
SUN/39.2

Starlink Project
Starlink User Note 39.2

R F Warren-Smith

28 February 1995

PRIMDAT — Processing of Primitive
Numerical Data

v1.6
Programmer’s Guide

SUN/39.2 —Abstract i

Abstract

The PRIMDAT package is a collection of Fortran functions and subroutines providing support
for primitive data processing.

ii SUN/39.2—Contents

Contents

1 INTRODUCTION 1
1.1 The VAL, VEC and NUM Facilities . 2
1.2 Propagation of Bad Data . 3
1.3 The STATUS Argument . 4

2 THE VAL_ FUNCTIONS 4
2.1 Applicability & Efficiency . 5
2.2 VAL_ Error Handling . 5
2.3 VAL_ Arithmetic and Mathematical Functions . 5
2.4 VAL_ Type Conversion Functions . 7
2.5 Declaring the VAL_ Functions . 7

3 THE VEC_ ROUTINES 7
3.1 Applicability & Efficiency . 9
3.2 VEC_ Error Handling . 9
3.3 VEC_ Arithmetic and Mathematical Routines . 10
3.4 VEC_ Type Conversion Routines . 10

4 THE NUM_ FUNCTIONS 11
4.1 Applicability & Efficiency . 11
4.2 NUM_ Arithmetic and Mathematical Functions . 12
4.3 NUM_ Type Conversion Functions . 12
4.4 NUM_ Inter-comparison Functions . 13
4.5 Declaring and Defining the NUM_ Functions . 13
4.6 NUM Error Handling . 14

5 CONSTANTS 16
5.1 Bad Data Values . 18
5.2 Machine Precision . 18
5.3 Maximum Data Values . 19
5.4 Minimum Data Values . 20
5.5 Data Storage Requirements . 21
5.6 Smallest Value . 21
5.7 Character String Sizes . 22

6 COMPILING AND LINKING 23
6.1 Unix . 23
6.2 VMS . 23

7 CHANGES IN THIS DOCUMENT 23

A PERFORMANCE STATISTICS 24

B ERROR CODES & MESSAGES 30

SUN/39.2 —INTRODUCTION 1

1 INTRODUCTION

This document describes version 1.0 of the PRIMDAT package, which is a collection of Fortran
functions and subroutines providing support for “primitive data processing”. Routines from
this package may be used to perform arithmetic, mathematical operations, type conversion
and inter-comparison of any of the primitive numerical data types supported by the Starlink
Hierarchical Data System HDS (SUN/92).

It provides:

• Processing facilities which are not normally available.
This package provides processing facilities for all the numerical HDS data types. In con-
trast, standard Fortran 77 only supports the _INTEGER, _REAL and _DOUBLE numerical
types and even in VAX Fortran there are no operators for the unsigned types _UWORD
and _UBYTE (those for _BYTE are also somewhat restricted).

• A uniform interface.
A consistent naming scheme is used which facilitates the production of generic routines
for processing data of any numerical type (SUN/7 describes the GENERIC compiler and
contains further information on this subject).

• Improved portability and efficiency.
By using this package, applications can process non-standard data types while making
minimum explicit use of non-standard Fortran statements. In addition, PRIMDAT routines
can exploit machine-specific features to enhance the efficiency of primitive data processing,
so applications may take advantage of these features without compromising their own
portability.

• Facilities for processing bad data.
The bad values defined by Starlink for flagging undefined data may be processed and
consistently propagated. Recognition of these bad values may easily be disabled when not
required in order to save processing time.

• Handling of numerical errors.
Numerical errors (such as division by zero or numerical overflow) may be handled au-
tomatically and converted into appropriate bad values for subsequent recognition. Error
codes are returned to allow such occurrences to be reported, or recovery action taken, as
desired.

• A set of constants.
A set of machine-specific symbolic constants is provided to support the processing facilities
in this package and to simplify the task of transporting software to other machines which
may have different arithmetic capabilities.

Note that only the numerical HDS data types (_BYTE, _UBYTE, _WORD, _UWORD, _INTEGER,
_REAL & _DOUBLE) are supported at present. There is currently no provision for the non-
numerical _LOGICAL and _CHAR types, nor for any other Fortran (or VAX Fortran) types such
as COMPLEX. The CHR facility should be used for processing character data and for converting
between character and numerical data types.

SUN/39.2 —INTRODUCTION 2

Note added March 2004: This manual refers throughout to VAX floats. The package was ported
to Unix in 1991, and accordingly most of the values now defined by it are those appropriate for
IEEE floats instead; the manual has not been updated to match.

1.1 The VAL, VEC and NUM Facilities

The routines in this package have names of the form <fac>_<name>, where <fac> is a three
character facility name and <name> specifies the operation which the routine performs.

The routines are divided into three facilities as follows:

<fac> Facility provides. . .

VAL Arithmetic, mathematical functions and type conversion on single (scalar)
values. Handling of numerical errors and bad value propagation are incorpo-
rated.

VEC Arithmetic, mathematical functions and type conversion on vectorised arrays,
allowing more efficient processing of large numbers of data. Handling of
numerical errors and bad value propagation are incorporated.

NUM Lower level routines for arithmetic, mathematical functions, type conversion
and inter-comparison of single numbers. Operations are performed without
protection against numerical errors and without regard for bad values.

Note that a distinction is drawn between three classes of primitive data, which differ in their
interpretation and in the algorithms best suited to processing them:

• Values (VAL facility) are scalar data which may take one of the Starlink-defined bad values
(sometimes called “magic” values), whose presence signifies that the affected datum
is undefined. Numerical errors which occur while processing values will result in the
generation of a bad value as a result. Subsequent recognition of bad values on input may (or
may not) occur, depending on the logical setting of the BAD routine argument (section 1.2).

• Vectorised arrays (VEC facility) are 1-dimensional arrays of values (or arrays treated as
1-dimensional) whose elements are processed in the way described above. The routines
provided are optimised to perform processing in an efficient manner when the size of the
array is large.

• Numbers (NUM facility) are always interpreted literally as scalar numerical quantities
(i.e. bad values are not recognised on input and are not explicitly generated on output).
Numerical errors which occur while processing numbers will cause the application to
terminate (i.e. crash).

Italics are used throughout this document to refer to values, vectorised arrays and numbers when it
is important to emphasise the particular meaning (and the implied processing rules) described
here.

SUN/39.2 —INTRODUCTION 3

Type Code <T> HDS Type Fortran Type

UB _UBYTE (unsigned byte) BYTE

B _BYTE (byte) BYTE

UW _UWORD (unsigned word) INTEGER∗2

W _WORD (word) INTEGER∗2

I _INTEGER (integer) INTEGER

R _REAL (real) REAL

D _DOUBLE (double precision) DOUBLE PRECISION

Table 1: The data type codes used in constants and routine names, and the HDS and VAX Fortran
types to which they correspond.

1.2 Propagation of Bad Data

The handling of numerical errors by the VAL_ and VEC_ routines1 depends on the generation,
recognition and propagation of bad values in the data, and also on the presence of an integer
STATUS argument carried by each routine.

Bad values are a set of special numerical constants (one for each data type) which are defined by
Starlink to be used for flagging “bad” or “undefined” data. The philosophy and conventions
surrounding their use are described in SGP/38. The Starlink “bad constants” which specify these
values have symbolic names2 of the form:

VAL__BAD<T>

where <T> is one of the data type codes in Table 1 (also see section 5.1). Bad values may be
set explicitly by assigning the value of one of these constants to a variable. They are also set
by VAL_ and VEC_ routines when numerical errors occur — implying that the result of the
attempted operation is undefined.

