
SUN/50.24

Starlink Project
Starlink User Note 50.24

I D Howarth, J Murray, D Mills & D S Berry

5th March 2004

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

DIPSO — A friendly spectrum analysis
program

V3.6-4
User Guide

SUN/50.24—Contents ii

Contents

1 Introduction 1

2 Getting Started 1
2.1 Absolute beginners . 1
2.2 Doing something . 2

3 Data Storage 2
3.1 Internal Data Storage . 2
3.2 Data Storage on Disk . 3

4 Command Input 3
4.1 Command Line Recall and Editing . 4

5 Command Procedures 5

6 Batch Processing 5

7 Plotting 6
7.1 Plotting options . 6
7.2 Cursor commands . 6
7.3 Default plotting (and other) options . 6
7.4 Getting hardcopy plots . 7

8 The User Code Interface 7
8.1 The “LOGICAL USER” Function . 8
8.2 Building your own binary . 9
8.3 Debugging your code . 9
8.4 Local documentation . 9
8.5 Data access . 10

8.5.1 More on data storage . 10
8.5.2 Creating NDFs in your own programs . 11
8.5.3 Getting data from the stack . 12
8.5.4 Pushing data onto the stack . 12

9 Emission Line Fitting (ELF) 13
9.1 ELF commands . 13
9.2 ELF data storage . 14
9.3 ELF general procedures . 14

10 Words of Warning! 15

11 Acknowledgements 15

A Command Specifications 16
A.1 Individual Commands . 16
A.2 Finally... 57

B History 58

iii SUN/50.24 —Contents

B.1 Changes introduced by DIPSO V3.6-5 . 58
B.2 Changes introduced by DIPSO V3.6-4 . 58
B.3 Changes introduced by DIPSO V3.6 . 58
B.4 Changes introduced by DIPSO V3.5-6 . 58
B.5 Changes introduced by DIPSO V3.5-5 . 58
B.6 Changes introduced by DIPSO V3.5 . 58
B.7 Changes introduced by DIPSO V3.4 . 59
B.8 Changes introduced by DIPSO V3.3 . 59
B.9 Changes introduced by DIPSO V3.2 . 60
B.10 Changes introduced by DIPSO V3.1 . 60
B.11 Changes introduced by DIPSO V3.00 . 61
B.12 Changes introduced by DIPSO V2.00 . 62

1 SUN/50.24 —Getting Started

1 Introduction

DIPSO is, historically, a simple plotting package incorporating some basic astronomical applica-
tions. If you just want to read in some data, plot them, and measure some equivalent widths
or fluxes, you can do that without much effort. First-time users with this type of modest goal
can skim through the documentation to get a feel for what’s going on, then check the command
reference section to find the commands required. You could even go straight to the terminal, and
type DIPSO; there’s no substitute for hands-on experience. However, DO read the documentation
fully at some time; DIPSO can do a lot of things, some of which you might not know that you
needed until you read about them....

While it is intended that simple things should be simple, an effort has been made to make
complicated things possible. To this end, a number of rather rudimentary functions and free
parameters are provided (with reasonable defaults set). A macro facility allows convenient
execution of regularly used sequences of commands, and a simple FORTRAN interface permits
“personal” software to be very simply integrated. The existence of this interface has encouraged
the accretion of several codes for carrying out relatively elaborate numerical or astrophysical
calculations (e.g. profile fitting, Fourier analysis, nebular continuum modelling). Because it has a
monolith structure, DIPSO still runs fast, but there is, unfortunately, quite a lot of documentation
to wade through to find the command you need. Still, you should persevere; somewhere,
somehow, it is quite likely that DIPSO can indeed do what you want. (However, if you want to
display images, or handle errors in a general way without doing a bit of coding, look elsewhere.
You’ll probably have to come back to DIPSO eventually in the latter case, though — and do a bit
of coding!)

New features in this release, and some history related to earlier releases are contained in
appendix B.

2 Getting Started

2.1 Absolute beginners

Sit down at a Starlink terminal, and type:

% dipsosetup
% dipso

You’ll get a little “hello” message, and a new prompt:

>

Type

g9.z?

hit the return key. You will get an error message. Ignore this and read on. Type

SUN/50.24 —Data Storage 2

Help, Q

and hit return. You have just completed your first DIPSO session, discovering on the way that
DIPSO accepts more than one command on a line (each command being separated by commas),
that upper- and lower-case inputs are accepted, and that DIPSO knows when you make mistakes
(or at least, some kinds of mistake).

2.2 Doing something

You didn’t do much, though; you’ll need to know a few more commands. A full reference
list of commands (ordered more or less alphabetically) is appended, but here we’ll mention a
few basic ones to get you going. (You should check the command descriptions for details of
how they should be used.) Once in the program, you can use the COMM command to get lists
of commands classified by function together with brief descriptions (for instance “COMMANDS g”
will list all the graphics-related commands), or use HELP for more detailed information on
individual commands. Data can be read in using the READ command, or in special cases one of
the following commands: ALASRD, SCREENRD, SP0RD, SP1RD, SP2RD, ATLASRD, or RESTORE.

For “historical reasons” many people use the “Spectrum 0” format for input and output of data
(SP0RD, SP0WR). However, the recommended file i/o commands are READ and WRITE (or SAVE and
RESTORE), which preserve all the information which DIPSO associates with a data set.

To get a plotting surface, use the DEV command. Plotting is usually done with PM; unless you’ve
provided X and Y ranges (with XR and YR, or some combination of XMAX, XMIN, YMAX, and YMIN)
the plot is auto-scaled to the minimum and maximum values in the arrays.

Once you have managed to read in some data, and plot them, you will soon want to carry
out measurements, change the style of the plots, and so on. To find out how to proceed, you
should read the descriptions of commands like (HIST, POLY, MARK); (XV, YV, XYV); (CSET, CROT);
and (TPORT, TZONE).

Type q to leave the program. If in the middle of something long and tedious you despair, you
can type control-C; this stops execution of the current command, and returns you to the DIPSO
command prompt.

If you decide in the middle of a DIPSO session that you need to issue some operating system
commands, then simply push the DIPSO task into the background by typing control-Z, issue
your operating system commands, and then re-enter DIPSO by typing fg.

3 Data Storage

3.1 Internal Data Storage

On being read in, data are stored in the ‘current’ X,Y arrays, which have space reserved for up
to 200,000 pairs of points. By default — or, in some cases, by compulsion — most operations
(e.g. plotting) are carried out on data stored in these arrays. Data can be saved for later use by
‘PUSH’ing them onto a ‘STACK’, which can be thought of as a series of X,Y arrays. The STACK
contents can be inspected using SL (‘Stack List’), deleted using DEL, and brought into the ‘current’
arrays using POP. Up to 200 stack entries, or 800,000 points, are allowed.

3 SUN/50.24 —Command Input

3.2 Data Storage on Disk

The contents of the current array can be written to a disk file using the WRITE command, and the
contents of the stack can be written using the SAVE command. These files can either be standard
Starlink “NDF” structures (see SUN/33), or alternatively files containing unformatted data in
the original DIPSO format used prior to version 3.00.

The USENDF command allows the user to select which format to use. All commands which read
or write data to or from the current arrays or stack are influenced by the USENDF command
setting unless the description of the command in appendixA says otherwise.

Use of NDF structures enables data files created by DIPSO to be used by other Starlink packages
(and vice-versa). It also enables data files to be transferred freely from one operating system to
another without needing to do a format conversion for each one. NDF structures are contained
within disk files which have the file extension “.sdf”. When referring to an NDF, do not include
the file type or an error will result. Think of it this way; an NDF is an object contained within a disk
file. The NDF and the disk file in which it is contained are separate entities and can in principle
have different names. When asked for an NDF you give the name of the NDF, not the name of the
disk file. It just so happens that at the moment an NDF named “my_data” will be contained in a
disk file called “my_data.sdf” but this may not always be the case.

In addition, columns of values can be read from FITS binary or ascii tables into the current
arrays.

4 Command Input

DIPSO is basically command driven, although for some of the more complex algorithms the
program prompts on a step-by-step basis. Many commands can be input on a single line (in
upper or lower case), each command (with its associated parameters) being separated from its
neighbours by a comma. Parameters associated with a particular command follow it on the
command line, separated by spaces. Parameter values which include commas and/or spaces
need to be enclosed in double quotes when given on the command line, otherwise the commas
and spaces will be interpreted as delimiters. Any mandatory parameters not specified with a
particular command are prompted for, and failure to complete a command will generally result
in any remaining commands on the line being ignored. e.g., the line:

READ TEST, DRED, PM, PUSH

will read in the NDF test from the disk file test.sdf. If DIPSO fails to read the NDF successfully,
you get an error message and the remainder of the line is ignored. Otherwise, it will attempt to
de-redden the data using a ‘standard’ extinction law (DRED). Since a value of E(B-V) is mandatory
for this command, but has not been provided, it is prompted for:

DRED: E(B-V)?

(Similarly, if READ hadn’t been told which NDF to read, this parameter would have been
prompted for.) On provision of the appropriate number, the data are de-reddened, plotted

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/50.24 —Command Input 4

(PM) on the (previously assigned) plotting device, and then PUSHed onto the STACK. (If a plot-
ting device were not previously assigned, DIPSO would again report an error and terminate
execution of the command line.)

If you’re letting DIPSO prompt you for mandatory parameters, and decide that you want to
abort the command line, you can respond to the parameter prompt with one or two exclamation
marks (e.g. ! or !!). In the first case, the current command will abort, the remainder of the
command line will be rejected, and you will be returned to the DIPSO command prompt. In the
second case, the current command will abort, and DIPSO will also abort (saving the stack to
EXIT_STK.sdf or EXIT.STK in the process), returning you to the operating system.

Some commands have optional parameters in addition to any mandatory ones. For example,
DRED has three associated parameters:

DRED E(B-V) R MODE

of which E(B-V) is the only mandatory one, and therefore the only one prompted for if not
supplied. The other two parameters are R (= A(V)/E(B-V)) and MODE, a switch which allows
an LMC-type extinction law to be invoked. Optional parameters have defaults supplied; in this
case, R=3.1 and MODE=0 (Galactic law). If you want an LMC-type law with R=3.1 you must
provide all parameters:

DRED 0.5 3.1 1

but if you want a Galactic law with R not equal to 3.1 you only need type (e.g.)

DRED 0.5 2.0

If you provide too many parameters, the command will use those it can, issuing a warning
about those it can’t; e.g.

DRED 0.5 3.1 0 99.99

will provoke a warning that redundant parameters have been provided.

4.1 Command Line Recall and Editing

Command line recall and editing is available in DIPSO. Use the up/down arrows or the RECA
command to recall commands, and the left/right arrows and the delete/backspace key to edit
them. The following control characters are recognised:

Control-A : Jump to the start of the input buffer

Control-E : Jump to the end of the buffer

Control-N : Toggle overstrike/insert mode

Control-U : Empty the input buffer

Two separate lists of text strings are kept; one for the command lines given in response to the
DIPSO command prompt, and one for the strings given in response to the prompts issued by
each command. The up and down arrows, and the RECA command operate within each list,
independently of the other list.

5 SUN/50.24 —Batch Processing

5 Command Procedures

Commands can be input from macros (script or command files). This can be particularly useful
if you frequently carry out a fixed sequence of operations. The command file can be in the
directory from which you are running DIPSO, or in a default directory (OWNERDIR) of your own
assignment. Thus if DIPSO is requested to execute a command file (without a full directory
specification being given) it first looks in the current directory; if it doesn’t find it, it looks in a
directory assigned the environment variable OWNERDIR; and if it still doesn’t find it, you get an
error message. All your frequently used command files can therefore be kept in one place. For
example, a file called TEST.CMD may contain the instructions:

READ,DRED
LOGY,YMULT -2.5,XMULT 1.0E-04,XINV
PUSH,SL

The commands in this file would be executed by typing:

@TEST

The unspecified mandatory parameters for READ and DRED would be prompted for, and input, at
the terminal. The Y values in the ‘current’ array would be replaced by Log(10) Y (LOGY), then
multiplied by -2.5 (YMULT -2.5); the X values would be multiplied by 10−4 (XMULT +1.0E-04),
then replaced by 1/X values (XINV). The final data would then be PUSHed onto the stack, the
contents of which would be displayed at the terminal (SL).

On completion of the commands in the file, control returns to the terminal.

On startup, DIPSO looks for a command file called startup.cmd in a directory which has been
assigned the environment variable OWNERDIR. So, if you regularly want to change any default
settings from those normally set, just create such a file, containing commands which will set
your customised options (e.g. you may not like the standard X and Y labels, or you might want
always to use native DIPSO data files rather than NDF data files, etc.).

6 Batch Processing

To run a dipso job in the background place all the commands you wish to run in the startup.cmd
command file and then type:

% dipso &

at the shell prompt. If you wish to direct the output to a log file then type:

% dipso >mylog &

In addition you can use the UNIX input/output redirection operators > and < to direct com-
mands into DIPSO from other files or even from other programs (see UNIX reference manuals
for details).

SUN/50.24 —Plotting 6

7 Plotting

The plotting commands sit on top of the GKS/SGS/AUTOGRAPH packages (see SUN/83,
SUN/90, etc.; sometimes the command names don’t relate in an obvious way to the name of
the graphics routine which is called, because DIPSO was originally written using a different
graphics package). Although DIPSO grew with simple data sets in mind (i.e. monotonically
changing X values) it will plot some more complex arrays. (The example program for the user
interface, described below, generates a circle.)

7.1 Plotting options

Plotting can be done with a variety of symbols (MARK, MROT), or line types (TLINE, TROT) in POLY
(i.e join-the-dots) or HIST (histogram) mode. If you have access to appropriate hardware, colour
plotting is also possible (CSET, CROT). Device changes can be made at any time, so that you can,
for example, switch between an Ikon, Pericom, and laser printer at will. Alternatively, you can
stick to a single device and display data in different zones of the plotting surface. A set of useful
sub-zones is provided automatically (see the TZONE command).

7.2 Cursor commands

An important aspect of any plotting package is making measurements from, or marking points
on, a plotting surface using a cursor (where available). In DIPSO, the cursor will respond to any
alphanumeric key. If the functionality of the command requires only one cursor hit (e.g. XV to
measure X values), then the command is exited by making two cursor hits at the same point.
This method of exiting generalises to other cursor-driven commands which require multiple
inputs (e.g. CREGS).

7.3 Default plotting (and other) options

The default options (all of which can be changed at will) are:

DEVice 0 - (null device)
HIST - ("histogram" plotting style)
TZONE 0 - (use the entire plotting surface)
NXY - (auto-scaling on X and Y axes)
CSET 1 - (plot in white on the Ikon)
TLINE 1 - (continuous lines)
BOX - (clears frame between plots)
NOFILL - (MARK symbols open)
TICKS <null> - (Tick marks on axes calculated automatically)
FONT 0 - (Hardware character set)
XJ, YT - (Plot has "justified" X axis and "trimmed" Y axis)
LABON - (Full labelling of axes)
GRIDSTYLE 1 - (Four sides to the plot box drawn in)
PPROMPT F - (PM without arguments plots current arrays)
XLAB "Wavelength"

http://www.starlink.ac.uk/cgi-bin/htxserver/sun83.htx/sun83.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun90.htx/sun90.html?xref_

7 SUN/50.24 —The User Code Interface

YLAB "Flux"

These defaults are chosen as a compromise between aesthetic elegance and speed of plotting.
For an ugly but fast plot, choose POLY and GRIDSTYLE5; for truth and beauty, choose FONT 2.

This is as good a point as any to note some other default settings for DIPSO:

ECHO -1 - (Commands file inputs not echoed at the terminal)
BEEP - (input errors induce a beep)
HANDLER 1 - (robust error handling)
TPROMPT F - (doesn’t insist on a string with TITLE)
USENDF T - (NDF structures are used to store data on disk)
USEHTX F - (Help information is displayed in plain text format)

7.4 Getting hardcopy plots

DIPSO doesn’t “remember” what is on the plotting surface in any way. Thus you can’t get an
“instant” copy of a plot on your terminal (unless you have some special hardware which will do
it for you). Instead, you must change devices and execute the appropriate series of commands
to do the plot for you.

Plotting on a hardcopy unit (laser printer, line printer, etc.) will normally leave a (frequently
large!) file in your working directory, and this file will need to be printed on the appropriate
device before you actually get a plot out. Check the GKS documentation (or your node manager!)
for details; and remember to tidy up your directory afterwards, or you will quickly run out of
disk quota!

