
SUN/95.45

Starlink Project
Starlink User Note 95.45

Malcolm J. Currie & David S. Berry

2021 May 21

KAPPA — Kernel Application Package
2.6-12

User’s Guide

SUN/95.45 —Abstract ii

Abstract

KAPPA is an applications package comprising about 180 general-purpose commands for image
processing, data visualisation, and manipulation of the standard Starlink data format—the NDF.
It is intended to work in conjunction with starlink’s various specialised packages.

In addition to the NDF, KAPPA can also process data in other formats by using the ‘on-the-fly’
conversion scheme. Many commands can process data arrays of arbitrary dimension, and others
work on both spectra and images. KAPPA operates from both the UNIX C-shell and the ICL
command language.

This document describes how to use KAPPA and its features. There is some description of
techniques too, including a section on writing scripts. This document includes several tutorials
and is illustrated with numerous examples. The bulk of this document comprises detailed
descriptions of each command as well as classified and alphabetical summaries.

iii SUN/95.45—Contents

Contents

1 Introduction 1
1.1 Background . 1
1.2 Rôle of KAPPA . 1
1.3 Functionality of KAPPA . 1

1.3.1 Applications . 1
1.3.2 General . 3

1.4 This document . 3

2 Tutorials 4
2.1 From the C-shell . 4
2.2 From ICL . 7

3 Getting started 11
3.1 Running KAPPA . 11
3.2 Issuing Commands . 12
3.3 Obtaining Help . 12

3.3.1 Hypertext Help . 12
3.3.2 Entering the Help System . 13
3.3.3 Navigating Help Hierarchies . 14
3.3.4 Help on KAPPA commands . 14

3.4 Changing the Current Directory in ICL . 15
3.5 Exiting an Application . 15

4 Parameters 16
4.1 Summary . 16
4.2 Defaults . 17
4.3 Globals . 19
4.4 Strings . 20
4.5 Arrays . 20
4.6 Abort and Null . 21
4.7 Help . 21
4.8 Menus . 22
4.9 Environment Variables . 22
4.10 Specifying Parameter Values on Command Lines 23

4.10.1 Keyword . 23
4.10.2 Abbreviations . 23
4.10.3 Position . 24
4.10.4 Keyword versus Positional Parameters . 24
4.10.5 Special Behaviour . 24

4.11 Special Keywords: ACCEPT, PROMPT, RESET . 24
4.12 MIN and MAX parameter values . 26
4.13 Specifying Groups of Objects . 26

4.13.1 Indirection . 27
4.13.2 Editing . 28
4.13.3 Modification . 28
4.13.4 Ignoring Syntax Characters . 29
4.13.5 Groups of Data Files . 29

SUN/95.45 —Contents iv

4.13.6 Examples . 30
4.14 Output Parameters . 32

5 Verbosity of Messages 33

6 Graphics Devices and Files 34
6.1 Selecting a Graphics Device . 34

6.1.1 Global Parameters . 34
6.1.2 X-windows . 35

6.2 Composite Hardcopy Plots . 36

7 Plotting Styles and Attributes 38
7.1 Plotting Styles and Attributes . 38
7.2 Specifying a Plotting Style . 41

7.2.1 Group Expressions . 41
7.2.2 Temporary Attributes . 43
7.2.3 Synonyms for Attribute Names . 43
7.2.4 Colour Attributes . 44

7.3 Establishing Defaults for Plotting Attributes . 45
7.4 Graphical Escape Sequences . 46

8 Data structures 48
8.1 Restrictions on the Usage of Data Structures . 48
8.2 Looking at the Data Structures . 49
8.3 Editing the Data Structures . 49
8.4 Native Format . 49

9 NDF Sections 50
9.1 Specifying Lower and Upper Bounds . 50
9.2 Specifying Centre and Extent . 51
9.3 Using World or Axis Co-ordinates to Specify Sections 52

9.3.1 World co-ordinates: . 52
9.3.2 Axis co-ordinates: . 53

9.4 Specifying Fractional Extents . 54
9.5 Changing Dimensionality . 54
9.6 Mixing Bounds Expressions . 55

10 NDF History 56
10.1 Control and Content of History Recording . 56
10.2 Adding Commentary to History Recording . 57
10.3 Listing History Records . 57

11 The Graphics Database 59
11.1 The Graphics Database in Action . 59
11.2 Other Graphics Database Facilities . 71
11.3 The Co-ordinate Frames Associated with a Picture 73
11.4 The Graphics Database File . 74
11.5 Working With PostScript Files . 75

11.5.1 The Choice of Graphics Device . 75

v SUN/95.45 —Contents

11.5.2 The PostScript Files . 76
11.5.3 Combining the Files into a Single File . 76
11.5.4 Running the Applications . 77
11.5.5 Using X-windows to Produce a Prototype 77
11.5.6 An Example . 78

12 Using World Co-ordinate Systems 85
12.1 Pixel Indices, Pixel Co-ordinates, and Grid Co-ordinates 85
12.2 Co-ordinate Frames, Axes and Domains . 86
12.3 FrameSets, and the Current Frame . 89
12.4 Reserved Domain Names . 90
12.5 Specifying a Co-ordinate Frame . 91
12.6 Propagation of WCS Information . 92
12.7 Reading WCS Information Stored in Other Forms 92
12.8 Using SETSKY to Add a Celestial Co-ordinate Frame to an NDF 93
12.9 Converting an AXIS structure to a SpecFrame . 94
12.10Specifying Attributes for sub-Frames within Compound Frames 95

13 Interaction Mode 97

14 Graphics Device Colour Table and Palette 99
14.1 Lookup Tables . 100
14.2 Manipulating Colour Tables . 100
14.3 Creating Lookup Tables . 101

14.3.1 From a Text File . 101
14.3.2 Running LUTEDIT . 101

14.4 Palette . 101
14.5 Persistence of Palettes and Colour Tables . 102

15 Masking, Bad Values, and Quality 103
15.1 Bad-pixel Masking . 103

15.1.1 Doing it the ARD Way . 103
15.1.2 SEGMENT and ZAPLIN . 108
15.1.3 Special Filters for Inserting Bad Values . 109

15.2 Quality Masking . 109
15.3 Removing bad pixels . 110

16 Using Quality Names 112
16.1 Introduction . 112
16.2 Quality Names . 112
16.3 Quality Expressions . 113

17 Processing Groups of Data Files 114
17.1 Applications that Process Groups of NDFs . 115
17.2 What about the other Parameters? . 115
17.3 Output Parameters . 116
17.4 What Happens if an Error Occurs? . 116
17.5 What about Applications that Re-use Parameters? 116
17.6 Introducing a Pause Between Invocations . 117

SUN/95.45 —Contents vi

17.7 Reporting the Data Files being Processed . 117
17.8 The Syntax for Specifying Groups of Data Files . 118
17.9 Using non-NDF Data Formats . 118
17.10Disabling Multiple Invocations of Applications . 118

18 Getting Data into KAPPA 120
18.1 Automatic Conversion . 120
18.2 Other Routes for Data Import . 122
18.3 FITS readers . 122

18.3.1 Reading FITS Tapes . 122
18.3.2 Reading FITS Files . 124

18.4 The FITS Airlock . 126
18.4.1 NDF Extensions . 126
18.4.2 Importing and Exporting from and to the FITS Extension 127
18.4.3 Listing the FITS Extension and keywords 128
18.4.4 Creating and Editing the FITS Extension 129
18.4.5 Easy way to create and edit the FITS Extension 129

19 Procedures 131
19.1 C-shell scripts . 131
19.2 ICL Procedures . 131

20 Problems Problems 136
20.1 Errors . 136
20.2 No Match . 136
20.3 Unable to Obtain Work Space . 136
20.4 Application Automatically Picks up the Wrong NDF 137
20.5 Unable to Store a Picture in the Graphics Database 138
20.6 Line Graphics are Invisible on an Graphics Device 138
20.7 Error Obtaining a Locator to a Slice of an HDS array 138
20.8 Badly placed ()’s . 138
20.9 Attempt to use ’positional’ parameter value (x) in an unallocated position 138
20.10The choice x is not in the menu. The options are. 139
20.11Annotated axes show the wrong co-ordinate system 139
20.12“I’ve Got This FITS Tape” . 139
20.13FITSIN does not Recognise my FITS Tape . 140
20.14It Used to Work. . . and Weird Errors . 141

21 Custom KAPPA 142
21.1 Tasks . 142
21.2 Parameters . 143
21.3 Commands . 144

22 Acknowledgments 144

23 Acknowledging this Software 145

A Classified KAPPA commands 146
A.1 DATA IMPORT & EXPORT . 146

vii SUN/95.45 —Contents

A.1.1 Image generation and input . 146
A.1.2 Preparation for output . 146

A.2 DATA DISPLAY . 146
A.2.1 Detail enhancement . 146
A.2.2 Device selection . 147
A.2.3 Display control . 147
A.2.4 Graphics Database . 147
A.2.5 Lookup/Colour tables . 148
A.2.6 Output . 148
A.2.7 Palette . 149

A.3 DATA MANIPULATION . 149
A.3.1 Arithmetic . 149
A.3.2 Combination . 150
A.3.3 Compression and expansion . 150
A.3.4 Configuration change . 151
A.3.5 Filtering . 151
A.3.6 HDS components . 152
A.3.7 NDF array components . 152
A.3.8 NDF axis components . 152
A.3.9 NDF character components . 153
A.3.10 NDF extensions . 153
A.3.11 NDF History . 153
A.3.12 NDF Provenance . 153
A.3.13 NDF World Co-ordinate Systems . 154
A.3.14 Pixel editing and masking . 154
A.3.15 Polarimetry . 155
A.3.16 Resampling and transformations . 155
A.3.17 Surface and vector fitting . 155

A.4 DATA ANALYSIS . 156
A.4.1 Statistics . 156
A.4.2 Other . 156

A.5 SCRIPTING TOOLS . 156
A.6 INQUIRIES & STATUS . 156
A.7 MISCELLANEOUS . 157

B Quotas to run KAPPA 157

C Specifications of KAPPA applications 158
C.1 Explanatory Notes . 158

ADD . 160
ALIGN2D . 162
APERADD . 168
ARDGEN . 172
ARDMASK . 176
ARDPLOT . 178
AXCONV . 181
AXLABEL . 182
AXUNITS . 183

SUN/95.45 —Contents viii

BEAMFIT . 185
BLOCK . 195
CADD . 198
CALC . 199
CALPOL . 202
CARPET . 205
CDIV . 208
CENTROID . 209
CHAIN . 215
CHANMAP . 217
CHPIX . 223
CLINPLOT . 226
CMULT . 234
COLCOMP . 235
COLLAPSE . 239
COMPADD . 245
COMPAVE . 249
COMPICK . 253
COMPLEX . 255
CONFIGECHO . 257
CONTOUR . 260
CONVOLVE . 268
COPYBAD . 271
CREFRAME . 273
CSUB . 276
CUMULVEC . 277
CURSOR . 279
DISPLAY . 286
DIV . 296
DRAWNORTH . 298
DRAWSIG . 302
ELPROF . 305
ERASE . 308
ERRCLIP . 309
EXCLUDEBAD . 311
EXP10 . 313
EXPE . 314
EXPON . 315
FFCLEAN . 316
FILLBAD . 319
FITSDIN . 323
FITSEDIT . 327
FITSEXIST . 328
FITSEXP . 329
FITSHEAD . 332
FITSIMP . 334
FITSIN . 336
FITSLIST . 341

ix SUN/95.45 —Contents

FITSMOD . 344
FITSTEXT . 352
FITSURFACE . 354
FITSVAL . 358
FITSWRITE . 360
FLIP . 363
FOURIER . 365
GAUSMOOTH . 369
GDCLEAR . 372
GDNAMES . 373
GDSET . 374
GDSTATE . 375
GLITCH . 379
GLOBALS . 381
HISCOM . 382
HISLIST . 385
HISSET . 386
HISTAT . 388
HISTEQ . 392
HISTOGRAM . 394
INTERLEAVE . 399
KAPHELP . 402
KAPVERSION . 404
KSTEST . 406
LAPLACE . 409
LINPLOT . 411
LISTMAKE . 421
LISTSHOW . 426
LOG10 . 434
LOGAR . 435
LOGE . 436
LOOK . 437
LUCY . 442
LUTABLE . 447
LUTBGYRW . 450
LUTCOL . 451
LUTCOLD . 452
LUTCONT . 453
LUTEDIT . 454
LUTFC . 455
LUTGREY . 456
LUTHEAT . 457
LUTIKON . 458
LUTNEG . 459
LUTRAMPS . 460
LUTREAD . 461
LUTSAVE . 462
LUTSPEC . 463