Recognition of bad values involves comparing them for equality with the appropriate “bad
constant”, and may be used to control subsequent processing. Most frequently, this control takes
the form of “propagation” — i.e. the outcome of any operation attempted on a bad operand is
itself bad; so that the bad value is “propagated” to the result. After a sequence of such operations,
the resulting bad values make it possible to identify all those results which have been rendered
invalid by errors occurring en route.

The VAL_ and VEC_ routines have the ability to recognise and propagate bad values in this
manner (the precise processing rules are described in sections 2.2 & 3.2). In some circumstances,
however, appreciable amounts of processing time can be saved if it is known in advance that
bad values are not present and that their recognition is not necessary. Also, it is occasionally

1The NUM_ functions do not have a built-in error handling capability and are not discussed here.
2 These symbolic constants are defined in the include file PRM_PAR.

SUN/39.2 —THE VAL_ FUNCTIONS 4

necessary to disable bad value recognition so that the numerical values specified by the “bad
constants” may themselves be processed as if they were valid data.

Because of this, recognition and propagation of bad values by the VAL_ and VEC_ routines is
controlled by a logical value BAD, which appears at the start of each routine’s argument list.
If BAD is set .TRUE., then bad input arguments are recognised and propagated to the result.
Conversely, if BAD is set .FALSE., then input argument values are interpreted literally (there
is no bad value recognition), although bad values may still be generated on output if numerical
errors occur. Most of the routines execute more efficiently if BAD is .FALSE. (Appendix A).

It is up to the calling routine to ensure that the BAD argument has an appropriate logical value
when VAL_ and VEC_ routines are invoked. This value will often depend on whether numerical
errors have occurred in previous stages of processing, so each routine also carries a STATUS
argument which may be used to detect the occurrence of such errors.

1.3 The STATUS Argument

Each VAL_ and VEC_ routine takes a standard integer STATUS variable as its final argument.
In normal use, this STATUS variable should be set to SAI__OK when the routine is invoked,
otherwise it will return immediately without action.3

On exit, the STATUS value will still be set to SAI__OK unless a numerical error has occurred,
in which case it will be set to an appropriate error code (Appendix B). PRIMDAT error codes
may be tested to detect when a particular numerical error has occurred, and may also be used to
report these errors (using the ADAM ERR_ routines for instance).

Note that routines in this package do not report errors themselves. This is partly an efficiency
consideration. In many circumstances, the automatic generation of a bad value will itself be an
adequate response to a numerical error and, in such cases, the STATUS variable may simply be
reset to SAI__OK and processing can continue.

2 THE VAL_ FUNCTIONS

The VAL_ functions are a set of Fortran functions which perform arithmetic, mathematical
operations and type conversion on single (scalar) values stored using any numerical data type.
These functions will handle numerical errors which occur during their evaluation (such as
division by zero or overflow) and can also recognise and propagate the standard Starlink bad
values.

They are normally invoked by statements of the form:

RESULT = VAL_<name>(BAD, ARG, STATUS)

or

RESULT = VAL_<name>(BAD, ARG1, ARG2, STATUS)

3 In the case of the VAL_ functions, a bad function result will be returned.

SUN/39.2 —THE VAL_ FUNCTIONS 5

where <name> specifies the operation to be performed and:

• BAD is a logical value specifying whether bad input arguments are to be recog-
nised;
• ARG, ARG1 and ARG2 are the input arguments;
• STATUS is an integer error status variable.

2.1 Applicability & Efficiency

The VAL_ functions are designed primarily for ease of use and robustness, with efficiency being
a secondary consideration. In fact, the overhead involved in invoking many of these functions
exceeds the time required to actually perform the calculation. Consequently, VAL_ functions
should not be used for processing large arrays of data. Rather, they are best used for relatively
small numbers of calculations (up to a few thousand), when they can enhance the robustness
and flexibility of applications by handling numerical errors and bad values with the minimum of
programming effort.

The VEC_ routines (section 3) should normally be used for processing larger arrays of data.

2.2 VAL_ Error Handling

The error handling strategy used by the VAL_ routines consists of returning a bad function result
under the following circumstances:

(1) If STATUS is not set to SAI__OK when the function is invoked.

(2) If the BAD argument is set to .TRUE. and any of the input arguments is bad.

(3) If any numerical error occurs during evaluation of the function — in this latter case an
appropriate error code will also be returned via the STATUS argument.

2.3 VAL_ Arithmetic and Mathematical Functions

Arithmetic and mathematical operations may be performed on scalar values stored using any
numerical data type by invoking appropriate VAL_ functions, using statements such as:

RESULT = VAL_<FUNC><T>(BAD, ARG, STATUS)

or

RESULT = VAL_<FUNC><T>(BAD, ARG1, ARG2, STATUS)

Here, the VAL_ function takes an argument (or arguments) of type <T> and returns a result
which is also of type <T>, having performed the arithmetic or mathematical operation specified
by <FUNC>. The data type code <T> may be any of those specified in Table 1 and <FUNC>
may be any of the function codes specified in Tables 2 & 3. The number of input arguments (1 or
2) appropriate to each function is also indicated in these latter Tables.

Thus, for example, the function VAL_ADDUW adds two unsigned word arguments to produce
an unsigned word result, while VAL_SQRTD evaluates the square root of a double precision
argument, returning a double precision result.

SUN/39.2 —THE VAL_ FUNCTIONS 6

Function Code

<FUNC>

Number of

Arguments
Operation performed

ADD 2 addition: ARG1 + ARG2

SUB 2 subtraction: ARG1 − ARG2

MUL 2 multiplication: ARG1 ∗ ARG2

DIV 2 *(floating) division: ARG1 / ARG2

IDV 2 **(integer) division: ARG1 / ARG2

PWR 2 raise to power: ARG1 ∗∗ ARG2

NEG 1 negate (change sign): −ARG

SQRT 1 square root:
√

ARG

LOG 1 natural logarithm: ln(ARG)

LG10 1 common logarithm: log10(ARG)

EXP 1 exponential: exp(ARG)

ABS 1 absolute (positive) value: |ARG|

NINT 1 nearest integer value to ARG

INT 1 Fortran AINT (truncation to integer) function

MAX 2 maximum: max(ARG1, ARG2)

MIN 2 minimum: min(ARG1, ARG2)

DIM 2 Fortran DIM (positive difference) function

MOD 2 Fortran MOD (remainder) function

SIGN 2 Fortran SIGN (transfer of sign) function

Notes: *Equivalent to NINT(REAL(ARG1)/REAL(ARG2)) for non-floating quantities

**Equivalent to AINT(ARG1/ARG2) for floating quantities

Table 2: Function codes used in routine names and the operations to which they correspond.
The functions shown here are implemented for all the numerical data types (type codes UB, B,
UW, W, I, R & D).

SUN/39.2 —THE VEC_ ROUTINES 7

2.4 VAL_ Type Conversion Functions

Conversion of scalar values between numerical data types may be performed by invoking the
appropriate VAL_ type conversion functions, using statements such as:

RESULT = VAL_<T1>TO<T2>(BAD, ARG, STATUS)

Here, the VAL_ function takes an argument of type <T1 > and returns a result of type <T2 >,
having performed type conversion. The data type codes <T1 > and <T2 > may be any of those
specified in Table 1.

