced object.

REF_NEW — Create an empty reference object.

REF_PUT — Put a reference into a reference object.

REF_ANNUL — Annul a locator which may have been obtained via a reference.

3 Using the package

Two main uses for this package are foreseen:

(1) To maintain a catalogue of HDS objects.

(2) To avoid duplicating a large dataset.



SUN/31.5 —Using the package 2

As an example of the second case, suppose that a large dataset is logically required to form part
of a number of other datasets. To avoid duplicating the common dataset, the others may contain
a reference to it.

For example:

Name type Comments

DATA DATA_SETS
.SET1 SPECTRUM

.AXIS1 _REAL(1024) Actual axis data

.DATA_ARRAY _REAL(1024)
.SET2 SPECTRUM

.AXIS1 REFERENCE_OBJ Reference to DATA.SET1.AXIS1

.DATA_ARRAY _REAL(1024)
.SET3 SPECTRUM

.AXIS1 REFERENCE_OBJ Reference to DATA.SET1.AXIS1

.DATA_ARRAY _REAL(1024)
-

etc.

Then a piece of code which handles structures of type SPECTRUM, which would normally
contain the axis data in .AXIS1 (as SET1 does), could be modified as follows to handle an object
.AXIS1 containing either the actual axis data or a reference to the object which does contain the
actual axis data.

* LOC1 is a locator associated with a SPECTRUM object
* Obtain locator to AXIS data

CALL DAT_FIND(LOC1, ’AXIS1’, LOC2, STATUS)
* Modification to allow AXIS1 to be a reference object
* Check type of object

CALL DAT_TYPE(LOC2, TYPE, STATUS)
IF (TYPE .EQ. ’REFERENCE_OBJ’) THEN

CALL REF_GET(LOC2, ’READ’, LOC3, STATUS)
CALL DAT_ANNUL(LOC2, STATUS)
CALL DAT_CLONE(LOC3, LOC2, STATUS)
CALL DAT_ANNUL(LOC3, STATUS)

ENDIF
* End of modification
* LOC2 now locates the axis data wherever it is.

This code has been packaged into the subroutine REF_FIND which can be used instead of
DAT_FIND in cases where the component requested may be a reference object.

When a locator which has been obtained in this way is finished with, it should be annulled
using REF_ANNUL rather than DAT_ANNUL. This is so that, if the locator was obtained via a
reference, the HDS_OPEN for the container file may be matched by an HDS_CLOSE. Note that
this should only be done when any other locators derived from the locator to the referenced object are also
finished with.



3 SUN/31.5 —Compiling and linking

4 Implementation

The way in which the package is implemented is described here for interest. Programmers
should not make use of this information; otherwise portability is compromised.

A reference object is an HDS structure of type REFERENCE_OBJ with two components, FILE and
PATH, of type _CHAR*(REF__SZREF). REF__SZREF is defined in the REF_PAR include file.

FILE contains the name of the container file for the referenced object. This is set to spaces if the
reference is internal.

PATH contains the pathname of the referenced object (as supplied by HDS_TRACE). The name
of the top level component of the pathname will not be used in finding the locator for the
referenced object. This fact allows structures containing internal references to be copied
but the path below the top level must still lead to an appropriate object.

Locators obtained via a reference are flagged as such by being linked to the group $$REFER-
ENCED$ using the subroutine HDS_LINK. This fact is used by REF_ANNUL in determining
whether or not HDS_CLOSE should be called for the container file of the object specified by
the locator argument. Note that the effect of calling HDS_CLOSE is to counter the HDS_OPEN
done in obtaining a locator to the referenced object. The container file will only be physically
closed if the container file reference count goes to zero.

5 Error handling

The REF routines adhere throughout to the Starlink error-handling strategy described in the
MERS document, SUN/104. Most of the routines therefore carry an integer inherited status
argument called STATUS and will return without action unless this is set to the value SAI__OK1

when they are invoked. When necessary, error reports are made through the EMS_ routines in
the manner described in SSN/4. This gives complete compatibility with the use of ERR_ and
MSG_ routines in applications (SUN/104).

