
SUN/90.10

Starlink Project
Starlink User Note 90.10

P C T Rees, M J Bly, P T Wallace

7 March 1995

Copyright c© 2000 Council for the Central Laboratory of the Research Councils

SNX — Starlink Extensions to the
NCAR Graphics Utilities

Version 1.1-1
Programmer’s Manual

SUN/90.10—Contents ii

Contents

1 Introduction 1

2 Summary of Calls 1

3 Linking 3
3.1 Use with the UNIX operating system . 3
3.2 Use with the VAX/VMS operating system . 3

4 Initialising AUTOGRAPH/SGS/GKS 3

5 Plotting X against Y with AUTOGRAPH 4

6 AUTOGRAPH Labels 4

7 Control over Text Font and Character Set 5

8 AUTOGRAPH Save and Restore 6

9 AUTOGRAPH and SGS Coordinate Systems 7
9.1 Making AUTOGRAPH use the current SGS zone 7
9.2 Setting the SGS coordinates to match an AUTOGRAPH plot 7
9.3 SGS/AUTOGRAPH coordinate conversions . 8

10 Plotting Character Strings 8

11 Mixing GKS, SGS and NCAR Plotting 9

12 Cursor Input 10

13 References 10

A Using SNX within ADAM Applications 11
A.1 Use with the UNIX operating system . 11
A.2 Use with the VAX/VMS operating system . 11

B Portability 11
B.1 Overview . 11
B.2 Coding and porting prerequisites . 11

C Demonstration – the XYPLOT Program 12
C.1 Fortran source . 12
C.2 Input file . 14
C.3 The plot . 14

D Demonstration – the SPEED Program 16
D.1 Fortran source . 17
D.2 Input file . 19

E Demonstration – the INDEMO Program 20

iii SUN/90.10 —Contents

E.1 Fortran source . 20

F PWRITX 22

1 SUN/90.10 —Summary of Calls

1 Introduction

The NCAR graphics suite (SUN/88) consists of a set of subprograms which can be used to
produce complete graphs in a variety of formats. The package has been in wide use for some
years; the latest version employs the ISO standard GKS interfaces for its low-level plotting,
giving it access to all Starlink graphics devices, present and future.

The NCAR routines themselves are thoroughly documented, and just a few simple calls will
produce graphs of excellent appearance. The package also provides a high level of flexibility,
with dozens of different details of the plot independently controllable to give exactly the result
required. However, beginners may be daunted by the mass of features offered, and unless they
take the extreme step of reading the manual may give up before they realise what the package
can do for them. This document describes minor extensions which provide more convenient
access to certain features without sacrificing flexibility.

The AUTOGRAPH part of the NCAR suite, used in conjunction with the Starlink NCAR
extensions and the Starlink low level plotting package SGS (SUN/85), offers an alternative high
level system to PGPLOT (SUN/15) for producing graphs of one variable plotted against another.
All of the Starlink extensions provided within SNX enhance the power of the facilities provided
by AUTOGRAPH and make it more accessible to the beginner.

Here are some of the things you can do using the facilities described in this document:

• Open AUTOGRAPH/SGS/GKS with a single call.

• Plot a finished graph, with annotation, by means of a single call.

• Include special characters in graph labels (Greek, subscripts, mathematical symbols, etc.).

• Plot character strings anywhere on the graph.

• Manage the graphics device display surface via the SGS system of zones while using
AUTOGRAPH to do the plotting.

• Align the AUTOGRAPH and SGS coordinate systems.

• Save and restore the state of AUTOGRAPH so that multiple active plots can be managed.

• Perform cursor input.

See Appendices C–E for example programs demonstrating some of these facilities.

2 Summary of Calls

CALL SNX_AGOP
Make AUTOGRAPH/SGS/GKS ready for plotting.

CALL SNX_EZRXY (XDRA, YDRA, NPTS, XLAB, YLAB, GLAB)
Plot (x,y) data, with labelling, using AUTOGRAPH.

SUN/90.10 —Summary of Calls 2

CALL SNX_AGLAB (LNAME, TEXT)
Set up an AUTOGRAPH label.

CALL SNX_CHSET (I)
Select one of the two NCAR Roman fonts.

CALL SNX_AGSAV (HEAP)
Save the state of AUTOGRAPH.

CALL SNX_AGRES (HEAP)
Restore the state of AUTOGRAPH.

CALL SNX_TO (SORN)
Switch between NCAR and SGS plotting.

CALL SNX_AGWV
Make the AUTOGRAPH graph window match the current viewport (= zone if using SGS).

CALL SNX_AGCS
Make the current SGS zone world coordinates match the AUTOGRAPH grid coordinate

system.

CALL SNX_CURS (X, Y, N)
Read a cursor position.

UX = SNX_AGGUX (GX)
Transform grid X coordinate to user X coordinate.

UY = SNX_AGGUY (GY)
Transform grid Y coordinate to user Y coordinate.

GX = SNX_AGUGX (UX)
Transform user X coordinate to grid X coordinate.

GY = SNX_AGUGY (UY)
Transform user Y coordinate to grid Y coordinate.

CALL SNX_WRTST (XG, YG, STRING, HG, IOR, ICTR)
Plot a character string.

3 SUN/90.10 —Initialising AUTOGRAPH/SGS/GKS

3 Linking

3.1 Use with the UNIX operating system

Assuming all Starlink directories have been added to the environment variables PATH and
LD_LIBRARY_PATH (see SUN/118), then to link a non-ADAM program with SNX and NCAR the
command line would be:

% f77 program.o -L/star/lib ‘snx_link‘ -o program.out

This command line will link with the SNX, NCAR and SGS libraries.

Two subroutines provided by SNX exist in other forms elsewhere and require special handling.
The first gives access to the special fonts provided by the NCAR routine PWRITX: it is a Starlink
version of the NCAR subroutine AGPWRT. The second intercepts and changes the numeric
labels produced by AUTOGRAPH, turning “.1" and “−.5" into “0.1" and “−0.5" etc.: it is a
Starlink version of the NCAR subroutine AGCHNL. These routines will be automatically linked
by using ‘snx_link‘ if you have called the SNX routine SNX_AGOP. If you are using SNX routines
as part of an NCAR/SGS mix, and have not called SNX_AGOP to initialise the graphics system,
you must link with the objects directly:

% f77 program.o /star/lib/agpwritx.o /star/lib/agchnlz.o \
-L/star/lib ‘snx_link‘ -o program.out

(It is important to realise that the use of the special fonts will naturally incur a speed penalty.
Advice on this is given in §7.)