Thus, for example, the function VAL_BTOUW converts a byte argument to an unsigned word
result, while VAL_DTOI converts from double precision to integer.

Note that conversions from floating point types (_REAL or _DOUBLE) to non-floating point
types result in rounding of the data (not truncation as would happen with a Fortran assignment
statement).

2.5 Declaring the VAL_ Functions

Since the VAL_ functions return a result via the routine name, appropriate declarations of their
Fortran type must be made before they are used. Thus, for instance, an application which used
the routines VAL_ADDUB and VAL_DTOI would require the declarations:

BYTE VAL_ADDUB
INTEGER VAL_DTOI

A routine suitable for processing by the GENERIC compiler might require equivalent generic
declarations:

<TYPE> VAL_ADD<T>
<TYPE> VAL_DTO<T>

3 THE VEC_ ROUTINES

The VEC_ routines are a set of subroutines which perform arithmetic, mathematical operations
and type conversion on vectorised arrays of data stored using any numerical type. They incorpo-
rate handling of numerical errors and propagation of the standard bad values in a way that is
fully compatible with the VAL_ functions.

VEC_ routines are invoked by statements of the form:

CALL VEC_<name>(BAD, N, ARG, RESULT, IERR, NERR, STATUS)

or

SUN/39.2 —THE VEC_ ROUTINES 8

Function Code

<FUNC>

Number of

Arguments
Operation performed

SIN 1 *sine function: sin(ARG)

SIND 1 **sine function: sin(ARG)

COS 1 *cosine function: cos(ARG)

COSD 1 **cosine function: cos(ARG)

TAN 1 *tangent function: tan(ARG)

TAND 1 **tangent function: tan(ARG)

ASIN 1 *inverse sine function: sin−1(ARG)

ASND 1 **inverse sine function: sin−1(ARG)

ACOS 1 *inverse cosine function: cos−1(ARG)

ACSD 1 **inverse cosine function: cos−1(ARG)

ATAN 1 *inverse tangent function: tan−1(ARG)

ATND 1 *inverse tangent function: tan−1(ARG)

ATN2 2 *Fortran ATAN2 (inverse tangent) function

AT2D 2 **VAX Fortran ATAN2D (inverse tangent) function

SINH 1 hyperbolic sine function: sinh(ARG)

COSH 1 hyperbolic cosine function: cosh(ARG)

TANH 1 hyperbolic tangent function: tanh(ARG)

Notes: *Argument(s)/result in radians

**Argument(s)/result in degrees

Table 3: Function codes used in routine names and the operations to which they correspond.
The functions shown here are only implemented for the floating point data types (type codes R
& D).

SUN/39.2 —THE VEC_ ROUTINES 9

CALL VEC_<name>(BAD, N, ARG1, ARG2, RESULT, IERR, NERR, STATUS)

where <name> specifies the operation to be performed and:

• BAD is a logical value specifying whether bad input arguments are to be recog-
nised;

• N is an integer value specifying the number of array elements to process;

• ARG, ARG1 and ARG2 are the input arguments (each is an N-element vectorised
array);

• RESULT is an N-element vectorised output array;

• IERR is an integer output argument which identifies the first array element to
generate a numerical error;

• NERR is an integer output argument which returns a count of the number of
numerical errors which occur;

• STATUS is an integer error status variable.

3.1 Applicability & Efficiency

The VEC_ routines are designed for optimum efficiency when processing large arrays of data
and are consequently far more efficient at performing this task than the corresponding VAL_
functions. When possible, VEC_ routines should always be used in preference to VAL_ functions
unless the number of calculations to be performed is small (typically 1000 or less).

The main disadvantage in using VEC_ routines is likely to be the additional programming
effort, because workspace arrays will probably be required and may have to be acquired
dynamically — unless only a single operation is being performed. Also, certain operations
cannot be performed using VEC_ routines (summing the pixels in an image for example) and,
in such cases, routines from the NUM facility (section 4) may have to be used instead. Note,
however, that if NUM_ routines are used, then security against numerical errors is more difficult
to achieve and (especially in the case of arithmetic operations) VAX-specific programming
techniques may be required. The resulting applications will not then be portable.

3.2 VEC_ Error Handling

The error handling strategy used by the VEC_ routines is as follows:

(1) If the STATUS argument is not set to SAI__OK on entry, then the routine returns im-
mediately without action — the contents of the RESULT array remain undefined in this
case.

(2) If the BAD argument is set to .TRUE. and any element of an input argument array is bad,
then a bad value is placed in the corresponding element of the RESULT array.

(3) A bad value is also placed in the corresponding element of the RESULT array if a numerical
error occurs when processing any element of an input argument array — in this instance
an appropriate error code will also be returned via the STATUS argument.

SUN/39.2 —THE VEC_ ROUTINES 10

On exit, the IERR argument will contain the index of the first array element which generated a
numerical error (or zero if there were no errors) and NERR will contain a count of the number
of numerical errors which occurred. If more than one error occurred, then the STATUS value
returned will be appropriate to the first of these.

3.3 VEC_ Arithmetic and Mathematical Routines

Arithmetic and mathematical operations may be performed on vectorised arrays of data of any
numerical type by invoking appropriate VEC_ routines, using statements such as:

CALL VEC_<FUNC><T> (BAD, N, ARG, RESULT, IERR, NERR, STATUS)

or

CALL VEC_<FUNC><T> (BAD, N, ARG1, ARG2, RESULT, IERR, NERR, STATUS)

Here, the VEC_ routine takes a vectorised input argument array (or arrays) with N elements of
type <T> and returns a vectorised result array which is also of type <T>, having performed
the arithmetic or mathematical operation specified by <FUNC> on each array element. The
data type code <T> may be any of those specified in Table 1 and <FUNC> may be any of
the function codes specified in Tables 2 & 3. The number of input argument arrays (1 or 2)
appropriate to each function is also indicated in these latter Tables.

Thus, for example, the subroutine VEC_ADDUW adds two vectorised unsigned word arrays to
produce an array of unsigned word results, while VEC_SQRTD evaluates the square root of a
single vectorised array of double precision values, returning an array of double precision results.

3.4 VEC_ Type Conversion Routines

Conversion of vectorised arrays between numerical data types may be performed by invoking
the appropriate VEC_ type conversion routines, using statements such as:

CALL VEC_<T1>TO<T2> (BAD, N, ARG, RESULT, IERR, NERR, STATUS)

Here, the VEC_ routine takes a vectorised input argument array with N elements of type <T1 >
and returns a vectorised result array of type <T2 >, having performed type conversion on each
array element. The data type codes <T1 > and <T2 > may be any of those specified in Table 1.

Thus, for example, the subroutine VEC_BTOUW converts a vectorised array of byte data into
unsigned word data, while VEC_DTOI converts a vectorised array from double precision to
integer.

Note that conversions from floating point types (_REAL or _DOUBLE) to non-floating point
types result in rounding of the data (not truncation as would happen with a Fortran assignment
statement).

SUN/39.2 —THE NUM_ FUNCTIONS 11

4 THE NUM_ FUNCTIONS

The NUM_ functions perform arithmetic, mathematical operations, type conversion and inter-
comparison on numbers, operating at a rather lower level than the VAL_ or VEC_ routines — in
fact many of these latter routines are currently implemented using the NUM facility.