6 Compiling and linking

Before compiling applications which use the REF library on UNIX systems, you should normally
“log in” for REF software development with the following shell command:

% ref_dev

This will create links in your current working directory which refer to the REF include files. You
may then refer to these files using their standard (upper case) names without having to know
where they actually reside. These links will persist, but may be removed at any time, either
explicitly or with the command:

1The symbolic constant SAI__OK is defined in the include file SAE_PAR.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn4.htx/ssn4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_


SUN/31.5 —Compiling and linking 4

% ref_dev remove

If you do not “log in” in this way, then references to REF include files should be in lower case
and must contain an absolute pathname identifying the Starlink include file directory, thus:

INCLUDE ’/star/include/ref_par’

The former method is recommended.

Applications which use the ADAM programming environment (SG/4) may be linked with
the REF library by specifying ‘ref_link_adam‘ on the appropriate command line. Thus, for
instance, an ADAM A-task which calls REF routines might be linked as follows:

% alink adamprog.f ‘ref_link_adam‘

(note the use of backward quote characters, which are required).

“Stand-alone” (i.e. non-ADAM) applications which use the REF library may be linked by spec-
ifying ‘ref_link‘ on the compiler command line. Thus, to compile and link a stand-alone
application called ‘prog’, the following might be used:

% f77 prog.f ‘ref_link‘ -o prog

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_


5 SUN/31.5 —Routine Descriptions

A Routine Descriptions



SUN/31.5 —Routine Descriptions 6 REF_ANNUL

REF_ANNUL
Annul a locator to a referenced object

Description:
This routine annuls the locator and, if the locator was linked to group $$REFERENCED$,
issues HDS_CLOSE for the container file of the object.

Invocation:

CALL REF_ANNUL( LOC, STATUS )

Arguments:

LOC = CHARACTER ∗ ( DAT__SZLOC ) (Given and Returned)
Locator to be annulled.

STATUS = INTEGER (Given and Returned)
Inherited global status.

Notes:

This routine attempts to execute even if STATUS is set on entry, although no further error
report will be made if it subsequently fails under these circumstances. In particular, it will
fail if the locator supplied is not initially valid, but this will only be reported if STATUS is
set to SAI__OK on entry.



7 REF_CRPUT SUN/31.5 —Routine Descriptions

REF_CRPUT
Create and write a reference object

Description:
This routine creates a reference object as a component of a specified structure and writes a
reference to an HDS object in it. If the specified component already exists and is a reference
object, it will be used. If it is not a reference object, an error is reported. The reference may
be described as "internal" which means that the referenced object is in the same container
file as the reference object.

Invocation:

CALL REF_CRPUT( ELOC, CNAME, LOC, INTERN, STATUS )

Arguments:

ELOC = CHARACTER ∗ ( DAT__SZLOC ) (Given)
A locator associated with the structure which is to contain the reference object.

CNAME = CHARACTER ∗ ( DAT__SZNAM ) (Given)
The component name of the reference object to be created.

LOC = CHARACTER ∗ ( ∗ ) (Given)
A locator associated with the object to be referenced.

INTERN = LOGICAL (Given)
Whether or not the referenced object is "internal". Set this to .TRUE. if the reference is
"internal" and to .FALSE. if it is not.

STATUS = INTEGER (Given and Returned)
Inherited global status.



SUN/31.5 —Routine Descriptions 8 REF_FIND

REF_FIND
Get locator to data object (via reference if necessary)

Description:
This routine gets a locator to a component of a specified structure or, if the component is a
reference object, it gets a locator to the object referenced. Any locator obtained in this way
should be annulled, when finished with, by REF_ANNUL so that the top-level object will
also be closed if the locator was obtained via a reference.

Invocation:

CALL REF_FIND( ELOC, CNAME, MODE, LOC, STATUS )

Arguments:

ELOC = CHARACTER ∗ ( ∗ ) (Given)
The locator of a structure.

CNAME = CHARACTER ∗ ( ∗ ) (Given)
The name of the component of the specified structure.

MODE = CHARACTER ∗ ( ∗ ) (Given)
Mode of access required to the object. (’READ’, ’WRITE’ or ’UPDATE’). This is specified
so that the container file of any referenced object can be opened in the correct mode.