Compiling and linking ADAM applications is discussed in Appendix A.

3.2 Use with the VAX/VMS operating system

Non-ADAM programs may be linked with the SNX and NCAR libraries by

$ LINK program, NCAR_DIR:SNX_LINK/OPT, STAR_LINK/OPT

This command line will link with the SNX, NCAR and SGS libraries.

Compiling and linking ADAM applications is discussed in Appendix A.

4 Initialising AUTOGRAPH/SGS/GKS

To make AUTOGRAPH/SGS/GKS ready for plotting, use the Fortran statement

SUN/90.10 —AUTOGRAPH Labels 4

CALL SNX_AGOP

The routine asks for the SGS/GKS workstation name via the standard input device used by
NCAR (normally the terminal). If <CR> or an invalid name is entered, a list of all the current
names is displayed and the request is repeated. Once SGS/GKS and the workstation have all
been successfully opened, AUTOGRAPH is configured to use the full display surface (in other
words the base SGS zone). If you don’t want the AUTOGRAPH plot to fill the display surface,
use the SGS zone creation routines to select the desired region and then call SNX_AGWV (see
§9).

5 Plotting X against Y with AUTOGRAPH

To plot a labelled graph of the curve joining (x,y) points given as separate x and y arrays, the
following can be used:

CALL SNX_EZRXY(XDRA, YDRA, NPTS, XLAB, YLAB, GLAB)

XDRA and YDRA are real 1-dimensional arrays containing the x and y points respectively;
the integer NPTS is the number of (x,y) values; XLAB, YLAB and GLAB are character strings
giving the three labels (x-axis, y-axis and graph). Trailing blanks in the labels are ignored. Greek
letters and special symbols can be used by including PWRITX function codes in the strings (see
Appendix F) by virtue of linking with the Starlink version of AGPWRT (§3 and §7).

When using SNX, the format of numeric labels is “0.4", “−0.25" instead of the default style
used by AUTOGRAPH, “.4", “−.25", by virtue of linking with the Starlink version of AGCHNL
(§3). Other control over labelling (character sizes, multiple lines, character orientation, etc.)
can be achieved by setting the appropriate AUTOGRAPH parameters and then calling the
NCAR routine EZXY directly, and by writing bespoke versions of the user-replaceable routines
AGCHNL and AGUTOL.

NCAR can plot other forms of data: e.g. y array only, multiple curves, etc. These are discussed in
the NCAR AUTOGRAPH document – see EZY, EZMY, EZMXY.

Appendices C–E contain several examples of the use of SNX_EZRXY.

6 AUTOGRAPH Labels

To set up one of the four predefined AUTOGRAPH labels (see §2.30 et seq. in the AUTOGRAPH
document), the following call may be used:

CALL SNX_AGLAB(LNAME, TEXT)

LNAME and TEXT are both character strings. The first character of LNAME is the label name
(‘R’, ‘L’, ‘B’ or ‘T’ for right, left, bottom, top respectively) and TEXT is the label text. Trailing

5 SUN/90.10 —Control over Text Font and Character Set

blanks are ignored so that the text proper is correctly centred – for deliberate trailing blanks, use
‘$’ as an endmark. Also, PWRITX function codes can be inserted for special characters (see §3
and §7). For LNAME = ‘T’ or ‘L’, the AUTOGRAPH line number is set to 100; for ‘B’ or ‘R’, the
line number is −100.

Illegal LNAME values cause the top label to be set to

’*** AGLAB LABEL ERROR ***’.

The SNX_AGLAB routine can be used in conjunction with the AUTOGRAPH facilities. For
example, the following calls will create a 2-line ‘B’ label (beneath the x-axis), with the second
line (numbered −200) of character height 0.03 grid units. Here, one grid unit is the height of the
box within which the curve is plotted.

CALL SNX_AGLAB(’B’, ’This is the first line of text’)
CALL AGSETC(’LABEL/NAME.’, ’B’)
CALL AGSETI(’LINE/NUMBER.’, -200)
CALL AGSETF(’LINE/CHARACTER.’, 0.03)
CALL AGSETC(’LINE/TEXT.’, ’This is the second line of text’)

It is permissible to omit the AGSETC call which specifies the ‘B’ label as this will have been
done already by SNX_AGLAB.

7 Control over Text Font and Character Set

An ordinary AUTOGRAPH application program linked only with the NCAR library, e.g.

$ LINK PROGRAM, NCAR_DIR:NCAR_LINK/OPT, STAR_LINK/OPT

on VAX/VMS, will include the standard version of the routine AGPWRT which uses the GKS
text-drawing facilities. Extremely flexible control over font, colour, etc., is available via GKS (see
§2.43 of the AUTOGRAPH document), but NCAR itself contains some facilities for controlling
the text font which many users will find more accessible, particularly when Greek letters,
subscripts and other special characters are to be included in labels.

To use the NCAR fancy fonts, the application program must be linked with a special Starlink
version of the AUTOGRAPH routine AGPWRT, which has access to the NCAR PWRITX char-
acter drawing routine (§3). When using the Starlink version of AGPWRT, PWRITX function
codes can be included in the character strings in order to switch between various sets of special
characters. Lower case characters and common punctuation marks are automatically handled;
apostrophe (which is used as the delimiter for the PWRITX codes) is specified by two consecutive
apostrophes. A choice of two native NCAR character sets is available. The selection can be made
as follows:

CALL SNX_CHSET(I)

SUN/90.10 —AUTOGRAPH Save and Restore 6

The integer argument I may be either 1 or 2. I=1 selects the “duplex" font set and I=2 the
“complex" font. The “complex" characters (the default) are more ornate and fussier than the
comparatively plain “duplex" characters. Only the Roman characters are changed by the
SNX_CHSET call – not the Greek, etc.

For precise details of how to construct the PWRITX strings, refer to Appendix F, which includes
the program preamble comments describing the AGPWRITX routine, followed by a plot of
the available characters. The principle is that within the string of ordinary characters, function
codes can be embedded describing changes of font, size and position. The function codes are
delimited by apostrophes. For example, a label meaning r2 could be written using the string
“r’S’2’N’”. The “r" is simply drawn as a lower case “r"; the “’S’" is a function code switching
to superscript; the “2" is then drawn as a small numeral in the superscript position; and finally
the “’N’" switches back from superscript to normal. Though daunting at first, the strings are
quite easy to construct and to debug by trial and error.