At present, all the NUM_ routines are implemented as Fortran statement functions whose
definitions must be incorporated into an application with appropriate INCLUDE statements
(section 4.5).

They are normally invoked by statements of the form:

RESULT = NUM_<name>(ARG)

or

RESULT = NUM_<name>(ARG1, ARG2)

where <name> specifies the operation to be performed and ARG, ARG1 and ARG2 are input
arguments.

4.1 Applicability & Efficiency

The NUM_ functions are the most flexible routines in this package. Being implemented as
statement functions, they will normally be expanded “in-line” by the VAX Fortran compiler and
may therefore be used in any situation without incurring the overhead of an external function
call. The expanded function definition can subsequently take part in the compiler’s optimisation
process and will therefore result in code which executes very efficiently (although some of the
machine-specific features used by VEC_ routines cannot be accessed in this way).

However, the NUM_ functions are also the least robust routines in this package. This is because
they incorporate no protection against numerical errors (such as division by zero or overflow),
neither do they generate or recognise bad data — which they will always treat as valid. If a
numerical error occurs when a NUM_ function is invoked, the application will immediately
terminate (i.e. crash).

The robustness of NUM_ functions may be improved by incorporating explicit checks on the
numbers being processed and by ensuring that the functions are not invoked if their arguments
may be undefined (under error conditions, for instance). Such checks will always degrade the
execution efficiency, however, and the equivalent VEC_ routine (section 3) is then likely to be at
least as efficient. Consequently, use of the NUM_ functions is generally appropriate only when:

• It is known (from the nature of the data) that numerical errors cannot occur; or

• Efficiency considerations completely outweigh the need for robustness; or

• The problem is such that no alternative routine from this package is applicable.

SUN/39.2 —THE NUM_ FUNCTIONS 12

For applications where VAX-specific code is acceptable, the NUM facility also includes a sim-
ple VAX condition handler which can be used to recover from numerical errors (section 4.6).
This may be used with the NUM_ functions (and Fortran arithmetic expressions) to combine
robustness with efficiency and flexibility in cases where other routines from this package are
not suitable. However, the programming effort required is relatively high and the resulting
applications will not be portable.

4.2 NUM_ Arithmetic and Mathematical Functions

Arithmetic and mathematical operations may be performed on numbers stored using any numer-
ical data type by invoking appropriate NUM_ functions, using statements such as:

RESULT = NUM_<FUNC><T>(ARG)

or

RESULT = NUM_<FUNC><T>(ARG1, ARG2)

Here, the NUM_ function takes an argument (or arguments) of type <T> and returns a result
which is also of type <T>, having performed the arithmetic or mathematical operation specified
by <FUNC>. The data type code <T> may be any of those specified in Table 1 and <FUNC>
may be any of the function codes specified in Tables 2 & 3. The number of function arguments
(1 or 2) appropriate to each function is also indicated in these latter Tables.

Thus, for example, the function NUM_ADDUW adds two unsigned word arguments to produce
an unsigned word result, while NUM_SQRTD evaluates the square root of a double precision
argument, returning a double precision result.

4.3 NUM_ Type Conversion Functions

Conversion of numbers between numerical data types may be performed by invoking the
appropriate NUM_ type conversion functions, using statements such as:

RESULT = NUM_<T1>TO<T2>(ARG)

Here, the NUM_ function takes an argument of type <T1 > and returns a result of type <T2 >,
having performed type conversion. The data type codes <T1 > and <T2 > may be any of those
specified in Table 1.

Thus, for example, the function NUM_BTOUW converts a byte argument to an unsigned word
result, while NUM_DTOI converts from double precision to integer.

Note that conversions from floating point types (_REAL or _DOUBLE) to non-floating point
types result in rounding of the data (not truncation as would happen with a Fortran assignment
statement).

SUN/39.2 —THE NUM_ FUNCTIONS 13

Relational Operation Code

<ROPER>
Inter-comparison

EQ ARG1 .EQ. ARG2

NE ARG1 .NE. ARG2

GT ARG1 .GT. ARG2

GE ARG1 .GE. ARG2

LT ARG1 .LT. ARG2

LE ARG1 .LE. ARG2

Table 4: The relational operation codes used in the names of NUM_ functions and the inter-
comparisons to which they correspond.

4.4 NUM_ Inter-comparison Functions

Inter-comparison of numbers stored using any numerical data type, to test for equality or
inequality relations, may be performed by invoking the appropriate NUM_ inter-comparison
functions, using statements such as:

RESULT = NUM_<ROPER><T>(ARG1, ARG2)

Here, the NUM_ function takes two arguments of type <T> and returns a logical result, having
compared its arguments according to the relational operation specified by <ROPER>. The data
type code <T> may be any of those in Table 1 and <ROPER> may be any of the relational
operation codes specified in Table 4.

Thus, for example, the logical function NUM_GTUB returns a .TRUE. result if the unsigned byte
number ARG1 is greater than the unsigned byte number ARG2, while NUM_LED returns .TRUE.
if the double precision number ARG1 is less than or equal to the double precision number ARG2.

Note that equivalent inter-comparison functions are not available in the VAL or VEC facilities.

4.5 Declaring and Defining the NUM_ Functions

The NUM facility is implemented as a set of Fortran statement functions. To use them, an
application must:

(1) Declare the function names and dummy arguments, specifying their Fortran types;

(2) Define the functions.

Two files are provided which contain Fortran statements to perform these tasks and they may
be included in an application with the statements:

SUN/39.2 —THE NUM_ FUNCTIONS 14

INCLUDE ’NUM_DEC’
INCLUDE ’NUM_DEF’

which should appear (in this order) immediately after any local Fortran variables have been
declared and before the executable code begins. These statements will declare and define the
entire set of NUM_ functions.

In almost all cases, however, compilation time can be considerably reduced by defining only a
sub-set of these functions. Files are therefore provided which allow the function definitions to
be selected according to the data type of their arguments. When using this option, the following
two statements should first be used to declare and define the type conversion functions and
their arguments (since these are used by all the other NUM_ functions they must always be
present):

INCLUDE ’NUM_DEC_CVT’
INCLUDE ’NUM_DEF_CVT’

If the application only uses the NUM_ functions to perform type conversion, then this is all that
is required. However, to additionally declare and define the NUM_ functions which process a
particular argument data type, the statements:

INCLUDE ’NUM_DEC_<T>’
INCLUDE ’NUM_DEF_<T>’

should then be used (here, the argument type code <T> is one of those specified in Table 1).
Thus, to give a complete example, the NUM_ functions for processing unsigned word data
would be declared and defined using the following four statements:

INCLUDE ’NUM_DEC_CVT’
INCLUDE ’NUM_DEC_UW’
INCLUDE ’NUM_DEF_CVT’
INCLUDE ’NUM_DEF_UW’

Note that to comply with Fortran restrictions on statement order, all the type declaration state-
ments (NUM_DEC_ files) have to appear before the function definition statements (NUM_DEF_
files).

4.6 NUM Error Handling

Because the NUM_ functions do not have any built-in error handling capability, the NUM facility
provides a simple VAX condition handler which may be used to explicitly implement error
handling, both for the NUM_ functions and straightforward Fortran arithmetic expressions.

Note that using this capability involves calls to VAX Run Time Library (RTL) routines and will therefore
result in applications which are not portable. Such applications will continue to operate, however, if the
RTL calls are simply removed, although error handling will not then occur.