SUN/95.45 —Contents x

LUTVIEW . 464
LUTWARM . 469
LUTZEBRA . 470
MAKESNR . 471
MAKESURFACE . 473
MANIC . 476
MATHS . 479
MEDIAN . 485
MEM2D . 490
MFITTREND . 496
MLINPLOT . 502
MOCGEN . 510
MSTATS . 512
MULT . 517
NATIVE . 519
NDFCOMPARE . 520
NDFCOMPRESS . 523
NDFCOPY . 526
NDFECHO . 530
NDFTRACE . 534
NOGLOBALS . 539
NOMAGIC . 540
NORMALIZE . 543
NUMB . 549
ODDEVEN . 551
OUTLINE . 553
OUTSET . 555
PALDEF . 557
PALENTRY . 558
PALREAD . 560
PALSAVE . 561
PARGET . 562
PASTE . 564
PERMAXES . 567
PICBASE . 569
PICCUR . 570
PICDATA . 572
PICDEF . 573
PICEMPTY . 577
PICENTIRE . 578
PICFRAME . 580
PICGRID . 581
PICIN . 583
PICLABEL . 586
PICLAST . 587
PICLIST . 588
PICSEL . 590
PICTRANS . 591

xi SUN/95.45 —Contents

PICVIS . 594
PICXY . 595
PIXBIN . 596
PIXDUPE . 598
PLUCK . 600
POW . 605
PROFILE . 606
PROVADD . 610
PROVMOD . 612
PROVREM . 616
PROVSHOW . 620
PSF . 623
QUALTOBAD . 630
REGIONMASK . 631
REGRID . 633
REMQUAL . 640
RESHAPE . 641
RIFT . 643
ROTATE . 645
SCATTER . 649
SEGMENT . 653
SETAXIS . 659
SETBAD . 664
SETBB . 667
SETBOUND . 669
SETEXT . 671
SETLABEL . 674
SETMAGIC . 675
SETNORM . 677
SETORIGIN . 679
SETQUAL . 681
SETSKY . 685
SETTITLE . 690
SETTYPE . 691
SETUNITS . 693
SETVAR . 695
SHADOW . 697
SHOWQUAL . 699
SLIDE . 700
SQORST . 703
STATS . 707
SUB . 711
SUBSTITUTE . 713
SURFIT . 716
THRESH . 720
TRANDAT . 723
TRIG . 728
VECPLOT . 730

SUN/95.45 —Contents xii

WCSADD . 736
WCSALIGN . 743
WCSATTRIB . 751
WCSCOPY . 755
WCSFRAME . 758
WCSMOSAIC . 761
WCSREMOVE . 768
WCSSHOW . 769
WCSSLIDE . 771
WCSTRAN . 773
WIENER . 776
ZAPLIN . 780

D Descriptions of Frame Attributes 786

E Descriptions of Plotting Attributes 806

F Standard Named Colours 820

G Using MathMaps 826
G.1 Defining Transformation Functions . 826
G.2 Calculating Intermediate Values . 827
G.3 Expression Syntax . 827
G.4 Variables . 827
G.5 Literal Constants . 827
G.6 Arithmetic Precision . 827
G.7 Propagation of Missing Data . 828
G.8 Arithmetic Operators . 828
G.9 Logical Operators . 828
G.10 Relational Operators . 829
G.11 Bitwise Operators . 830
G.12 Functions . 830
G.13 Symbolic Constants . 832
G.14 Evaluation Precedence and Associativity . 833

H Standard Components in an NDF 835

I IMAGE data format 839

J Supported HDS Data Types 839

K Release Notes—V2.6 841
K.1 New Commands . 841
K.2 General Changes . 841
K.3 Modified Commands . 841

L Notes from Previous Few Releases 843
L.1 Release Notes—V2.0 . 843

L.1.1 General Changes . 843
L.1.2 New Commands . 843

xiii SUN/95.45 —Contents

L.1.3 Modified Commands . 843
L.2 Release Notes—V2.1 . 844

L.2.1 New Commands . 844
L.2.2 Modified Commands . 844

L.3 Release Notes—V2.2 . 846
L.3.1 Documentation Changes . 846
L.3.2 Modified Commands . 846

L.4 Release Notes—V2.3 . 847
L.4.1 New Commands . 847
L.4.2 Modified Commands . 847

L.5 Release Notes—V2.4 . 848
L.5.1 New Commands . 848
L.5.2 Modified Commands . 848

L.6 Release Notes—V2.5 . 849
L.6.1 General Changes . 849
L.6.2 Modified Commands . 849

M Release Notes—V2.5-9 850
M.1 Modified Commands . 850

SUN/95.45—List of Figures xiv

List of Figures

1 An IRAS 12 µm image of M31 displayed in the middle of the BASE picture. . . . 61
2 Optical M31 image with axes displayed toward the left of the BASE picture. . . . 63
3 A box is drawn using the CURSOR application. 64
4 The selected section of the NDF is re-displayed. 66
5 IRAS contours overlayed on the visual image. 68
6 Data trace through the visual image. 70
7 Data traces through both images. 71
8 The complete display with warps. 72
9 The equivalent plot produced directly in PostScript. 84
10 Pixel indices. 85
11 Pixel co-ordinates. 86
12 Grid co-ordinates. 86
13 Fraction co-ordinates. 87
14 Masking of $KAPPA_DIR/ccdframec. To the left shows the original ARDMASK

regions, and to the right shows the final masked regions after some have been
combined. 108

1 SUN/95.45 —Introduction

1 Introduction

1.1 Background

It is Starlink’s aim to provide maintainable, portable, and extensible applications packages that
work in harmony by sharing a common infrastructure toolkit, standards, conventions and above
all, a standard data format. Individual packages are no longer required to perform all functions,
thus carry less inertia, and are more adaptable to outside developments. Additional functionality
can be added piecemeal to the relevant package. New user interfaces, such as graphical, could
be layered within the toolkit for obtaining parameters and so make the enhancement available
to all applications that make use of those tools. An example of this approach has allowed us to
access ‘foreign data formats’ throughout Starlink packages, because the packages use a common
infrastructure library.

An important part of the rationalisation is that applications are unified by sharing the same
basic data structure—the NDF (Extensible n-dimensional Data Format). This contains an
n-dimensional data array that can store most astronomical data such as spectra, images and
spectral-line data cubes. The NDF may also contain information like a title, axis labels and units,
error and quality arrays, and World Co-ordinate System information. There are also places in
the NDF, called extensions, to store any ancillary data associated with the data array, even other
NDFs.

1.2 Rôle of KAPPA

The backbone of the applications packages is KAPPA (Kernel APplication PAckage). It provides
general-purpose applications that have wide applicability, concentrating on image processing,
data visualisation, and manipulating NDF components. KAPPA provides facilities that inte-
grate with specialised Starlink packages such as those for CCD reduction (CCDPACK), stellar
and galaxy photometry (PHOTOM, EXTRACTOR, PISA, ESP), spectroscopy (ECHOMOP, FIGARO),
polarimetry (POLPACK, TSP), format conversion (CONVERT), etc. Thus the functionality of KAPPA

should not be regarded in isolation.

In a wider context, KAPPA offers facilities not in IRAF, for instance handling of data errors,
quality masking, a graphics database, availability from the shell, as well as more n-dimensional
applications, widespread use of data axes, and a different style. It integrates with instrument
packages developed at UK observatories. With the automatic data conversion and the availability
of KAPPA and other Starlink packages from within the IRAF command language, you should be
able to pick the best of the relevant tools from both systems to get the job done.

1.3 Functionality of KAPPA

1.3.1 Applications

Currently, KAPPA has over 200 commands that are available both from the UNIX C-shell and
from the ICL command language. They provide the following facilities for data processing:

• FITS readers that generate NDFs and text tables, and the import and export of ancillary
data through the NDF FITS extension;

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun45.htx/sun45.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun226.htx/sun226.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun109.htx/sun109.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun152.htx/sun152.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun223.htx/sun223.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun66.htx/sun66.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://iraf.noao.edu/iraf-homepage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Introduction 2

• generation of test data, and NDF creation from text files;

• setting and examining NDF components;

• world co-ordinate systems, and calculation of a sky co-ordinate system;

• arithmetic including a powerful application that handles expressions;

• pixel and region editing, including polygons and circles; re-flagging of bad pixels by value
or by median filtering; and pasting arrays over others;

• masking of regions, and of pixels whose variances are too large;

• configuration change: flip, rotate, shift, reshape, subset, permute axes change dimension-
ality;

• normalisation of NDF pairs;

• compression and expansion of images;

• generalised resampling of NDFs using arbitrary transformations;

• mosaic creation;

• filtering: box, Gaussian, and median smoothing; very efficient Fourier transform, convolu-
tion;

• deconvolution: maximum-entropy, Lucy-Richardson, Wiener filter;

• surface and trend fitting;

• statistics including ordered statistics, histogram; pixel-by-pixel statistics over a sequence
of images;

• inspection of image values;

• centroids of features, particularly stars; stellar PSF fitting;

• detail enhancement using histogram equalisation and Laplacian, convolution, edge en-
hancement via a shadow effect, thresholding;

• calculation of polarimetry images;

• creation of one-dimensional profiles through n-dimensional data sets; and

• conversion between various forms of complex data.

There are also many applications for data visualisation:

• use of the graphics database, AGI, to pass information about pictures between tasks; tools
for the creation, labelling, selection of pictures, and obtaining co-ordinate information
from them;

• image plots with a selection of scaling modes and many options such as axes;

3 SUN/95.45 —Introduction

• creation, selection, saving and manipulation of colour tables and palettes (for axes, annota-
tion, coloured markers and borders);

• line graphics: contouring; histogram; line plot of one-dimensional arrays, multiple-line
plot of images, and a grid of line plots for cubes; pie sections, and slices through an image;
vector plot of an image.

• many aspects of the appearance of line graphics can be tailored to individual needs and
stored within ‘style files’.

1.3.2 General

KAPPA handles bad pixels, and processes quality, variance, World Co-ordinate System (WCS),
and other information stored within NDFs (SUN/33 and Section 8). In order to achieve generality
KAPPA does not process non-standard extensions; however, it does not lose non-standard
ancillary data since it copies extensions to any NDFs that it creates. The standard extensions
that KAPPA recognises are the FITS airlock, that holds metadata in the form of FITS headers;
and PROVENANCE that records the lineage of an NDF, much like a family tree.

KAPPA can also process data in other formats, such as FITS and IRAF, using an automatic-data
conversion facility (CONVERT, SSN/20).

Although oriented to image processing, many commands will work on NDFs of arbitrary
dimension and others operate on both spectra and images, and cubes. Many applications handle
all non-complex data types directly, for efficient memory and disc usage. Those that do not will
usually undergo automatic data conversion to produce the desired result.

KAPPA’s graphics are produced using the widely used PGPLOT package, and are thus device
independent.

Most commands can be automatically re-invoked to process multiple NDFs by supplying a
group of NDFs as input. Groups of NDFs can be specified using wild-cards, or by listing them
explicitly either in response to a prompt or within a text file.

1.4 This document

This document is arranged as follows. First are two annotated KAPPA tutorials to give you a
quick summary of basic usage. The main text follows, which amplifies the points sketched in
the demonstrations, and describes other functionality and modes of use illustrated with further
examples. Finally, there are extensive appendices, including a classified list of commands and
detailed descriptions of each command, which are also available on a quick-reference card.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn20.htx/ssn20.html?xref_
http://www.astro.caltech.edu/~tjp/pgplot/

SUN/95.45 —Tutorials 4

2 Tutorials

So the facilities summarised in the introduction sound appealing. Now you want to know how
to access them, but the thick manual looks daunting. Actually, most of this manual comprises
descriptions of each application. The best way to learn the basics is to try some example sessions.

Login to a colour workstation or X-terminal. Then enter the commands following the prompts
shown below. The % is the shell prompt string, which you don’t type. As we go along there will
be commentary explaining what is happening and why. Let’s begin.

2.1 From the C-shell

% kappa

This defines C-shell aliases for each KAPPA command, includes the help information, and shows
the version number. It need only be issued once per login session. Thus you will see

KAPPA commands are now available -- (Version 1.0)

Type kaphelp for help on KAPPA commands

Let’s run a KAPPA application. CADD adds a scalar constant to an NDF file—the Starlink
standard data format—to make a new NDF file (usually called an NDF for short). In this case ten
is added to the pixels in $KAPPA_DIR/comwest.sdf to create test.sdf in the current directory.

% cadd $KAPPA_DIR/comwest 10 test

There are three parameters qualifying the CADD command: the names of the input and output
NDFs and the constant. Notice that these parameters are separated by spaces. Most applications
have a few of these positional parameters, usually the most commonly used. Parameters given
on the command line are not subsequently prompted for by the application. Also you see that
the NDF file extensions are not given. The .sdf extension indicates that it was created by the
Hierarchical Data System (SUN/92), or HDS for short. Note that an arbitrary .sdf file is not
necessarily an NDF.

Next we run the statistics task. Here we have not given any parameters. In this case the
application will ask for the values of any parameters it needs.

% stats

The only parameter required is called NDF, and STATS prompts us for it.

NDF - Data structure to analyse /@test/ >

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

5 SUN/95.45 —Tutorials

In this example, STATS wants to know for which NDF we require statistical data. The text
between the // delimiters is the suggested default for the parameter. By pressing the carriage
return we accept this default as the parameter’s value. Here the suggested default is the name
of the NDF created by CADD. (Ignore the @ for the moment—it just tells the application that it is
a file.) KAPPA remembers the last NDF used or created, and uses it for the suggested default to
save typing. Since test is the NDF whose statistics we want we just hit the return key. Again
we exclude the .sdf extension. Here is the output from STATS.

Pixel statistics for the NDF structure /home/scratch/mjc/test

Title : Comet West, low resolution
NDF array analysed : DATA

Pixel sum : 11851773
Pixel mean : 180.8437
Standard deviation : 63.47324
Minimum pixel value : 13.89063

At pixel : (59, 83)
Co-ordinate : (58.5, 82.5)

Maximum pixel value : 255.9375
At pixel : (248, 45)
Co-ordinate : (247.5, 44.5)

Total number of pixels : 65536
Number of pixels used : 65536 (100.0%)

Of course, in your case the current directory will not be /home/scratch/mjc. The NDF title
is the unchanged from the $KAPPA_DIR/comwest NDF. This is the normal behaviour for tasks
that create a new NDF from an old one; they do, however, have a parameter for changing
this default. To alter a defaulted parameter you supply its new value on the command line.
Defaulted parameters exist to prevent a long series of prompts where reasonable values can be
defined, and hence save time. (However, there is a way of being prompted for all parameters of
a command should you wish.)