8 The User Code Interface

If DIPSO can’t or won’t do something reasonably straightforward (e.g. a simple functional
operation on a single spectrum) — or even, if you’re ambitious, something quite complicated —
that you require of it, then you can avail yourself of the user interface. This consists of a logical
function, USER, which gives simple and straightforward access to the contents of the ‘current’
arrays; and two user-callable subroutines, UPUSH and GETSTK, which allow you to respectively
get data from and put data onto the stack. (These two routines are described at the end of this
section.) You are also free to use any GKS, or SGS routines you may need.

If you want to do something that requires opening new input streams, it is recommended that
you use streams 23-29 inclusive. DIPSO closes most i/o streams as soon as it has finished with
them, but it always has stream 22 open, and you are strongly discouraged from using streams 5
and 6 for anything other than standard input and output (i.e. the designated device; normally
the terminal when DIPSO is used interactively). (The reason that stream 22 is always open is
that GKS sends its error messages to this stream. Such messages are more likely to annoy than
enlighten DIPSO users!

SUN/50.24 —The User Code Interface 8

8.1 The “LOGICAL USER” Function

To use the interface you will need to write a subprogram called USER which should follow the
example given in $DIPSODIR/user.f.

The example subroutine contains almost all the additional documentation needed to understand
how to ‘do your own thing’. This documentation may seem a bit technical, but don’t be put off
by that (consult one of your local computer devotees if in doubt); the interface is really very easy
to use. As a bare minimum, you could copy the example subprogram and just add in your own
IF block:

ELSE IF(CMD .EQ. ’<your command>’) THEN
<carry out operations>

The USER function delivers lots of variables for you to play with, but the essential contents of the
argument list are:

• the current X and Y arrays

• the current command name

• a string, PARAMS, containing the parameters associated with the command.

Sometimes you will want to treat PARAMS as a character string (for example, it might be a
filename); but more often you will want to read numbers from it. You can do this in exactly the
same way as DIPSO does by calling the routine DECODE:

CALL DECODE(CMD, PARAMS, NP1, NP2, VALUES, PROMPTS, OK)

where:

CMD - character The command name, passed to USER by DIPSO.

PARAMS - character Associated parameters, passed as a string by DIPSO.

NP1 - integer The minimum number of parameters (between 0 and 10).

NP2 - integer The maximum number (greater than or equal NP1).

VALUES - real The array into which real values, decoded from PARAMS, are
passed.

PROMPTS - character The NP1 prompts for mandatory parameters.

OK - logical A success/failure switch.

The ‘PROMPTS’ must be left justified, separated by blanks, and terminate with a blank. (Have a
look at the $DIPSODIR/user.f code for examples of how to use DECODE.

9 SUN/50.24 —The User Code Interface

8.2 Building your own binary

Having written your USER code, you can build your own dipso binary.

You must first set the environment variable SYSTEM appropriately for your system: alpha_OSF1
for AXP OSF/1, or sun4_Solaris for Sparc Solaris 2.x.

Then, you can compile and link a new binary by typing:

% dipsosetup
% my_dipso

If you wish to link in subroutines contained in object modules sub1.o, sub2.o etc, you should
define an environment variable MY_OBJECTS specifying these object files:

% setenv MY_OBJECTS "sub1.o sub2.o sub3.o"
% dipsosetup
% my_dipso

This leaves you with a personal copy of dipso in the directory you’re working in. You should
then set up an alias to run this version in preference to the system version:

% alias dipso <where ever>/dipso

8.3 Debugging your code

(This section can be skipped by people who never make programming errors!)

DIPSO is equipped with a condition handler to prevent crashes. DIPSO shouldn’t give a crash
in the normal run of things (if you get one, please report it, giving fullest details possible —
preferably a macro file which always results in the crash), but it may well do so in user-supplied
code. In this case, you will normally want to disable the condition handler in order to get the
system handler, which may tell you where the crash occurred. To turn the handler off, the
HANDLER command can be invoked (use HANDLER 0). On some flavours of UNIX, this may result
in the program appearing to freeze after a crash. If this happens, pressing control-C should
return you normally to a system prompt.

8.4 Local documentation

If your site has a ‘user-enhanced’ version of DIPSO that is used by several people, then it
might be convenient to put the executable into a local public directory. In this case you should
persuade your node manager to create such a directory, with appropriate protections, and
give it the environment variable LDIPSODIR. The local version can then be run, of course, as
$LDIPSODIR/dipso.

In response to the COMM command, DIPSO first looks for a file $LDIPSODIR/command.hlp, which
will be used if found. It will then go on to look for a file $DIPSODIR/comand.hlp which it will
also use if found.

SUN/50.24 —The User Code Interface 10

So it’s possible to put an appropriately modified version of command.hlp into LDIPSODIR to keep
users informed of local additions to available commands. The local version of command.lis
should contain only the extra local commands, not the standard commands, and should be
formatted like the standard version.

Note, in previous versions of DIPSO, command information was stored in a file called command.lis
which had a different format to command.hlp files and was processed differently. It is recom-
mended that any local command.lis files still existing be converted into command.hlp format
(see $DIPSODIR/comand.hlp for a description of the format). If DIPSO finds a local old-style
command.lis file it will simply display its contents (as in previous versions of DIPSO) in prefer-
ence to using any new-style command.hlp files. Note, however, that the extended functionality
of the COMM command (i.e. word searches, command descriptions and classification) will not be
available.

It’s possible to give HELP for local commands, too, although it can only be accessed as plain text
(see USEHTX). The HELP command in plain text mode first runs through $DIPSODIR/help.lis but
if it doesn’t find a command name there, it will try to look for an $LDIPSODIR/lhelp.lis, and
search that for help information. This file should match the format of $DIPSODIR/help.lis, but
need contain information only on local commands.

The first thing that DIPSO does is look for a file called $LDIPSODIR/updates.lis, and print
out anything it contains. So if you’ve made changes, you can announce them to your local
community through this mechanism.

8.5 Data access

If you want to do complex operations involving several data sets, you may well want to access
data on the DIPSO stack. Well, you can; but first, you’ll need to understand a bit more about
how DIPSO stores data.

8.5.1 More on data storage

A DIPSO data set contains a variety of information. First of all, there is a brief header string
[CHARACTER*80 TITLE]. Then, of course, there are the X and Y data arrays [X(MAXPT),
Y(MAXPT), MAXPT=64000], which contain the NPOINT pairs of data points. Now, in or-
der to know where in the data any gaps occur, DIPSO maintains a separate ‘break’ array
[BREAKS(MAXBRK), MAXBRK=1000] which contains the NBRK break points associated with
the data set. A break point is the index, in the X and Y arrays, of the last point before a gap
in the data set. Thus if there are 200 points in the data set, and there are breaks between
the 7th and 8th, and 123rd and 124th, data points, then BREAKS(1)=7, BREAKS(2)=123, and
BREAKS(NBRK)=200, where NBRK is 3. Note that the last point in a data set is always a break
point, so that NBRK is always 1 or greater.

To allow compatibility with some other programs (notably IUEDR), DIPSO assumes that a
specific Y value (zero by default) actually flags a gap in the data, for some i/o commands (e.g.
SP0RD/WR). This will often be invisible to the user, but you ought to keep it in mind. Note also
that if DIPSO reads in a data set where a gap is padded out with a whole string of zeros (e.g.
from IUEDR), then it throws away all but a couple of them, to save space. (Try SP0RDing a hi-res
IUEDR spectrum, then SP0WRing it; the output is much smaller than the input). This behaviour
does not apply to the READ, WRITE, SAVE and RESTORE.

11 SUN/50.24 —The User Code Interface

When using NDFs, there is another Y value which is also used (by all commands which access
NDFs) to flag gaps in the data. This value is the standard Starlink “bad” value which is used
to flag invalid or missing data in many other Starlink packages. Its value is -1.7014117E+38
(software generates these “bad” values automatically... you’re not expected to type them in!).

Finally, although DIPSO will plot general X,Y arrays, several of the applications commands
expect and require data that have Angstrom or km/s as the X unit (e.g. EW). A variable, WORV
(which means “Wavelength OR Velocity”), is used to flag data in which the “X” unit is km/s;
if this is the case, then WORV=λ/c, where λ is the rest wavelength to which the velocities are
referenced (in Angstroms) and c is the speed of light (km/s). Otherwise, WORV=1.0. (You’ll just
have to think carefully about what you’re doing if your data are in frequency units, I’m afraid —
WORV=1.0 will generally be associated with your data.)

8.5.2 Creating NDFs in your own programs

To output data from other programs in a form suitable for inputting to DIPSO with the (rec-
ommended) READ command requires the following minimal code (with appropriate values and
names for all variables):

* Global Constants:
INCLUDE ’SAE_PAR’ ! Include standard starlink constants

! such as SAI__OK.

* Local Variables:
CHARACTER COMM ! This should be WRITE or SP0WR and

! causes the corresponding command to
! be simulated.

CHARACTER NDFNAM ! Name of output NDF structure. NB, don’t
! include a file type!!

INTEGER NPOINT ! Number of points in XV and YV.
REAL XV(NPOINT) ! X axis values.
REAL YV(NPOINT) ! Y axis values.
CHARACTER XLAB ! X axis label.
CHARACTER YLAB ! Y axis label.
CHARACTER TITLE ! NDF title.
INTEGER NBRK ! Number of points in ‘breaks‘ array.
INTEGER BREAKS(NBRK) ! Breaks array.
REAL WORV ! Wavelength of velocity parameter.
INTEGER STATUS ! Should be SAI__OK on entry. SAI__OK on

! exit if successful.

* Create the output NDF.
CALL WRITE_NDF (COMM, NDFNAM, NPOINT , XV , YV , XLAB, YLAB,

: TITLE , NBRK , BREAKS , WORV , STATUS)

Such programs then need to be linked with the DIPSO object libraries, and the NDF subroutine
library (see SUN/33). To create a program called fred which uses WRITE_NDF to create an output
NDF, do the following:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/50.24 —The User Code Interface 12

% star_dev
% dipsosetup
% f77 -o fred fred.f -L$DIPSODIR -ldipsot -L/star/lib ‘ndf_link‘
% star_dev remove

As well as being readable by DIPSO such output data sets will also be automatically readable by
all the standard STARLINK packages on any of the supported operating systems.

8.5.3 Getting data from the stack

So, now you know what’s in a DIPSO data set; and thus, you have a good idea of the information
on the stack. DIPSO lets you take copies of stack data using calls to the subroutine GETSTK:

CALL GETSTK(INDEX, NPOINT, XV, YV, NBRK, BREAKS, TITLE,
: WORV, OK)

where:

INDEX - integer The stack entry you want to access.

NPOINT - integer On calling, the size of the arrays into which the XV and YV data
are to be loaded; and on exit is the number of elements of the arrays which are
occupied (i.e. the number of points).

XV - real A user-supplied array, which contains the X values of the STACK entry on
return. (It is your responsibility to ensure that the array is big enough to hold
all the data from the STACK entry.)

YV - real A user-supplied array to hold Y values on return.

NBRK - integer On entry, NBRK is the size of the BREAKS array. On return, NBRKS
contains the number of ’break points’ in the data set. (Again, you must ensure
that enough space is available.)

BREAKS - integer A user-supplied array of length NBRK, to hold the indexes of
‘break points’ in the XV array.

TITLE - character The title associated with the data set.

WORV - real Wavelength or Velocity.

OK - logical Success/failure flag. OK = .FALSE. if the call to GETSTK is identified
as unsuccessful.

8.5.4 Pushing data onto the stack

You can also push data onto the stack:

CALL UPUSH(ASZE, XV, YV, NPOINT, BSZE, BREAKS, NBRK, TITLE,
: WORV, OK)

13 SUN/50.24 —Emission Line Fitting (ELF)

The arguments are the same as for GETSTK, except that ASZE (integer) is the size of your arrays
holding the X and Y values, and BSZE (integer) is the size of your BREAKS array.

To encourage you to look on DIPSO as a tool with which you can interface your own software, it
is worth noting that the ELF package (described below), all the Fourier analysis software, the
IS routines, and the NEBCONT facility were added to DIPSO with very little more than the basic
interface described above.

If you do write some software that you think may be of general interest, please contact Ian
Howarth (idh@star.ucl.ac.uk); it may be possible to incorporate it into the public version of
DIPSO.

9 Emission Line Fitting (ELF)

DIPSO has access to a suite of subroutines which are designed to fit a variety of line profiles to
observed data. The commands really need a bit more explanation than can readily be put into
the alphabetical reference list which follows; so here’s a bit more explanation...

The primary purpose of the ELF routines is to separate blends by fitting multiple profiles.
Gaussian profiles are the most commonly used, but other analytic forms are possible, as are
‘numerical’ profiles. Facilities are provided for constraining line centre positions, widths, and
relative fluxes, so that known atomic data (such as relative wavelengths or intensities within
multiplets) can be utilised. The option of relative flux constraint is particularly useful when
analysing optically thin emission lines (hence Emission Line Fitting), but the package is entirely
happy with absorption lines (which it treats as emission lines with negative fluxes), or any other
form of data that can be reasonably approximated with the available profile forms.

Fits are made to the spectrum data stored in the DIPSO ‘current’ arrays. The continuum level may
be set to zero by manipulations within DIPSO, or a polynomial fit to the continuum can be made
simultaneously with the profile fitting. (The former option is strongly recommended.) Specification
of constraints and starting values for the fit parameters is done in a command language (invoked
by the DIPSO command ELFINP) which is described below. After optimisation of parameters
(DIPSO command ELFOPT), the full specification of the fit and the results may be stored. The
resulting fit, in spectrum form, can be pushed on the DIPSO stack (ELFPUSH).

9.1 ELF commands

The complete set of ELF commands are described in detail in appendixA. They are:

ELFINP ELFOPT ELFNEWC
ELFPUSH ELFLFIX
ELFPUSHC ELFPOPC ELFDELC ELFCSL ELFVUC
ELFSAVEC ELFRESTC ELFWRC
ELFPIN ELFPL

As you can see, they are all of the form ELF..., so that they can easily be found in the documen-
tation.

SUN/50.24 —Emission Line Fitting (ELF) 14

9.2 ELF data storage

The ELF package takes a COPY of the DIPSO ‘current’ spectrum. The maximum space available
is 1000 datum points. This number is deliberately rather smaller than the space available in
DIPSO itself, since fitting to large numbers of datum points is prohibitively time consuming.

Fit data are maintained in three storage areas:

• A ‘current’ area (not to be confused with the DIPSO current arrays) contains the specifica-
tion of the fit in progress. If an optimisation has been carried out, the results (in the sense
of optimised coefficients) are also kept in this ‘current’ array.

• A stack of fit coefficients. Data may be interchanged between this stack (again, not to be
confused with the main DIPSO stack) and the ELF ‘current’ area. Space is provided for a
maximum of 20 lines in each fit.

• A stack of input numerical profiles. These must be spectrum data without internal breaks
(gaps), stored in VELOCITY space.

The stack of profile types has space for up to ten entries. The first five of these are reserved for
analytically specified profiles, and the last five for numerical profiles. Profile definition is as
follows:

Profile 1: Gaussian. (C=centre, W=width(FWHM), I=peak flux)

Profile 2: Triangular. (C=centre, W=width(FWHM), I=peak flux)

Profile 3-5: Unused at present.

Profile 6-10: Available for numerical profiles.

9.3 ELF general procedures

Although the command descriptions given later describe functionality in detail, it is probably
worth just summarising how to do a simple Gaussian fit, for illustration. The steps would
typically be:

• POP the data of interest into the current arrays. Use (e.g.) RXR to restrict the number of data
points to the minimum consistent with adequately defining the line(s) of interest and a
small amount of continuum.

• Although you can represent the continuum by a polynomial with free parameters, conver-
gence is enormously improved if you first subtract a continuum (using PF, or CDRAW, for
example, together with ASUB). If you really must incorporate a background polynomial in
the fit, keep the degree as low as possible (e.g. zero) to avoid indeterminacy.

• Type ELFINP to invoke ELFs special command language, and input your first guesses at
the values of the parameters to be optimised. Make life easier for yourself by keeping the
number of non-linear parameters (line centre positions and widths) as small as possible,
and try to make your guesses good ones. Type QELF to leave the command language
processor.

15 SUN/50.24 —Acknowledgements

• Type ELFOPT to start the ELF Fit Coefficient OPTimisation. If you have many free parame-
ters, and the machine is being heavily used, go for a cup of tea, after you’ve checked the
first iteration of the optimisation to make sure everything is as you expect.

• Later. . . you can push a copy of the ‘best fit’ model onto the DIPSO stack using ELFPUSH.
You can also save the fit coefficients on the separate fit coefficient stack, for later use or
reference, with ELFPUSHC.