The technique is best explained by an example:

SUN/39.2 —THE NUM_ FUNCTIONS 15

SUBROUTINE EXAMPL(N, DATA)

* Declare constants and variables.
INCLUDE ’SAE_PAR’
INCLUDE ’PRM_PAR’
INTEGER N, I
REAL DATA(N)

* Declare the condition handler.
INTEGER NUM_TRAP [1]
EXTERNAL NUM_TRAP

* Include the NUM_CMN common block definition, which defines
* the variable NUM_ERROR.

INCLUDE ’NUM_CMN’ [2]

* Establish the condition handler.
CALL LIB$ESTABLISH(NUM_TRAP) [3]

* Initialise.
NUM_ERROR = SAI__OK [4]

* Perform the calculations.
DO 1 I = 1, N

DATA(I) = 1.0 / (DATA(I) ** 2) [5]

* Check if an error occurred.
IF(NUM_ERROR .NE. SAI__OK) THEN [6]

* If so, reset the NUM_ERROR flag and define the result.
NUM_ERROR = SAI__OK [7]
DATA(I) = VAL__BADR

ENDIF
1 CONTINUE

* Remove the condition handler and exit the routine.
CALL LIB$REVERT [8]
END

Programming notes:

(1) The integer function NUM_TRAP is provided as a standard condition handler which traps
numerical errors. This routine must be declared in an EXTERNAL statement.

(2) The common block NUM_CMN is defined using an INCLUDE statement. It contains
a single integer variable called NUM_ERROR which communicates with the condition
handler.

(3) The VAX RTL routine LIB$ESTABLISH is called to establish the condition handler. From
this point on, numerical errors will not cause the application to crash, but will be inter-
cepted by the NUM_TRAP routine. This behaviour is local to the routine from which
LIB$ESTABLISH is called. The behaviour of VAL_ and VEC_ routines and the handling of
non-numerical errors is not affected.

SUN/39.2 —CONSTANTS 16

(4) The common block variable NUM_ERROR is initialised to SAI__OK. This is important
because numerical errors will not be detected otherwise.

(5) Calculations are performed which may potentially fail. These may include calls to NUM_
functions and need not be confined to a single expression or statement. In the above
example floating point overflow or division by zero could occur, according to the contents
of the DATA array.

(6) After a calculation, the status variable NUM_ERROR is tested. If it is not SAI__OK, then a
numerical error has occurred. The value of NUM_ERROR may be used as a status code
for reporting the error if required.

(7) If an error has occurred, suitable action is taken. This must include resetting the numerical
error status NUM_ERROR to SAI__OK and defining the result of any calculations which
failed. This will usually be done using a flag for later identification (normally one of the
Starlink bad values).

(8) Finally, the condition handler is removed by calling the RTL routine LIB$REVERT. This is
strictly only necessary if further calculations which do not require error handling are to be
performed in the same routine.

It is important to note that when a calculation fails, more than one numerical error may occur.
This is because the (erroneous) result of the first operation to fail can be re-used in subse-
quent parts of an arithmetic expression and may precipitate further errors. To ensure that
NUM_ERROR indicates the true (first) cause of an error in such cases, this variable behaves as
a latch; once set, it will not again change in response to an error until it has first been reset to
SAI__OK.

Note also, that the result of a calculation which fails (or may have failed) must not be used
under any circumstances. It may either contain an erroneous result or an invalid floating point
number (a reserved operand) which will cause any application which processes it to crash. Such
results must immediately be replaced with a well-defined value.

5 CONSTANTS

This section describes a set of constants which support the processing facilities in this package
by specifying machine-specific quantities associated with each data type. These constants are
identified by symbolic names which are defined (using Fortran PARAMETER statements) in the
file PRM_PAR. The definitions may be incorporated into an application with the statement:

INCLUDE ’PRM_PAR’

Here, as elsewhere in this package, a distinction is drawn between values (which may be flagged
as bad) and numbers (which are always interpreted literally). The constants accordingly have
names with one of the two forms:

VAL__<const><T>

SUN/39.2 —CONSTANTS 17

Constant Type Quantity represented

VAL__BAD<T> *<T> Bad value, used for flagging undefined data.

VAL__EPS<T> <T> Machine precision.

VAL__MAX<T> <T> Maximum (most positive) non-bad value.

NUM__MAX<T> <T> Maximum (most positive) number.

VAL__MIN<T> <T> Minimum (most negative) non-bad value.

NUM__MIN<T> <T> Minimum (most negative) number.

VAL__NB<T> _INTEGER Number of basic machine units (bytes) used by a value.

VAL__SML<T> <T> Smallest positive (non-zero) value.

VAL__SZ<T> _INTEGER Number of characters required to format a value as a
decimal string.

*Type=<T> indicates that the constant’s data type matches the type code <T>.

Table 5: A summary of the constants available, showing their data types and the quantities they
represent.

or

NUM__<const><T>

where <T> is one of the type codes in Table 1 and <const> specifies the quantity which the
constant represents. In most cases, the two forms of the constant are necessarily identical and
only the VAL__ form is provided.

The constants are also available in the C include file prm_par.h.

Note that many of these constants may need to change if transported to another machine.4

When writing software which is intended to be portable you should therefore:

• Use the constants provided here, rather than defining your own;

• Always refer to constants using symbolic names (never explicit numerical values);

• Never make implicit assumptions about the values these constants might take.

A summary of the constants available is given in Table 5. The following sections describe them
in more detail.

4 The constants given here are appropriate to VAX machines using F- and D-type floating point number repre-
sentations. Only a simple description of floating point arithmetic is given. Applications requiring a more complete
description should use routines from the NAG library, with which the values given here are compatible.

SUN/39.2 —CONSTANTS 18

5.1 Bad Data Values

Constants with names of the form VAL__BAD<T> represent the Starlink-defined bad (or
“magic”) values to be used for flagging bad or undefined data. The use of these constants is
discussed in SGP/38, which also defines the values to be used on VAX machines. These are:

Constant Type Value Hexadecimal Pattern

VAL__BADUB _UBYTE 255 FF

VAL__BADB _BYTE −128 80

VAL__BADUW _UWORD 65535 FFFF

VAL__BADW _WORD −32768 8000

VAL__BADI _INTEGER −2147483648 80000000

VAL__BADR _REAL −1.7014117E+38 FFFFFFFF

VAL__BADD _DOUBLE −1.701411834604923D+38 FFFFFFFFFFFFFFFF

Note that the operations permitted on bad values are restricted to:

• Assigning the value of a “bad constant” to a variable;

• Testing a variable for equality with a “bad constant”;

• Assigning a non-bad value to a variable to replace one which was previously bad.

Software which aims to be portable may assume that the bad values described by these constants
will always lie at the extreme end of the number range which can be represented by each data
type. However, no assumptions should be made about which end of the range (upper or lower)
this will be — an explicit test should be made if it is necessary to determine this.