NDFs may contain three standard arrays—the data array, the data variance and quality. STATS
can calculate statistics for any of these. By default, STATS uses the data array, as indicated here.

Next we wish to smooth our data. GAUSMOOTH performs a Gaussian smooth of neighbouring
pixels.

% gausmooth

Again we are prompted with the same suggested default, since we have not created any new
NDFs within STATS. Say we don’t want to smooth that NDF, but the original one. We just enter
the name of the NDF at the prompt. Notice that we don’t need the @ prefix, since Parameter IN
expects a file. (One occasion where you would need it is when the filename is a number, e.g. if
your NDF was called 234 you must enter @234, otherwise the parameter system will think you
are giving the integer 234. Yes . . . I know . . . the parameter system is trying to be too clever.)

IN - Input NDF /@test/ > $KAPPA_DIR/comwest

SUN/95.45 —Tutorials 6

The description of Parameter FWHM is too brief for us to select a value. So we obtain some
help on this parameter, and then GAUSMOOTH reprompts for a value. The smoothed NDF is
written to the NDF called testsm in the current directory.

FWHM - Gaussian PSF full-width at half-maximum /5/ > ?

GAUSMOOTH

Parameters

FWHM

FWHM() = _REAL (Read)
This specifies whether a circular or elliptical Gaussian
point-spread function is used in smoothing a two-dimensional
image. If one value is given it is the full-width at
half-maximum of a one-dimensional or circular Gaussian PSF.
(Indeed only one value is permitted for a one-dimensional
array.) If two values are supplied, this parameter becomes the
full-width at half-maximum of the major and minor axes of an
elliptical Gaussian PSF. Values between 0.1 and 10000.0 pixels
should be given. Note that unless a non-default value is
specified for the BOX parameter, the time taken to perform the
smoothing will increase in approximate proportion to the
value(s) of FWHM. The suggested default is the current value.
will increase in approximate proportion to the value of FWHM.

FWHM - Gaussian PSF full-width at half-maximum /5/ >
OUT - Output NDF > testsm

Next we want to look at the result of our image processing. The first thing to do is to select
an graphics device. The xwindows device becomes the current graphics device and remains so
until the next GDSET command. (You may need to enter the xdisplay command (SUN/129) to
redirect the output from the host computer to the screen in front you.)

% gdset xwindows

Now we actually display it on the screen. Some applications have many parameters, and it
would be impractical to have to specify all those preceding the ones we wanted to alter. The
solution is to specify the parameter by keyword. Here we have requested that the scaling of the
data values to colour indices within the graphics device uses the current percentile range. Note
that you may abbreviate the options of a menu, such as offered by Parameter MODE, to any
unambiguous string.

% display mode=pe accept
Data will be scaled from 78.38278 to 235.3536.

If you have just created the window, the image will not look much like the comet, because the
existing colour table is poor. If we replace the table with a grey-scale ramp from white to black,

http://www.starlink.ac.uk/cgi-bin/htxserver/sun129.htx/sun129.html?xref_

7 SUN/95.45 —Tutorials

% lutneg

what happens depends on your workstation hardware and settings. If your graphics system is
set to 256 colours (technically, an 8-bit pseudo-colour visual), then the effects of the above LUTNEG
command will be immediately visible, and you will see a blurred image of the ubiquitous Comet
West on the screen. If, on the other hand, your graphics system is set to 16-bit or 24-bit graphics,
then the effects of the LUTNEG command will only become visible when you next display an
image. In this case, re-invoking the above DISPLAY command will make the image appear
correctly with the requested grey-scale colour table.

The ACCEPT keyword is a very useful feature. It tells an application to accept all the suggested
defaults. In this case DISPLAY uses the current NDF and scales between the current percentile
limits—10 and 90. The keyword can be abbreviated to double backslash from the shell. Aside:
the parameter system actually requires a single backslash. From the shell, however, backslash is
a metacharacter, and so must be ‘escaped’ to treat the character literally. One way is to place a \
before each metacharacter. You can escape a series of characters by placing them inside single
quotes ’ ’. Other metacharacters to watch out for when using KAPPA include []()\"*?$.

Next we want to make the image colourful. There are a number of predefined lookup tables, or
you may create and modify your own. Here we’ve given the X-window a ‘warm’ brown-yellow
colour table1:

% lutwarm

If you are not happy with this colour table, you may want to explore a wider range of colour
tables using the LUTEDIT command which provides a complete graphical user interface for
manipulating and viewing colour tables.

% lutedit image=$KAPPA_DIR/comwest

2.2 From ICL

ICL is a command language designed for use with Starlink applications, such as KAPPA. It is
now of some antiquity but is still in use. The main advantages for the KAPPA user are that shell
metacharacters like []()\" need not be escaped; command names may be abbreviated; far fewer
executables need be loaded, and therefore it is slightly faster than using the shell when you want
to invoke more than a few commands on a busy system; there is a wide selection of intrinsic
functions and floating-point arithmetic; and results may be passed between applications via ICL
variables. However, in these two demonstrations the command languages are interchangeable
apart from the accept backslash.

Let’s start the second example.

% icl

1Again, you will need to re-display the image to see the effects of this command unless your graphics system is
set to 256 colours.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Tutorials 8

This starts ICL. System, local and user-defined ICLlogin files are invoked. Here there is only a
system login procedure which sets up help on Starlink packages, and commands for setting up
definitions for those packages. One of those commands is kappa; it is analogous to the kappa
command from the shell. We enter it after receiving the ICL prompt.

You should see something like the following.

ICL (UNIX) Version 3.1-9 14/02/2000

Loading installed package definitions...

- Type HELP package_name for help on specific Starlink packages
- or HELP PACKAGES for a list of all Starlink packages
- Type HELP [command] for help on ICL and its commands

ICL> kappa

KAPPA commands are now available (Version 1.0).

Type ‘help kappa’ or ‘kaphelp’ for help on KAPPA commands.

Now we run an application, ADD, that adds the pixels in $KAPPA_DIR/comwest.sdf to those in
$KAPPA_DIR/ccdframec.sdf. Although these images have different dimensions, the intersection
is made.

ICL> add $KAPPA_DIR/comwest $KAPPA_DIR/ccdframec

After the first KAPPA command is issued you’ll see an arcane message like this.

Loading /star/bin/kappa/kappa_mon into kappa_mon11601 (attached)

It just tells you that the KAPPA monolith is being loaded. You’ll see similar messages for each of
the three monoliths when they are first wanted.

Since we did not give the name of the destination NDF that will hold the co-added NDFs, ADD
prompts for it. Notice that literal parameters are case insensitive.

OUT - Output NDF / / > demo1

ICL> ndftrace \

NDF structure /home/soft2/mjc/alpha_OSF1/kappa/package/demo1:
Title: Comet West, low resolution

Shape:
No. of dimensions: 2
Dimension size(s): 256 x 256
Pixel bounds : 1:256, 1:256
Total pixels : 65536

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf

9 SUN/95.45 —Tutorials

Data Component:
Type : _REAL
Storage form: PRIMITIVE
Bad pixels may be present

This shows that the demo1 NDF has the same dimensions as the smaller of the two NDFs.

We were going to display the image on the current graphics device, but then changed our minds.
A !! in response to a prompt aborts a task.

ICL> display demo1
MODE - Method to define the scaling limits /’PERCENTILES’/ > !!
!! SUBPAR: Abort (!!) response to prompt for Parameter MODE
OBEYW unexpected status returned from task "kapview_mon11601", action
- "DISPLAY"
ADAMERR %PAR, Parameter request aborted

KAPPA uses the graphics database, which records the positions and extents of graphs and
images, collectively called pictures.

ICL> picgrid 2 1

This instruction divides the display surface into two equally sized pictures, side by side. They
are labelled 1 and 2 in the database. Picture 1 is the current picture, in which future pictures are
drawn, unless we select a new current picture.

Thus in Picture 1 we display an image of Comet West around which we draw annotated axes.
The backslash causes the current scaling method to be used.

ICL> display comwest axes \
!! Error accessing file ’/home/scratch/mjc/comwest.sdf’ -
! No such file or directory
! HDS_OPEN: Error opening an HDS container file.
! NDF_ASSOC: Unable to associate an NDF structure with the ’%IN’ parameter.

DISPLAY could not find the a comwest.sdf in the current directory. So there is an error message
and we are prompted. This time we remember to add the environment variable.

IN - NDF to be displayed /@comwest_bas/ > $KAPPA_DIR/comwest
Data will be scaled from 67.46276 to 226.5568.

An image of Comet West should be visible to the left of the screen.

SHADOW creates an image that appears like a bas-relief. We’ve called the resulting NDF
comwest_bas. The backslash causes the current NDF to be the input NDF for SHADOW.

ICL> shadow out=comwest_bas \

We select the right-hand picture created earlier.

SUN/95.45 —Tutorials 10

ICL> picsel 2

As above we display the current NDF, the bas-relief image, with annotated axes on the right
of the raw comet image (we do not need to request the axes explicitly this time, since the axes
parameter retains the value used in the previous invocation until changed).

ICL> display border \
Data will be scaled from -4.721756 to 5.697861.

The relief looks best with a grey-scale colour table. Note that this does not affect the colour of
the border. LUTGREY is a procedure which calls a more-general application. Since it is the first
procedure we’ve invoked there is a short pause while all the KAPPA procedures are compiled
and loaded.

ICL> lutgrey
Loading procedure file $KAPPA_DIR/kappa_proc.icl

Next we decide to make a hard copy of the bas-relief image. DISPLAY does this and can add a
key of grey levels and their corresponding values. The chosen device is ps_l; this overrides the
xwindows device for the duration of DISPLAY. If this name isn’t recognised at your site, issue
the GDNAMES command for a list of your local device names. Select the landscape PostScript
device. We scale between wider limits to reduce the glare.

ICL> display key=yes device="/PS"
IN - NDF to be displayed /@comwest_bas/ >
MODE - Method to define the scaling limits /’SCALE’/ >
LOW - Low value for display /187.5625/ > 11
HIGH - High value for display /-183.453125/ > -8.33

DISPLAY does not send your plot to the printer, since this is hardware and node dependent.
Therefore, you must issue a shell command from ICL to perform this action. That’s not difficult—
just insert a ! before the UNIX command, and in most cases just issue the command as if you
were in the shell, like we do below.

ICL> !lpr -P1 pgplot.ps

Shell aliases may also be used, so if ri equates to rm -i, we could remove any unwanted HDS
files. If you don’t have this symbol, as is likely, then you will receive the appropriate error
message from ICL.

ICL> ri *.sdf

That’s the end of the second demonstration. Of course, these introductions have only scratched
the surface of what KAPPA can do for you. You should look at Appendix A to search for the
desired function, and then find more details in Appendix C.

If you get stuck or something untoward happens, there is a Hints help topic.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

11 SUN/95.45 —Getting started

3 Getting started

3.1 Running KAPPA

KAPPA runs from the C-shell and variants, and also from the interactive command language—ICL.
Both run monolithic programmes for efficiency. Both have their advantages and disadvantages.
Of the latter, the shell forces you to escape certain characters, and ICL does not have a foreach
to loop through a wildcarded list of NDFs. You may simply prefer the familiar shell to ICL,
though UNIX commands, including editing, are accessible from ICL via a ! prefix. This is not
the soapbox to expound the intrinsic merits of the two command languages, but where there are
differences affecting KAPPA, they’ll be indicated. The choice is yours.

To run KAPPA from the shell just enter the following command.

% kappa

This executes a procedure setting up aliases for KAPPA’s command names and to make help
information available. Then you’ll be able to mix KAPPA commands with the familiar shell ones.

If the kappa command is not recognised, you probably haven’t enabled the Starlink software. In
your .cshrc or .tcshrc file, you insert the line

source /star/etc/cshrc

and in .login you include the equivalent line

source /star/etc/login

At non-Starlink sites the /star path may be different.

To run KAPPA from ICL you have to start up the command language if you are not already using
it. This requires just one extra command, namely

% icl

You will see any messages produced by system and user procedures, followed by the ICL>
prompt. Again there is a procedure for making the commands known to the command language,
and not unexpectedly, it too is

ICL> kappa

Then you are ready to go. Not too painful, was it? In either case you’ll see message from KAPPA

telling you which version is ready for use.

So what do you get for your trouble? Appendix ?? lists in alphabetical order all the commands
and their functions, and Appendix A is a classified list of the same commands. Many examples
are given in subsequent sections.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf

SUN/95.45 —Getting started 12

3.2 Issuing Commands

To run an application you then can just give its name—you will be prompted for any required
parameters. Alternatively, you may enter parameter values on the command line specified by
position or by keyword. More on this in Section 4.

Commands are interpreted in a case-independent way from ICL, but from the shell they must be
given in lowercase. In ICL, commands may also be abbreviated provided they are unambiguous
strings with at least four characters. Commands shorter than five characters, therefore, cannot
be shortened. So

ICL> CREF
ICL> crefr
ICL> CreFra
ICL> CREFRAM

would all run CREFRAME. Whereas

ICL> FITS
ICL> FITSI

would be ambiguous, since there are several commands beginning FITS, and two starting FITSI,
namely FITSIN and FITSIMP.