A serious program crash while optimising, such as divide by zero or overflow, may occur
occasionally. Such problems are usually caused by overspecified fits, or starting values that are
grossly in error.

10 Words of Warning!

Of course, DIPSO generally does nothing that you don’t ask it to do. So, if ‘nothing’ happens, it
is probably because you’ve defined X and Y ranges that exclude the data, or left the BOX switched
off (NB), or you’re not plotting on the device that you think you are. Something else to watch out
for is plotting a STACK entry, and then trying to do some operation on the plotted data instead
of the data in the ‘current’ arrays. Be careful!

DIPSO carries no ‘memory’ of what’s on a particular plotting surface. This means that if you
want a laser-printer plot of what’s on the screen you need to change device and actually do the
plot again (don’t forget to change back to your graphics terminal when the plot is finished!).

11 Acknowledgements

Several of the more elaborate computational functions in this version of DIPSO have been grafted
on as a result of people exploiting the user interface, with their code eventually being adopted for
the release version. The biggest single contribution is the ELF package, which was developed by
Pete Storey (pjs@star.ucl.ac.uk). Pete also had a hand in NEBCONT, which uses code primarily
written by Pat Harrington (U. of Maryland). Stephen Boyle (sjb@star.ucl.ac.uk) donated
the Fourier, periodogram, and cross-correlation routines; the interstellar line profile code has
a long and chequered history, but was first brought forth in the good old days of punched
cards by Clive Davenhall. DIPSO’s basic structure and command interface owes much to Dane
Maslen. Other contributors include Jack Giddings, Des Middlemass, David Monk, and Starlink
Management.

SUN/50.24 —Command Specifications 16

A Command Specifications

A.1 Individual Commands

This section contains a roughly alphabetical reference list of commands, with a description of the
the actions invoked. (Strict alphabetic ordering has been sacrificed in one or two places in order
to group together the texts for closely related commands.) Each command has its associated
parameters listed with it, in the order in which they must be supplied. Optional parameters (for
which defaults are provided) are given in [brackets].

@ (AT) filename[.typ] p1 p2 p3 p9

Reads commands from a command file. Any prompts for unspecified mandatory parameters
are given at the terminal. Command files can include blank lines and ‘comment cards’; the latter
must have an exclamation mark [!] or asterisk [*] as the first character. (Comments may not be
flagged with a first-column “C”, because this could easily be the first character of a command.)

On successful completion (or on failure to execute a command) control returns to the terminal.

IMPORTANT: Command files may not contain references to other command files (nor to them-
selves), for fairly obvious reasons.

DIPSO first searches for a file of the given name in the current directory (or whatever directory is
given in the file specification). If it fails to find it, it then looks for a file $OWNERDIR/<filename>.
Thus you can keep a set of frequently used command files in the directory assigned the en-
vironment variable OWNERDIR (this assignment would normally be carried out in your login
scripts).

The default file type ([.typ]) is ‘.cmd’.

AADD n

Adds the contents of the ‘current’ Y array to the values in STACK entry ‘n’, leaving the result in
the ‘current’ array. Both data sets must have monotonic X arrays for sensible results to emerge.
To perform the arithmetic, the data in the ‘current’ arrays are mapped onto the STACK X grid.
The addition is only performed at X values where there are valid Y values in both data sets. In
conjunction with GRID, the AADD command can be used to remap data.

ADIV n

Divides the Y values in STACK entry ‘n’ by the Y values in the ‘current’ arrays. In order to do
this, the ‘current’ data are mapped onto the X grid of the STACK data (both X grids must be
monotonically changing). The output data are left stored in the ‘current’ arrays.

If both data sets are recognized by DIPSO as having X units in velocity space (WORV not equal 1;
see the TOV command for details), then the output data are corrected by the ratio of the WORVs
(i.e. by the ratio of the central wavelengths) to give true flux ratio as a function of velocity. If
only one data set is recognized as having X units of velocity, the division is carried out and an
error is reported.

17 SUN/50.24 —Command Specifications

AMAX n

At each X point, puts the larger of the STACK (entry ‘n’) and ‘current array’ Y values into the
current array. To do this, the data in the current arrays are mapped onto the STACK X grid. The
function returns Y values only at those X values where valid data occur in both data sets. AMAX
may be useful, when used with AMIN, for displaying the envelope to a set of spectra of a given
object.

AMIN n

At each X point, puts the smaller of the STACK (entry ‘n’) and ‘current array’ Y values into the
current array. To do this the data in the current arrays are mapped onto the STACK X grid. The
function returns Y values only at those X values where valid data occur in both data sets. (See
also AMAX).

AMULT n

Multiply the Y values in STACK entry ‘n’ by the values in the ‘current’ arrays. The data in
the ‘current’ arrays are mapped onto the X grid of the STACK data in order to carry out this
operation. (The X grids are both required to be monotonic). Results are left in the ‘current’
arrays.

ASUB n

Subtracts the ‘current’ Y array from STACK entry ‘n’. In order to carry out this operation, the
‘current’ data are mapped onto the X grid of the STACK data. Subtraction is only carried out
at X values where there are valid Y data in both STACK and current arrays, and both X arrays
must be monotonic. Results are left stored in the ‘current’ arrays.

ASWAP (no parameters)

Swaps the ‘top’ (i.e. numerically largest) STACK entry with the contents of the ‘current’ arrays.

ALASCHK (no parameters)

Checks the current defaults for the lines and columns to be read in using ALASRD.

ALASCOLS xcol ycol

Tells ALASRD to read X and Y data from the specified columns of a file. (A “column” is a string of
alphanumeric characters separated from other columns by spaces; of course, the columns which
ALASRD actually acquires must contain exclusively numeric values.) When DIPSO begins, these
are set to 1 and 2 by default; they are not reset to these values after execution of ALASRD.

ALASLINS line1 line2

Tells ALASRD to read only lines line1 to line2 (inclusive) of an input file. If line2 is specified as
zero, this is interpreted to mean end-of-file.

SUN/50.24 —Command Specifications 18

ALASRD filename[.typ] [brkval]

Reads data from a formatted file. The simplest structure which ALASRD (and DIPSO) can read is
one pair of X, Y values per record; this is the default file structure expected by ALASRD. More
elaborate files can be read in through prior use of the ALASLINS and ALASCOLS commands (q.v.).

Gaps in the data are assumed to be flagged by Y values of zero, unless a different “brkval” is
specified on the command line.

The default file type ([.typ]) is ‘.DAT’.

ALASWR filename[.typ] [brkval]

Writes the contents of the ‘current’ arrays into a formatted file. The X data are output in column
1, and the Y data in column 2; gaps in the data are flagged with a Y value of zero, unless a
different value for “brkval” is specified on the command line.

The default file type ([.typ]) is ‘.DAT’.

ANGLE Theta

Changes the angle at which PWRITE strings and MARK symbols are plotted. Theta is measured in
degrees, anticlockwise from the horizontal, and is initially set to zero.

ATLASRD Teff LogG [MODE]

Reads in Kurucz model atmosphere fluxes, from the data base kept in the directory with
environment variable SPECDAT. The data are stored in the database in the form of astrophysical
fluxes; however, ATLASRD multiplies them up by a factor π to produce ‘actual’ fluxes. The x unit
is Angstroms, and the y unit erg/cm2/s/A.

If MODE=0 (the default value) solar abundance models are acquired; otherwise the ‘low metal
abundance’ models (1/30 solar) are read in. A summary of the available solar abundance models
can be obtained using ATLIST, and the models normalised to cursor-selectable X,Y values using
ATNORM.

Other files in the SPECDAT database, including extended atmosphere and Non-LTE models
(see $SPECDAT/info.lis for details), can be read in using SP2RD $SPECDAT/filename.typ. The
KHMEXT, MLTE and MNLT models can all be ATNORMed if they are first subjected to TENY,
but the normalisation constant will be meaningless.

If you cannot access the model atmospheres, it may be because you are not currently using NDF
data format (see command USENDF). Most of the data in SPECDAT is only available in NDF
format. Of course, your node may not have the SPECDAT database installed, in which case
complain to your node manager.

ATLIST (no parameters)

Lists the T(eff) and Log(g) values used to specify the Kurucz solar abundance model atmosphere
fluxes that are accessible to ATLASRD.

19 SUN/50.24 —Command Specifications

ATNORM [mode]

Normalises model atmosphere fluxes stored in the ‘current’ arrays to the cursor position. The
angular diameter implied by the normalising constant is printed at the terminal. The normalised
fluxes are left in the ‘current’ arrays, and are plotted if mode=1 (the default). No plot is produced
if mode=0.

If the cursor Y value is negative, the plot is assumed to be of X v Log10(FLUX). In this case, the
Y values plotted (and left in the ‘current’ arrays) are logs of the normalised model atmosphere
fluxes; however, the unnormalised atmosphere data in the ‘current’ arrays MUST be linear in Y
to start off with (i.e. in the form resulting from an ATLASRD). ATNORM can also be used to normalise
black-body fluxes generated with BBODY.

BBODY temp

Calculates black-body fluxes [pi times B(nu)] at the x values of the grid in the ‘current’ arrays,
overwriting the y values therein. (GRID can be used to initialise appropriate x values.) The
fluxes can be normalised to observed data using the ATNORM command. The unit of ‘temp’ is
Kelvin, the ‘x’ values are assumed to be in Angstroms, and B(nu) is in erg/cm-2/s/A.

BEEP (no parameters)

Turns on the BEEP following NOBEEP (also tests your terminal’s beeper).

BIN X1 DX

Bins the contents of the ‘current’ arrays, which are expected to be in monotonically increasing X
order. X1 is the start wavelength of the input data, and DX the X range over which binning is to
take place; thus the first X value in the output data set will normally be approximately:

X1 + 0.5*DX.

If you choose a value for DX which is less than the typical separation of the input X points you
will probably get an unsatisfactory result. The binned data, which are the unweighted averages
of the input X and Y values in each bin, are left in the ‘current’ arrays.

BOX (no parameters)

Automatic clearing of the plotting surface between plots. This is the default option on starting
up. The inverse function is NB.

CDRAW [filename or mode]

Allows you to draw a ‘continuum’ using the cursor; the input X values must be in increasing
order (CDRAW is terminated with an ‘X(N+1).LE.X(N)’ type test). The result is stored in
the ‘current’ arrays (so you should first PUSH your spectrum so as not to lose it); subsequent
rectification of data can be carried out using ADIV. (See also CREGD, CREGS and PF).

If MODE=0 (the default value), the data stored are just those input with the cursor, giving a
‘join-the-dots’ spectrum. If MODE=1, a spline fit to the data points is carried out, using the

SUN/50.24 —Command Specifications 20

subroutine INTEP described by Hill (Publ DAO). A smooth curve (which is supposed to be like
one you might draw by hand through all the cursor points) is calculated on the grid of ‘x’ points
of the arrays in the top (i.e. numerically largest) stack entry.

It is possible to input data to this routine from a file, rather than at the terminal. The data are
expected to be in the form (NDF or native DIPSO) produced by the WRITE command, and MODE
is assumed to be 1 (MODE=0 would have the same effect as a simple READ, and is therefore
redundant). Thus, using this option makes CDRAW act essentially as a straightforward spline
interpolation routine.

CLEAR (no parameters)

Clears the text surface. (Simply a PRINT *, ’ ’ loop; it will not, therefore, work on a 4010-type
device, for which you should use ERASE).

CLRBRK (no parameters)

Clears all breaks (i.e. gaps in the data) from the current arrays. (The end-of-data is preserved,
internally, as a break point, however.)

COMMANDS [clist/-word] [clist] [clist]

If no parameters are supplied, a listing of all available commands is given. If a minus sign is
given as the only parameter, a one line description of each command is also displayed. If the
minus sign is followed by a word, then only those commands which contain the given word in
their descriptions (case insensitive) are displayed. As an example:

> COMMANDS -CONTINUUM

would display all commands which contain the string “continuum” in their descriptions.

Alternatively, commands for display can be selected by their function. All commands are
grouped into one or more classes which are identified by single lower-case letters as follows:

a - Analysis,measurement.
c - Setting of control variables, etc.
d - Modelling.
e - Data editing,selection,rejection.
f - Fitting.
g - Graphics.
h - Help information.
i - Reading, writing, moving and deleting data sets (including

disk I/O).
l - Filtering.
m - Manipulation (arithmetic,calibration,corrections,etc).
q - Inquiry (control variables, etc).
r - Re-gridding.
t - Title manipulation.
y - System control tasks.

21 SUN/50.24 —Command Specifications

Each parameter must be a word made up from a selection of these class identifiers. Commands
must belong to all the classes in at least one of these words to be displayed. Classes can be
negated (i.e. explicitly excluded) by specifying an upper case identifier (i.e. "A" means “not in
class "a"”). As an example:

> COMMANDS gC t+

would list all commands which are to do with graphics but which are not control commands,
and also all commands which are to do with title manipulation.

Note, if a file called $LDIPSODIR/comand.lis exists then the contents of the file are displayed
without processing (all parameters are ignored). It is recommended that such files be re-
formatted to use the new system (see section8.4).

CRASH n

Performs various illegal instructions with the object of trying to crash the program! It can
be used to test the behaviour of the signal/condition handler (see command HANDLER). The
following values of ‘n’ causes the corresponding condition:

0 - Divide by zero (an example of a floating point exception).

1 - Access violation.

2 - Overflow.

3 - Underflow.

CREGD [h]

‘Continuum REGion Display’: plots the regions selected for ‘continuum’ fitting using CREGS.

The continuum windows are indicated by horizontal bars, which are drawn a fraction ‘h’ of the
distance from the bottom to the top of the plot (0<h<1, default 0.8).

CREGL (no parameters)

‘Continuum REGion List’: lists the current continuum windows selected with CREGS.

CREGS [X1 X2 X3 X4 X5 X6 ... X49 X50]

‘Continuum REGion Select’: select ‘continuum’ regions. These regions can be input as a parame-
ter list; if no values are provided, the cursor is activated for interactive selection of continuum
windows. When using the cursor, the input ‘X’ values must be in increasing order.

The selected regions can be checked using CREGD. This command will normally be used in
conjunction with PF. (See also CDRAW).

SUN/50.24 —Command Specifications 22

CROT (no parameters)

Implements automatic rotation of colours (when used with appropriate hardware). Each plot
begins with the colour specified by the last call to CSET (or colour 1, if CSET hasn’t been called).

To cancel, use NCROT.

CSET n

Set colour for Ikon plotting; n = 1-12 (1 = white). (See also CROT).

CXR (no parameters)

‘Cursor X range’: define the X range for plotting using the cursor.

CXYR (no parameters)

‘Cursor X & Y range’: define the X and Y ranges for plotting using the cursor.

CYR (no parameters)

‘Cursor Y range’: define the Y range for plotting using the cursor.

DEL n1 [n2 n3 n4 n48 n49 n50]

Deletes STACK entries. At least 1, and up to 50, stack entries may be deleted; after deletion, the
remaining STACK entries are renumbered in sequence. Ranges of entries can be specified using
the “-” operator; e.g. DEL 2 4-6 8 will result in the deletion of entries 2, 4, 5, 6 and 8. DEL 1-50 will
clear the stack.

You are recommended to develop the habit of typing SL immediately after DEL, to check what
has happened.

DEV workstation

Opens a GKS workstation (plotting device). If the argument isn’t provided then a table of
legitimate workstations is listed, followed by a prompt. A full list of available workstations is
given in SUN/83.

DRED E(B-V) [R MODE]

Dereddens data stored in the ‘current’ arrays. Negative points are multiplied by -1, dereddened,
and the dereddened values again multiplied by -1.

The default value of R (=A(V)/E(B-V)) is 3.1.

The default value of MODE is 0, which results in a ‘standard’ Galactic-type law being used
(Seaton 1979 for the UV, Howarth 1983 for optical-IR); any non-zero value results in an LMC-type
law being used (Howarth 1983).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun83.htx/sun83.html?xref_

23 SUN/50.24 —Command Specifications

DRLINE x1 y1 x2 y2

Draws a poly line between two points on the current graph.

ECHO [mode]

Controls echoing, at the terminal, of commands (and comments) read in from command files.
If mode=-1 (the default) there is no echoing, but you get a “Command sequence completed”
message when the macro file is closed; if mode=0 this message is suppressed. Mode=1 results
in commands being echoed; mode=2 echoes comment lines (i.e. those beginning with “!” or
“*”); and mode=3 echoes commands and comments. All non-zero modes give a “Command
sequence completedi” on completion.