As a more complicated example, the string “Area = ’GL’P’R’r’S’2" will generate a label
equivalent to “Area = πr2". (The apostrophes make for messy Fortran literals; this one would be
“‘Area = ”GL”P”R”r”S”2’”.) The first PWRITX function code ‘GL’ selects the Greek Lowercase
font; P happens to be the source character which generates the pi; the next function code ‘R’
switches back to Roman for the r; the final code ‘S’ means superscript and draws the power of 2
symbol. More examples are included in the XYPLOT input file listed in Appendix C.

Inevitably, use of the special fonts costs plotting time – each character is formed from many line
segments, all of which have to be transmitted to the device. This is compounded by the relatively
high density of numeric labelling which AUTOGRAPH provides by default. This speed penalty
is an acceptable cost where a publication-quality plot is being produced on a hardcopy device,
but not for interactive applications requiring frequent and rapid plotting. Appendix D describes
a demonstration program which switches between three different character drawing methods
and graph styles to achieve different trade-offs between speed and appearance. This involves a
special form of the call to AGPWRT, available only with the AGPWRITX implementation of this
routine. The call is:

CALL AGPWRT(0.0, 0.0, ’ ’, 0, 0, 0, -100)

or

CALL AGPWRT(0.0, 0.0, ’ ’, 0, 0, 0, 100)

(All the arguments except the last one, ICEN, which must be ±100, are ignored.) The −100 ICEN
value selects character drawing via the ordinary PWRIT routine, which uses the GKS character
drawing facilities and thus allows control of font, precision, etc. The +100 ICEN value selects
character drawing via the fancy PWRITX routine.

8 AUTOGRAPH Save and Restore

It can sometimes be useful to draw several graphs on one display frame and then to plot addi-
tional material to (or perform input from) one or more of them later. This can be accomplished
by using the routines SNX_AGSAV and SNX_AGRES, which respectively save and restore the
AUTOGRAPH context. Thus the sequence:

7 SUN/90.10 —AUTOGRAPH and SGS Coordinate Systems

Plot something with AUTOGRAPH
CALL SNX_AGSAV(HEAP)
Plot something else with AUTOGRAPH
CALL SNX_AGRES(HEAP)

will leave AUTOGRAPH in the same state as it was after the first plot. HEAP is a 1-dimensional
real array in which SNX_AGSAV stores all of AUTOGRAPH’s important variables. HEAP must
currently be at least 2606 elements long; check the SNX_AGSAV source for the latest value. If
you wish to save several different AUTOGRAPH states in one program, several HEAP arrays
will of course be required.

When using this facility it will very often be necessary to switch SGS zone (with SGS_SELZ) as
well as saving and restoring AUTOGRAPH. When this is done, a call to SNX_AGWV (§9.1) will
be needed as well. See also §11.

The NCAR software includes its own AUTOGRAPH save/restore facility (AGSAVE, AGRSTR).
This uses a scratch file, which means that a state saved in one program can be restored in another,
but does not save the plotting context. It is thus most useful for plotting successive data sets
with the same AUTOGRAPH parameters rather than (for example) making additions to a graph
plotted earlier, something which is for that matter hard to do with GKS itself.

9 AUTOGRAPH and SGS Coordinate Systems

9.1 Making AUTOGRAPH use the current SGS zone

AUTOGRAPH can be made to plot within the current GKS viewport as follows:

CALL SNX_AGWV

This will cause the AUTOGRAPH graph window (the rectangle which contains the labels, axes,
grid, etc.) to be coincident with the GKS viewport. A specially convenient way to set up a GKS
viewport is by means of SGS; a call to SNX_AGWV following any zone creation or selection call
will cause AUTOGRAPH to arrange its plot within that zone. The zone may be of any aspect
ratio, with the proviso that labels may overflow very narrow ones.

9.2 Setting the SGS coordinates to match an AUTOGRAPH plot

Once AUTOGRAPH has established its plotting strategy (usually after drawing the graph, or
either the background or curve) it may be necessary to make additions to the plot or to perform
input. This can be done conveniently as follows:

Plot the graph with AUTOGRAPH
CALL SNX_AGCS

The call to SNX_AGCS sets the extent (in world coordinates) of the current SGS zone, presumed
to cover the AUTOGRAPH graph window (the rectangular area within which the whole AU-
TOGRAPH plot, including labels etc., is drawn), so that the AUTOGRAPH grid window (the

SUN/90.10 —Plotting Character Strings 8

rectangular area within which the curve itself is plotted) has bounds (0.0,1.0,0.0,1.0). Thus
the world coordinates of the SGS zone are now AUTOGRAPH grid coordinates. Clipping
requirements may then make it necessary to create another zone covering just the grid window,
but still with grid coordinates. This is easily accomplished by:

CALL SGS_ZONE(0.0, 1.0, 0.0, 1.0, IZGW, J)
CALL SGS_SW(0.0, 1.0, 0.0, 1.0, J)

9.3 SGS/AUTOGRAPH coordinate conversions

For data-related plotting and input, four functions are provided to perform the necessary
coordinate conversions. The two sets of coordinates are respectively the grid coordinates
(GX,GY) and the user (i.e. data) coordinates (UX,UY).

To convert a grid x coordinate to a user x coordinate:

UX = SNX_AGGUX(GX)

To convert a grid y coordinate to a user y coordinate:

UY = SNX_AGGUY(GY)

To convert a user x coordinate to a grid x coordinate:

GX = SNX_AGUGX(UX)

To convert a user y coordinate to a grid y coordinate:

GY = SNX_AGUGY(UY)

The grid coordinates are such that the grid window part of the AUTOGRAPH graph window
has bounds (0.0,1.0,0.0,1.0); they match the world coordinates for a zone set up with SNX_AGCS
(see the previous section).

The user coordinates relate to the actual data values supplied, even though the plotting may
have been done with logarithmic scaling or reversed directions.

10 Plotting Character Strings

AUTOGRAPH provides for multiline labels in one of several predefined regions of the plot, but
can be awkward to use for placing character strings in arbitrary places. The SPPS routine WTSTR
is more suitable for this purpose, but operates in user (i.e. data) coordinates, not appropriate for
plotting outside the grid window, and expresses the character size in low level “plotter units".
Character strings can, of course, be plotted directly through GKS or SGS, though access to the
special NCAR fonts will not be available.