Note if other packages are active there is the small possibility of a command-name clash. Issuing
such a command will run that command in the package last activated. You can ensure running
the KAPPA command by inserting a kap_ prefix before the command name. For example,

% kap_rotate

will execute KAPPA’s ROTATE application. There may also be a clash with UNIX commands
and shell built-in functions, though there are now far fewer conflicts than in earlier versions
of KAPPA, with only look being ambiguous. There is also a glob in the C-shell which might
confuse you should you forget that GLOBALS cannot be abbreviated from the shell.

Since the KAPPA commands are the same in both the shell and ICL, the % and ICL>
prompts in the examples and description below are interchangeable unless noted
otherwise.

3.3 Obtaining Help

3.3.1 Hypertext Help

A modified version of this document exists in hypertext form. One way to access it is to use the
showme command

% showme sun95

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun188.htx/sun188.html?xref_displaying_parts_of_documents

13 SUN/95.45 —Getting started

and a Web browser will appear, presenting the index to the hypertext form of this document.
The hypertext permits easy location of referenced documents and applications. It also includes
colour illustrations.

The findme command lets you search the Starlink documents by keywords. For instance,

% findme masking

searches the document looking for the word ‘masking’ in them. The level of searching depends
on whether a match is found. The search starts with the document title, the page (section) titles,
and finally the document text. The deeper the search, the longer it will take. There are switches
provided to limit the level of the search. The search string may include sed or grep regular
expressions. See SUN/188 or enter

% findme findme
% findme showme

to learn more about the findme and showme commands.

3.3.2 Entering the Help System

To access the KAPPA help use KAPHELP.

ICL> kaphelp

The system responds by introducing KAPPA’s help library, followed by a long list of topics for
which help is available, followed by the prompt Topic?. These topics are mostly the commands
for running applications, but they also include global information on matters such as parameters,
data structures and selecting a graphics device.

From ICL you can issue other commands for obtaining help about KAPPA.

ICL> help kappa
ICL> help packages

The former is nearly equivalent to entering kaphelp. However, it is less easy to use as it lacks
many of the navigational aids of KAPHELP. The latter gives a summary of Starlink packages
available from ICL. If you select the KAPPA subtopic, you’ll get a precis of the package’s facilities.
(This is part of an index of Starlink packages.)

If you have commenced running an application you can still access the help library whenever
you are prompted for a parameter. See Section 4.7 for details.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun188.htx/sun188.html?xref_performing_keyword_searches
http://www.starlink.ac.uk/cgi-bin/htxserver/sun188.htx/sun188.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Getting started 14

3.3.3 Navigating Help Hierarchies

The help information is arranged hierarchically. The help system enables you to navigate the
library by prompting when it has either presented a screen’s worth of text or has completed
displaying the previously requested help. The information displayed by the help system on a
particular topic includes a description of the topic and a list of subtopics that further describe
the topic.

You can select a new topic by entering its name or an unambiguous abbreviation. If you press
the carriage-return key (<CR>) you will either continue reading a topic where there is further text
to show, or move up one level in the hierarchy. Entering a CTRL/D (pressing D whilst holding
the CTRL key) terminates the help session. See the description of KAPHELP for a full list of
the options available at prompts inside the help system, and the rules for wildcarding and
abbreviating topics.

3.3.4 Help on KAPPA commands

Help on an individual KAPPA application is simply achieved by entering kaphelp followed by
the command name, for example

% kaphelp centroid

will give the description and usage of the CENTROID command. There are subtopics which con-
tain details of the parameters, including defaults, and valid ranges; examples; notes expanding
on the description; implementation status; and occasionally timing. For example,

ICL> kaphelp hist param ndf

gives details of Parameter NDF in all applications prefixed by HIST.

(From ICL you can also invoke its help system, thus

ICL> help centroid

is similar to kaphelp centroid, though the ICL system has drawbacks, and you are recom-
mended to run KAPHELP.)

The instruction

ICL> kaphelp classified

displays a list of subject areas as subtopics. Each subtopic lists and gives the function of each
KAPPA application in that classification. There is also an alphabetic list which can be obtained
directly via the command

ICL> kaphelp summary

15 SUN/95.45 —Getting started

3.4 Changing the Current Directory in ICL

You should change default directories in ICL using its DEFAULT command, and not cd. Thus

ICL> default /home/scratch/dro

makes /home/scratch/dro the default directory for the ICL session, and for existing and future
subprocesses, including application packages.

3.5 Exiting an Application

In normal circumstances when you’ve finished using KAPPAnothing need be done from the
shell, but to end an ICL session, enter the EXIT command to return to the shell.

What if you’ve done something wrong, like entering the wrong value for a parameter? If there
are further prompts you can enter the abort code !! to exit the application. This is recommended
even from the shell because certain files like your NDFs may become corrupted if you use a
crude CTRL/C. If, however, processing of the data has begun in the application, it is probably
best to let the task complete, unless it is a long job like image deconvolution. If you really must
abort, CTRL/C should be hit. From ICL this ought to return you to a prompt, but the processing
will continue. Then you can stop the running process by ‘killing’ it. First find the task name

ICL> tasks
TASKNAME Process Id

ndfpack_mon16528 15186

and then kill it.

ICL> kill ndfpack_mon16528

This removes a the NDFPACK monolith. NDFPACK will be loaded again once you enter one its
commands. If pressing CTRL/C several times fails to return you to an ICL prompt then it’s time
for the heavy artillery—you may have to kill your window. Once back to the shell enter icl to
return to ICL, and then kill the process as described above.

If you have interrupted a task, it may be necessary to delete the parameter file (Section 4.2) and
the graphics database (Section 11.4).

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Parameters 16

4 Parameters

KAPPA is a command-driven package. Commands have parameters by which you can qualify
their behaviour. Parameters are obtained in response to prompts or supplied on a command
line.

For convenience, the main aspects of the parameter system as seen by a user of KAPPA are
described below, but note that most of what follows is applicable to any Starlink application.

4.1 Summary

For your convenience, here is a summary of how to use parameters. If you want more informa-
tion, go to the appropriate section.

Command-line values
On the command line you can supply values by keyword or by position. See Section 4.10
for more details including abbreviated keywords.

ACCEPT, PROMPT, RESET command-line special keywords
ACCEPT accepts all the suggested defaults that would otherwise be prompted. PROMPT
prompts for all the parameters not given on the command line, and RESET resets all the
suggested defaults to their initial values. You can find more details and examples in
Section 4.11.

NAME - Prompt string /Suggested default/ >
This is a schematic of a prompt. NAME is the parameter’s name. You normally respond
with the value for the parameter, but there are special responses available (see below). If
you just hit the return key, the suggested default becomes the parameter value. Many
parameters are defaulted without prompting. See Section 4.2 and Section 4.3 for more
details.

Here is a list of some example parameter values to illustrate the possible ways you can respond
to a prompt. Where there are command-line differences, they are noted.

5409.12 This is a scalar. Numerical values can be integer, real, or double precision.

12,34,56,78 This is a vector. They must be enclosed in [] if the array is supplied on the
command line, or for character arrays.

[[11,21,31],[12,22,32]] This is a 3×2 array. Arrays of dimension > 2 should appear in
nested brackets. See Section 4.5 for more about array values.

T

no This is a TRUE value followed by a FALSE values for logical parameters. Acceptable values
are TRUE, FALSE, YES, NO, T, F, Y, N and their lowercase equivalents. On the command line,
the parameter name as a keyword means TRUE. If the name is prefixed with NO, the value
is set to FALSE.

17 SUN/95.45 —Parameters

a string

"a string" This is a string. Strings need not be quoted at prompts. Quotes are required on the
command line if the string includes spaces or wildcards, or is a comma-separated array of
strings. There is more in Section 4.4. Some parameters offer a selection from a menu to
which you give an unambiguous abbreviation to select an option. Other parameters can
be numerical or a string. (See Section 4.8 for more information.)

filename

@123 This enters a filename (or tape drive). You give a text filename verbatim, and NDFs
without the file extension. Foreign formats will usually have the file extension. Should the
filename be a numerical value, it must be preceded by an @. There is more in Section 4.4.

min

max This selects the minimum- or maximum-allowed value, but not all parameters have a
defined range of permitted values. See Section 4.12.

! Enters the null value. This has a variety of special meanings; which one will depend on the
particular parameter. For example, null might indicate that an output file is not to be
created, or a loop is to be ended. There are more examples in Section 4.6.

!! This aborts the application cleanly.

?

?? A single question mark presents the online help for the parameter, and then reprompts. A
double question mark leaves you in the help system to explore other help information. See
Section 4.7 for examples. These special values are not supported from the command line.

\ This accepts the suggested default for the prompted parameter and the respective suggested
defaults for all subsequent parameters for which prompting would otherwise occur. On the
command line \ is an abbreviation of the ACCEPT keyword, and it applies to all parameters
that would otherwise be prompted. Note that from the shell you write \\, as \ is a shell
metacharacter.

4.2 Defaults

Command-line values are used mostly for those parameters that are normally defaulted by the
application. Defaulted parameters enable applications to have many options, say for controlling
the appearance of some graphical output, without making routine operations tedious because
of a large number of prompts. The values of normally defaulted parameters are given in
Appendix C. You can also find them by obtaining online help on a specific parameter. They are
enclosed in square brackets at the end of the parameter description.

ICL> kaphelp median param *

gives details of all parameters in application MEDIAN. Other packages have similar help
commands. If you want to override one of these defaults, then you must specify the parameter’s
value on the command line.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf

SUN/95.45 —Parameters 18

When you are prompted you will usually be given a suggested default value in / / delimiters.
You can choose to accept the default by pressing carriage return. For example, 64 is the suggested
value below.

XDIM - x dimension of output array /64/ >

Alternatively, enter a different value

XDIM - x dimension of output array /64/ > 109

to override the default. Some defaults begin with an @.

IN - Input image /@starfield/ >

These are associated with files (text and HDS) and devices (graphics and tape). If you want to
override the default given, you do not have to prefix your value with an @, e.g.

DEVICE - Name of display device /@xwindows/ > x2w

There are rare cases when the syntax is ambiguous, and it is then that you need to include the @.
Section 4.4 describes when the @ is needed.

From both ICL and the shell the default value can be edited to save typing by first pressing the
<TAB> key. The editor behaves like the shell command-line editor.

Defaults may change as data are processed. Often the current (last) value of the parameter will
be substituted, or a dynamic value is suggested depending on the values of other parameters.
Here is an example comprising a loop within an application.

NDF - NDF to examine /@horsehead >
CENTRE - Position at the centre of the listing /’64 64’/ > 100 120

. . . .

. . . .

. . . .
CENTRE - Position at the centre of the listing /’100 120’/ >
SIZE - The dimensions (in pixels) of the area to be listed /7/ >

. . . .

. . . .

. . . .

and so on. Notice that the current values of the centres are the suggested values at the second
prompt.

Current values of parameters are stored in a parameter file, and so they persist between ses-
sions. For tasks run from the shell, this is an HDS file $ADAM_USER/<application>.sdf, where
<application> is the name of the application. (If the environment variable ADAM_USER is not
defined the parameter file is situated in $HOME/adam).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

19 SUN/95.45 —Parameters

Unfortunately, tasks invoked from ICL use a monolith parameter file, which contains the indi-
vidual application parameter files for the members. So for example, KAPPA has kappa_mon.sdf,
kapview_mon.sdf, and ndfpack_mon.sdf stored in the same directory as the individual files.
This duality means that there are two independent sets of current values for each task depending
on where you ran it from.

The parameter file should not be deleted unless the parameters values are to be completely reset,
or the file has been corrupted in some way. If you suspect the latter case, say after interrupting a
task(Section 3.5), run HDSTRACE (SUN/102) on the file to check its integrity.

4.3 Globals

KAPPA stores a number of global parameters that are used as defaults to reduce typing in
response to prompts. Global means that they are shared between applications. The most
common is the last dataset (usually NDF) written or accessed. In the example above, this was
horsehead.sdf. If you just press <CR> in response to the prompt, the global value is unchanged.
Only when you modify the parameter and the application completes without error is the global
value updated.

All global parameters are stored in the HDS file $ADAM_USER/GLOBAL.sdf, or $HOME/adam/GLOBAL.sdf
if the ADAM_USER environment variable is not defined. The full list is given below.

GLOBAL.DATA_ARRAY — Last NDF or foreign data file accessed or written.

GLOBAL.GRAPHICS_DEVICE — Current graphics workstation.

GLOBAL.INTERACTIONMODE — Current interaction mode.

GLOBAL.LUT — Last lookup table file accessed or written.

GLOBAL.TRANSFORM — Current transformation structure.

KAPPA uses the last DATA_ARRAY written or accessed as the suggested default value for the
next prompt for an NDF structure or foreign data format. The same applies to the current lookup
table and transformation structure. However, the remaining, including the graphics global
parameter are defaulted—you will not be prompted. Details of how to control these parameters
are given in the relevant sections.

The values of all global parameters may be inspected with the GLOBALS task. You can make
them undefined using NOGLOBALS.