ELF (no parameters)

This is not a DIPSO command, but a suite of programs accessed for Emission Line Fitting.

The available DIPSO/ELF commands are:

ELFINP ELFOPT ELFNEWC
ELFPUSH ELFLFIX
ELFPUSHC ELFPOPC ELFDELC ELFCSL ELFVUC
ELFSAVEC ELFRESTC ELFWRC
ELFPIN ELFPL

The most important ‘core’ commands are:

ELFINP ELFOPT ELFPUSH

which are sufficient to give you a fit to some data.

ELFDELC [n1 n2 n3 n4 n5 n6 n7 n8 n9 n10]

“ELF DELete Coefficients”. Deletes entries from the stack of fit coefficients. Remaining coefficient
stack entries are renumbered, so use of ELFCSL immediately following ELFDELC is recommended.

ELFNEWC (no parameters)

“ELF NEW Coefficients”. Clears the current array of fit coefficients (N.B. Not the DIPSO current
arrays!). The same result can be obtained using CLEAR inside the ELFINP editor.

ELFINP [batch]

“ELF INPut”. Allows you to Specify starting values and constraints prior to optimising the line
fits with ELFOPT. The “batch” parameter controls what happens if the ELFINP command is
invoked from within a command file. If “batch” is zero (the default), the user is prompted for
the strings specifying the ELF constraints, starting values, etc (you are alerted to this by a change
of prompt). If “batch” is non-zero, the strings are read from the script file. In either case, the last
string read should be “QELF”.

SUN/50.24 —Command Specifications 24

The ELF command language allows starting values and constraints to be entered prior to opti-
mising line fits. The language is similar to FORTRAN in the logical construction of commands;
the following operators are recognised:

: = + - / *

The last four have their conventional arithmetic meanings.

Five variables are recognised:

C W I P D

These refer to the line centre position, line width (FWHM), peak intensity, profile type, and
degree of background polynomial. (If no value is specified for the profile type, it is assumed to be
a Gaussian; i.e. P=1). To refer to a particular line, the variable must be followed IMMEDIATELY
by the appropriate index (i.e. C1, W5, I2 etc). Numerical constants can be input as integer or
decimal numbers, but exponents are not accepted. Blanks are permitted, but not within variable
names or numerical constants.

The “:” operator: Used to specify a starting value for a variable quantity, e.g.:

C1:5000
w1: 2.5

Starting values for peak fluxes are not required.

The “=” operator: Used to set a fixed quantity, or relationship between two quantities; for
example,

C2=5000
w2=w1
I3 = 2.486 * I2
C3 = c1 - 21.6
p1 = 6
d=0

The command W2=W1 constrains the width of line 2 to be the same as that of line 1;
P1=6 defines the profile type — in this case, to the first ‘numerical’ profile; D=0 fixes the
background polynomial to have degree zero. (Note that the ‘=’ operator is the only one
allowed with the D and P variables.) If D is undefined no background polynomial is
incorporated. (Note that least-squares polynomials can be fitted to data by defining no
lines and an appropriate value of D. For reasons of numerical stability, the polynomial
coefficients are computed using an x scale centred on the mean x value of the data set;
you are informed of the value of this offset zero-point.) Other examples should be self-
explanatory.

The “+” and “-” operators: These may ONLY be used with the variables C and W.

The “*” and “/” operators: These may only be used with the variable I.

25 SUN/50.24 —Command Specifications

The other commands available are:

HELP - gives a summary of options
CLEAR - clears the current model specification
QELF - return to DIPSO input
L - list the fit specification

There is no command for deleting the specifications for a given line from the complete coefficient
specification. If you need to ‘remove’ a line, it is necessary to define (using the = operator) the
line intensity to zero, and the line width and position to suitable arbitrary values.

ELFOPT [prmpt]

“ELF OPTimisation”. Initiates optimisation of fit coefficients (in the sense of minimising the sum
of the squares of the deviations of the fit from the spectrum data in the DIPSO ‘current’ arrays).
In the case of an analytical profile fit, the data may have velocity or wavelength as the unit of
the X axis. Provided WORV is set correctly, the fitted flux will be in sensible units (ie those of
the Y axis). In the case of a ‘numerical’ profile, spectrum data must be in velocity units. Note
that line width is not permitted as a free parameter when fitting ‘numerical’ profiles.

ELFOPT may not be fast on a busy machine if there are many free parameters and/or datum
points. Also, for complex fits, ELFOPT may not converge on the correct solution. You may
therefore want to monitor the progress of a fit on an iteration by iteration basis. To do this, you
should specify the optional parameter “prmpt" to have a value of 1 or greater; you will then be
prompted after the first (and, optionally, subsequent) iteration to give you the opportunity to
exit ELFOPT cleanly.

The output from a completed fit consists of the optimised parameters and their errors (calculated
in the linear approximation, from the error matrix). The results may be stored for later inspection,
or output, using ELFPUSHC.

ELFPUSHC (no parameters)

“ELFPUSH Coefficients”. Pushes the coefficients of the current ELF fit onto the stack of fit
coefficients. These results may be inspected, printed out, or recovered to the status of current fit
coefficients using ELFCSL, ELFVUC, ELFWRC, and ELFPOPC.

ELFPOPC n

“ELF POP Coefficients”. Pops a set of fit coefficients from the ELF fit coefficient stack into the
‘current’ coefficient arrays (where they can be modified with ELFINP).

ELFRESTC [filename[.typ]]

“ELF RESTore Coefficient stack”. Restores an ELF fit coefficient stack previously saved using
ELFSAVEC. The SAVEd stack of numerical profiles is restored only if there are no numerical
profiles on the profile stack at the time of the restore. This is to avoid ambiguity in definition of
profile indices. The conditions and features of the restore are the same as those for the DIPSO
stack restore (‘RESTORE’), except that the default filename and type are [ELFSAVE.ESTK].

SUN/50.24 —Command Specifications 26

ELFSAVEC [filename[.typ]]

“ELF SAVE Coefficient stack”. Saves the entire fit coefficient stack as an unformatted file that can
be subsequently recovered using ELFRESTC. The stack of stored numerical profiles (if any) is also
saved. The default filename and type are [ELFSAVE.ESTK]. The data file created is not an NDF
and may therefore not be readable on operating systems other than the one on which it was
created.

ELFCSL (no parameters)

“ELF Coefficient Stack List”. Gives a summary of entries in the fit coefficient stack. Individual
entries can be inspected in more detail using ELFVUC.

ELFVUC n

“ELF View Coefficients”. Gives a listing, at the terminal, of entry ’n’ of the ELF fit coefficient
stack. An overview of the stack can be obtained using ELFCSL.

ELFWRC filename[.typ]

“ELF WRite Coefficients”. Writes the contents of the fit coefficient stack to a file (default type is
.DAT). The information given includes the starting specifications for the fit, the results (if any),
and the line fluxes in units corresponding to the data stored in the DIPSO stack.

ELFLFIX n

“ELF Line FIX”. Allows use of the cursor to define a ‘fixed’ (i.e. non-optimisable) line in the
data. Its principal use is to (in effect) take out features in the far wings of lines that are being
optimised; these features might otherwise adversely affect the final fit.

Typing ELFLFIX brings up the cursor; two hits are then required. The first locates the centre and
peak flux of the feature. (These data are added to the ‘current’ fit coefficients in the same way as
using ‘=’ in ELFINP.) The second locates the half intensity point, on either side of the feature, to
fix the half-width at half maximum (from which the FWHM follows). (Hitting the same point
twice leaves the width undefined.)

ELFPIN n

“ELF Profile INput”. Transfers a numerical profile from DIPSO stack entry ‘n’ to storage in the
profile stack. The data must have units of velocity along the X axis; spectra to which numerical
profiles are fitted must also be in velocity space.

ELFPL (no parameters)

“ELF Profile List”. Lists the contents of the profile stack (by giving the title of the original DIPSO
stack entry).

27 SUN/50.24 —Command Specifications

ELFPUSH [n1 n2]

“ELFPUSH fit”. Pushes the result of an ELF fit onto the DIPSO stack, as a continuous (i.e.
no breaks) spectrum. If no arguments are specified, the complete fit is pushed, into the next
available DIPSO stack position. If ‘n1’ is specified, only the fit for line n1 is pushed. If ‘n2’ is
also specified, the fits for lines n1 to n2 inclusive are pushed. If n1 is specified, the background
polynomial (if any exists) is also pushed, before the line(s).

ENV name

The string value being used for the specified environment variable is displayed. An error is
reported if the no value is available.

DIPSO uses environment variables to specify various directories (eg DIPSODIR), and also the
prompt string (DIPSOPROMPT). Default values for these environment variables can be supplied
on the DIPSO command line in a comma separated list of “name=value” pairs. These default
values will be used if the corresponding environment variables are not defined.

ERASE [n]

Erases plotting zone “n” (c.f TZONE). This is done rather slowly unless n=0 (the default).

EW [mode]

Measures equivalent widths. The cursor is used to define two pairs of (X,Y)points, between
which the equivalent width is measured with respect to a linear ‘continuum’; if you need a more
complex continuum, the data can be preprocessed using CREGS together with PF, or using CDRAW.
To terminate the equivalent width measuring session, define X2<X1. Note that EW expects to
measure spectra with monotonically increasing X values.

Errors on the measured equivalent widths are calculated using the prescriptions given by
Howarth and Phillips (MNRAS 222, 809, 1986); these errors are likely to make most sense for
interstellar line measurements. The assumed nature of the errors is controlled by the value
of MODE; the default for MODE is 0. In this case, if the data have been processed with PF
immediately before using EW, an estimate of the continuum signal-to-noise is available. This
results in automatic generation of ‘statistical’ errors on the equivalent width measurements,
under the (conservative) assumption that noise (rather than signal-to-noise) is constant. Such an
assumption is likely to be reasonable for IUE data. Note that on termination of the EW command
the ‘statistical’ error is LOST. This is a feature, not a bug, and is intended to stop you making
mistakes through oversight. If, after terminating EW, you find that you want to do further
measurements on the same data, then the sequence:

PUSH,PF 0,ADIV m,PM

(where ‘m’ is the STACK entry into which the data are PUSHed) will normally recover the error
estimates. (The CREGS continuum regions are remembered, and PF 0 will fit a horizontal line to
these regions in the already rectified data, recomputing the error estimate. The Y coordinate of
this line should be 1.0).

SUN/50.24 —Command Specifications 28

If MODE is given a non-zero value, ‘statistical’ errors are calculated under the assumption of
Poisson statistics. Such an assumption may be considered by some (though not necessarily the
author of this document) to be appropriate to IPCS data. Since the uncertainties on individual
points are not stored, but are calculated (on a square-root basis) during the EW measurement, it is
essential that unrectified data are interrogated in this mode. It may, of course, prove convenient
to overplot a ‘continuum’ to assist interpretation.

In addition to the ‘statistical’ (i.e. random) errors calculated by EW, allowance for systematic
errors in setting the zero and continuum levels can be made, using the EWERR command.

WARNING: EW operates on the data stored in the ‘current’ arrays. Be careful not to make the
mistake of plotting STACK data, and then trying to measure equivalent widths off of the data
on the screen. The calculated value of EW is multiplied by the factor WORV.

EWERR ErrC Err0

Provides the program with estimates of the systematic errors in continuum and zero-level
placement (expressed as percentages of the continuum level). These errors are then incorporated
into subsequent error analysis when determining equivalent widths with EW.

These systematic errors are assumed to propagate quadratically (see MNRAS 222, 809, 1986).

EXIT

Exits DIPSO, saving the stack in a file called EXIT.STK, or EXIT_STK.sdf.

EXPAND Factor [clist]

Expands components of a plot by a factor “Factor" with respect to the default size on a given de-
vice. (Factor is absolute, not relative; e.g. the sequence EXPAND 2, EXPAND 3 gives 3x enlargement,
not 6x.)

If no value is supplied for clist, then the supplied expansion factor applies to all the components
of the plot listed below. If a value is supplied for clist, it must be a string containing some
sub-set of the characters A, I, N, T, M and P. Each character refers to a different component of
the plot as follows:

A - M(A)jor tick marks.

I - M(I)nor tick marks.

N - (N)umerical axis labels.

T - (T)extual axis labels.

M - (M)arkers.

P - Text created using the (P)WRITE command.

The expansion factor is only applied to those components of the plot for which the corresponding
letters are included in the clist parameter. The expansion factor for all other components is left
unchanged.

29 SUN/50.24 —Command Specifications

FILL (no parameters)

Results in filled-in MARK symbols (c.f NOFILL).

FLUX [filename[.typ]]

Measures fluxes with respect to (=above) a linear ‘continuum’ defined using pairs of cursor
hits. More complex continua must be rectified out, using CDRAW, or CREGS together with PF. To
end a FLUX measuring session, input X2<X1. Note that FLUX expects to measure spectra with
monotonically increasing X values.

Fluxes are obtained by trapezoidal integration between X,Y points. Linear interpolation is used
across ‘breaks’ in the data (and a warning given).

If a file name is supplied (the default file type is .DAT) then the x1, x2 and flux values are output
to the file for future reference. The file remains open until (i) you exit from the program; (ii) a
new file name is provided; or (iii) FLUX 0 is typed in. (The last option closes any file that is open
[but does not open a file called 0.DAT].) This means that, for example, FLUX can be exited, the X
and Y ranges changed and a new plot generated, then FLUX re-entered, and data will continue to
be output to the previously opened file.

WARNING: FLUX operates on the data stored in the ‘current’ arrays. Be careful not to make the
mistake of plotting STACK data, and then trying to measure fluxes off the data on the screen.
The integrated flux is multiplied by the factor WORV.

FONT n

Selects font quality. Permitted values of ‘n’ are 0 (hardware characters), 1 (SGS characters), and 2
(NCAR characters). These are in increasing order of elegance, and execution time! The resulting
fonts are used for all text on the plot (i.e. apply to XLAB, YLAB, PWRITE, and TITLE when the title
is plotted).

FONT 0 (the default) is not always elegant, and because of problems with text rotation some
devices will write the Y axis label “upside down”. If this really worries you you can get round it
with YLAB (e.g. use YLAB xulF).

The elaborate FONT 2 style gives access to a wide range of special characters (Greek, italics,
mathematical symbols, etc.) These cannot be reproduced in this document, but are given in full
in SUN/90 (which documents the routines which DIPSO utilises). The following formats serve
to illustrate the possibilities:

’PGU’ gives uppercase Greek

’PGL’ gives lowercase Greek

’B’ gives subscripts ("B"elow)

’S’ gives superscripts

’N’ gives normal (ie not sub- or super-script)

’PRU’ gives Roman characters

http://www.starlink.ac.uk/cgi-bin/htxserver/sun90.htx/sun90.html?xref_

SUN/50.24 —Command Specifications 30

Thus to give the formula for the area of a circle as a title:

TITLE "Area = ’PGL’P’PRU’r’S’2"

Note that the single quotes surrounding the style definition strings are mandatory, as are
the uppercase specifications. Note, too, that the correspondence between Greek and Roman
characters is not usually as obvious as P=“pi”; it is important to check a printed (not line-printer!)
copy of SUN/90 for details.

An angstrom symbol (Å) is provided as a special character: ‘.A’ (in ‘PRU’ style). Other com-
plex characters can be constructed (see SUN/90); for example, a mass-loss rate symbol (M
surmounted by a dot) is obtained using "’PRU’M’H:-85V105PRU’.’H:85V-105’".

Because the codes for special characters are flagged by apostrophes, life gets complicated if you
want to include a normal apostrophe in a tring. But not too complicated: you just give it twice.
For example, if you want a title that says:

Howarth’s Fudged Data

you must specify:

TITLE "Howarth’’s Fudged Data"

to get it (in font 2).

FORMWR filename[.typ]

Results in a formatted write of the contents of the ‘current’ arrays. The resulting data are in a
form suitable for output on a line printer. The default file type ([.typ]) is ’.DAT’.

FRAME xsize ysize [locator index]

Defines a plotting area in absolute (device-independent) terms. The xsize and ysize parameters
are in cm; the locator index follows the numeric keypad, i.e. 1=bottom left, 9=top right etc. The
locator index defaults to 5 (centre of plotting zone). To return to (device-dependent) plotting
zones use TZONE.

Subzones within the specified FRAME can be set using FRZONE.