5.2 Machine Precision

Constants with names of the form VAL__EPS<T> represent the machine precision when
performing calculations using each data type. The machine precision ε is the smallest positive
value such that (1 + ε) can be represented on the machine and is distinguishable from 1 using
the data type in question. The data types of these constants match the quantities they describe,
as follows:

SUN/39.2 —CONSTANTS 19

Constant Type Value Hexadecimal Pattern

VAL__EPSUB _UBYTE 1 01

VAL__EPSB _BYTE 1 01

VAL__EPSUW _UWORD 1 0001

VAL__EPSW _WORD 1 0001

VAL__EPSI _INTEGER 1 00000001

VAL__EPSR _REAL 1.1920929E−7 00003500

VAL__EPSD _DOUBLE 2.7755575615628914E−17 0000000000002500

5.3 Maximum Data Values

Constants with names of the form VAL__MAX<T> represent the maximum (most positive)
non-bad values which can be represented on the machine. The data types of these constants
match the quantities they describe, as follows:

Constant Type Value Hexadecimal Pattern

VAL__MAXUB _UBYTE 254 FE

VAL__MAXB _BYTE 127 7F

VAL__MAXUW _UWORD 65534 FFFE

VAL__MAXW _WORD 32767 7FFF

VAL__MAXI _INTEGER 2147483647 7FFFFFFF

VAL__MAXR _REAL 1.7014117E+38 FFFF7FFF

VAL__MAXD _DOUBLE 1.701411834604923D+38 FFFFFFFFFFFF7FFF

Constants with names of the form NUM__MAX<T> represent the maximum (most positive)
numbers which can be represented on the machine. The data types of these constants also match
the quantities they describe, as follows:

SUN/39.2 —CONSTANTS 20

Constant Type Value Hexadecimal Pattern

NUM__MAXUB _UBYTE 255 FF

NUM__MAXB _BYTE 127 7F

NUM__MAXUW _UWORD 65535 FFFF

NUM__MAXW _WORD 32767 7FFF

NUM__MAXI _INTEGER 2147483647 7FFFFFFF

NUM__MAXR _REAL 1.7014117E+38 FFFF7FFF

NUM__MAXD _DOUBLE 1.701411834604923D+38 FFFFFFFFFFFF7FFF

5.4 Minimum Data Values

Constants with names of the form VAL__MIN<T> represent the minimum (most negative)
non-bad values which can be represented on the machine. The data types of these constants
match the quantities they describe, as follows:

Constant Type Value Hexadecimal Pattern

VAL__MINUB _UBYTE 0 00

VAL__MINB _BYTE −127 81

VAL__MINUW _UWORD 0 0000

VAL__MINW _WORD −32767 8001

VAL__MINI _INTEGER −2147483647 80000001

VAL__MINR _REAL −1.7014117E+38 FFFEFFFF

VAL__MIND _DOUBLE −1.701411834604923D+38 FFFEFFFFFFFFFFFF

Constants with names of the form NUM__MIN<T> represent the minimum (most negative)
numbers which can be represented on the machine. The data types of these constants also match
the quantities they describe, as follows:

SUN/39.2 —CONSTANTS 21

Constant Type Value Hexadecimal Pattern

NUM__MINUB _UBYTE 0 00

NUM__MINB _BYTE −128 80

NUM__MINUW _UWORD 0 0000

NUM__MINW _WORD −32768 8000

NUM__MINI _INTEGER −2147483648 80000000

NUM__MINR _REAL −1.7014117E+38 FFFFFFFF

NUM__MIND _DOUBLE −1.701411834604923D+38 FFFFFFFFFFFFFFFF

5.5 Data Storage Requirements

Constants with names of the form VAL__NB<T> represent the number of basic machine units
(bytes) required to hold one value of each data type. All these constants are of type _INTEGER,
with values as follows:

Constant Type Value

VAL__NBUB _INTEGER 1

VAL__NBB _INTEGER 1

VAL__NBUW _INTEGER 2

VAL__NBW _INTEGER 2

VAL__NBI _INTEGER 4

VAL__NBR _INTEGER 4

VAL__NBD _INTEGER 8

5.6 Smallest Value

Constants with names of the form VAL__SML<T> represent the smallest positive (non-zero)
value which can be represented on the machine. The data types of these constants match the
quantities they describe, as follows:

SUN/39.2 —CONSTANTS 22

Constant Type Value Hexadecimal Pattern

VAL__SMLUB _UBYTE 1 01

VAL__SMLB _BYTE 1 01

VAL__SMLUW _UWORD 1 0001

VAL__SMLW _WORD 1 0001

VAL__SMLI _INTEGER 1 00000001

VAL__SMLR _REAL 2.9387359E−39 00000080

VAL__SMLD _DOUBLE 2.9387358770557188E−39 0000000000000080

5.7 Character String Sizes

Constants with names of the form VAL__SZ<T> specify the maximum number of characters
required to represent each numerical data type when formatted as a decimal string. All these
constants are of type _INTEGER and should be used when declaring character variables to hold
formatted numerical data. Their values are:

Constant Type Value

VAL__SZUB _INTEGER 3

VAL__SZB _INTEGER 4

VAL__SZUW _INTEGER 5

VAL__SZW _INTEGER 6

VAL__SZI _INTEGER 11

VAL__SZR _INTEGER 14

VAL__SZD _INTEGER 22

SUN/39.2 —CHANGES IN THIS DOCUMENT 23

6 COMPILING AND LINKING

6.1 Unix

Before attempting to compile or link applications, the Starlink executables directory (normally
/star/bin) should be added to your PATH. Links to the installed include files for PRIMDAT may
then be set up in your current working directory by executing the command:

% prm_dev

and applications containing INCLUDE file names in upper case, in the normal way, may be
compiled and linked with the commands:

% f77 -o prog prog.f ‘prm_link‘

for stand-alone applications, or:

% alink prog.f ‘prm_link_adam‘

for ADAM applications.

6.2 VMS

The files required for compilation and linking with the routines in this package reside in a
directory with logical name PRIMDAT_DIR. Before attempting to compile or link applications,
logical names must be defined for the required files by executing the DCL command:

$ @PRIMDAT_DIR:START

Applications which contain Fortran INCLUDE statements referring to files in this directory may
then be compiled.

Applications should be linked with routines from this package using the link options file
PRM_LINK. For instance, to link an application called PROG, the DCL command:

$ LINK PROG,PRM_LINK/OPT

might be used. To link an ADAM application, the $LINK command would be replaced by the
ADAM command $ALINK.

7 CHANGES IN THIS DOCUMENT

Although PRIMDAT is now available for Unix platforms, the major part of this document has
not been revised and is still VMS oriented. The use of PRIMDAT is similar for both systems
but note that exception handling is not available for all platforms (in particular, not for Alpha
OSF/1).

Section 6.1 has been added for Unix users.

SUN/39.2 —PERFORMANCE STATISTICS 24

A PERFORMANCE STATISTICS

This Appendix gives performance statistics for the PRIMDAT routines in the form of typical
execution times. These are provided primarily to assist in the choice of routine for a particular
purpose, but they also provide a benchmark against which alternative algorithms and future
improvements can be judged.

In practice, execution times depend on many factors, such as the particular processor being
used, the number of page faults generated and (in many cases) the routine argument values.
Consequently, great care should be exercised if comparing the figures given here with the
performance of a real application. Nevertheless, the figures do give a good indication of the
relative efficiency of the routines, and are generally repeatable within 5 or 10 per cent. Users
who know of more efficient algorithms are encouraged to contact the author so that they may be
tested under identical conditions and, if appropriate, incorporated into this package.

The statistics presented here have been gathered on the Durham MicroVAX II (DUMV1), using
a program which processes a sequence of data obtained from an input array (or arrays) and
returns the results to a separate output array. For instance, in the case of the NUM_ADDR
function, it is equivalent to the simple loop:

DO 1 I = 1, N
A(I) = NUM_ADDR(B(I) , C(I))

1 CONTINUE

The figures given represent the CPU time used to calculate one result (i.e. the total CPU time
used by this loop divided by N), each being the median of five separate determinations. Note
that the cost of executing the loop and of accessing the arguments and assigning the result is
included, since these overheads will typically feature in most real applications.