ICL> globals
The current data file : @/home/dro/jkt/ccdpic
The current graphics device is : @ps_l
The current lookup table file is : @$KAPPA_DIR/spectrum_lut
The current transformation is : @/home/dro/deform/warpit
The current interaction mode is : <undefined>
The current message-report level is : NORMAL

In the above example no interaction mode is defined. The next time you call an application that
uses the interaction mode you would be prompted for a value. (Under normal circumstances
you will not have to enter the @ prefix yourself.)

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf

SUN/95.45 —Parameters 20

Note that the message-reporting level is not a global parameter, but is defined by the MSG_FILTER
environment variable. It controls the verbosity of informational messages. Since it applies to all
tasks that report such messages, it is convenient to allow GLOBALS to show its value. Further
details are in Section 5 for details. Since it is not a parameter as such, the message-reporting
level is not unset by NOGLOBALS.

4.4 Strings

Notice that the single or double quotes around strings given in response to prompts for a
character parameter can be omitted. However, on the command line these delimiters are needed
if the string contains spaces, otherwise the second and subsequent words could be treated as
separate positional parameters.

From the shell the quotes must be escaped. For example,

% settitle myndf \"A new title\"

would assign the title "A new title" to the NDF called myndf.

To indicate that the parameter should come from a data-structure object, prefix the name with
an @ to tell the parameter system that it is a file name, and not a literal value.

TITLE - New NDF title /’ ’/ @$ADAM_USER/galaxy.mytitle

In this example TITLE has the value of object MYTITLE in galaxy.sdf. If the @ were omitted
TITLE would be "$ADAM_USER/galaxy.mytitle". You will need the @ prefix if your file name
is a number. Note that the file extension should not be included when giving the name of an
HDS data file, including NDFs . Otherwise HDS will look for an object called SDF nested within
the file.

Responses to prompts are case insensitive for comparison purposes. Strings for character
components in NDFs, plot captions and labels are treated literally.

4.5 Arrays

If a parameter requires an array of values, the series should be in brackets separated by commas
or spaces. For example,

PERCENTILES - List of percentiles > [25,95.5,75]

would input three values: 25, 95.5, and 75 into the real parameter PERCENTILES. If the applica-
tion is expecting an exact number of values you will be reprompted, either for all the values
if you give too many, or the remaining values if you supply too few. There is one exception
where you can omit the brackets—a fairly common one—and that is in response to a prompt for
a one-dimensional numeric array as above.

From the shell you must escape the brackets.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

21 SUN/95.45 —Parameters

% display key=yes mode=pe percentiles=\[95,5\]
% display key=yes mode=pe percentiles=’[95,5]’
% display key=yes mode=pe percentiles="[95,5]"

All the above do this. Single quotes have the advantage that you can protect all the metacharac-
ters that lie between the quotes, so you don’t need to escape each metacharacter.

Arrays of parameter values should appear in nested brackets. For example,

CVALUE - Component values > [[2,3],[5,4],[7,1]]

supplies the values for a 2×3-element parameter array, where element (1,3) has value 7.

4.6 Abort and Null

Responding to a prompt with a null value ! will not necessarily cause the application to abort,
but it can force a suitable default to be used, where this is the most-sensible action. A further
use is when an optional file may be created, such as a lookup table; a ! entered in response to
the prompt for the filename means that no file is to be output. Many tasks use null as a default
for optional files. In some applications, a null ends an interactive loop.

Responding to a prompt with !! will abort the application. This process includes the various
tidying operations such as the unmapping and closing of files. Any other method of stopping
an application prematurely can leave files mapped or corrupted.

4.7 Help

To get help about a parameter enter ?. Usually, this will give access to the help-library informa-
tion for that parameter, for example,

BOX - Smoothing box size /3,3/ > ?

BLOCK

Parameters

BOX() = _INTEGER (Read)
The sizes (in pixels) of the rectangular box to be applied to
smooth the data. These should be given in axis order. A value
set to 1 indicates no smoothing along that axis. Thus, for
example, BOX=[3,3,1] for a three-dimensional NDF would apply a
3x3-pixel filter to all its planes independently.

If fewer values are supplied than the number of dimensions of
the NDF, then the final value will be duplicated for the
missing dimensions.

The values given will be rounded up to positive odd integers, if
necessary, to retain symmetry.

BOX - Smoothing box size /3,3/ >

SUN/95.45 —Parameters 22

and then immediately reprompt you for the parameter. There are occasions when information
about the parameter is insufficient; you may require to examine the examples or the description
of related parameters. This can be achieved by entering ?? to the prompt. You can then delve
anywhere in the help information. When you exit the help system you’re reprompted for the
parameter.

4.8 Menus

Some parameters offer menus from which you select an option. You do not have to enter the full
option string, but merely a string that selects a choice unambiguously. In many cases this can be
as little as a single character. Here is an example,

MODE - Method for selecting contour heights /’Free’/ > ?
The method used to select the contour levels. The options are
described below.

"Area" - The contours enclose areas of the array for
which the equivalent radius increases by equal
increments. You specify the number of levels.

"Automatic" - The contour levels are equally spaced between
the maximum and minimum pixel values in the
array. You supply the number of contour
levels.

"Free" - You define a series of contour values
explicitly.

"Linear" - You define the number of contours, the start
contour level and linear step between contours.

"Magnitude" - You define the number of contours, the start
contour level and step between contours. The
step size is in magnitudes so the nth contour
is dex(-0.4*(n-1)*step) times the start contour
level.

where an F would be sufficient to select the "Free" option, but at least two characters would be
needed if you wanted "Area" or "Automatic".

Some parameters permit a mixture—a choice from a menu, or a numerical value within a range.
The options are described in full in the help system and Appendix C.

4.9 Environment Variables

Environment variables operate both on the command line and prompts, and both from the shell
and ICL. Thus if IMAGEDIR is an environment variable pointing to a directory containing the
NDF called ngc1365, you could access it at a prompt as shown below.

IN - Input image /@starfield/ > $IMAGEDIR/ngc1365

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

23 SUN/95.45 —Parameters

4.10 Specifying Parameter Values on Command Lines

Parameters may be assigned values on the command line. This is useful for running tasks in
batch mode and in procedures, and for specifying the values of parameters that would otherwise
be defaulted. A command-line parameter will prevent prompting for that parameter unless there
is an error with the given value, say giving an alphabetic character string where a floating-point
value is demanded.

There are two ways in which parameter values may be given on the command line: by keyword
and by position. The two forms may be mixed with care. The parser looks for positional
parameters then keywords, so you can have some positional values followed by keyword values.
See some of the examples presented in Appendix C.

4.10.1 Keyword

Keywords may appear in any order. Here is an example of command-line defaults using
keywords.

ICL> picdef current fraction=0.4

FRACTION is a real parameter. CURRENT is a logical parameter; by giving just its name it is
assigned the value TRUE. CURRENT=T would have the same effect. To obtain a FALSE value for a
logical parameter you add a NO prefix to keyword, for example,

icl> picdef nocurrent

would be equivalent to the following.

icl> picdef current=false

4.10.2 Abbreviations

There is an experimental system that allows you to abbreviate parameter keywords to the
minimum unambiguous length. To use it, you must first create an environment variable called
ADAM_ABBRV with an arbitrary value.

So for example

% setenv ADAM_ABBRV true
% display mo=pe pe=\[5,95\] ba=blue

would display an NDF between the 5 and 95 percentiles, and marking bad pixels in blue.

If you give an ambiguous keyword, the parameter system will present the list of possible
keywords and ask you to select the one you intended.

SUN/95.45 —Parameters 24

4.10.3 Position

Alternatively, you can specify command-line values by position. Here is an example.

% thresh raw clipped 0 255

This applies thresholds to the NDF called raw to form a new NDF called clipped. The values
between 0 and 255 are unchanged. Note that trailing parameters may be omitted—NEWLO and
NEWHI in the above example—but intermediate ones may not. The position of a parameter can
be found in the Usage heading in Appendix C or the help for the application.

4.10.4 Keyword versus Positional Parameters

For tasks with a few parameters, using position is quick and convenient. However, in complex
applications with many parameters it would be tedious not only to enter all the intermediate
values between the ones you want to define, but also to remember them all. Another con-
sideration is that some parameters do not have defined positions because they are normally
defaulted. Keywords may also be abbreviated(Section 4.10.2). Thus the keyword technique
is recommended for most parameters, especially in scripts and procedures. Unabbreviated
keywords insulate scripts against new keywords and positional changes that are sometimes
needed.

See Section 21 if you want to learn how further to abbreviate command strings to reduce typing
for manual operation.

4.10.5 Special Behaviour

Sometimes specifying a parameter on the command line induces different behaviour, usually to
inhibit a loop for procedures, or to eliminate unnecessary processing. For instance,

ICL> centroid blob init="51,42" mode=i

will determine the centroid near the point (51,42) in the NDF called blob, and then it exits,
whereas without the INIT value you would be reprompted for a further initial position; and

% display galaxy mode=sc high=3000 low=1000

prevents the calculation of the extreme values of the NDF called galaxy that are normally given
as suggested defaults for parameters HIGH and LOW, because HIGH and LOW are already
known.

4.11 Special Keywords: ACCEPT, PROMPT, RESET

Another way in which prompts and default values can be controlled is by use of the keywords
ACCEPT, PROMPT and RESET.

The RESET keyword causes the suggested default value of all parameters (apart from those
already specified before it on the command line) to be set to the original values specified by the
application or its interface file. In other words global and current values are ignored.

25 SUN/95.45 —Parameters

The PROMPT keyword forces a prompt to appear for every application parameter. This can
be useful if you cannot remember the name of a defaulted parameter or there would be too
much to type on the command line. However, it may prove tedious for certain applications that
have tens of parameters, most of which you normally never see. You can abort if it becomes too
boring.

The ACCEPT keyword forces the parameter system to accept the suggested default values either
for every application parameter if the keyword appears on the command line, or all subsequent
parameters if it is supplied to a prompt. In other words, those parameters that would normally
be prompted with a value between / / delimiters take the value between those delimiters, e.g.
XDIM we saw in Section 4.2 would take the value 64. Parameters that are normally defaulted
behave as usual. The ACCEPT keyword needs to be used with care in scripts because not every
parameter has a default, and therefore must be given on the command line for the application to
work properly. For example, CREFRAME must have a value specified for parameter OUT, the
name of the output NDF. If we run the application like this:

ICL> creframe accept

it would fail in the sense that it would still have to prompt for a value—it does not know where
to write the output NDF. However, if we run CREFRAME like this:

ICL> creframe out=stars accept

it would generate an output image using default values for all the parameters except OUT, and
write the output to file stars.sdf. Another point to be wary of is that some applications have
loops, e.g. LOOK, LUTABLE, and if you use the ACCEPT keyword it will only operate the first
time the application gets a parameter value.

Sometimes the keyword ACCEPT can be used without any parameter value specifications on
the command line. For example, we could follow the above command by the command:

ICL> look accept

and the central 7×7 array of the image created by CREFRAME would be displayed on your
terminal without any parameter values being prompted. The symbol \ has the same effect as
ACCEPT when used on the command line or at prompts, thus:

ICL> look \

would have the same effect as the previous example—and is quicker to type. In command lines
from the shell, the backslash is a metacharacter and has to be escaped. The easiest way to do
that is to double the backslash.

% look \\

SUN/95.45 —Parameters 26

How do you find out which parameters have suggested defaults, as opposed to those that are
normally defaulted? Well, a good rule of thumb is that parameters for output files (images,
lookup tables and text) will not have a default, but the remainder will. There are some exceptions,
such as where null is the default for optional files. Consulting the description of the parameters
should give the suggested defaults, where appropriate. If a parameter is given a suggested
default it will have a line beginning ppath or a default line. If you want to use ACCEPT for
an automatic procedure or batch job you could do some tests to find which parameters get
prompted and then put them on the command line in your procedure.

The RESET and ACCEPT keywords will work in tandem. So for instance,

ICL> look reset accept

will reset the suggested defaults of LOOK to their original, preset values, and accept these as the
parameter values.

These special keywords may be abbreviated to no fewer than two characters, if you have enabled
keyword-abbreviation (Section 4.10.2).

4.12 MIN and MAX parameter values

Many parameters have well-defined ranges of allowed values. In some cases it is useful to
assign the maximum or minimum value to the parameter. Rather than give some numerical
value, you can instead supply MIN to select the minimum-allowed value, and MAX to select the
maximum. This applies both on the command line and at prompts. In the example,

% block wlim=max

Parameter WLIM takes its maximum (1.0) meaning that if any of the input pixels in the smooth-
ing box is bad, the corresponding output pixel is set bad.

Consult the reference section or the online help to see if a given parameter has such a range. If
you attempt to use MIN and MAX where there is no range defined, you’ll see an error message like

!! SUBPAR_MNMX: Parameter FONT - no upper limit set

and you’ll be invited to give another value.

4.13 Specifying Groups of Objects

Some parameters are describing in the reference documentation as being associated with a group
of objects. For instance, some parameters may require a group of strings, others may require a
group of numerical values, or data files. No matter what the nature of the object, groups are
specified using a syntax called a group expression. The GRP library is used to interpret these
group expressions, and the GRP documentation (SUN/150), should be consulted for full details.
A summary is given here.

A group expression can identify the members of the group in any of the following ways:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun150.htx/sun150.html?xref_

27 SUN/95.45 —Parameters

• As a comma-separated list (e.g. "12.1, 23.2, 1.3" or "HH1_B1S1,HH2_B1S2").

• By reading them from a text file (see “Indirection”).

• By modifying an existing group of objects using editing specified within the group expres-
sion (see “Modification”).