The Starlink extension routine SNX_WTRST is a further method of plotting strings. The call is
as follows:

9 SUN/90.10 —Mixing GKS, SGS and NCAR Plotting

CALL SNX_WRTST(XG, YG, STRING, HG, JOR, JCTR)

XG,YG (real) is the position of the string in grid coordinates. STRING is the character string to be
plotted, and may contain PWRITX codes (see §7) if special characters are required. This option
requires linking with the AGPWRITX version of AGPWRT (see §3). HG (real) is the character
height in grid Y units. JOR (integer) is the string orientation, in degrees anticlockwise from
the usual left-to-right. JCTR (integer) describes the justification; −2 and −1 = left, 0 = centred,
+1 and +2 = right, where “left" means “the middle of the left edge of the leftmost character is
at XG,YG" etc. The values 0 and ±2 produce proportionally-spaced strings and allow fancy
characters to be used; ±1 produces monospaced strings consisting of ordinary letters (including
lowercase), numbers and punctuation characters. You would use ±1 for plotting a table – the
AUTOGRAPH numeric labels are plotted using this value. There is no provision for centred
monospaced strings.

11 Mixing GKS, SGS and NCAR Plotting

Most plotting packages are designed to be used on their own, and cannot be used in conjunction
with any other package. In contrast, SGS has been designed to permit direct use of GKS, and it
is also possible, with care, to use the NCAR routines in combination with SGS and GKS very
effectively. However, NCAR and SGS/GKS are separate plotting systems and some care is
necessary when switching back and forth between them.

Two packaged save/restore facilities exist within SNX to help do this. The most elaborate is the
pair of routines SNX_AGSAV and SNX_AGRES (see §8), which are a complete save and restore
for AUTOGRAPH. A simpler facility, which performs the necessary buffer flushing operations
and saves/restores the SGS zone, is the SNX_TO routine. This is used as follows:

Plot with NCAR
CALL SNX_TO(’SGS’)
Plot with SGS
CALL SNX_TO(’NCAR’)
More plotting with NCAR

Only the first character of the argument is significant. The sequence must begin with the switch
to SGS and then alternate strictly.

When you have just plotted something using an NCAR routine (or at least a low level one – the
high level utilities do it for you) and wish to switch to SGS or GKS, make the following call:

CALL PLOTIT(0, 0, 2)

or if you are switching from SGS:

CALL SGS_FLUSH

or from GKS:

SUN/90.10 —References 10

CALL GUWK(WKID, REGFL)

After plotting with AUTOGRAPH, further GKS or SGS work will require the coordinate systems
to be re-established. In SGS this can be done as follows:

CALL SGS_ICURZ(IZ)
CALL SGS_SELZ(IZ)

This can be omitted if the routine SNX_AGCS is being called. Conversely, the NCAR coordinate
systems will need to be saved and restored if there is intervening SGS or GKS plotting. This can
be done by means of the SPPS routines GETSET and SET.

12 Cursor Input

To input coordinates from a graph plotted with AUTOGRAPH, use the call

CALL SNX_CURS(X, Y, N)

X, Y (real) are user (i.e. data) coordinates. Their value when the call is made is used to preset the
cursor position (if this is possible on the GKS workstation concerned). On exit, they are set to
the position indicated by the cursor input operation. The integer N is the SGS choice, and will
generally indicate the button that has been pressed.

Variations of choice device, cursor visibility, echo type, etc., may be made by direct SGS/GKS
calls before SNX_CURS is called.

Appendix E contains a demonstration program for SNX_CURS.

13 References

SGP/16 Starlink Application Programming Standard.
SUN/15 PGPLOT — Graphics Subroutine Library.
SUN/83 GKS — Graphical Kernel System (7.2).
SUN/85 SGS — Simple Graphics System.
SUN/88 NCAR — NCAR – Graphics Utilities.
SUN/118 Starlink Software on UNIX.
SUN/144 ADAM — UNIX Version.

11 SUN/90.10 —Portability

A Using SNX within ADAM Applications

A.1 Use with the UNIX operating system

Assuming all Starlink directories have been added to the environment variables PATH and
LD_LIBRARY_PATH (see SUN/118), then to link an ADAM application with SNX the com-
mand line would be

% alink application.o ‘snx_link_adam‘

SUN/144 gives further details of compiling and linking ADAM applications with the UNIX
operating system.

A.2 Use with the VAX/VMS operating system

When developing ADAM applications, all logical names and symbols used during compiling
and linking are defined by executing the procedures

$ ADAMSTART
$ ADAM_DEV

The application may then be compiled using the FORTRAN command and linked using the
ALINK and MLINK procedures, e.g.

$ ALINK application,NCAR_DIR:SNX_LINK_ADAM/OPT

B Portability

B.1 Overview

This section discusses the portability of SNX, including the coding standard adopted and a list
of those Starlink packages which need to be ported to the target machine before a port of SNX
can proceed.

B.2 Coding and porting prerequisites

The standard of Fortran used for the coding of SNX is fundamentally Fortran 77, using the
Starlink Fortran coding conventions described in SGP/16. Several common extensions to the
Fortran 77 standard are used in the SNX source code; they are as follows:

• symbolic subprogram names may be longer than six characters (but are always shorter
than ten characters);

SUN/90.10 —Demonstration – the XYPLOT Program 12

• symbolic subprogram names include the “_” symbol;

• the full ASCII character set is assumed in character constants.

There are no operating system-specific routines in SNX. SNX requires NCAR, SGS and GKS Vn.
7.2 or GKS Vn. 7.4 to be available.

C Demonstration – the XYPLOT Program

The following pages contain a listing of the Fortran source for a program called XYPLOT,
plus a sample input file and the plot it produces. As well as demonstrating several of the
facilities described in this document, XYPLOT may be useful as a template for developing
other simple graphics utilities, and can be used in its own right as a convenient way of pro-
ducing a presentable plot of a list of (x,y) data. The Fortran source may be found in the
file NCAR_DIR:XYPLOT.FOR on VAX/VMS and in the archive /star/starlink/lib/snx/-
examples/snx-examples_source.tar on UNIX. On VAX/VMS, this program may be compiled,
linked and run using the command sequence

$ FORTRAN NCAR_DIR:XYPLOT
$ LINK XYPLOT, NCAR_DIR:SNX_LINK/OPT, STAR_LINK/OPT
$ RUN XYPLOT

On UNIX, this program may already be installed in directory /star/bin/examples/snx. If it
has been deinstalled and removed to save space, you can copy the entire source directory to a
scratch dircetory, and with the SYSTEM environment variable set appropriately, build and run it
thus:

% setenv SYSTEM alpha_OSF/1
% ./mk xyplot
% ./xyplot

XYPLOT reads an input file and plots a graph. The input file consists of a sequence of al-
phanumeric records, the first three of which are the labels (title, x-axis, y-axis) with the rest
each containing an (x,y) point (in free format). The example data may be found in the file
NCAR_DIR:XYPLOT.DAT on VAX/VMS and /star/bin/examples/snx/xyplot.dat on UNIX
(if installed). The resulting graph consists of a line joining the points in the order in which they
are given.