The cost of page faults is not included, however. These will usually occur when data arrays are
accessed for the first time (and subsequently if the array is large or has not been accessed for a
while). The cost of page faults is difficult to quantify, as it may be installation-dependent and
will also depend on the level of system activity at the time. However, as a very rough guide,
page faulting on the Durham MicroVAX II adds a broad average of around 7µs to the CPU time
figure for routines which access a single _REAL argument array and around 11µs for routines
accessing two _REAL argument arrays. Page faults also impose a larger elapsed time overhead,
so that their effect can be substantial and can often make small apparent differences in routine
performance seem insignificant in practice.

SUN/39.2 —PERFORMANCE STATISTICS 25

Data Type Code <T>

VAL_

Function
D R I W UW B UB

ADD<T> 100 82 94 78 89 76 89 77 95 83 89 76 97 85

SUB<T> 100 82 94 79 89 76 89 77 95 83 88 76 97 85

MUL<T> 102 83 95 79 93 81 94 82 99 88 92 79 101 91

DIV<T> 105 85 96 81 110 98 111 99 109 97 105 93 111 98

IDV<T> 151 134 139 122 103 91 98 85 103 90 94 82 105 94

PWR<T> 410 395 287 270 140 127 139 127 140 128 135 124 140 129

NEG<T> 51 44 48 42 47 48 47 48 59 57 48 48 52 51

SQRT<T> 120 115 111 107 114 113 115 113 122 119 115 114 113 111

LOG<T> 186 178 134 130 137 136 140 136 149 146 140 137 141 139

LG10<T> 194 190 141 137 146 143 146 143 157 154 146 143 149 147

EXP<T> 198 188 163 153 167 160 168 160 173 167 168 158 182 175

ABS<T> 53 47 48 42 49 48 54 55 45 41 49 50 43 43

NINT<T> 121 112 108 101 45 42 45 42 45 42 45 42 44 43

INT<T> 93 87 82 79 45 41 45 42 45 42 45 41 43 43

MAX<T> 68 58 66 59 58 53 56 52 64 60 60 56 66 62

MIN<T> 68 57 66 59 56 52 57 53 65 61 61 56 66 62

DIM<T> 103 83 95 80 97 85 88 76 65 61 95 82 66 63

MOD<T> 242 222 183 165 108 99 112 103 114 101 112 100 117 106

SIGN<T> 115 95 108 93 137 124 132 120 55 42 139 125 53 44

SIN<T> 258 247 196 186

SIND<T> 222 210 172 163

COS<T> 198 194 151 147

COSD<T> 245 232 202 192

TAN<T> 370 360 273 265

TAND<T> 343 333 265 258

ASIN<T> 255 248 206 202

ASND<T> 258 253 206 202

ACOS<T> 270 265 216 210

ACSD<T> 273 270 218 212

ATAN<T> 167 162 125 121

ATND<T> 170 163 125 120

ATN2<T> 232 218 194 180

AT2D<T> 235 222 192 178

SINH<T> 196 182 167 155

COSH<T> 255 238 212 198

TANH<T> 247 237 170 163

T F T F T F T F T F T F T F

BAD argument set?

Table 6: Approximate median execution times (µs per operation) for the VAL_ arithmetic and
mathematical functions.

SUN/39.2 —PERFORMANCE STATISTICS 26

Data Type Code <T>

VEC_

Routine
D R I W UW B UB

ADD<T> 21 10.6 16.6 8.6 11.2 6.6 11.7 6.3 17.0 12.8 11.4 6.8 19.4 14.8

SUB<T> 21 10.6 16.6 8.6 11.2 6.6 11.7 6.3 17.1 12.8 11.5 6.8 19.3 14.8

MUL<T> 23 12.2 17.4 9.3 15.2 10.6 16.5 11.1 21 17.0 15.1 10.1 25 20

DIV<T> 25 14.5 18.4 10.4 25 21 26 22 32 28 26 22 32 28

IDV<T> 77 68 66 56 18.7 13.9 20 14.9 24 20 16.7 12.1 28 23

PWR<T> 343 337 224 208 66 60 74 63 70 65 66 63 69 69

NEG<T> 10.7 6.1 8.3 4.8 8.1 7.5 8.1 7.5 13.0 10.8 8.1 7.4 13.8 11.8

SQRT<T> 78 72 72 67 78 73 77 74 76 74 80 74 76 77

LOG<T> 143 137 93 90 100 95 98 96 100 97 101 96 101 98

LG10<T> 155 148 100 97 108 102 107 104 107 104 108 103 108 106

EXP<T> 130 125 96 93 101 100 102 101 108 106 102 101 108 107

ABS<T> 11.0 6.5 7.7 4.4 9.2 8.6 9.1 8.6 5.4 3.7 11.0 10.4 5.3 3.8

NINT<T> 80 74 72 63 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.7

INT<T> 53 48 47 43 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8

MAX<T> 20 11.8 14.3 8.3 9.0 6.2 8.9 6.3 15.1 12.6 11.1 8.5 17.0 14.4

MIN<T> 20 11.6 14.9 8.5 9.6 6.5 9.5 6.5 15.4 13.4 11.3 9.1 17.6 14.8

DIM<T> 22 13.8 16.8 10.6 12.3 9.3 12.8 8.8 15.7 13.2 13.6 12.1 17.8 15.0

MOD<T> 185 172 120 110 27 24 28 26 33 29 31 29 38 35

SIGN<T> 77 66 72 55 71 66 60 56 7.5 3.8 73 69 7.5 3.8

SIN<T> 182 178 122 126

SIND<T> 147 143 101 103

COS<T> 158 155 112 109

COSD<T> 170 165 130 133

TAN<T> 297 293 200 202

TAND<T> 267 263 192 198

ASIN<T> 212 206 165 165

ASND<T> 213 210 165 165

ACOS<T> 225 222 173 172

ACSD<T> 228 225 175 175

ATAN<T> 124 121 85 82

ATND<T> 129 124 85 82

ATN2<T> 192 178 150 134

AT2D<T> 194 180 149 134

SINH<T> 126 129 104 105

COSH<T> 190 183 149 140

TANH<T> 206 194 137 137

T F T F T F T F T F T F T F

BAD argument set?

Table 7: Approximate median execution times (µs per operation) for the VEC_ arithmetic and
mathematical routines.