A typical group expression will often include characters that are of significance to the shell. If the
group expression is supplied on the command line it may be necessary to place quotes around
the string to prevent the shell from removing these characters. Two lots of quotes are usually
required, as in the following example where a group expression (in this case, a comma-separated
list) is used to specify a plotting style:

% display style=’"grid=1,colour(grid)=red,title=My new image"’

These quotes are not required if the group expression is given in response to a prompt.

If the supplied group expression is terminated with a hyphen, the user is re-prompted for
another group expression (using the same parameter). The objects specified by this second
group expression are added to those specified by the first. This re-prompting continues until a
group expression is supplied that does not end with a hyphen.

Certain classes of objects have additional features, for instance if the objects are the names of
data files, then wild-card characters are allowed in the supplied values.

4.13.1 Indirection

It is sometimes convenient to store the strings specifying the objects to be used within a text
file. The name of the text file can then be given in response to a prompt for a group expression,
rather than giving a long list of explicit values. This is done by preceding the name of the text
file with an up-arrow ("^") character. For instance, the group expression "ˆstyle.dat" would
result in the file style.dat being opened and the strings read from the file. Each line within
the file is considered to be a group expression, and is processed in the same way as a group
expression supplied directly. In particular, a text file may contain references to other text files. If
the file style.dat contained the following two lines:

grid=1,colour(grid)=red,border=1
colour(border)=red,^labels.dat

then the strings grid=1, colour(grid)=red, border=1 and colour(border)=red would be re-
turned to the application, and in addition the file labels.dat would be searched for further
strings. This nesting of text files can go down to seven levels. Text files may also contain
comments. Anything occurring after a "#" character is ignored. To ignore an entire line the
character must be in column 1 (any blanks in front of the # character are considered to be
significant).

SUN/95.45 —Parameters 28

4.13.2 Editing

A group expression can contain a request to edit the supplied strings before passing them to the
application. The editing facilities provided are fairly simple. You can:

• Add a specified prefix to the start of each string.

• Add a specified suffix to the end of each string.

• Replace all occurences of a given sub-string in each string.

• Any combination of the above.

To perform this editing, you:

(1) Enclose the group expression specifying the strings to be edited within curly braces ("{"
and "}"). Note, if no prefix or suffix is supplied, and the group expression is not a
comma-separated list, then the curly braces can be omitted.

(2) Precede the opening curly brace with the prefix (if any) to be added to the start of each
string.

(3) Follow the closing curly brace with the suffix (if any) to be added to the end of each string.

(4) Append a string specifying the substitution to be performed (if any) to the end of the
whole thing. This string should be of the form |<old>|<new>| where <old> is the text to
be replaced and <new> is the text with which to replace it. Note, the substitutions occur
before any specified prefix or suffix is added to the strings.

For instance;

A{^file}B|my|your|

This will read strings from the text file file. Each occurence of the string "my" will then be
replaced by "your". The resulting strings will then have "A" added at the start, and "B" added
at the end.

4.13.3 Modification

A group of objects can be given by specifying some editing to apply to another already existing
group of objects. For instance, if the string new_*b|_ds|_im| was given in response to a request
for a group expression, then the following steps occur:

• Each element in some existing group of objects (identified in the description of the param-
eter concerned) is substituted in turn for the "*" character.

• Any occurrences of the string "_ds" is replaced by the string "_im".

• The string "b" is added to the end of the string.

29 SUN/95.45 —Parameters

• The string "new_" is added to the start of the string.

Thus if the existing group contained the strings file1_ds and file2_ds, the resulting group
would be new_file1_imb and new_file2_imb. Note, this facility is only available if the param-
eter description identifies an existing group which will be used as the basis for the modified
strings.

4.13.4 Ignoring Syntax Characters

You can see from the above that several characters have special meanings within group expres-
sions. Examples are ^ | -. This may sometimes cause a problem if you want to include these
characters within the strings being passed to the application. For instance, if you want to specify
a group of data files using a shell pipe-line, you may want to do something like:

% display
IN - NDF to be displayed > ‘find . -newer a.fit | grep good ‘

Within a group expression, the | character indicates a request for a string substitution (as
described above). In this case, the GRP library considers the request to be incomplete because
there is only one | character, and issues an error report. Of course, the | character was actually
intended to indicate that the output from the find command should become the input to the
grep command. This can be accomplished by escaping the | character so that its special meaning
within the context of a group expression is ignored.

To escape a group expression syntax character, it should be preceded with a backslash ("\"). So
the above command should be changed to:

% display
IN - NDF to be displayed > ‘find . -newer a.fit \| grep good ‘

Any other special character can be escaped in the same way. For instance, you can escape
commas within text strings using this method.

4.13.5 Groups of Data Files

If a group expression is used to specify a list of input data files (NDFs or positions lists), then
file names may be specified that contain wild-card characters ("*" and "?"—character classes
can also be matched using strings such as "[0-9]", "[abcd]"). These will be expanded into a
list of explicit file names before returning the group to the application.

If a group of output data files are specified by modification of a previously supplied group of
input data files, the asterisk in the output group expression refers just to the file base-name (i.e.
without directory path or file type). So, for instance, the group expression B_* would cause each
output file name to be equal to the corresponding input file name, but with "B_" added to the
start of the file base name. Thus an input file /home/dsb/data.fit would result in an output file
/home/dsb/B_data.fit. If no directory is given in the output group expression, the directory
associated with the input file is then added to the start of the file name. Likewise, any HDS path
or file type is inherited from the input file if none are given in the output group expression.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_overview_of_an_ndf

SUN/95.45 —Parameters 30

If the final character in a group expression is a colon (:), then a list of the data files represented
by the group expression (minus the colon) is displayed, but no data files are actually added to
the group of files to be processed. The user is then re-prompted for another group expression,
using the same parameter.

If an HDS container file2 is supplied that contains two or more NDF structures, then each NDF
within the container file is processed as a separate image. NDFs that are contained within an
extension of another NDF are not included.

If a group of native output NDFs are created by modification of a group of native input NDFs
(i.e. if the supplied string includes an asterisk), then the structure of each output container file
will be copied from the corresponding input container file. For instance, if the container file
o66_int.sdf contains 16 NDFs in components I1 to I16, then specifying "o66_int" when asked
for a group of input images will result in all 16 NDFs being used. If the corresponding output
images are specified using the string "*_A" then a single output file named o66_int_A.sdf will
be created. The structure of this file will be copied from the input file, and will therefore contain
the 16 output NDFs in components I1 to I16.

4.13.6 Examples

• If an application asks for a group of input data files, the following are all possible responses:

b1,b2,b3,b4
This means “Use the NDFs stored in files b1.sdf, b2.sdf, b3.sdf and b4.sdf”. If ‘on-the-
fly format conversion’ (see Section 18.1 and SUN/55) is being used, then this example
would pick up data files with the highest priority data format (i.e. the format nearest to
the start of the list of formats supplied in environment variable NDF_FORMATS_IN). So for
instance, if the current directory contained both b1.sdf and b1.fit, then only one file
would be used, depending on the relative positions of the .sdf and .fit formats within
NDF_FORMATS_IN. If you want to restrict things explicitly to a particular data format, then
you should include the corresponding file type in the group expression. An example such
as:

b1.fit,b2.fit,b3.fit,b4.fit
would read just the specified FITS files.

cena_b1-
This means “Use cena_b1.sdf and then (because of the hyphen at the end) ask the user
for more data files”.

*
This means “Use all accessible data files in the current directory”.

hh1_b1s*_ds
This means “Use hh1_b1s1_ds.sdf, hh1_b1s2_ds.sdf, etc.”.

2HDS container files can usually be identified by the fact they have a file type of .sdf. They can be used to store
one or more standard Starlink NDF structures.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

31 SUN/95.45 —Parameters

hh1_b[12]s*_ds
This means “Use hh1_b1s1_ds.sdf, hh1_b1s2_ds.sdf, etc., and also hh1_b2s1_ds.sdf,
hh1_b2s2_ds.sdf, etc.”. The string "[12]" matches either a single character "1" or a single
character "2". The string "[0-9]" would match any single digit character. The string
"[a-z]" would match any single lowercase alphabetical character.

data.fit[12]
This means “Use files data.fit1 and data.fit2 if they exist. If neither of these files exists,
use the twelth image extension in the multi-extension FITS file data.fit”.

^files.lis
This means “Read the names of data files from the text file files.lis.”

../data/*
This means “Use all accessible data files contained in the directory ../data”.

data_{new,old,back}
This means “Use files data_new.sdf, data_old.sdf and data_back.sdf”.

{^files}_A
This means “Read names of data files from text file files and append _A to the end of
each one”.

‘grep -l "OBJECT = ’m57’" *.fit‘
The string is enclosed in back quotes (‘) which causes the string to be executed as a shell
command, and the resulting output to be used as the group expression. Thus this example
means “Use all FITS files that contain an OBJECT keyword equal to ’m57’”.

• If an application asks for a group of output data files, the following are possible responses:

file1,file2,file3
This means “Create file1.sdf, file2.sdf and file3.sdf”.

^out.dat
This means “Read the names of the output data files from text file out.dat”.

*_ds
This means “Append the string "_ds" to the end of all the input data file names.”

../bk/*|_ds|_bk|
This means “Substitute the string "_bk" for all occurrences of the string "_ds" in the input
data file names, and put the files in directory ../bk”.

SUN/95.45 —Parameters 32

4.14 Output Parameters

Not only can programmes have parameters to which you supply values, but they can also
write out the results of their calculations to output or results parameters. This makes the results
accessible to subsequent tasks and to shell and ICL variables. Example results are statistics like
the standard deviation or the FWHM of the point-spread function, the co-ordinates of points
selected by a cursor, or the attributes of an NDF. They are not data files created by the application.
In Appendix C they are listed separately from other parameters.

From the shell you can access these output parameters using the KAPPA tool PARGET. Suppose
that you want to subtract the mean of an NDF called myndf to make an a new NDF called
outndf.

% stats myndf > /dev/null
% set mean = ‘parget mean stats‘
% csub myndf $mean outndf

STATS calculates the statistics of myndf, the displayed output being discarded. PARGET reports
the mean value which is assigned to shell variable mean. Thereafter the mean value is accessible
as $mean in that process. Thus the final command subtracts the mean from myndf.

You can obtain vector values too.

% ndftrace myndf > /dev/null
% set axlab = ‘parget alabel ndftrace‘
% display otherndf style="’label(1)=$axlab[1],label(2)=$axlab[2]"’ axes

This displays the image otherndf surrounded by axes, but the plot’s axis labels originate from
another dataset called myndf 3. There are more examples in the C-Shell Cookbook.

At the time of writing, ICL only permits scalar variables. To do the first example above from ICL,
you would enter something like this.

ICL> stats myndf mean=(vmean)
ICL> csub myndf (vmean) outndf

vmean is an ICL variable. The parentheses have the same effect as the $ in the C-shell example,
meaning “the value of” the variable. Note that you can’t redirect the output to /dev/null.

If you use the PROMPT keyword (see Section 4.11) for an application with output parameters,
the programme will bizarrely prompt you for these. It is not asking for a value, but a location
where to store the value. It is strongly recommended that you just accept the default (normally
zero) so that the values are written to their parameter file, and hence permits PARGET to work.

3 The style parameter specifies the appearance of the annotated axes, and is given as a comma-separated group of
attribute settings, each of which is a name=value string specifying the attribute name and value. In this case, we assign
values to the two attributes label(1) and label(2). The whole group must be enclosed in single quotes to prevent
the parameter system splitting the string at the commas. The string must then also be enclosed in double quotes to
prevent the UNIX shell from interpreting the parantheses and equals signs. A simpler way of specifying a plotting
style is to put the attribute settings in a text file (see Section 7).

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sc4.htx/sc4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

33 SUN/95.45 —Verbosity of Messages

5 Verbosity of Messages

Informational messages (as opposed to error messages) are tagged with a reporting level that
permits some control in the detail and quantity of messages you see. Three levels are supported
in KAPPA.

NORMAL the normal reporting level, that aims to give a balanced, ‘Goldilocks’ level of report-
ing. However, for historical reasons most messages are set to this level, although that is
gradually changing. It excludes messages tagged as verbose.

VERBOSE reports additional information, such as instructions or warnings for new users to a
task, progress reports in a long-running command, and detailed analysis.

QUIET reports only the most important messages that you would not want to miss, but
eliminates the messages at normal and verbose levels.

The chosen level is set through environment variable MSG_FILTER. Abbreviations may be used
such as "N", "v", "Qu" for normal, verbose, or quit reporting respectively. The normal mode is
the default if you do not define MSG_FILTER.

SUN/95.45 —Graphics Devices and Files 34

6 Graphics Devices and Files

6.1 Selecting a Graphics Device

You can find the list of available devices and their names with task GDNAMES. Names can
be abbreviated provided they remain unambiguous. Two alternative naming schemes are
supported, and the list produced by GDNAMES will include both.

PGPLOT A general graphics device specification is of the form <file>/<type>, where <type>
indicates the type of the graphics device (e.g. PostScript printer, X-window, etc.) and
<file> is an optional string which indicates either a file in which the graphical output
should be stored or a specification for a particular device of the specified type. For
instance, m31.ps/VPS produces a file called m31.ps containing output suitable for sending
to a PostScript printer in portrait mode, and xwindows2/GWM sends graphical output to
the GWM X-window with name xwindows2. If the <file> string is omitted, a default
device-dependent value is used (for instance, pgplot.ps for postscipt files and xwindows
for X-windows).