FRZONE x1 x2 y1 y2

Defines subzones within a plotting area specified by FRAME. The parameters x1 etc. are in the
range 0-1, and define the fractional position of the subzone within the frame. An example of the
use of FRAME and FRZONE can be found in DIPSODIR:DEMO2.CMD ($DIPSODIR/demo2.cmd.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun90.htx/sun90.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun90.htx/sun90.html?xref_

31 SUN/50.24 —Command Specifications

FTFILTER n1 [f1 f2 n2]

Filters high-frequency components (which you may identify with noise) from the real and
imaginary parts of a Fourier Transform (see FTRANS). FTFILTER expects the real part of the FT to
be in stack entry “n1", and the imaginary part to be in entry “n2" (which defaults to n1+1).

FTFILTER operates by constructing an “exponent-squared edge function", and multiplying the
FT by that filter (see Bracewell, “The Fourier Transform and its Applications", for details). The
filter has a value of unity up to frequency f1, then drops like exp(D[nu]**2), where D[nu] is the
change in frequency. The e-folding scale is determined by specifying f2, the frequency at which
the filter drops to a value of 0.01.

The filtered real and imaginary parts are pushed onto the stack, together with the filter used.

The frequencies f1 and f2 will depend critically on your application; defaults are provided
merely to provide an illustration for first-time users. These defaults are (Nu1+Nu2)/2 for f1,
and MIN(Nu2,1.1*f1) for f2, where Nu1 and Nu2 are the first and last frequencies in the data set
to be filtered.

FTINV n1 [n2]

Computes the inverse fourier transform from the real and imaginary parts of the FT, where the
real part is in stack entry n1, and the imaginary part is in stack entry n2 (which defaults to n1+1).
The result is pushed onto the stack (and WORV=1 assumed).

FTRANS n [p]

Computes the Fourier Transform of stack entry “n”, pushing the resulting real and imaginary
parts onto the stack, together with the power spectrum. A fraction “p” of the data set is
endmasked (at each end) with a cosine bell; “p” defaults to 0.05. For best results you should
subtract a continuum (or at the very least the mean value) from the data, in order to maximise
the effectiveness of the endmasking.

FTRANS does not use the Fast Fourier Transform algorithm. It does not, therefore, require the
number of datum points to be an integer power of two (at the price of being slow for large
data sets). However, it is necessary for the data to be uniformly sampled; if FTRANS determines
that your data set does not contain regularly sampled X values it will automatically perform a
4-point Laguerre interpolation in order to simulate such data. For applications where the data
sampling rate is very irregular, or where there are substantial gaps (e.g. in light-curves), it is
recommended that PDGRAM (and PDGWINDOW) be used for Fourier analysis applications.

The X values in any data set must be monotonically increasing.

It is recommended that you familiarise yourself with (e.g.) Brault & White, A&A 13, 169 (1971)
before using FTRANS.

GRID X1 X2 DX

Creates a grid of uniform wavelength points, starting at Lambda(1)=MIN(X1,X2). The Y values
are set to zero. This command can be used with AADD to remap data, or to set up a wavelength
grid for (e.g.) NEBCONT. Data are left in the ‘current’ arrays.

SUN/50.24 —Command Specifications 32

GRIDSTYLE mode

Controls the design of plots.

• Mode 1 is the “ordinary" (4 sides and labels) design;

• Mode 2 results in a grid drawn over the plot (like course graph paper);

• Mode 3 gives just the bottom and left-hand axes;

• Mode 4 gives no box at all, and no labels;

• mode 5 gives bottom and left-hand axes but no labels.

HANDLER level

The DIPSO error handler makes the program uncrashable (in principle!). Setting level=0 results
in the system error handler being invoked; fatal errors will kill the program. Any level greater
than zero (such as the default value of 1) causes the program to issue a warning message when
an error occurs (including control-C interupts). The current command is aborted and the user is
returned to the main DIPSO command prompt.

To familiarise yourself with the condition handler you can type ‘CRASH’.

HC N

Calculates a theoretical (fully damped) profile for the Hydrogen Lyman-alpha line (1216 A),
with a column density ‘N’. The profile is calculated at the X grid in the current arrays, with a
continuum level of unity. If the parameter N is less than 30 it is assumed to represent log(N).

The most convenient way of using this function is to calculate a theoretical profile, use ADIV
to divide observed data (in the STACK) by it, then plot the resulting data. The ‘best’ value of
the interstellar H I column is that which gives the ‘flattest’ continuum around 1216. Of course,
interpretation is your responsibility, and the intrinsic stellar Lyman-alpha profile should always
be considered, together with the possibility that the interstellar line is not fully damped.

HELP [string]

If no value is supplied for ‘string’ then general help information for the DIPSO package is
displayed. More verbose assistance on a particular command can be obtained by typing ‘HELP
<command name>’. The information is displayed in one of two formats: plain text, or hypertext.
The hypertext information is taken from SUN/50 and is displayed using a World-Wide-Web
browser. By default the Mosaic browser is used, but this can be changed by assigning the
required browser command to the environment variable HTX_BROWSER before entering DIPSO.
For example, to use Netscape issue the following command before starting DIPSO:

% setenv HTX_BROWSER netscape

33 SUN/50.24 —Command Specifications

If a browser of the requested variety has already been fired-up prior to starting DIPSO, it is
“hi-jacked” to show the requested help information. Otherwise, a new browser is fired-up.

If this command fails, saying that the “showme” command cannot be found, try defining the
showme command explicitly using USEHTX.

In plain text mode, the information is taken from $DIPSODIR/dipso.hlp and $DIPSODIR/help.lis,
and is displayed in the DIPSO command window.

By default, the plain text format is used, but this can be changed using the USEHTX command.

Typing an interrogative (“?” or “?<command name>”) has the same effect as typing HELP.

HIST (no parameters)

Plots to be done histogram-style (as opposed to POLY or MARK).

HPROT [mode]

Rotates between Hist and Poly plots on a given diagram, starting with whichever style is
currently in force (selected with HIST or POLY command); can be useful when comparing (e.g.)
observations and models. If mode is 1 (default is 0) then the first data set is plotted in the current
style (i.e. histogram if HIST is in force), and all subsequent data sets plotted on the given diagram
will appear in the alternative style. The cycle can be re-initialised at any time with HIST or POLY.

Negated with NHPROT.

INTEGRATE (no parameters)

Estimates the area under the current arrays using simple trapezoidal integration (and will
therefore only work successfully for data sets with monotonically increasing X values).

INTERP n

Applies Laguerre interpolation to data in the current arrays, to give a regularly sampled data
set with the same number of points as the original. The parameter “n" controls the order of the
interpolation.

INTERP does (n-1)th order interpolation, where ‘n’ must be an even number; thus only odd orders
greater than zero are handled. For example, n=2 gives 1st order (i.e. linear) interpolation; n=4
gives 3rd order (i.e. quartic) interpolation. (INTERP cannot supply quadratic interpolation,
since this would require n=3 and odd values of ‘n’ are not allowed.)

The data must have monotonically increasing X values.

Note that spline interpolation can also be executed, using the CDRAW command.

ISATM [wavelength]

Supplies atomic data for use with ISCALC and ISCOG. If a wavelength (in Angstroms) is provided,
then DIPSO searches for a file called ATOMIC.DAT in the current directory; if it fails, it looks
for one in a directory with the environment variable OWNERDIR; and if it again fails, it opens
$DIPSODIR/ATOMIC.DAT. Once a file has successfully been opened, DIPSO searches for a line

SUN/50.24 —Command Specifications 34

whose wavelength falls within 0.1A of the argument wavelength to ISATM. If it finds it, it uploads
the associated atomic data.

The file $DIPSODIR/ATOMIC.DAT uses data based on MNRAS 222, 809 (1986) and references
therein, and provides a model for the required format if you want to set up your own file.
“Comment cards" prefixed by “*” or “!” are permitted.

If a wavelength is not provided, or if ISATM fails to find a data set corresponding to a specified
wavelength, then a “data edit” mode is entered. This allows you to change or input atomic data,
or to carry out further searches through an ATOMIC.DAT file; typing H in this mode gives more
information.

(Incidentally, in case you’re wondering, ATOMIC.DAT requires statistical weights in order to
permit calculation of damping constants.)

ISCALC (no parameters)

Calculates a theoretical absorption profile for an interstellar cloud (or other plane-parallel slab
of absorbing material with negligible forward scattering and a Gaussian line-of-sight velocity
distribution for the absorbers), and pushes the result onto the stack.

Before this command can successfully be invoked, the atomic data must already have been
loaded (with ISATM), a cloud model defined (with ISINP), and a set of cloud ‘options’ defined
(with ISOPT).

ISCOG (no parameters)

Calculates a Curve-Of-Growth for a cloud model defined with ISINP, using atomic data input
via ISATM. The COG is pushed onto the stack, with X values (N.f.lambda) in units of (cm-
2.dimensionless.Angstroms) and Y values (W[lambda]/lambda) assuming equivalent width
and wavelength to be measured in the same unit.

ISINP (no parameters)

Invokes a cloud “editor”, which permits an interstellar cloud model to be defined prior to
calculating theoretical profiles with ISCALC. Up to 18 clouds are permitted; each is specified by a
velocity dispersion parameter, “b” (see, e.g., MNRAS 222, 809 [1986] for a definition), a central
velocity, V, and a column density, N.

Typing HELP while in the cloud editor provides more information.

ISOPT [filename[.typ]]

Loads a variety of options required before ISCALC can be successfully executed. These include
specifications for (optional) convolution with an instrumental resolution function, blending
with other lines, etc. ISOPT invokes an option “editor”; typing H in this edit mode gives more
information. Alternatively, if a filename is specified on the command line, an attempt is made to
read options from that file. Such a file should contain information matching the ISOPT editor
input; for example, if the file contains:

V1=-100
V2=+100

35 SUN/50.24 —Command Specifications

line profiles will be calculated over (at least) the range -100 km/s to +100 km/s; default values
for all other options will be assumed. (The default file name is ISOPT, and the default extension
is .DAT.)

IUECOR camera year day [aperture]

Applies the ‘aging’ corrections for the IUE cameras described by Bohlin and Grillmair (Ap. J. Sup.,
66, 209, 1988; SWP) and by Clavel et al. (ESA IUE Newsletter No. 26, p. 65, 1986; LWR). The
‘camera’ parameter is 2 for LWR and 3 for SWP; the ‘day’ parameter is day number in the year.
The ‘aperture’ parameter is relevant only to SWP data, and is 1 for trailed spectra, 2 for small
aperture spectra, and 3 (the default) for large aperture point source spectra. IUECOR works on
data in the current arrays, replacing fluxes therein by their corrected values.

LABON (no parameters)

Turns axis labelling back on (after use of NLAB).

LOGAXX t/f

If set ‘True’, the X axis will be plotted on a log10 scale.

LOGAXY t/f

If set ‘True’, the Y axis will be plotted on a log10 scale.

LOGX (no parameters)

Replaces the X values in the current arrays by their base 10 logarithms.

LOGY (no parameters)

Replaces Y values in the current arrays by their base 10 logarithms.

LWEIGHT weight

Alters the weight (i.e. ‘heaviness’) of all plotted lines, on devices which support this feature. The
weight must be 1-5 (initial setting is 1). See also TWEIGHT.

MARK (no parameters)

Plots to be done using symbols, as opposed to HIST or POLY. The symbols may be ‘designed’
using MSET, and expanded and rotated using EXPAND and ANGLE.

MEAN (no parameters)

Calculates the mean and standard deviation of the Y data stored in the ‘current’ arrays.

SUN/50.24 —Command Specifications 36

MERGE S1 S2 WT1 WT2 [MODE]

Merges STACK entries S1 and S2, with weights WT1 and WT2 respectively. This function is an
alternative to the AADD and YMULT commands, differing in the respect that if there is a gap in one
(but not both) data sets being manipulated, then the MERGEd data set will not have a gap. The
data sets in the STACK are both required to have monotonically increasing X values.

If there is any region of overlap between the two data sets, then the Y values of the data set
associated with the larger value of X(1) are mapped onto the X grid of the other data set. This
remapping is done using a triangular filter, so that some slight smoothing can result if the
sampling rates in the two data sets are very different. Remapping is carried out ONLY in any
overlap region.

This function is intended for merging data sets with (normally) overlapping, but not necessarily
identical, X ranges. In particular, it can be used for merging IUE SWP and LWR flux calibrated
spectra, and UV and optical data (e.g. UBV fluxes; see UBVRD). Because remapping is done
linearly, it is also suitable for averaging similar spectra.

If MODE=zero (the default value) and the data look like IUE SWP and LWR spectra (on the
grounds of the X ranges), a wavelength-dependent weighting is used which reflects the inverse
sensitivity function of IUE. If you ARE dealing with IUE data, then inputting the exposure times
as the WTs and using MODE=0 will result in (essentially) a MERGE at the ’FN’ level, which is
probably more correct than one at the ‘absolute flux’ level. If MODE is positive, the additional
IUE weighting is switched off. (Note that if you are NOT working with IUE data MODE=0 and
MODE=1 will give the same result).

If MODE=-1, a straight addition of data in the overlap region is carried out. This option may
be useful for (eg) combining emission line models with a zero background level. If MODE=-2
(or less), the two data sets are multiplied in the overlap region. This option may be useful for
(e.g.) combining absorption line models with a background level of unity. If MODE is negative,
‘dummy’ values of Wt1 and Wt2 MUST be supplied.

You should only merge data which you expect to have similar Y values over any range of
overlap. Merging dissimilar data sets (e.g. SWP and LWR IUE spectra which have not been flux
calibrated) will give unsatisfactory results.

MONGOWR filename [badval]

Writes a file which can subsequently be read into MONGO. It is possible to make MONGO
leave gaps in plots, corresponding to datum points with a notifiable ‘bad’ y value; the MONGOWR
command inserts a ‘bad’ point with y value ‘badval’ (default 0) into breaks in the data set to
facilitate use of this option.

Most of the more important MONGO functions are reproduced in DIPSO - you shouldn’t have
to use this command!

MROT (no parameters)

Implements automatic rotation of plotting symbols. Each plot begins with the symbol type
specified by the last use of MARK (or symbol 1, if MARK hasn’t been called).

NOT IMPLEMENTED AT PRESENT.

Turned off with NMROT.

37 SUN/50.24 —Command Specifications

MSET style nvert

Selects the MARK plotting symbol. ‘NVERT’ is the number of vertices the symbol has; ‘STYLE’
takes on values 1-4. Style=1 is a polygon, Style=2 a ‘star’ design, style=3 is an asterix, Style=4
gives an arrow symbol, for plotting lower or (with ANGLE) upper limits.

NB (no parameters)

‘No Box’: switches off automatic clearing off the plotting frame between plots. (Inverse function
is BOX). On a device or zone change, the ‘box’ is switched ‘on’ for the first plot, regardless of any
NB call.

NCROT (no parameters)

Stops automatic rotation of the colour table when Ikon plotting and resets the colour index to 1
(white). (See CROT and CSET).

NEBCONT filename[.typ] [mode1 mode2 mode3]

Calculates a theoretical nebular recombination continuum. The requisite data are comparatively
numerous, and so are accessed from a file. The contents of the file must be as follows:

Line 1: Te(1-4)
Line 2: Ne
Line 3: Log10 H(beta) flux [and Log10 He(1640) flux]
Line 4: C
Line 5: A[He(1+)] A[He(2+)]
Line 6: A[N(1+)] A[N(2+)] A[N(3+)] A[N(4+)]
Line 7: A[C(1+)] A[C(2+)] A[C(3+)] A[C(4+)]
Line 8: A[O(1+)] A[O(2+)] A[O(3+)] A[O(4+)]
Line 9: A[Ne(1+)] A[Ne(2+)] A[Ne(3+)] A[Ne(4+)]

where:

Te(i) is the electron temperature appropriate to ions of charge i+, in units of 104K;

Ne is the electron density in cm-3;

H(beta) flux is the observed value, in cgs units; if the flux is unknown, enter a value
of 0.0 and follow it (on the same line) with the log of the He II (1640) flux, in the
same units;

C is the logarithmic extinction at H(beta) [C=1.44*E(B-V) for a standard extinction
law];

A(X) is the ionic abundance, in the form 1000*N(X)/N(H+).

A specimen file is given in $DIPSODIR/NEBCONT.DAT. If NEBCONT fails to find the file in the current
directory, it tries to look in a directory assigned the environment variable OWNERDIR (which you
can define in your .login script or your LOGIN.COM procedure).

SUN/50.24 —Command Specifications 38

All data in the file are reproduced at the terminal. By default, (mode1=mode2=mode3=0),
new values are prompted for (simply hit ‘return’ to get the file values). By setting mode1=1,
abundances are listed but not prompted for (fluxes, C, temperatures and densities still prompted).
Mode2=1 does the same for the H(beta) flux and ‘C’; and mode3=1, the same for temperatures
and density.