SUN/39.2 —PERFORMANCE STATISTICS 27

Data Type Code <T>

NUM_

Function
D R I W UW B UB

ADD<T> 8.5 6.4 4.5 4.4 10.6 4.0 12.1

SUB<T> 8.4 6.5 4.5 4.4 10.6 3.9 12.1

MUL<T> 10.3 7.2 8.6 9.2 14.8 7.4 17.2

DIV<T> 12.6 8.4 18.6 19.2 25 18.8 25

IDV<T> 65 55 11.5 13.2 17.8 9.2 21

PWR<T> 335 213 60 62 66 60 67

NEG<T> 5.2 4.4 3.5 3.5 9.4 3.1 10.1

SQRT<T> 73 68 73 74 75 72 73

LOG<T> 143 90 96 97 96 94 95

LG10<T> 154 97 102 103 104 102 103

EXP<T> 122 92 97 98 102 93 100

ABS<T> 6.6 4.2 4.4 4.4 0.6 5.6 0.3

NINT<T> 86 72 1.1 0.5 0.5 0.3 0.3

INT<T> 51 44 1.1 0.5 0.5 0.3 0.3

MAX<T> 11.2 8.1 6.3 6.1 11.6 7.0 13.3

MIN<T> 10.5 8.1 6.3 6.3 12.1 7.2 13.7

DIM<T> 10.4 7.9 6.4 6.1 12.4 7.5 13.9

MOD<T> 178 112 20 22 27 25 31

SIGN<T> 74 72 73 69 18.4 69 18.4

SIN<T> 176 118

SIND<T> 140 95

COS<T> 154 110

COSD<T> 162 124

TAN<T> 291 195

TAND<T> 264 186

ASIN<T> 198 158

ASND<T> 201 157

ACOS<T> 214 166

ACSD<T> 218 167

ATAN<T> 120 84

ATND<T> 124 84

ATN2<T> 184 142

AT2D<T> 185 140

SINH<T> 127 98

COSH<T> 180 140

TANH<T> 210 130

Table 8: Approximate median execution times (µs per operation) for the NUM_ arithmetic and
mathematical functions.

SUN/39.2 —PERFORMANCE STATISTICS 28

Result Type Code <T>

VAL_

Function
D R I W UW B UB

DTO<T> 35 45 83 72 86 73 87 75 92 79 88 75 97 86

RTO<T> 50 49 33 33 84 74 84 74 93 86 84 74 93 83

ITO<T> 49 51 49 44 33 33 80 71 87 79 79 72 87 79

WTO<T> 49 51 48 44 45 42 33 33 90 84 80 71 86 77

UWTO<T> 50 51 48 45 45 41 84 79 33 33 79 72 87 79

BTO<T> 50 46 48 44 45 42 45 42 89 83 32 33 87 80

UBTO<T> 50 46 48 45 45 41 46 42 45 41 81 72 26 26

T F T F T F T F T F T F T F

BAD argument set?

Table 9: Approximate median execution times (µs per operation) for the VAL_ type conversion
functions.

Result Type Code <T>

VEC_

Routine
D R I W UW B UB

DTO<T> 2.4 2.2 12.6 8.0 14.7 9.6 15.6 9.8 21 15.8 15.6 10.0 21 16.4

RTO<T> 9.1 5.2 1.2 1.2 12.4 8.4 13.3 9.3 18.5 14.1 13.4 9.2 18.8 15.6

ITO<T> 9.0 6.8 8.5 6.3 1.2 1.2 8.2 6.8 13.4 11.6 8.2 6.5 13.9 12.0

WTO<T> 9.1 6.8 8.4 6.3 5.8 3.6 0.6 0.7 14.2 11.8 8.0 6.5 13.4 11.1

UWTO<T> 9.5 7.3 9.0 6.6 5.4 3.2 8.5 6.6 0.7 0.6 8.9 6.3 14.3 12.6

BTO<T> 9.1 6.8 8.5 6.1 5.8 3.6 5.8 3.5 14.2 11.6 0.4 0.4 13.6 11.8

UBTO<T> 9.5 7.3 9.0 6.7 5.4 3.2 6.5 4.2 5.3 3.2 8.9 6.3 0.4 0.4

T F T F T F T F T F T F T F

BAD argument set?

Table 10: Approximate median execution times (µs per operation) for the VEC_ type conversion
routines.

SUN/39.2 —PERFORMANCE STATISTICS 29

Result Type Code <T>

NUM_

Function
D R I W UW B UB

DTO<T> 2.2 5.4 6.6 7.6 12.6 7.6 13.3

RTO<T> 5.1 1.1 6.2 6.9 12.0 7.0 12.7

ITO<T> 6.9 6.4 1.1 3.7 9.1 3.7 9.4

WTO<T> 6.7 6.2 3.5 0.5 9.7 3.7 8.8

UWTO<T> 7.1 6.7 3.1 4.0 0.5 4.1 9.9

BTO<T> 6.9 6.1 3.5 3.5 9.4 0.3 9.4

UBTO<T> 7.1 6.7 3.1 4.1 3.1 3.9 0.3

Table 11: Approximate median execution times (µs per operation) for the NUM_ type conversion
functions.

SUN/39.2 —ERROR CODES & MESSAGES 30

B ERROR CODES & MESSAGES

This Appendix describes the error conditions recognised by this package and the associated
codes and messages. If it is necessary to test for any of these error conditions, then symbolic
constants (defined by Fortran PARAMETER statements) should be used to identify the error
code in question.

The names of PRIMDAT error codes are of the form:

PRM__<code>

where <code> specifies the error condition. Their numerical values are defined in the file
PRM_ERR, and may be incorporated into an application with the statement:

INCLUDE ’PRM_ERR’

The following gives the names of the symbolic constants defined in this file, together with the
associated error messages and an explanation of each error condition:

PRM__ARGIN, function argument invalid
An invalid argument was supplied to a mathematical function.

PRM__FLTDZ, floating point divide by zero
An attempt was made to perform floating point division by zero.

PRM__FLTOF, floating point overflow
The absolute value of the result of a floating point calculation or type conversion exceeded
the largest floating point number which can be represented on the machine.

PRM__FLTUF, floating point underflow
The absolute value of the result of a floating point calculation or type conversion was
smaller than the smallest non-zero floating point number which can be represented on
the machine. This error condition will not normally be used on a VAX unless underflow
detection has been explicitly enabled.

PRM__INTDZ, integer divide by zero
An attempt was made to perform integer division by zero.

PRM__INTOF, integer overflow
The result of an integer (non-floating point) calculation or type conversion was outside the
number range which can be represented by the data type in question.

PRM__LOGZN, logarithm of zero or negative number
An attempt was made to take the logarithm of zero or a negative number.

PRM__SLOST, numerical significance lost
Numerical significance was lost during evaluation of a mathematical function; a result
could not be calculated with any meaningful precision.

SUN/39.2 —ERROR CODES & MESSAGES 31

PRM__SQRNG, square root of negative number
An attempt was made to take the square root of a negative number.

PRM__UDEXP, undefined exponentiation
An attempt was made to raise the number zero to a negative power, or to raise a negative
number to a non-integer power.

	INTRODUCTION
	The VAL, VEC and NUM Facilities
	Propagation of Bad Data
	The STATUS Argument

	THE VAL_ FUNCTIONS
	Applicability & Efficiency
	VAL_ Error Handling
	VAL_ Arithmetic and Mathematical Functions
	VAL_ Type Conversion Functions
	Declaring the VAL_ Functions

	THE VEC_ ROUTINES
	Applicability & Efficiency
	VEC_ Error Handling
	VEC_ Arithmetic and Mathematical Routines
	VEC_ Type Conversion Routines

	THE NUM_ FUNCTIONS
	Applicability & Efficiency
	NUM_ Arithmetic and Mathematical Functions
	NUM_ Type Conversion Functions
	NUM_ Inter-comparison Functions
	Declaring and Defining the NUM_ Functions
	NUM Error Handling

	CONSTANTS
	Bad Data Values
	Machine Precision
	Maximum Data Values
	Minimum Data Values
	Data Storage Requirements
	Smallest Value
	Character String Sizes

	COMPILING AND LINKING
	Unix
	VMS

	CHANGES IN THIS DOCUMENT
	PERFORMANCE STATISTICS
	ERROR CODES & MESSAGES