C.1 Fortran source

PROGRAM XYPLOT
*+
* - - - - - - -
* X Y P L O T
* - - - - - - -

13 SUN/90.10 —Demonstration – the XYPLOT Program

*
* Plot xy data from a file using NCAR package.
*
* Input is from LU 1. The format is:
*
* graph label text
* x label text
* y label text
* x y
* x y
* x y
* :
* :
*
* P T Wallace Starlink May 1987
*
*+

IMPLICIT NONE

INTEGER N,NP,NPMAX
PARAMETER (NPMAX=10000)
CHARACTER FNAME*80,GLAB*80,XLAB*80,YLAB*80
REAL X(NPMAX),Y(NPMAX)

* Open input file
PRINT *,’Filename?’
READ (*,’(Q,A)’) N,FNAME
OPEN (UNIT=1,STATUS=’OLD’,FILE=FNAME(:N),READONLY)

* Read label text
READ (1,’(A)’,END=100) GLAB
READ (1,’(A)’,END=100) XLAB
READ (1,’(A)’,END=100) YLAB

* Read x,y data
DO NP=1,NPMAX

READ (1,*,END=100) X(NP),Y(NP)
END DO
NP=NPMAX+1

* Adjust number of points
100 CONTINUE

NP=NP-1

* Plot the graph
IF (NP.GE.2) THEN

CALL SNX_AGOP
CALL SNX_EZRXY(X,Y,NP,XLAB,YLAB,GLAB)
CALL SGS_CLOSE

ELSE
PRINT *,’*** Insufficient Data ***’

END IF

SUN/90.10 —Demonstration – the XYPLOT Program 14

END

Notice that most of the program is devoted to reading in the data, and that the plotting itself
requires just three calls – to open, plot and close respectively.

The reasons SNX_EZRXY expects you to do the SGS/GKS open and close rather than providing
truly one-call plotting by doing them itself are:

• you may not want to use SGS

• you may want to plot within a selected region of the display surface

• you may want to do more graphics I/O later on in the same program.

The trade-off is fractionally less convenience versus greatly increased versatility.

C.2 Input file

The beginning of the file which was used to produce the graph on the next page is given below.
Note the use of PWRITX function codes in the three label records; this assumes the program
has been linked with the special version of the AGPWRT routine (see §3 and 7). Deliberately
complicated example labels have been contrived; most real applications would require just plain
text without PWRITX codes.

A Bogus Star ’V:-50IGL’Y’H:-80KRU’C DLT 1986
Wavelength / ’.A’
F’GLB’K’NRU’ / 10’S’-26’N’ erg cm’S’-2’N’ s’S’-1’N’ ’.AS’-1

4004.000 0.1888006
4008.000 0.0000000E+00
4012.000 0.0000000E+00
4016.000 0.3046547
4020.000 0.3328641
4024.000 3.8437031E-02
4028.000 0.2980890

:
:
:
:

XYPLOT is a convenient tool for quickly debugging complicated label strings. With a text editor,
set up a dummy input file consisting of the label string you want to try out, then two more
arbitrary labels and two arbitrary data points. Run the XYPLOT program and inspect the x-axis
label; if wrong, edit the data file and try again.

C.3 The plot

XYPLOT produced the following graph when the example input file given in the previous
section was used. Further copies can be obtained by running XYPLOT and replying with the
name of the example input file to the ‘Filename?’ prompt.

15 SUN/90.10 —Demonstration – the XYPLOT Program

SUN/90.10 —Demonstration – the SPEED Program 16

D Demonstration – the SPEED Program

The following pages contain a listing of the Fortran source for a program called SPEED, plus
a sample input file. It produces a plot similar to the one from XYPLOT (Appendix C). The
SPEED program demonstrates three different compromises between plotting speed and quality
of result. The source and a suitable data file (which is the same format as for XYPLOT) are
distributed with the SNX software: in the directory NCAR_DIR on VAX/VMS and in the archive
/star/starlink/lib/snx/examples/snx-examples.tar on UNIX.

On VAX/VMS, this program may be compiled, linked and run using the command sequence

$ FORTRAN NCAR_DIR:SPEED
$ LINK SPEED, NCAR_DIR:SNX_LINK/OPT, STAR_LINK/OPT
$ RUN SPEED

On UNIX, this program may already be installed in directory /star/bin/examples/snx. If it
has been deinstalled and removed to save space, you can copy the entire source directory to a
scratch dircetory, and with the SYSTEM environment variable set appropriately, build and run it
thus:

% setenv SYSTEM alpha_OSF/1
% ./mk speed
%./speed

The program will prompt “Filename?" (respond NCAR_DIR:SPEED.DAT on VAX/VMS and
/star/starlink/lib/snx/speed.dat on UNIX) and “Workstation?" (give the SGS workstation name).
The prompt:

Precision/font? H=h/w, S=GKS, N=NCAR, E=exit

will then appear. The three font options are as follows:

• A response of “N" selects the fancy NCAR fonts and allows AUTOGRAPH to determine
the numeric labelling density. The result is of high quality but takes a long time to plot.

• A response of “S" selects the GKS default font. The result is much quicker, and still
presentable.

• A response of “H" selects the hardware font and requests a reduced density of numeric
labelling. On devices which have hardware character generation (most do), the plot is
very rapid but may not be especially attractive. (One common defect is that the y-label
may appear reversed, because the device is unable to plot characters on their sides and yet
the positions of the individual characters are unchanged.)

17 SUN/90.10 —Demonstration – the SPEED Program

D.1 Fortran source

PROGRAM SPEED

*+
*
* Demonstration of different plotting style/speed
* tradeoffs in NCAR/SGS/GKS
*
* P T Wallace Starlink 10 June 1987
* P C T Rees Starlink 19 May 1992
* Replaced FLUSH calls with PLOTIT calls.
*
*+

IMPLICIT NONE

INTEGER NPMAX
PARAMETER (NPMAX=10000)
INTEGER N,NP,IPREC,NCOUNT
REAL RNULL1,TICK
CHARACTER FNAME*80,GLAB*80,XLAB*80,YLAB*80,K*1
REAL X(NPMAX),Y(NPMAX)
LOGICAL PLOTED,NTBAD

* Open input file
PRINT *,’Filename?’
READ (*,’(Q,A)’) N,FNAME
OPEN (UNIT=1,STATUS=’OLD’,FILE=FNAME(:N),READONLY)

* Read label text
READ (1,’(A)’,END=9000) GLAB
READ (1,’(A)’,END=9000) XLAB
READ (1,’(A)’,END=9000) YLAB

* Read x,y data
DO NP=1,NPMAX

READ (1,*,END=100) X(NP),Y(NP)
END DO
NP = NPMAX+1

* Adjust number of points
100 CONTINUE

NP = NP-1

* Check enough data
IF (NP.LT.2) GO TO 9000

* Prepare to plot the graph
CALL snx_AGOP
CALL AGGETF(’NULL/1.’,RNULL1)
PLOTED = .FALSE.