GNS For compatibility with previous versions of KAPPA graphics devices may also be specified
using a scheme that approximates closely to that of the Starlink Graphics workstation
Name Service (GNS) library (see SUN/57). In this scheme a complete workstation specifi-
cation is of the form <type>;<file>. This is very similar to the PGPLOT scheme described
above, but the device type and file are swapped round, and the separator is a semicolon
instead of a solidus. As for PGPLOT, the device file can be omitted, in which case a default
is used, but note that in this case the semicolon should also be omitted. The only supported
devices are those for which PGPLOT drivers are available. If a device was also available in
the GKS-based graphics systems previously used by KAPPA, then you can refer to it either
using its PGPLOT device type or its GNS device type.

In either scheme, either the device type or the file name or the entire device specification may be
replaced by a logical name, in which case the value of the logical name will be used instead.

6.1.1 Global Parameters

There is a global parameter for the graphics device. The purpose of this global parameter is
ostensibly to prevent unnecessary prompting. However, there is an ulterior motive as well. The
selection of devices outside of the graphics applications enables us to perform other necessary
actions just once.

There is a command for selecting the current graphics device: GDSET. For example,

ICL> gdset xwindows

A selection remains in force until you change it using GDSET again, use NOGLOBALS, or delete
the globals file. The current choice can be inspected via the GLOBALS command. If the global
parameter is undefined you will be prompted for the device if an application requires it.

You can override the global parameter for the duration of a single application by specifying it by
keyword (normally DEVICE=), or in some applications, by position. Here is an example.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun57.htx/sun57.html?xref_GKSWorkstationNames

35 SUN/95.45 —Graphics Devices and Files

ICL> contour device=ps_p

6.1.2 X-windows

The most commonly used devices are X-windows. These can require a little preparation before
you select a device. Starlink graphics use GWM to manage windows. It enables a window
to persist between separate applications; or to be shared by different applications, potentially
even running on different machines. See SUN/130 for details of GWM and how to change your
X-defaults file ($HOME/.Xdefaults), but the salient points are given below.

If the window appears on a terminal or workstation other than the one running the KAPPA

executables you will need to redirect output to your screen, if you have not already done so for
some other software. You either use the xdisplay command

% xdisplay myterm.mysite.mydomain.mycountry

or set the DISPLAY environment variable to point to the address of your screen.

% setenv DISPLAY myterm.mysite.mydomain.mycountry:0

You substitute your machine’s address or IP number. (Ask your computer manager.)

If you do not create the window before running KAPPA, the first graphics application to open an
X-windows device will create the window, using certain defaults. The defaults control amongst
others the foreground and background colours, the number of colours allocated, the size and
location of the window. These defaults may be altered with an X-defaults file, or a window
created with the GWM xmake command.

% xmake xwindows -geom 600x450 -fg yellow -bg black

This example makes a window of dimension 600-by-450 pixels, the background colour is black
and colour for the line graphics is yellow.

The following set up to place in your X-defaults file is a reasonable compromise, as it maximises
the number of colour indices for the graphics window (xwindows), and has a second graphics
window (x2windows). In the defaults file there are the following lines

gwm*xwindows*colours: 80
gwm*xwindows2*colours: 20

and you can also set the sizes of the windows too. Notice that the second device name is
x2windows, but the window name is xwindows2. Don’t ask why. This confusing name rule
applies also to all but the first window of the maximum of four windows allowed.

The device names can be abbreviated, to give unambiguous names. Thus you can enter xw for
the xwindows device; x2w for the x2windows device; and so on. This is the reason for having
device names as they are.

The following tells KAPPA that this is the current device. This remains as a global parameter, so
you probably will not need to issue this command that often.

% gdset x2windows

http://www.starlink.ac.uk/cgi-bin/htxserver/sun130.htx/sun130.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun130.htx/sun130.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun129.htx/sun129.html?xref_

SUN/95.45 —Graphics Devices and Files 36

6.2 Composite Hardcopy Plots

KAPPA applications are modular so that you can build up more-complicated plots, and possibly
add annotations with other packages especially PONGO. This is fine if the device is some sort of
screen. However, care needs to be taken when using other types of device. For instance, some
PGPLOT PostScript devices put the output from each command into a separate disk file. So how
do you get the composite plot out on paper? There are two solutions:

(1) the easy way—use an “accumulating” PostScript device instead. If you look at the list
of device names produced by GDNAMES you will see that some of the encapsulated
PostScript (EPS) devices are described as “accumulating” such as the following.

% gdnames
...
aps_p (/AVPS) Accumulating EPS, monochrome, portrait
aps_l (/APS) Accumulating EPS, monochrome, landscape
apscol_p (/AVCPS) Accumulating EPS, color, portrait
apscol_l (/ACPS) Accumulating EPS, color, landscape
...

If you use one of these devices, each subsequent graphics application will merge its
PostScript output automatically into any existing pgplot.ps file. If you display pgplot.ps
using a modern PDF/PostScript viewer such OKULAR or EVINCE, the display will update
automatically as each subsequent graphics application modifies the file. Once the final
graphics application has been run, you can rename the pgplot.ps file to something more
covenenient4.

To give an example, suppose we wanted to overlay a contour plot on an image.

% gdset apscol_l
% display $KAPPA_DIR/comwest lut=$KAPPA_DIR/spectrum_lut mode=ra axes
% contour noclear mode=au noaxes \\
% mv pgplot.ps myplot.ps

(2) The hard way—use PSMERGE to merge separate PostScript files. If you use one of the
non-accumulating PostScript devices, the output from each graphics application goes into
a separate file which must then be merged. Here is what you must do.

• Select one of the non-acculumlating encapsulated PostScript device, be it colour or
monochrome.

• Produce your graphics, being careful to rename the output file (usually pgplot.ps)
created by each command to avoid it being over-written by the output from the next
command. Alternatively, you can specified the device to use separately when running
each command, including an explicit unique file name in each device specification
(see above).

• Use PSMERGE (the Starlink version, usually in /star/bin) to combine the plots.

4You could alternatively include the required final file name in the device name before running the graphics
applications.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun137.htx/sun137.html?xref_
http://www.astro.caltech.edu/~tjp/pgplot/
http://okular.kde.org/
http://wiki.gnome.org/Apps/Evince
http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_

37 SUN/95.45 —Graphics Devices and Files

To use the same example as above:

% gdset epsfcol_l
% display $KAPPA_DIR/comwest lut=$KAPPA_DIR/spectrum_lut mode=ra axes
% mv pgplot.ps display.ps
% contour noclear mode=au noaxes \\
% mv pgplot.ps contour.ps
% psmerge display.ps contour.ps > myplot.ps
% rm display.ps contour.ps

or alternatively:

% display $KAPPA_DIR/comwest device="epsfcol_l;display.ps" \
lut=$KAPPA_DIR/spectrum_lut mode=ra axes

% contour noclear device="epsfcol_l;contour.ps" mode=au noaxes \\
% psmerge display.ps contour.ps > myplot.ps
% rm display.ps contour.ps

to form the merged graphic. You then print myplot.ps to the colour PostScript printer.
PSMERGE also has options for scaling and rotating plots.

SUN/95.45 —Plotting Styles and Attributes 38

7 Plotting Styles and Attributes

7.1 Plotting Styles and Attributes

Many different aspects of the appearance of line graphics produced by KAPPA applications can
be controlled by specifying a plotting style when running the application. This includes things
like the colour, line width, line style, character size, and fount, each of which can be specified
individually for different components of a plot (e.g. the tick marks, numerical labels, border,
textual labels, etc.).

Each aspect of a plot is controlled by a plotting attribute. A plotting attribute has a name and a
value.

Strings that assign new values to particular plotting attributes are called attribute setting strings.
For instance:

Border=1
Title=This is my plot title

are two attribute setting strings. The first assigns the value 1 to the attribute called Border,
and the second assigns the string "This is my plot title" to the attribute with name Title
(attribute names are case insensitive but cannot be abbreviated).

Here is a list of the available attributes, with a brief description of each. Full descriptions are
included in Appendix E.

Border Draw a border around valid regions of a plot?

Colour(element) Colour for a plot element

DrawAxes Draw axes?

DrawDSB Annotate both sidebands in a dual sideband spectrum?

DrawTitle Draw a title?

Edge(axis) Which edges to label

FileInTitle Include the NDF name as a second line in the title?

Font(element) Character fount for a plot element

Gap(axis) Interval between major axis values

Grid Draw grid lines?

LabelAt(axis) Where to place numerical labels

LabelUnits(axis) Include unit descriptions in axis labels?

LabelUp(axis) Draw numerical axis labels upright?

39 SUN/95.45 —Plotting Styles and Attributes

Labelling Label and tick placement option

MajTickLen Length of major tick marks

MinTickLen Length of minor tick marks

MinTick(axis) Density of minor tick marks

NumLab(axis) Draw numerical axis labels?

NumLabGap(axis) Spacing of numerical axis labels

Size(element) Character size for a plot element

Style(element) Line style for a plot element

TextBackColour Background colour to use when drawing text

TextLab(axis) Draw descriptive axis labels?

TextLabGap(axis) Spacing of descriptive axis labels

TextMargin Width of margin to clear when drawing text

TickAll Draw tick marks on all edges?

TitleGap Vertical spacing for the title

Tol Plotting tolerance

Width(element) Line width for a plot element

Some attribute names can be qualified so that they refer to a particular component of the plot.
This is done by putting the qualifier in parentheses after the attribute name. For instance:

Colour(border)=2
Edge(2)=left

assigns the value 2 to the Colour attribute for the plot border, and assigns the value left to
the Edge attribute for the second axis. The full description of each attribute describes what
happens if you omit the qualifier. Attribute names that end in "(axis)" in the above list can
be qualified by an integer axis index to refer to a particular plot axis. Attribute names that
end in "(element)" in the above list can be qualified by any of the following strings to refer
to a particular component of the plot (the qualifiers are case-insensitive and unambiguous
abbreviations may be used):

Axes Axis lines drawn through tick marks within the plotting area, drawn if
attribute DrawAxes is given a non-zero value. Values set using Axes are
only only used if axis-specific values have not been set using Axis1 or Axis2.
Thus, Axes provides default values for Axis1 and Axis2.

Axis1 An axis line drawn through tick marks on Axis 1 within the plotting area,
drawn if attribute DrawAxes is given a non-zero value. Values specified
using Axis1 override any supplied using Axes.

SUN/95.45 —Plotting Styles and Attributes 40

Axis2 An axis line drawn through tick marks on Axis 2 within the plotting area,
drawn if attribute DrawAxes is given a non-zero value. Values specified
using Axis2 override any supplied using Axes.

Border The plot border, drawn if attribute Border is given a non-zero value.

Curves Curves drawn over the top of a plot (e.g. contours, data curves).

Grid The grid lines, drawn if attribute Grid is given a non-zero value. Values set
using Grid are only only used if axis-specific values have not been set using
Grid1 or Grid2. Thus, Grid provides default values for Grid1 and Grid2.

Grid1 Grid lines that cross Axis 1, drawn if attribute Grid is given a non-zero value.
Values specified using Grid1 override any supplied using Grid.

Grid2 Grid lines that cross Axis 2, drawn if attribute Grid is given a non-zero value.
Values specified using Grid2 override any supplied using Grid.

Markers Graphical markers (symbols) drawn over a plot.

NumLab Numerical axis labels drawn around annotated axes. Values set using
NumLab are only only used if axis-specific values have not been set using
NumLab1 or NumLab2. Thus, NumLab provides default values for NumLab1
and NumLab2.

NumLab1 Numerical labels drawn along Axis 1. Values specified using NumLab1
override any supplied using NumLab.

NumLab2 Numerical labels drawn along Axis 2. Values specified usingNumLab2
override any supplied using NumLab.

Strings Text strings drawn over a plot (except for axis labels and plot title).

TextLab Descriptive axis labels drawn around annotated axes. Values set using
TextLab are only only used if axis-specific values have not been set using
TextLab1 or TextLab2. Thus, TextLab provides default values for TextLab1
and TextLab2.

TextLab1 Descriptive label for Axis 1. Values specified using TextLab1 override any
supplied using TextLab.

TextLab2 Descriptive label for Axis 2. Values specified using TextLab2 override any
supplied using TextLab.

Ticks Tick marks (both major and minor) drawn along annotated axes. Values
set using Ticks are only only used if axis-specific values have not been set
using Ticks1 or Ticks2. Thus, Ticks provides default values for Ticks1 and
Ticks2.

Ticks1 Tick marks (both major and minor) drawn along Axis 1. Values specified
using Ticks1 override any supplied using Ticks.

Ticks2 Tick marks (both major and minor) drawn along Axis 2. Values specified
using Ticks2 override any supplied using Ticks.

41 SUN/95.45 —Plotting Styles and Attributes

Title The title drawn at the top of a plot.

A collection of attribute settings is called a plotting style. Attributes that are not specified in
a plotting style take on default values as described later. An example of a plotting style is
contained in the file $KAPPA_DIR/kappa_style.def. This file defines the default style used by
KAPPA.

In general each graphical application will determine the plotting style to be used when drawing
line graphics by accessing a parameter called STYLE. Some applications have more than one
style parameter. For instance, applications such as CONTOUR and LINPLOT that produce keys
to the content of the plot have a parameter called KEYSTYLE, in addition to the normal STYLE
parameter. KEYSTYLE is used to specify the plotting style for the key, whereas STYLE is used to
specify the plotting style for the main plot.