The results are calculated at the X co-ordinates of data in the ‘current’ arrays, and pushed onto
the stack. If you are not modelling real data, GRID can be used to set up an X array.

The default file type is .DAT.

NECHO (no parameters)

Has the same effect as ECHO -1.

NLAB [mode]

Selectively turns off axis labelling (modes not yet implemented; NLAB currently turns off X and Y
axis labels, and title).

NHPROT (no parameters)

Stops rotating plot style between Hist and Poly (after HPROT).

NMROT (no parameters)

Stops automatic rotation of plotting symbols and sets the MARK index to 1. (See MROT and MARK).

NOBEEP (no parameters)

Stops the terminal beeping every time you make a boo-boo.

NOFILL (no parameters)

Results in MARK symbols being plotted as open (unfilled) figures; c.f. FILL.

NTROT (no parameters)

Stops automatic rotation of line attributes and resets the TLINE index to 1 (continuous lines).
(See TROT and TLINE).

NROT (no parameters)

Stops rotating everything, resetting the colour, MARK and TLINE indexes to 1 (i.e. has the same
effect as NCROT,NMROT,NTROT).

NX (no parameters)

Return to autoscaling of the X axis (after using XR, XMIN, XMAX, CXR and/or CXYR).

39 SUN/50.24 —Command Specifications

NXY (no parameters)

Return to autoscaling of the X & Y axes (after using XR, YR, XMIN, XMAX, YMIN, YMAX, CXR, CYR,
and/or CXYR).

NY (no parameters)

Return to autoscaling of the Y axis (after using YR, CYR and/or CXYR).

PAUSE (no parameters)

Gives a BEEP (unless you’ve specified NOBEEP), and causes nothing to happen until you hit the
return key. (You might find a use for this command in command files.)

PF n

‘Poly fit’: fits a polynomial of degree ‘n’ through data points in the HIGHEST (i.e. numerically
largest) STACK entry, using continuum windows defined using CREGS. PF expects these data to
be in order of increasing X value. Y values, obtained from the parameters of the ‘best fit’, are
calculated at the grid of X points of the data in the highest STACK entry, between the first and
last ‘continuum window’ X values. The resulting curve is left in the ‘current’ arrays (overwriting
anything there previously).

Because the ‘continuum window’ data are stored internally, it is possible to carry out a sequence
of trial fits in an attempt to obtain a satisfactory polynomial representation of the continuum.
Thus a typical sequence of commands to rectify data might be as follows:

POP n, PUSH ! Put the data of interest into the
! ’current’ arrays and onto the top of
! the stack.

XR x1 x2,PM ! Set the X range and plot the data.
CREGS,CREGD ! Select & display continuum windows.
PF 1 ! Fit a straight line to the ’window’

! data.
NB,PM ! Plot the fit through the data.
PF 3 ! PF 1 unsatisfactory; try again.
PM ! Plot the fit; it looks O.K.
ADIV m ! Divide data in the top of the STACK by

! by the polynomial approximation to the
! continuum.

TITLE new title ! Change the title appropriately.
BOX,PM ! Plot the rectified data.
PUSH ! Save the rectified data for later use.
POP j,PUSH ! Prepare the next data set of interest.
PM,NB ! Plot the data.
PF 3,PM ! Fit & plot a polynomial; there is no

! need to redefine continuum windows
! unless you want to change them.

(Then ADIV, TITLE, and so on).

Note that a slightly different approach to polynomial fitting is possible using ELFINP and ELFOPT
(which can give you the coefficients of a least-squares fit).

SUN/50.24 —Command Specifications 40

PDGPEAK (no parameters)

Locates the peak of the data set in the current arrays (notionally, but not necessarily, produced
with PDGRAM). PDGPEAK does this by locating the largest Y values, then fitting a parabola to the
point and the adjacent ones on either side. The peak and central values listed are those calculated
from this parabola.

PDGRAM [fl fh df p]

Replaces the data in the current arrays (which should have monotonically increasing X values)
with their “unevenly spaced data periodogram”, as defined by Scargle (ApJ 263, 835, 1982).

The parameter fl is the lowest frequency at which the periodogram is to be evaluated, and
defaults to zero; fh, the highest frequency, defaults to 0.5*(n-1)/(x[n]-x[1]), where there are “n”
points in the current arrays; df, the frequency interval, defaults to 1.0/(x[n]-x[1]); and p, the
proportion of the data set endmasked at each end (using a cosine bell), defaults to 0.05.

N.B. For large data sets the default frequency parameters may lead to very large numbers of
points in the periodogram, which will accordingly take a substantial time to evaluate.

The periodogram has X units which are the inverse of the original X units (ie will normally be in
units of spatial or temporal frequency).

PDGWINDOW [fl fh df]

Replaces the data in the current arrays (which should have monotonically increasing X values)
with their window function, as defined by Scargle (ApJ 263, 835, 1982). The parameters fl, fh,
and df have the same meanings and default values as for the PDGRAM function, and the caution
given for that function regarding lengthy evaluation times applies also to PDGWINDOW.

One would normally calculate a data set’s window function in addition to its periodogram
(PDGRAM) to ensure that any peaks in the latter are not an artefact of the sampling frequency.

PLOTINV (no parameters)

Invert the Y axis on plotting (i.e. the ‘bottom’ Y value becomes the ‘top’ value, and vice versa).

PLOTREV (no parameters)

Reverse the X axis (ie the X value at the left-hand edge of the plot becomes that at the right-hand
edge, and vice versa).

PM [n1 n2 n3 n48 n49 n50]

Plot data (‘PM’ comes about ‘for historical reasons’). If you haven’t used the PPROMPT command,
then PM without any arguments will plot the data stored in the ‘current’ arrays; otherwise up to
50 STACK entries can be plotted. If you have set PPROMPT to TRUE, then if you didn’t provide
any arguments for PM on the command line DIPSO will prompt you for some when it comes
to do the plot. In order to be able to plot both ‘current’ and ‘STACK’ data, the ‘current’ arrays
are awarded the ‘honorary’ STACK entry number 0 for this command only. Ranges of stack

41 SUN/50.24 —Command Specifications

entries may be specified using the “-” operator; e.g PM 1 3-5 will result in entries 1, 3, 4 and 5
being plotted.

Even if the BOX is switched ‘on’, all the data associated with a single PM command are plotted in
a single frame; i.e. a command sequence like:

BOX,PM 1 2 0 4

will have a different result from:

BOX,PM 1,PM 2,PM 0,PM 4

WARNINGS:

• If you try to plot more than 50 spectra, numbers 51 et seq will not be plotted; moreover no
error message will be given. You will have to attempt to plot the ‘current’ arrays and the
entire contents of a completely full STACK (or multiply plot the same data set) for this
problem to arise.

• If autoscaling is in effect, the plotting frame is autoscaled to the X,Y data in the first stack
entry specified. Thus a command like:

PM 1 2 3 4 5

may produce a different plot to:

PM 5 4 3 2 1

POLY (no parameters)

Plotting to be done ‘join-the-dots’ style (as opposed to MARK or HIST).

POP n

Pop STACK entry ‘n’ into the ‘current’ arrays.

PPROMPT switch

PPROMPT governs the default action of PM. The value of the ‘switch’ argument is T(rue) or F(alse),
and on startup is set to F. If you set it to T, then the PM command will prompt for an argument
list if none is provided on the command line. This could be useful if, for example, you want to
include PM in command files where you may not know in advance which stack entries you want
to plot. If the switch is set to F, then typing PM without any argument results in the data in the
current arrays being plotted.

SUN/50.24 —Command Specifications 42

PS X1 X2 [DX] [n1 n2 n3...n50]

‘Plot Spectrum’: this command, which acts on the contents of the ‘current’ arrays, is intended
specifically for plotting long stretches of a single spectrum (e.g. high resolution IUE data) in
sequential frames. The parameters are:

X1: the X value at the left-hand edge of the first frame;

X2: the X value at the right-hand edge of the first frame;

DX: the amount by which X1 and X2 are incremented in successive frames. DX
defaults to (X2-X1).

Plots are alternated in zones 5 and 6. After each frame is plotted, you are prompted as to whether
or not you want to continue plotting.

WARNING: On completion of this command the X range and plotting zone in force will be those
used for the last frame; you will probably want to change them.

PUSH (no parameters)

‘Pushes’ the contents of the ‘current’ arrays onto the top of the STACK.

PWRITE x y i string

Writes a character string ‘string’ at co-ordinates x,y. If FONT 2 is active, the “locator index”, ‘i’,
determines the location of the string with respect to the x,y coords: if i=1, the string is written to
the lower left (i.e. the top right corner of an imaginary box containing the string ends at x,y); if
i=2 the ’box’ is horizontally centred on, and vertically below, x,y; i=3 has the top left corner of
the ’box’ at x,y; i=4,5,6 correspond to the ‘box’ vertically centred and to the left, centre, right of
x,y, respectively; i=7,8,9 are similar, but above x,y. These locator indexes are chosen so that the
numeric keypad available on most keyboards acts as a mnemonic.

If the string contains commas, it must be enclosed in double quotes ("). It is recommended that
you develop the habit of using such quotes in any case.

The ANGLE, EXPAND, and FONT commands can be used to modify the appearance of the string on
output.

QAREA Zn

Reports the (relative) sizes of the grid and graph windows for zone “Zn”, together with the
absolute area of the plotting surface (if available). See the TPORT command for details.

QSM Sigma

Applies a ‘quick’ Gaussian smoothing (FWHM of filter = 2.354*Sigma) to Y values in the ‘current’
arrays. (Defines gaussian weights at a grid of delta(x) values, then linearly interpolates when
smoothing). Much faster, and scarcely less accurate, than SM.

43 SUN/50.24 —Command Specifications

QUIT (no parameters)

Quit DIPSO, without saving the stack. Can be abbreviated to “Q”.

RDCAT file xcol ycol

Reads the values from two specified catalogue columns in the the current arrays. The file
containing the catalogue is given by “file”. This must be a full path name (no shell meta-
characters such as ~, $, etc can be used here). The file can be a FITS table (binary or formatted),
or an STL table (see SUN/190). The names of the columns holding the X and Y values are given
by “xcol” and “ycol”. A full list of available column names is displayed if an unknown column
name is supplied.

READ file [sys] [unit]

Reads a disk file which has been written with WRITE. This and RESTORE are the only input modes
that preserve ALL the information associated with a DIPSO data set, and are the recommended
options. The disk data can be in either NDF or “native DIPSO” format, depending on the flag
established by the USENDF command. When specifying an NDF, do not include any file type.

If the specified NDF was not created by DIPSO, then an attempt will be made to create appropri-
ate X values based on the WCS component in the NDF (or the FITS header cards in the FITS
extension if there is no WCS component). The second and third command parameters, “sys”
and “unit”, may be used to indicate the spectral system and units in use within the NDF (these
are only used if the system and units are not clearly specified in the NDF). The system value
supplied must be a standard FITS-WCS value such as “FREQ”, “WAVE”, “VRAD”, “VOPT”,
etc. Likewise, the unit should be a standard FITS-WCS such as “m”, “nm”, “Angstrom”, “Hz”,
“GHz”, “m/s”, “km/s”, etc. The spectral axis values within the NDF will be converted automati-
cally from their original system to either wavelength in Angstroms or optical velocity in km/s
for storage in the DIPSO X array. The original system and unit adopted for the NDF during
this conversion are reported. If the user does not specify a system and/or unit, then a default
of “wavelength in metres” will be adopted unless the contents of the NDF suggest some other
default.

RECA [/all] [string or integer]

Recalls a previous command line or prompt response, putting it into the current keyboard input
buffer for acceptance (by pressing return) or further editing. The RECA statement can be issued
when-ever dipso prompts the user for input. If no parameters or qualifiers are given, the string
which the user last typed in is recalled. If a non-numeric parameter value is given, the most
recent string to be given by the user which starts with the supplied string parameter is recalled.
If a numeric parameter is given, the corresponding string is recalled where “1” is the last (i.e.
previous) string, “2” is the last-but-one, etc. If the /all qualifier is given (i.e. “RECA/ALL”), a list
of the last 20 strings given by the user is displayed, and the user is then re-prompted.

RECALL (no parameters)

Lists a RECORDed string at the terminal (as a reminder!)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_

SUN/50.24 —Command Specifications 44

RECORD “string”

Records a string of commands for subsequent REPLAY. The string must be enclose in double
quotes; it can itself contain double quotes, but must then be delimited by pairs of double quotes.
The string may not incorporate RECORD or REPLAY commands, but the syntax, and general validity,
of the string is otherwise not checked until it is REPLAYed.

To cancel a current RECORDing, use a null string.

REPLAY (no parameters)

If REPLAY is included in a command line, then it is replaced in that command line by the contents
of any RECORDed command string.

REPORTING level

This command can be used to reduce the number of error messages displayed if one of the NDF
accessing commands fail. The command takes a single integer parameter. Level = 2 is the initial
value and results in all error messages being delivered to the screen. Level = 1 replaces all errors
deriving from a single failed command with a single (less detailed) error message. Level = 0
suppresses all error reports.

RESTORE [file name or NDF name]

Restores STACK data previously dumped using SAVE. RESTORE does not require the current stack
to be empty; however, if it is not then retrieval may not be complete, depending on the available
stack space. (Notification is given of incomplete retrieval, of course). The data can be in either
NDF or “native DIPSO” format, depending on the flag established by the USENDF command.
When specifying an NDF, do not include any file type. The default NDF name is ‘SAVE_STK’. If
not using NDFs, the default file name is ‘SAVE.STK’.

RETITLE n string

Changes the title of stack entry “n”. The string (which may be null) must be enclosed in double
quotes if it contains commas. (The use of double quotes is in any case recommended.) Special
characters may be incorporated (see the FONT command).

RXR X1 X2

Restrict the X range of data in the ‘current’ arrays (i.e. throw away data outside the range X1 to
X2). Only works properly on data sets with monotonically increasing or decreasing X values.

RYR Y1 Y2 [X1 X2]

‘Restrict Y range’; throws away datum points in the current arrays which have Y values outside
the limits Y1 and Y2. These limits apply to the entire arrays unless X1 and X2 are supplied, in
which case the operation is carried out only within that X range.

45 SUN/50.24 —Command Specifications

SAVE [file name or NDF name [n1-n2]]

Dumps the contents of the STACK in a form suitable for subsequent reacquisition using RESTORE.
The data can be in either NDF or “native DIPSO” format, depending on the flag established by
the USENDF command. When specifying an NDF, do not include any file type. The default NDF
name is ‘SAVE_STK’. If not using NDFs, the default file name is ‘SAVE.STK’.

It is possible to specify subsets of the stack for saving, but then a file or NDF name is mandatory.
The entire contents of the stack are saved by default.

SCREENRD [brkval]

Input data from the terminal to the current arrays; terminate with “\”. Each input line should
contain a pair of X and Y values but nothing else. If a value of "brkval" is specified on the
command line, then Y values matching it are assumed to flag gaps in the data.

SCROLLVT [n1 n2]

When a VT emulant is being used, this command result in text being scrolled between lines
n1 and n2 only. Thus you can scroll text to, say, the bottom half of the screen (SCROLLVT 14 25)
while plotting on the top half (TZONE 5). If specified, both n1 and n2 must be in the range 1 to 25,
an at least two lines must be allowed for. Full screen scrolling results if no line range is given.

SHELL command

The supplied command is executed within a Bourne shell running in a child process which
terminates when the command is completed. Note, the command is assumed to have failed if the
status value returned by the command is non-zero. An alternative to using the SHELL command
is to suspend the process running DIPSO by pressing control-Z, issue the required command,
and then re-awaken the dipso process by typing “fg”. The SHELL command is provided for use
in DIPSO command files.

SL [N1 [N2]]

Stack list: gives the entry number, number of points, first and last X values, and the first
characters of the title associated with each STACK entry. By default, the entire stack is listed (N1
= 1, N2 = no of stack entries), otherwise the first (N1) and last (N2) entries to be displayed can
be specified. If N1=0, the contents of the ‘current’ arrays are also summarised. The “-" operator
can be used to separate N1 and N2.

SLWR [N1 [N2]]

Stack List WRite. Operates identically to SL, but outputs results to a file STACK.LIS in the
current directory, instead of to the terminal.

SM Sigma

Smooths Y data in the ‘current’ arrays with a Gaussian filter (FWHM=2.354*Sigma). QSM gives a
much faster, and scarcely less accurate, result.