SUN/90.10 —Demonstration – the SPEED Program 18

* Select character precision and font
200 CONTINUE

PRINT *,’Precision/font? H=h/w, S=GKS, N=NCAR, E=exit’
READ (*,’(A)’) K
NTBAD = .FALSE.
IF (K.EQ.’H’.OR.K.EQ.’h’) THEN

* Hardware characters - fast but tacky
CALL AGPWRT(0.0,0.0,’ ’,0,0,0,-100)
IPREC = 0
NCOUNT = 1
TICK = 1.0

ELSE IF (K.EQ.’S’.OR.K.EQ.’s’) THEN

* GKS software characters - reasonably fast and attractive
CALL AGPWRT(0.0,0.0,’ ’,0,0,0,-100)
IPREC = 2
NCOUNT = 6
TICK = RNULL1

ELSE IF (K.EQ.’N’.OR.K.EQ.’n’) THEN

* PWRITX characters - fancy but slow
CALL AGPWRT(0.0,0.0,’ ’,0,0,0,100)
IPREC = 2
NCOUNT = 6
TICK = RNULL1

ELSE IF (K.EQ.’E’.OR.K.EQ.’e’) THEN

* Exit requested - wrap up
CALL sgs_CLOSE
GO TO 9999

ELSE

* Unrecognised command
NTBAD = .TRUE.
PRINT *,’?’

END IF

* Repeat prompt if problems
IF (NTBAD) GO TO 200

* Clear the zone if necessary
IF (PLOTED) CALL sgs_CLRZ

* Setup for plotting:
*
* SGS/GKS text precision

CALL sgs_SPREC(IPREC)

19 SUN/90.10 —Demonstration – the SPEED Program

* Density of tick marks and numeric labels
CALL AGSETI(’LEFT/MAJOR/COUNT.’,NCOUNT)
CALL AGSETI(’RIGHT/MAJOR/COUNT.’,NCOUNT)
CALL AGSETI(’BOTTOM/MAJOR/COUNT.’,NCOUNT)
CALL AGSETI(’TOP/MAJOR/COUNT.’,NCOUNT)
CALL AGSETF(’LEFT/MINOR/SPACING.’,TICK)
CALL AGSETF(’RIGHT/MINOR/SPACING.’,TICK)
CALL AGSETF(’BOTTOM/MINOR/SPACING.’,TICK)
CALL AGSETF(’TOP/MINOR/SPACING.’,TICK)

* Plot the graph
CALL snx_EZRXY(X,Y,NP,XLAB,YLAB,GLAB)
CALL PLOTIT(0,0,2)
CALL sgs_FLUSH

PLOTED = .TRUE.

* Next plot
GO TO 200

* Exits
9000 CONTINUE

PRINT *,’Insufficient data!’

9999 CONTINUE

END

D.2 Input file

The beginning of the file which is supplied for use with the SPEED program is given below. It is
the same format as for the XYPLOT program, but note that the three label records should not
contain PWRITX function codes as these will not work when the “S" or “H" options are used.

Simulated Stellar Spectrum
Wavelength
Flux

5000.000 6.738085
5004.000 8.849804
5008.000 9.914771
5012.000 9.484353
5016.000 9.981673
5020.000 11.45505
5024.000 8.954852
5028.000 11.32500

:
:
:
:

SUN/90.10 —Demonstration – the INDEMO Program 20

E Demonstration – the INDEMO Program

The following pages contain a listing of the Fortran source for a program called INDEMO. It
produces a plot of a spiral, with a logarithmic y-axis and an x-axis with the scale running right
to left. The objective is to demonstrate the SNX_CURS input routine, and to show that data
coordinates can be read in and used. Again, the source is distributed with the SNX software: in
the directory NCAR_DIR on VAX/VMS and /star/starlink/lib/snx/examples on UNIX.

On VAX/VMS, this program may be compiled, linked and run using the command sequence

$ FORTRAN NCAR_DIR:INDEMO
$ LINK INDEMO, NCAR_DIR:SNX_LINK/OPT, STAR_LINK/OPT
$ RUN INDEMO

On UNIX, this program may already be installed in directory /star/bin/examples/snx. If it
has been deinstalled and removed to save space, you can copy the entire source directory to a
scratch dircetory, and with the SYSTEM environment variable set appropriately, build and run it
thus:

% setenv SYSTEM alpha_OSF/1
% ./mk indemo
% ./indemo

Give the SGS workstation name in response to the “Workstation?" prompt. The graph will be
plotted, and the cursor will appear. Adjust the cursor position and press the “hit" key (normally
numeric 1 and 2 on the keyboard). A cross will be drawn at the cursor position, and next to it a
message giving the data coordinates at that point. The program will exit when a cursor “hit" is
made outside the plot bounds, or a zero cursor choice entered.

E.1 Fortran source

PROGRAM INDEMO

*+
*
* - - - - - - -
* I N D E M O
* - - - - - - -
*
* Demonstrate cursor input following NCAR AUTOGRAPH plot.
*
* P T Wallace Starlink May 1987
* P C T Rees Starlink April 1992
* Added exit on cursor choice 0.
*
*+

IMPLICIT NONE

21 SUN/90.10 —Demonstration – the INDEMO Program

INTEGER I,N
LOGICAL LOOP
REAL V,T,X(1000),Y(1000),XU,YU,XG,YG,XA(1),YA(1)
CHARACTER S*13

REAL snx_AGUGX,snx_AGUGY

* Fill the data arrays.
XU = 300.0
YU = 400.0

DO I=1,1000
V = REAL(I-1)
T = V/50.0
X(I) = XU + V*COS(T)/2.0
Y(I) = YU + V*SIN(T)/2.5

END DO

* Open NCAR/SGS/GKS.
CALL snx_AGOP

* X axis is reversed linear.
CALL AGSETI(’X/ORDER.’,1)

* Y axis is logarithmic.
CALL AGSETI(’Y/LOG.’,1)

* Plot the graph.
CALL snx_EZRXY(X,Y,1000,’Spiral’,’x’,’y’)

* Loop - mark positions on plot.
LOOP = .TRUE.