LOC = CHARACTER ∗ ( DAT__SZLOC ) (Returned)
A locator associated with the object found.

STATUS = INTEGER (given and Returned)
Inherited global status.



9 REF_GET SUN/31.5 —Routine Descriptions

REF_GET
Get locator to referenced data object

Description:
This routine gets a locator to an HDS object referenced in a reference object and links it to
the group $$REFERENCED$. Any locator obtained in this way should be annulled, when
finished with, by REF_ANNUL so that the top-level object will also be closed.

Invocation:

CALL REF_GET( ELOC, MODE, LOC, STATUS )

Arguments:

ELOC = CHARACTER ∗ ( DAT__SZLOC ) (Given)
A locator associated with the reference object

MODE = CHARACTER ∗ ( ∗ ) (Given)
Mode of access required to the object. (’READ’, ’WRITE’ or ’UPDATE’). This is specified
so that the container file of any referenced object can be opened in the correct mode.

LOC = CHARACTER ∗ ( DAT__SZLOC ) (Returned)
A locator pointing to the object referenced.

STATUS = INTEGER (Given and Returned)
Inherited global status.



SUN/31.5 —Routine Descriptions 10 REF_NEW

REF_NEW
Create a new reference object

Description:
This routine creates a reference object as a component of a specified structure. If the
component already exists, an error is reported.

Invocation:

CALL REF_NEW( ELOC, CNAME, STATUS )

Arguments:

ELOC = CHARACTER ∗ ( DAT__SZLOC ) (Given)
A locator associated with the structure which is to contain the reference object.

CNAME = CHARACTER ∗ ( DAT__SZNAM ) (Given)
The name of the component to be created in the structure located by ELOC.

STATUS = INTEGER (Given and Returned)
Inherited global status.



11 REF_PUT SUN/31.5 —Routine Descriptions

REF_PUT
Write a reference into a reference object

Description:
This routine writes a reference to an HDS object into an existing reference structure. An
error is reported if an attempt is made to write a reference into an object which is not
a reference object. The reference may be described as "internal" which means that the
referenced object is in the same container file as the reference object.

Invocation:

CALL REF_PUT( ELOC, LOC, INTERN, STATUS )

Arguments:

ELOC = CHARACTER ∗ ( ∗ ) (Given)
A locator associated with the reference object.

LOC = CHARACTER ∗ ( ∗ ) (Given)
A locator associated with the object to be referenced.

INTERN = LOGICAL (Given)
Whether or not the referenced object is "internal". Set this to .TRUE. if the reference is
"internal" and to .FALSE. if it is not.

STATUS = INTEGER (Given and Returned)
Inherited global status.



SUN/31.5 —Software Dependencies 12

B ADAM/Stand-alone Differences

Note that when using the stand-alone version of the REF library, it is currently necessary to
ensure that HDS_START is called to activate HDS prior to making calls to any REF routines. This
requirement will be removed in future, and is currently not required with the ADAM version.

C Machine-dependent Features

The REF library contains no explicit use of machine-dependent features, so its behaviour should
be the same on all platforms on which it is implemented.

However, external references to HDS objects (those not identified as “internal” to the REF library)
will contain explicit file names, so true portability of data (in the manner provided by HDS)
cannot be expected with REF when working with operating systems which have different file
naming conventions. If complete data portability is required, then use of the REF library should
be restricted to internal references only.

D Software Dependencies

The REF library explicitly depends on the following other Starlink packages:

HDS — Hierarchical data system (SUN/92)

EMS — Error message service (SSN/4)

Note that these packages may also depend on other sub-packages. Please consult the relevant
documentation for details.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn4.htx/ssn4.html?xref_

	Introduction
	Facilities
	Using the package
	Implementation
	Error handling
	Compiling and linking
	Routine Descriptions
	REF_ANNUL
	REF_CRPUT
	REF_FIND
	REF_GET
	REF_NEW
	REF_PUT

	ADAM/Stand-alone Differences
	Machine-dependent Features
	Software Dependencies