SUN/50.24 —Command Specifications 46

SNIP [X1 X2 X3 X4 X5 X6 ... X49 X50]

Cuts out data from the ‘current’ arrays. Pairs of X values can be provided as optional parameters;
if no parameters are given, the cursor is used to define regions to be SNIPped. Each pair of X
values, whether input at the terminal or defined by cursor, must be in order of increasing X
(though this constraint does not apply to successive pairs of values). To get out of SNIP mode
when using the cursor, define X2<X1.

WARNING: SNIP only works successfully on data sets that have monotonically increasing X
values. Remember, ‘snipping’ is done on data held in the ‘current’ arrays. Be careful not to plot
STACK data and mistakenly think that it is the plotted data that are being edited. Furthermore,
it is not possible to recall snipped-out data points, so it is wise to maintain an untouched data
set on the STACK.

SP0RD file name or NDF name [logical]

Reads a SPECTRUM format 0 file into the ‘current’ arrays. This is the format that data output
from IUEDR are normally in (see SUN/37 for details); for other purposes, READ (and WRITE) are
recommended. Maximum number of points allowed is 20,000. WORV is assumed to be 1.0.

The data can be in either NDF or “native DIPSO” format, depending on the flag established by
the USENDF command. When specifying an NDF, do not include any file type.

If YES (the default) is supplied for the second (optional) logical parameter any zeros in the data
file are treated as gaps in the data. If NO is supplied, any zeros are treated as good data values.
This replaces the undocumented PANICRD command.

SP0WR file name or NDF name

Outputs a SPECTRUM format 0 file (see the IUEDR documentation SUN/37 for a description of
the SPECTRUM formats). But you should be using WRITE! The data output are those stored in
the ‘current’ arrays.

The data can be in either NDF or “native DIPSO” format, depending on the flag established by
the USENDF command. When specifying an NDF, do not include any file type.

SP1RD filename[.typ]

Reads a SPECTRUM format 1 file (see SUN/37 for details) into the ‘current’ arrays. Maximum
number of points allowed is 20,000. WORV is assumed to be 1.0. The default file type ([.typ]) is
‘.DAT’. This command cannot read NDFs.

SP2RD filename[.typ]

Reads a SPECTRUM format 2 file (see SUN/37 for details) into the ‘current’ arrays. Maximum
number of points allowed is 20,000. WORV is assumed to be 1.0. The default file type ([.typ]) is
‘.DAT’. This command cannot read NDFs.

SQRTX (no parameters)

Replaces the X values in the current arrays by their square root (throwing away any negative
values).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun37.htx/sun37.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun37.htx/sun37.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun37.htx/sun37.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun37.htx/sun37.html?xref_

47 SUN/50.24 —Command Specifications

SQRTY (no parameters)

Replaces the Y values in the current arrays by their square root (throwing away any negative
values).

STATUS (no parameters)

Returns information on the current status (device number, X and Y ranges, etc.).

TADD [string]

Adds a string to the end of the current title.

TENX (no parameters)

Replaces the X values in the current arrays by 10.0**X.

TENY (no parameters)

Replaces Y values in the current arrays by 10**Y

TICKS [dx [dy [nx [ny]]]]

Controls the appearance of tickmarks on plots. The arguments dx and dy control the spacing
between major (labelled) tickmarks on the x and y axes, respectively; nx and ny control the
number of spaces between major ticks (i.e. no. of minor ticks = nx/y minus 1).

A zero for any argument results in the relevant aspect of the plot design returning to automatic
control; just typing TICKS (no arguments) returns to fully automatic tickmark design. Negative
arguments result in no tickmarking.

If you supply grossly inappropriate arguments (e.g. trying to squeeze too many numbered ticks
onto an axis) then you will certainly find the resulting plot not to your satisfaction. Beware, in
particular, of forgetting to scale by appropriate powers of ten (which may be subsumed into the
axis label). Unless you are very familiar with the range of the data being plotted, it is wise to do
initial plots with autodesign in force.

TITLE [string]

Change the title associated with data in the ‘current’ arrays. Null strings are accepted as such
unless TPROMPT has previously been set TRUE (q.v. TPROMPT). The string must NOT contain any
control characters (which would probably cause a crash in the graphics library routines). Since a
comma is normally interpreted as the end of a string, it is necessary to enclose strings containing
commas in double quotes; e.g.

>SP0RD TEST,TITLE "Commas can, I think, be useful",PUSH
>SP0RD TEST,TITLE I have no commas, PUSH

gives:

SUN/50.24 —Command Specifications 48

Commas can, I think, be useful

and

I have no commas

respectively. It’s a good idea to develop the habit of using double quotes regularly, even if you
don’t use commas often in strings.

The price paid for being able to include commas in strings is that other usage of quotes in TITLE
is forbidden. (Actually, it’s not, but the rules are so complex as to effectively forbid use of
quotes.)

TPROMPT logical

If “logical” is T or Y, then the command TITLE will prompt for an input string if none is provided;
if F or N (the default), it won’t.

TLINE line

Change line attributes (continuous, dot-dash etc). The index ‘line’ must be in the range 1-5 (1 =
continuous lines). (See also TROT).

TOFLAMBDA (no parameters)

If the X and Y data in the current arrays are in units of Hz and
erg/cm2/s/Hz, TOFLAMBDA will convert to Angstroms and erg/cm2/s/A.

TOFNU (no parameters)

If the X and Y data in the current arrays are in units of Angstroms and erg/cm2/s/A, TOFNU
will convert to Hz and erg/cm2/s/Hz.

TOV wav0

Convert X values from wavelength to velocity (the inverse of TOW), where Wav0 is the appropriate
rest wavelength in Angstroms.

No changes are made to the Y array. This would normally mean that subsequent measurements
made with EW or FLUX would be in rather strange units (e.g. km/s, or erg/cm2/s/[km/s]). To
avoid this anomaly, an internal variable WORV (for Wavelength OR Velocity) is associated with
each data set. This has the value 1.0 by default, but is reset to Wav0/c (where c is the speed of
light in km/s) on using TOV.

(If you are reading in data sets with velocity as the X co-ordinate it is usually safest to convert to
wavelength [TOW] then back to velocity [TOV] in order to obtain an appropriate WORV value.
This is unnecessary if you use READ/WRITE or SAVE/RESTORE to move data in and out of
DIPSO.)

WARNING: If you have set the X range, you’ll probably need to change it to get anything on the
plotting surface after using TOV or TOW!

49 SUN/50.24 —Command Specifications

TOW wav0

Convert X values from velocity to wavelength (see TOV), and resets WORV to 1.0.

TROT (no parameters)

Implements automatic rotation of line attributes. Each plot begins with the line style defined by
the last use of TLINE (or style 1, if TLINE hasn’t been called).

Switched off with NTROT.

TPORT Zn Xmin Xmax Ymin Ymax [WXmin WXmax WYmin WYmax]

Defines a plotting subzone (no. “Zn”, where 100>Zn>8). The dimensions of the subzone
(Xmin...Ymax) are normalised such that the total dimensions available (regardless of device) are
0 to 1 in both axes. (The corresponding physical dimensions can be discovered using QAREA.)

In general, a plot consists of axes, axis labels, and a header, as well as the data. Technically, the
plotting subzone is a “graph window”; within this graph window a “grid window" is present.
The grid window is exactly filled by the axes, and so will normally be smaller than the graph
window (to leave room for the labelling). DIPSO will normally work out default grid window
dimensions, but you can define your own (WXmin...WYmax). This might be useful if you want
contiguous axes in different plots, for example.

Just as the graph window is defined in terms of fractions of the available plotting area, so the
grid window is defined in terms of fractions of the available graph window. Thus parameters
WXmin etc. must also be in the range 0 to 1 (regardless of the graph window dimensions).

To access a given subzone, use TZONE.

TSTRIP (no parameters)

Removes leading blanks from the title associated with the ‘current’ arrays.

TSWAP n

Copies the title from STACK entry ‘n’ to the ‘current’ arrays.

TWEIGHT weight

Alters the weight (i.e. ‘heaviness’) of data curves plotted with PM, on devices which support this
feature. No other lines (axes, etc) are effected. The weight must be 1-5 (initial setting is 1). See
also LWEIGHT.

TZONE zn

Selects zone “zn” for plotting. The zone numbers are:

0: entire surface

1: top left quarter

SUN/50.24 —Command Specifications 50

2: top right quarter
3: bottom left quarter
4: bottom right quarter
5: top half
6: bottom half
7: left half
8: right half

Additional zones can be user-defined if required (see TPORT). When using such additional zones
special care is needed to avoid overplotting previous zones (use ERASE to get a “page throw” on
hard copy devices); this is taken care of automatically with zones 0-8.

UBVRD u b v [dx]

Converts UBV magnitudes to fluxes, and stores the results in the ‘current’ arrays. If the U, B
and/or V magnitude is unknown, 0 should be entered. (Should you want to actually input a
value of 0, I’m afraid that you’ll have to use something like 0.0001, or put in a value of (e.g.) 5
and then carry out some arithmetic using TENY, YMULT and LOGY).

The data are plotted at assumed wavelengths of 3600, 4400 and 5500 Angstroms using lines 2*dx
wide (default value of dx: 50 Angstroms). Conversion from magnitudes to fluxes is carried out
using

Mag = -C - 2.5*Log10(Flux)

where C is 20.94, 20.51 and 21.12 for U, B and V respectively. (These values are from the absolute
flux measurements of Vega made by Tug et al, Oke & Schild, and Hayes & Latham, for V; and a
normalised Kurucz Vega model for U and B).

USEHTX [logical] [showme]

If ‘logical’ is Y, YES, T or TRUE, the HELP command will display help information in hypertext
format, using a World-Wide-Web browser. If N, NO, F or FALSE is supplied for ‘logical’, help
information will be displayed in plain text format in the DIPSO command window. If no value
is supplied for ‘logical’, YES is assumed.

If supplied, ‘showme’ should contain a string giving the unix command used to run the Starlink
showme utility. The supplied command string will be used to initiate hypertext help sessions
until a new value is supplied. The command used initially is “<dir>/showme”, where <dir> is
the path to the directory containing Starlink executable files which was used when DIPSO was
installed (typically /star/bin).

USENDF [logical]

If ‘logical’ is Y, YES, T or TRUE, data accessing commands such as READ, WRITE, SAVE, RESTORE,
etc, will use NDF structures (see SUN/33) to store data in. If N, NO, F or FALSE is supplied,
they will use “DIPSO native” files as used by DIPSO prior to version 3.0 (but note, that these
files will NOT be portable from one operating system to another). If no value is supplied for
‘logical’, YES is assumed.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

51 SUN/50.24 —Command Specifications

USSPRD filename[.typ] [epsmin]

Reads data from the IUE ‘Uniform’ Low Dispersion Atlas, ULDA, which have been output using
the USSP (see SUN/20). The filename extension defaults to ‘.ULD’. This command cannot read
NDFs. Each point in the USSP spectrum has an associated error index, called epsilon, with the
following meanings:

100 : No special conditions

-200 : Extrapolated at upper end of ITF

-220 : Microphonic noise

-250 : Filtered bright spot

-300 : Unfiltered bright spot

-800 : Reseau in extracted spectral region

-1600 : Saturated

-3200 : Not photometrically corrected

The epsilons are not necessarily reliable indicators of data quality. DIPSO rejects points on input
if they are flagged with an epsilon less than or equal to ‘epsmin’ (which defaults to -251), leaving
the spectrum in the current arrays. It is forbidden to set epsmin less than or equal -1600, since
this would result in totally unflagged, certainly bad, data being acquired.

If epsmin is given a value greater than zero, then all datapoints are read into the next available
stack entry, and the epsilon array into the subsequent stack entry. More subtle doctoring of
the data is then possible, using USSPCLIP (q.v.). However, it is recommended that the default
epsmin be accepted unless you really know what you’re doing, and have good reasons to choose
a different value.

USSPCLIP epsmin n1 [n2 w1 w2]

Clips points out of IUE USSP spectra which have ‘epsilons’ less than or equal to epsmin. The
data are expected to have been previously read into the stack using the USSPRD command (with
its epsmin parameter given a positive value); ‘n1’ is the stack entry of the flux data, and ‘n2’
(which defaults to n1+1) that of the epsilon array. The clipping is done over the wavelength
range w1<w<w2 (default: full wavelength range).

VCORR vel [mode]

If mode=1 (the default), VCORR ‘unshifts’ X values back to a zero-velocity reference frame by
replacing the values with

X2 = X1 / (1.0 + vel/C)

where C is the velocity of light in km/s.

If mode=2, VCORR applies a velocity shift to the data by changing the X values:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun20.htx/sun20.html?xref_

SUN/50.24 —Command Specifications 52

X2 = X1 * (1.0 + vel/C).

If the mode=1 or 2 the Y values are not changed. If mode=-1 or -2 the Y values are also adjusted
such that fXdX is constant – e.g. if mode=-1 then

Y2 = Y1 * (1.0 + vel/C)

and similarly, mutatis mutandis, for mode=-2.

WRITE output file name or NDF name [model NDF name]

Writes the contents of the ‘current’ arrays into a disk file suitable for subsequent re-reading
using READ. The data can be in either NDF or “native DIPSO” format, depending on the flag
established by the USENDF command. When specifying an NDF, do not include any file type.

If the name of an existing NDF is given for the second (optional) parameter then the specified
NDF is used as a “model” for the output NDF. The output NDF is initialised to hold a copy of
the model NDF (including all extensions). The data values in the current array are then inserted
(if possible) into the output DATA array at their correct wavelength positions. This provides
a mecahanism for creating NDFs which look like they have been created by other packages.
For instance, if you want to use DIPSO to process the NDF “my_dat” originally created by the
JCMTDR package, then you would use “read my_dat” to read it in as normal, and then you
could use “write new_dat my_dat” to write the processed data to NDF “new_dat”, copying all
the JCMTDR extension information (etc) from the original “my_dat” NDF. The resulting NDF
could then be put straight back into JCMTDR.

XABS (no parameters)

Replaces the X values in the current arrays with ABS(X).

XADD c

Adds a constant, “c", to the X values in the current arrays.

XDEC

Replaces the X values in the current arrays by [X−INT(X)].

XDIV c

Divides the X values in the current arrays by a constant, “c".

XINT (no parameters)

Replaces values in the current X array with INT(X).

XINV (no parameters)

Replaces the X values in the current arrays by their inverse.

53 SUN/50.24 —Command Specifications

XMULT c

Multiplies the X values in the current arrays by a constant, “c".

XNINT (no parameters)

Replaces X values in the current arrays by NINT(X).

XSUB c

Subtracts a constant, “c" from the X values in the current arrays.

XCORR n1 n2 [lolag hilag p]

Cross-correlates the data set in stack entry n1 with the data set in stack entry n2. (Autocorrelation
functions can be calculated by defining n1=n2.) Entry n1 contains the “stationary” data.

The range over which the cross-correlation function is evaluated is controlled by the parameters
lolag and hilag, which must be in the same units as the stack entries. The default lag is given by:

lag = MIN{ (x[n]-x[1]), 100*(x[n]-x[1])/n }

where there are ‘n” datum points in stack entry n1, with X values from x[1] to x[n]. Then lolag
defaults to -lag, and hilag to +lag. The parameter p is the fraction of each data set endmasked
(at each end, with a cosine bell), and defaults to 0.05.

The cross-correlation is carried out in the units of the X arrays (which have to be monotonically
increasing, in the same units for both data sets, and at least partially overlapping if you want
sensible results). This is for generality. However, a typical application would be to find velocity
shifts between data sets in wavelength space — but a velocity shift is a function of wavelength
in wavelength space. The way to get round this is to take logs of both data sets (LOGX), then
evaluate the correlation function. Then:

Delta(V) = [10**{Delta(LogLambda)} - 1] * C

where C is the speed of light (making sure that your units all match up). The arithmetic can all
be done in DIPSO (TENX, XSUB, XMULT).

IMPORTANT: XCORR just does the cross-correlation; it is not a ‘black box’. I can’t think of a
situation in which you shouldn’t first rectify your data (with CREGS and PF, or CDRAW, followed
by ADIV) then subtract the continuum (YSUB 1), for both stack entries, in order to minimise edge
effects.

XJ (no parameters)

“Justifies” the X range — i.e. sets X limits to exactly match the range of the data being plotted
(c.p. XT).

SUN/50.24 —Command Specifications 54

XLAB [string]

The label for the X axis; the default is ‘Wavelength’. If the string contains commas it must be
enclosed in double quotes (c.f TITLE).

XMAX x

Set the maximum X value for plotting to ‘x’. Negated with NX.

XMIN x

Set the minimum X value for plotting to ‘x’. Negated with NX.