DO WHILE (LOOP)

* Input a cursor position.
CALL snx_CURS(XU,YU,N)

* Check cursor choice and finish if zero.
IF (N.LE.0) THEN

* Finish.
LOOP=.FALSE.

ELSE

* Transform to grid coordinates.
XG = snx_AGUGX(XU)
YG = snx_AGUGY(YU)

* Inside or outside grid window?
IF (XG.LE.1.0.AND.XG.GE.0.0.AND.

SUN/90.10 —PWRITX 22

: YG.LE.1.0.AND.YG.GE.0.0) THEN

* Inside - mark the selected position.
WRITE (S,’(’’(’’,F5.1,’’,’’,F5.1,’’)’’)’) XU,YU
XA(1) = XU
YA(1) = YU
CALL POINTS(XA,YA,1,-2,0)
CALL snx_WRTST(XG+0.02,YG,S,0.02,0,-2)

ELSE

* Outside - finished.
LOOP = .FALSE.

END IF
END IF

* Next position
END DO

* Wrap up
CALL sgs_CLOSE

END

F PWRITX

The special version of the AGPWRT routine described earlier uses the PWRITX routine to plot
the required character string. A feature of this routine is that function codes can be embedded in
the character string to select different fonts, draw subscripts, etc. These function codes are the
ones you will need to use if you wish to have Greek letters, etc. in your labels. The AGPWRITX
documentation is given below, and is followed by a plot showing all the available characters
(the Roman characters being those in the “complex" font).

SUBROUTINE AGPWRT(XPOS, YPOS, CHRS, NCHS, ISIZ, IORI, ICEN)

This routine is a substitute for the NCAR routine of the same name, but allowing the PWRITX
character drawing routine to be used instead of the usual PWRIT, giving access to special fonts,
etc.

The character string accepted by the PWRITX routine includes control codes to switch font,
etc. This implementation of AGPWRT accepts and passes PWRITX codes and also inserts the
appropriate codes where lowercase and certain other characters are supplied. Some special
characters not directly available from PWRITX are produced by means of control sequences
selected through additional codes which are peculiar to this implementation of AGPWRT.

Other special values of the ICEN parameter are used to select plotting via either the PWRITX
routine or the PWRIT routine. This feature allows an application to plot using GKS character
drawing facilities on some occasions while using PWRITX on other occasions. The PWRITX
option gives high quality characters from a rich set, but slowly; the GKS option, on the other

23 SUN/90.10 —PWRITX

hand, provides access to other GKS fonts and allows the use of lower text precision on graphics
devices where this will reduce the plotting time.

The NCAR utilities use values of the justification argument ICEN of ±1 where left or right
justification is required, and in these cases the string is plotted artificially monospaced to avoid
irregular axis labelling, subject to the restriction that the string must not contain PWRITX
function codes (though lowercase and common punctuation symbols are acceptable). To enable
left and right justified strings to be proportionally spaced and to contain PWRITX function
codes, this implementation of AGPWRT also supports the non-NCAR values ICEN = ±2. There
is no provision for centred monospaced strings.

Given:

XPOS,YPOS r,r string position in SPPS user coordinates

CHRS,NCHS c,i string and length, inclusive of codes, etc.

ISIZ i character size

IORI i orientation

ICEN i justification, or PWRIT/PWRITX selection

Where the special values of ICEN are used to select plotting via either PWRIT or PWRITX, the
other arguments are ignored.

Plotter units:

Displacements and character sizes are specified in “plotter units". (N.B. Do not
confuse plotter units with device coordinates. Plotter units are not related to true
device resolution.) Normally the longest dimension of the display surface is 1024
plotter units. Should the resolution limitation that this implies be unacceptable, it
can be changed by means of the SPPS routine SETI.

PWRITX fonts:

Twelve fonts are provided, each containing 47 symbols and indexed by the stan-
dard Fortran characters (A-Z 0-9 +-*/()$=,. and space). A given font is specified
by three letters which, in broad terms, select which combination of size (Princi-
pal, Indexical, Cartographic), alphabet (Roman, Greek), and case (upper, lower) is
required.

ISIZ argument:

ISIZ specifies an overall magnification factor for all the characters drawn.

Each of the three size classifications in the set of twelve fonts provided (Principal,
Indexical and Cartographic) has a nominal character width (in spite of proportional
spacing), height and total height. The space character is exactly one nominal width
wide, and a carriage control code causes a downwards increment equal to the
nominal total height, which thus includes white space.

SUN/90.10 —PWRITX 24

The nominal width (W), height (H), and total height (T) for the Principal (P), Indexical
(I), and Cartographic (K) fonts are as follows (plotter units):

W H T

P 16 21 32

I 12 13 20

K 8 9 14

ISIZ values of 3 or less select standard magnifications of the above sizes. Values of 4
or more are proportional to the resulting magnification. The overall magnification
for different ISIZ values is as follows:

ISIZ mag

< 1 8/21

1 12/21

2 18/21

3 24/21

> 3 ISIZ/21

Thus, for ISIZ>3, Principal characters will be drawn nominally ISIZ plotter units
high, and ISIZ can simply be thought of as the nominal character height in plotter
units.

IORI argument:

IORI is the string orientation in degrees anticlockwise from the normal left-to-right.

ICEN argument (normal use to specify positioning):

25 SUN/90.10 —PWRITX

ICEN Meaning

–2 (XPOS,YPOS) is the centre of the left edge of the first character. The

string is proportionally spaced.

–1 (XPOS,YPOS) is the centre of the left edge of the first character. The

string is monospaced. Lowercase and punctuation characters are permitted,

but not function codes.

0 (XPOS,YPOS) is the centre of the entire string. The string is

proportionally spaced.

+1 (XPOS,YPOS) is the centre of the right edge of the last character. The

string is monospaced. Lowercase and punctuation characters are permitted,

but not function codes.

+2 (XPOS,YPOS) is the centre of the right edge of the last character. The

string is proportionally spaced.

ICEN argument (special use to select string drawing routine):

ICEN Meaning

–100 Selects PWRIT routine, which gives access to GKS fonts, precision, em etc.

+100 Selects PWRITX routine, which gives access to special fonts and other features.

Notes:

• For ICEN = ±100 the other arguments are ignored.

• Initially, PWRITX is selected.

• This inelegant use of the ICEN argument is a consequence of having to work
within the standard AGPWRT call, which is made directly by the AUTOGRAPH
utilities.