XR x1 x2

Set the X range; x1 is the left-hand value for the plot, x2 the right-hand value. Negated using NX.

XREV (no parameters)

Reverses the ordering of the data in the current X arrays, maintaining X-Y pairing

XSORT (no parameters)

Sorts the X values in the current arrays into increasing values, maintaining X-Y pairing. Breaks
in the data are lost.

XT (no parameters)

“Trims” the X range of a plot — i.e. sets X limits which are some integer multiple of the distance
between tickmarks (c.p. XJ).

XV (no parameters)

Obtain X values using the cursor. Do a cursor hit at the same place twice to get out of XV mode.

XYSWAP (no parameters)

Swaps the contents of the X and Y arrays, maintaining the break arrays unchanged. (Use CLRBRK
if this leads to unwanted results.)

XYV (no parameters)

Obtain X and Y values using the cursor. Hitting the same place twice exits XYV mode.

YABS (no parameters)

Replaces the Y values in the current arrays with ABS(Y).

55 SUN/50.24 —Command Specifications

YADD c

Adds a constant, ‘c’, to the Y values stored in the ‘current’ arrays.

YDEC

Replaces the Y values in the current arrays by [Y−INT(Y)].

YDIV c

Divides the Y values in the ‘current’ arrays by a constant, ‘c’.

YINT (no parameters)

Replaces Y values in the current arrays with INT(Y).

YINV (no parameters)

Replaces the Y values in the current arrays by their inverse.

YMULT c

Multiplies the Y values in the ‘current’ arrays by a constant, ‘c’.

YNINT (no parameters)

Replaces Y values in the ‘current’ arrays with NINT(Y).

YSUB c

Subtract a constant, ‘c’, from the Y values stored in the ‘current’ arrays.

YJ (no parameters)

“Justifies” the Y range — i.e. sets the Y limits to exactly match the range of the data being plotted
(c.p. YT).

YLAB [string]

Replaces the label for the Y axis; the default is ‘Flux’. If the string contains commas it must be
enclosed in double quotes (c.f TITLE).

YMAX y

Sets the maximum Y value for plotting; negated with NY.

YMIN y

Sets the minimum Y value for plotting; negated with NY.

SUN/50.24 —Command Specifications 56

YR y1 y2

Sets the Y range for plotting; y1 is the lower value for the plotting frame, y2 the upper. Return
to autoscaling with NY or NXY.

YT (no parameters)

“Trims” the Y range of a plot — i.e. sets Y limits which are some integer multiple of the distance
between tickmarks (c.p. YJ).

YV [Xvalue]

Obtain Y value. If an X value is supplied, then the corresponding Y value is obtained (by linear
interpolation) from the data in the current arrays. Otherwise, the graphics cursor is brought up
to permit Y values to be measured from the terminal; hit the same place twice to get out of this
mode.

YXN power

Replaces values in the ‘current’ Y arrays by Y*(X**power). (Some people like to plot data as
F*[Lambda**4], for example.)

ZANSTRA line F(obs) T(neb) [E(B-V)]

Calculates a (black-body) Zanstra temperature, using the observed flux, F(obs)
(in erg/cm2/s), of a recombination line. The lines for which this calculation can be performed
are (H I) 4861; (He I) 4471, 5876; and (He II) 1640, 4686. The ‘line’ parameter is the wavelength,
in Angstroms, of the selected line.

The calculation requires the location of a ‘continuum’ point longwards of the ionization edge of
the ion concerned. This is obtained from the cursor; thus a plot, in erg/cm2/s/A vs Angstroms
(or log10 thereof) is mandatory. Moreover, for a valid result the cursor hit has to correspond
to the dereddened stellar flux; judicious prior use of NEBCONT, ASUB and DRED may therefore be
useful.

T(neb) is the electron temperature of the ionized nebula, and may be input in units of K or
10,000K. This parameter is required because of the (fairly weak) temperature dependence of
the ratio, R(line), of the effective recombination coefficients to the ion and line concerned (for a
discussion of the physics in the Zanstra method, see e.g. Osterbrock, ‘Astrophysics of Gaseous
Nebulae’). The adopted temperature dependences of R(line) are:

R(1640) = 2.00 x (t**0.10)
R(4471) = 19.61 x (t**0.27)
R(4686) = 4.37 x (t**0.29)
R(4861) = 8.49 x (t**0.06)
R(5876) = 5.39 x (t**0.39)

where the parameter t = T(neb)/(10,000K).

57 SUN/50.24 —Command Specifications

E(B-V) is used to deredden the line flux (only — i.e. not the continuum flux); a galactic reddening
law with R=3.1 is adopted. If this is inappropriate to your data, deredden F(obs) to your own
prescription and use E(B-V)=0 (which is the default value).

The output from this command consists of the Zanstra temperature and a normalising constant,
C(norm.). The latter quantity is the number by which a black-body spectrum calculated using
BBODY must be multiplied (YMULT) to make it pass through the (X,Y) co-ordinates selected
using the cursor.

A.2 Finally...

Congratulations on reading this far (unless you’ve cheated, and skipped straight to the end...).
Features, bugs, complaints and comments should be addressed to the Starlink support mailing
list (starlink@jiscmail.ac.uk); but please check the documentation first!

SUN/50.24 —History 58

B History

This section records the changes introduced with each new version of DIPSO. NOTE, earlier
changes may be over-ridden by later changes.

B.1 Changes introduced by DIPSO V3.6-5

• The ELFINP command now has a parameter that can be set non-zero to allow input to be
read from the currently running script file rather than from the keyboard.

B.2 Changes introduced by DIPSO V3.6-4

• The dipso_link command has been modified in order to avoid problems on Solaris.

B.3 Changes introduced by DIPSO V3.6

• The READ command has been modified so that it will attempt to read spectral axis infor-
mation from the WCS component of an NDF if the NDF was not created by DIPSO. If the
NDF has no WCS component, the spectral axis information will be read from the NDF
AXIS structures, or the FITS header cards in the NDF FITS extension (if any). Details of the
spectral axis are displayed.

• The WRITE command has been modified so that it will add a WCS component to the output
NDF describing the spectral axis. This allows it to be used by other Starlink applications
such as SPLAT, KAPPA, etc.

B.4 Changes introduced by DIPSO V3.5-6

• A bug has been fixed which caused the ELFRESTC command to be unable to open files
which contain any lower case letters in their file name.

B.5 Changes introduced by DIPSO V3.5-5

• A bug has been fixed which caused the ISATM command to be unable to find entries in
the ATOMIC.DAT file when being run under Linux.

B.6 Changes introduced by DIPSO V3.5

• The new command tt RDCAT has been added to enable data held in FITS table format to
be read.

• The maximum number of clouds which can be specified using ISINP has been increased
from 9 to 18.

• A bug has been fixed which prevented ELFOPT working correctly.

59 SUN/50.24 —History

B.7 Changes introduced by DIPSO V3.4

• The USEHTX command has been modified to allow the path to the Starlink showme utility to
be given explicitly. This need only be done if the HELP command fails to find the showme
utility (for instance, if is not on the user’s current PATH, or if it is executed by means of an
alias).

• The contents of restored stacks held in NDF structures are now listed as they are restored.

• The makefile has been modified so that “my_dipso” works as described in section 8.2 (i.e.
you no longer need to set the INSTALL environment variable prior to using “my_dipso”).

• The new command ENV has been added, which displays the value being used by DIPSO
for a named environment variable.

• The URL for the DIPSO WWW home page has been corrected.

• Default values for environment variables such as DIPSODIR can now be supplied on
the DIPSO command line. They should take the form of a comma separated list of
“name=value” pairs. These values are only used if the corresponding environment vari-
ables are not defined.

• The command prompt used within DIPSO can now be specified using the environment
variable DIPSOPROMPT.

• Various changes to the Fortran code have been made to allow DIPSO to be compiled using
the g77 compiler under Linux (which requires closer adherance to the ANSI Fortran-77
standard than other copilers). None of these changes should produce any noticable change
in behaviour.

B.8 Changes introduced by DIPSO V3.3

• The internal array sizes have been increased. The current arrays can now hold 200,000
points, and the stack arrays can now hold 800,000 points in up to 200 stack entries.

• Hypertext documentation and help have been included through the HELP and USEHTX
commands, and a hypertext version of SUN/50.

• The SHELL command has been re-instated, which allows system commands to be run from
within DIPSO without the need to press control-Z.

• The functionality of the COMMAND command has been enhanced to provide faciltities for
listing commands which do particular jobs, and which contain specified keywords in their
descriptions.

• NDF accessing is now done using latest NDF facilities to allow transparent access to
foreign data formats (IRAF, FITS, etc, see SUN/55 and SSN/20).

• All uses of NAG routines have been replaced by equivalent public domain algorithms (in
fact the only command which used NAG was PF).

• The help.lis file containing plain text descriptions of all DIPSO commands has been
updated to be consistent with SUN/50. This file is used by the HELP command.

SUN/50.24 —History 60

• Re-direction of GKS error messages removed. They should now go to the screen.

• Bug corrected which caused error messages to be displayed when PUSHing the current
array if the last point in the data array was bad.

• ELFIT changed to avoid floating exception if the variances come out negative (a warning
is issued and zeros are used instead).

• ELFSAVEC now offers the user the chance to overwrite an existing file if one exists. Also, it
no longer converts the supplied file name to upper case.

• SM bug corrected which caused extension of smoothing domain beyond the upper wave-
length limit, and could potentially cause completely spurious results if the upper wave-
length limit was at the end of the array.

• Organisation of source files and object files changed to use a sigle library.

B.9 Changes introduced by DIPSO V3.2

• A new command TWEIGHT has been introduced to allow control of the weight used to draw
data curves independantly of the weight of other lines.

• Bug corrected which caused the PUSH command to fail with a message like:

PUSH: breaks/data mismatch
number of breaks:125
index of last break:22792
number of points:22791
Command line aborted

after reading in a spectrum using SP0RD. This only occurred if the first and/or last data
point in the spectrum contained the value zero.

• Bug corrected which caused the NEBCONT command to re-issue a prompt for a value, rather
than accepting the default value as read from the specified file, if <RETURN> is pressed
(with mode1,2,3=0).

• Error messages generated by GKS are now displayed as they occur, rather than being
stored up and displayed altogether when DIPSO is exited.

• Bug fixed which caused cursor operations (eg XV, SNIP, etc) to fail after an invocation of
the condition handler caused by floating point exceptions, control-C’s etc.

• Shell meta-characters can now be included in responses given to prompts for NDFs.

B.10 Changes introduced by DIPSO V3.1

• Command line recall and editing is now available.

• Condition/signal handling is now available on both VMS and UNIX. The HANDLER and
CRASH commands have been re-instated.

61 SUN/50.24 —History

• The NDF accessing layer has been completely re-written to eliminate the many bugs related
to the reading and writing of NDFs in the previous version DIPSO. The description of how
to write a program which can create NDFs suitable for use with DIPSO (see section8.5.1)
has been re-written.

• Various other bugs have been cleared up.

• The user can now decide whether to use NDF data files or “native DIPSO” data files. This
is accomplished using the USENDF command. Commands READ, WRITE, SAVE, etc., will now
use the selected data format, and so the commands OREAD, OWRITE, OSAVE, etc., are no
longer needed and have been withdrawn.

• New commands added: USENDF, REPORTING, TSWAP, TSTRIP

• Commands re-instated from previous versions: RECORD, REPLAY, RECALL, SHELL (only on
VMS),

• The EXPAND command now takes an optional second string parameter which specifies
which components of the plot are to be expanded.

• The behaviour of prompts has been unified (to some extent). Giving “!” in response to
any prompt will cause the current command to abort and return you to the main DIPSO
command prompt. Giving “!!” will abort the command and also abort DIPSO (after saving
the stack to EXIT_STK.sdf or EXIT.STK). Some prompts now include a suggested default
within the prompt string which will be used if a null value is supplied by the user.

• READ command (when using NDFs) will now read NDFs not written by DIPSO (i.e. ones
which don’t have a DIPSO_EXTRA extension).

• WRITE command (when using NDFs) now has an optional second string parameter which
specifies the name of a “model” NDF on which to base the output NDF created by the
WRITE command.

• SP0RD command (when using NDFs) now has a second (optional) YES/NO parameter
which determines if zeros in the data file are treated as gaps in the data.

• SCREENRD command, “\” is now used to end input on VMS and UNIX.

• The VMS version is no longer compiled “/DEBUG/NOOPT” so hopefully it could be a bit
(!) faster?

• VMS and UNIX versions of source files have been unified.

B.11 Changes introduced by DIPSO V3.00

The default file format for ‘unformatted’ DIPSO files (SP0) has changed from native unformatted
format to STARLINK NDF format. This allows the transport of files between different ma-
chines without translation being necessary. It also means that files generated by DIPSO can be
automatically input to all standard STARLINK packages.

This version of DIPSO is the first multi-platform release. It has been tested on VAX/VMS,
DECstation, and Sun Sparcstation machines. Due to the different way system variables are
provided by the two operating systems DIPSO has been enhanced to support both the VMS

SUN/50.24 —History 62

logical name syntax, and the UNIX environment variable syntax. Thus the following two
filename specifications are equivalent and accepted by DIPSO on all platforms.

• VAX logical name form — OWNERDIR:my_data_file

• UNIX environment form — $OWNERDIR/my_data_file

UNIX users should note that filenames are ALWAYS CaSe sensitive.

B.12 Changes introduced by DIPSO V2.00

(If you didn’t use DIPSO before 1987, pass over this section. If you are an old hand, then: the
more experienced you are, the more important it is that you should read this section carefully!)

This release of DIPSO is a fairly extensive revision of earlier versions. In particular, the graphics
have been converted to the GKS standard (mainly by JM), interstellar line analysis has been
included (IS... commands), and various aspects of Fourier analysis are now possible. Because
interstellar line profiles are now most easily computed from within DIPSO, the old BACHRD and
BACHWR commands are no longer documented, and DIPSODIR:ATOMIC.DAT has been extensively
revised ($DIPSODIR/ATOMIC.DAT on UNIX machines). ALASRD/ALASWR have been preserved,
however, as the simplest way of getting data in and out of DIPSO. (ALASRD has actually been
updated to allow more general inputs.)

In an attempt to (partially) rationalise the command names, and make it easier to locate groups
of related commands in the reference section, some command names have been changed. In
particular, the old ELF commands are now all prefixed by “ELF” (surprise!). (The minus side is
that you’ll have to learn the new command names; but the plus side is that ELF now carries out
an error analysis for you.) The two-spectrum arithmetic functions are now renamed ADIV, AADD
etc. (from DIV, ADD etc. to avoid the trap of typing, say, ADD 3 in the expectation of adding 3 to
the current arrays (the “A” prefix stands for “array”.) Some one-spectrum arithmetic functions
have also had their names changed to a more uniform scheme; e.g. XSH has become XADD, CMULT
has become YMULT, etc. The old command names will still work in some cases, but are not
recommended. You are urged to read right through the new documentation for individual
commands, as many other minor modifications have been made, and new functions added.

The most important changes: you will probably find out quite quickly that the default file
extension for command files has changed to .CMD.

The following commands have changed default functionality, and you should therefore check
them especially carefully: ALASRD, ALASWR, DRED PWRITE, TPORT, READ, WRITE, SAVE, RESTORE.

	Introduction
	Getting Started
	Absolute beginners
	Doing something

	Data Storage
	Internal Data Storage
	Data Storage on Disk

	Command Input
	Command Line Recall and Editing

	Command Procedures
	Batch Processing
	Plotting
	Plotting options
	Cursor commands
	Default plotting (and other) options
	Getting hardcopy plots

	The User Code Interface
	The ``LOGICAL USER'' Function
	Building your own binary
	Debugging your code
	Local documentation
	Data access
	More on data storage
	Creating NDFs in your own programs
	Getting data from the stack
	Pushing data onto the stack

	Emission Line Fitting (ELF)
	ELF commands
	ELF data storage
	ELF general procedures

	Words of Warning!
	Acknowledgements
	Command Specifications
	Individual Commands
	Finally...

	History
	Changes introduced by DIPSO V3.6-5
	Changes introduced by DIPSO V3.6-4
	Changes introduced by DIPSO V3.6
	Changes introduced by DIPSO V3.5-6
	Changes introduced by DIPSO V3.5-5
	Changes introduced by DIPSO V3.5
	Changes introduced by DIPSO V3.4
	Changes introduced by DIPSO V3.3
	Changes introduced by DIPSO V3.2
	Changes introduced by DIPSO V3.1
	 Changes introduced by DIPSO V3.00
	 Changes introduced by DIPSO V2.00