Characters available without using function codes:

SUN/90.10 —PWRITX 26

• All uppercase and lowercase Roman characters, and most common punctuation
symbols are available by including them literally in the string CHRS.

• Two consecutive apostrophes causes a single apostrophe to be drawn – for
example “Murphy’’s Law".
Both of these are features of this implementation of AGPWRT and are not
available when directly calling PWRITX.

Function codes:

Function codes are sequences of characters, enclosed within apostrophes, which may
(except when ICEN= ±1) be included in the character string CHRS to change font,
case, etc. within the plotted string. No punctuation is needed between functions
except for a comma between adjacent numbers; however, commas may be used
between functions to improve readability. The following are the only legal function
codes. Any other characters in a function string will be ignored except that an error
report will be issued and, if more than 10 errors occur within a string, control will
be returned to the main program without further plotting. At the start of the string,
size, type, and case are Principal, Roman, and Upper.

FONT ALPHABET

R Roman characters, etc.

G Greek characters, etc.

FONT SIZE (see table, above, under ISIZ)

P Principal fonts

I Indexical fonts

K Cartographic fonts

FONT CASE

U or Un Upper case. If U is followed by a number n (not separated by a

comma) then n characters will be drawn in uppercase and

subsequent characters will be in lowercase. The U1 option is

thus particularly useful for capitalizing sentences.

L or Ln Lower case. If L is followed by a number n, then n characters will

be drawn in lower case and subsequent characters will be in upper

case.

SUBSCRIPTS AND SUPERSCRIPTS

27 SUN/90.10 —PWRITX

S or Sn Superscript level.

B or Bn Subscript level.

N or Nn Normal level.

When switching from some “base" character size to super- or subscripting,
the character size will change depending on the base character size. Prin-
cipal base characters will be subscripted or superscripted with indexical
characters, with a 10 plotter unit shift (scaled in accordance with ISIZ)
up or down. Indexical and cartographic base characters will be sub- or
superscripted with cartographic characters with a 7 plotter unit shift.
If multiple S or B functions are used, the original base character is forgotten,
and the base is simply the one preceding the latest S or B.
The case of the indexing characters will generally be the same as that of
the base character unless otherwise specified. There is one exception: a
lower case indexical base will be super- or subscripted with upper case
cartographic, as the lowercase cartographic font is composed of special
characters rather than letters and numbers.
If S, B or N is followed by a number n, then n characters will be drawn as
specified above, after which character size, case and position will be reset
to that of the base characters. If n is negative, its absolute value will be
used instead; n cannot be zero. Do not overlap level definitions given for a
specified number of characters.
The N option returns character, case and size to that of the base but main-
tains the current character position.

For example: ’U1’T’S1’EST will be drawn e
Tst

and ’U1’T’S’E’N’ST will be drawn e
T st

DIRECT CONTROL OVER POSITION

SUN/90.10 —PWRITX 28

Hn, HnQ Increment horizontally in the frame. Hn will shift the present

X position by n plotter units. HnQ will shift the present X position

by n nominal character widths. Positive n shifts to the right, and

negative to the left. If n is omitted, a value of 1 is assumed.

Vn, VnQ Increment vertically in the frame. Vn will shift the present Y

position by n plotter units. VnQ will shift the present Y position

by n nominal character total heights. Positive n shifts upwards,

and negative downwards. If n is omitted, a value of 1 is assumed.

H:n Increment along the direction of the string by n percent of the

nominal character height for Principal characters. If n is positive

the shift is rightwards, and if negative the shift is leftwards.

If n is absent there is no shift.

V:n Increment at right angles to the direction of the string by n percent

of the nominal character height for Principal characters. If n is

positive the shift is upwards, and if negative the shift is

downwards. If n is absent there is no shift.

(Note: these two are nonstandard features peculiar to this implementation
of AGPWRT and not available when PWRITX is called directly.)

X or Xn & Set X or Y. If the X or Y appears without a number n, the

Y or Yn function will do nothing. Otherwise, the character coordinate in the

X or Y direction will be set to the plotter coordinate n, so that

the next character drawn will have this position in X or Y,

subsequent characters will be drawn from this position.

(Note: within PWRITX, interactions with the proportional font and justi-
fication logic make these functions hard to use, and they are not recom-
mended.)

C Carriage return: a carriage return and line feed will be done before

the next character is plotted. N.B. The justification applies to

the final line.

DIRECTION

29 SUN/90.10 —PWRITX

D or Dn Write down, rather than across the frame. If D appears without an

n or if n=0, all characters will be written down until an ‘A’

function is encountered. If D is followed by a number n, n

characters will be written down and subsequent characters will be

written across the frame. If n is negative, the absolute value of

n is used instead.

A Write across: escape from the D option.

SPECIAL CHARACTERS

.A Angstrom unit

For example, to draw a string meaning “three Angstrom units per millime-
tre" we might use:

CALL AGPWRT(XPOS, YPOS, ’3’’.A’’/mm’, ...

DIRECT CHARACTER ACCESS

nnn Numeric character: character number nnn (octal) will be drawn.

Called: AGGETI, AGSETI, SETER, PWRITX, PWRIT, GTNUM, KUPX, KUPY, CPUX, CPUY

This routine uses characters outside the ANSI Fortran 77 character set.

SUN/90.10 —PWRITX 30

31 SUN/90.10 —PWRITX

SUN/90.10 —PWRITX 32

33 SUN/90.10 —PWRITX

SUN/90.10 —PWRITX 34

	Introduction
	Summary of Calls
	Linking
	Use with the UNIX operating system
	Use with the VAX/VMS operating system

	Initialising AUTOGRAPH/SGS/GKS
	Plotting X against Y with AUTOGRAPH
	AUTOGRAPH Labels
	Control over Text Font and Character Set
	AUTOGRAPH Save and Restore
	AUTOGRAPH and SGS Coordinate Systems
	Making AUTOGRAPH use the current SGS zone
	Setting the SGS coordinates to match an AUTOGRAPH plot
	SGS/AUTOGRAPH coordinate conversions

	Plotting Character Strings
	Mixing GKS, SGS and NCAR Plotting
	Cursor Input
	References
	Using SNX within ADAM Applications
	Use with the UNIX operating system
	Use with the VAX/VMS operating system

	Portability
	Overview
	Coding and porting prerequisites

	Demonstration – the XYPLOT Program
	Fortran source
	Input file
	The plot

	Demonstration – the SPEED Program
	Fortran source
	Input file

	Demonstration – the INDEMO Program
	Fortran source

	PWRITX