7.2 Specifying a Plotting Style

7.2.1 Group Expressions

The application parameters that are used to access plotting styles (STYLE, KEYSTYLE, etc.)
expect a group of attribute setting strings to be supplied for the parameter. These should be
supplied in the form of a group expression.5

A group expression is a character string containing a list of one or more sub-strings separated by
some specified delimiter. The usual delimiter used when accessing plotting style parameters is a
comma (although other parameters that require group expressions for other purposes may use a
different delimiter). Each sub-string is known as a group element. Each group element must be
either:

• an attribute setting string (e.g. "Border=1"), or

• the name of a text file, preceded by an up-arrow character ("^"”).

If a group element starts with an up-arrow character, then the rest of the element is interpreted
as a file name, and an attempt is made to read further group elements from the specified file.
Each line in the file is interpreted as a group expression in its own right, using exactly the same
rules as described above. In particular, references to text files can be nested (i.e. a text file can
include a group element that refers to another text file). Blank lines and lines in which the first
non-blank character is a hash ("#") are ignored and can be used to add textual comments to a
text file.

Attribute settings are used in the order in which they occur in the group expression. If a group
expression includes more than one setting string for a given attribute, then the value that occurs
nearest to the end of the group expression will overwrite any earlier values.

All this means that there are several ways in which plotting styles can be supplied. The simplest
method is probably to store all your attribute setting strings in a text file, one per line, and
then just give the name of this text file (preceded by an up-arrow) as the value for the STYLE
parameter. For instance, the file style.dat may contain:

5The complete group expression syntax is described in SUN/150. This is the documentation for the GRP
subroutine library, which provides a programming interface for obtaining groups of strings.

http://www.starlink.ac.uk/cgi-bin/htxserver/.htx/.html?xref_sun150

SUN/95.45 —Plotting Styles and Attributes 42

A test plotting style

width=2
edge(2)=right
title=This is my title

The first line and the following blank line are ignored. The remaining three lines specify three
attribute values to use. When running an application such as DISPLAY, this style file would be
specified on the command line as follows:

% display style=^style.dat

Alternatively, you can specify the setting strings explicitly on the command line. This can get a
bit messy because you need to protect special characters (commas, parentheses, spaces, equals
signs, and so on) both from the UNIX shell and from the parameter system. One safe way to do
this is to enclose the whole group expression in single quotes, and then enclose the whole thing
again in double quotes.6 So the above style could be given on the command line as follows:

% display style="’width=2,edge(2)=right,title=This is my title’"

A bit messy as I said! However, it can be useful to combine this method with the previous
method. If you have a long, complicated style file, and you want to change one or two attribute
settings, one method would be to take a copy of the style file and edit it. This would probably
be the best thing to do if you intend to re-use the edited style file several times. But if you just
want to try a quick experiment, just to see what the results look like, you can avoid the trouble
of editing the style file by giving both the original style file and the new attribute settings on the
command line. For instance:

% display style="’^style.dat,width=3’"

This reads the contents of our test style file style.dat, which includes the attribute setting
width=2. It then also applies the attribute setting width=3, over-writing the effect of the Width
value included in the style file. If you wanted to try temporarily changing the value of several
attributes at once, you could put the new attribute settings into a second file, say style2.dat,
and then run the application as follows:

% display style="’^style.dat,^style2.dat’"

Again, the contents of style.dat would be read, followed by the contents of style2.dat,
over-writing any settings for the same attributes included in style.dat.

6The up-arrow character is not one of these special characters, and so a simple reference to a single text file does
not need to be enclosed in quotes.

43 SUN/95.45 —Plotting Styles and Attributes

7.2.2 Temporary Attributes

Sometimes you need to effect a change of style that only lasts for a single invocation of a task.
For example, plotting data from different NDFs or NDF sections in different colours. This
is available at the cost of a little further syntax to learn. The temporary attributes should be
preceded by a plus sign.

In the following example, three histograms are plotted on a single graphic.

% histogram ndf1 \\
% histogram ndf2 style="+colour(curve)=yellow" noclear noaxes \\
% histogram ndf3 style="+width(curve)=4" noclear noaxes \\

The first uses the current attributes including line colour to plot the histogram for NDF ndf1.
(Recall \\ is a synonym for the accept keyword, so other defaults are used for the likes of the
data range and number of bins omitted for clarity.) The second NDF’s histogram is plotted in
yellow. For the third NDF the locus is again in the colour of the first plot (since the yellow was
only temporary) but has thickness four times normal. If you ran HISTOGRAM again, the line
thickness would return to its original value used in the first graph.

You are not limited to just one temporary attribute. You can supply a list that can include
indirection to text files.

% linplot spectrum style="’+style(curve)=2,grid,^temp.sty,colour(textlab)=green’"

Here LINPLOT uses three temporary attributes plus whatever is defined in the text file file
temp.sty. Note for a list the string requires an extra set of enclosing quotes to protect these
from being misinterpreted by the UNIX shell. The experimental method that used a second
parameter called TEMPSTYLE will be withdrawn.

It is also possible to combine persistent and temporary attributes. Persistent style attributes
must be supplied first, then after a plus sign comes the list of temporary attributes.

% linplot spectrum style="’colour(line)=red,width=3+style(curve)=2’"

Literal plus signs should be avoided if using both temporary and persistent attributes in a group
expression.

7.2.3 Synonyms for Attribute Names

The available plotting attributes and their names are defined by the AST subroutine library (see
SUN/210) upon which KAPPA graphics are based (together with PGPLOT). However, KAPPA

provides synonyms for certain plotting attributes where this would provide a clearer indication
of the purpose of the attribute within the context of a particular application. These synonyms are
listed in the description of the STYLE parameter for the particular applications concerned. For
instance, the CONTOUR applications draws contours as ‘curves’, that is, it uses the attributes
Colour(Curves), Width(Curves) and Style(Curves) to determine the appearance of the contours.
However, the synonym Contours (minimum abbreviation Cont) may be used in place of Curves, so
the appearance of the contours can also be specified using the ‘pseudo-’ attributes Colour(Cont),
Width(Cont) and Style(Cont).

You should remember that a synonym is simply an alternative way of specifying a particular
attribute. So if you are running CONTOUR and you give the two setting strings:

http://www.starlink.ac.uk/cgi-bin/htxserver/.htx/.html?xref_sun210

SUN/95.45 —Plotting Styles and Attributes 44

Colour(cont)=red
Colour(curve)=blue

the contours will appear blue, not red, because the second attribute setting overrides the first
one.

Any particular synonym will only be recognised by certain applications. Thus, Contours is only
recognised as a synonym for Curves when running CONTOUR. Applications ignore attributes
(or synonyms) that they do not recognise without reporting an error. Thus if the file containing
your default plotting style (used by all applications—see later) contains the two lines:

Colour(curve)=blue
Colour(cont)=red

then CONTOUR will draw contours in red, but other applications will draw their curves in blue
since they ignore the Colour(cont)=red line. Note, if these two lines were the other way round:

Colour(cont)=red
Colour(curve)=blue

then all curves, including contours drawn by CONTOUR, would be blue. This is because
CONTOUR will process both lines in the order supplied, ending up with blue contours.

7.2.4 Colour Attributes

The Colour attribute can be used to specify the colours of various components of a plot. The
value assigned to the attribute can be one of the following options.

• An integer colour index. Colour indices can be thought of as ‘pen numbers’. For instance,
the string "Colour(border)=3" says “Draw the border using pen number 3”. The resulting
colour depends on the colour of Pen 3, which can be set using PALENTRY.

• A standard X colour name, e.g. "Colour(border)=red".

• A triple of floating-point red, green and blue intensity values in the range zero to one,
separated by spaces, e.g. Colour(border)=1.0 0.0 0.0.

• An HTML colour code. This is a hash followed by three pairs of hexadecimal digits
giving red, green, and blue intensity in the range 0 to 255, e.g. "Colour(border)=#ffa700".
Within style files, the "#" character is used to introduce a comment, and so the colour code
would be ignored. To avoid this, the "@" character can be used in place of "#".

If no pen is currently available in the palette with the requested colour, then the ‘nearest’ colour
will be used instead—sometimes this may not be very near at all! If you specifically want the
requested colour, then you should use PALENTRY first to set one of the available pens to the
required colour.

Note, if you produce a plot on an X-window and then change the representation of pens using
PALENTRY, then any components of the existing plot that were drawn with the modified pens
will change colour immediately if and only if your X window is set to 256 colours (i.e. if you have
an 8 bit pseudo-colour visual). If you are in the more usual situation of having a 16- or 24-bit
display, then changes to pen colours will only affect subsequently drawn graphics.

45 SUN/95.45 —Plotting Styles and Attributes

7.3 Establishing Defaults for Plotting Attributes

When an application needs a plotting style, it uses a style parameter to get a group of attribute
settings. But what values are used for attributes that are not included in this group?

Obviously, if an attribute has been assigned an explicit value using the parameter then that
value is used, but you should note that most styles are ‘sticky’.7 That is, once a group of attribute
settings has been specified for a style parameter, that group continues to be used by subsequent
invocations of the application until a new group is supplied for the parameter. If the group is
supplied within a text file, then the ‘current value’ stored for the parameter is the list of attribute
settings read from the file, not the name of the file. Thus, changing the contents of the file at
a later time will have no effect on the value used for the parameter unless you re-specify the
parameter on the command line.

If an attribute is not specified in the supplied group, then a default value is used for the attribute,
determined as follows:

(1) If the plot is being overlayed on another existing plot, then the value that was used for the
attribute when the existing plot was created is used (but only if it was set to an explicit
value).

(2) Otherwise, the attribute value specified in a defaults file is used. The defaults file is found
as follows:

• If the environment variable KAPPA_<APP>_<PARAM> is defined (where <APP> is the
name of the application e.g. DISPLAY, and <PARAM> is the name of the parameter, e.g.
STYLE, both in upper-case), its value is taken to be the full path to the defaults file.

• If KAPPA_<APP>_<PARAM> is not defined, the file $HOME/kappa_<app>_<param>.def
is used (where <app> and <param> are in lower case this time).

• If the file $HOME/kappa_<app>_<param>.def cannot be accessed, the file
$KAPPA_DIR/kappa_<app>_<param>.def is used.

• If the file $KAPPA_DIR/kappa_<app>_<param>.def cannot be accessed, then the value
of the environment variable KAPPA_<PARAM> is used as the full path to the defaults
file.

• If KAPPA_<PARAM> is not defined, the file $HOME/kappa_<param>.def is used.

• If the file $HOME/kappa_<param>.def cannot be accessed, the file
$KAPPA_DIR/kappa_<param>.def is used.

(3) If the above process failed to produce a value for the attribute (either because no file
was found, or the file did not contain a setting for the attribute), then the default value
supplied by the AST library is used. These defaults are included in the full description of
the relevant attributes in Appendix E.

From the above, you can see that defaults can be specified either for individual applications,
or for all applications (any application-specific defaults file will be used in preference to the
general defaults file).

7The exceptions are the TEMPSTYLE parameters. These parameters are used to make temporary style changes
and always forget any previous values assigned to them.

SUN/95.45 —Plotting Styles and Attributes 46

It should be remembered that settings for unknown attributes are ignored, and do not cause the
application to abort.8 So if you set a value for an attribute and it seems to have no effect, it may
be worth checking that you have used the correct spelling for the attribute name.

7.4 Graphical Escape Sequences

Strings used for axis labels, plot titles, etc., can include special escape sequences which control the
appearance of subsequent text when the string is drawn as part of a plot.9 Escape sequences
are introduced using a percent character. For instance, if the string "10%^50+%^s50+Z" was used
as an axis label in a plot, it would produce a string similar to "10Z"—that is, the character "Z"
would be displayed as a small superscript character. Any unrecognised, illegal or incomplete
escape sequences are printed literally. The following escape sequences are currently recognised
("..." represents a string of one or more decimal digits):

• %% : Print a literal "%" character.

• %^...+ : Draw subsequent characters as superscripts. The digits "..." give the distance
from the base-line of ‘normal’ text to the base-line of the superscript text, scaled so that a
value of "100" corresponds to the height of ‘normal’ text.

• %^+ : Draw subsequent characters with the normal base-line.

• %v...+ : Draw subsequent characters as subscripts. The digits "..." give the distance
from the base-line of ‘normal’ text to the base-line of the subscript text, scaled so that a
value of "100" corresponds to the height of ‘normal’ text.

• %v+ : Draw subsequent characters with the normal base-line (equivalent to %^+).

• %>...+ : Leave a gap before drawing subsequent characters. The digits "..." give the size
of the gap, scaled so that a value of "100" corresponds to the height of ‘normal’ text.

• %<...+ : Move backwards before drawing subsequent characters. The digits "..." give
the size of the movement, scaled so that a value of "100" corresponds to the height of
‘normal’ text.

• %s...+ : Change the Size attribute for subsequent characters. The digits "..." give the
new Size as a fraction of the ‘normal’ Size, scaled so that a value of "100" corresponds to
1.0;

• %s+ : Reset the Size attribute to its ‘normal’ value.

• %w...+ : Change the Width attribute for subsequent characters. The digits "..." give the
new width as a fraction of the ‘normal’ Width, scaled so that a value of "100" corresponds
to 1.0;

• %w+ : Reset the Width attribute to its ‘normal’ value.

• %f...+ : Change the Font attribute for subsequent characters. The digits "..." give the
new Font value.

8This is because they may be synonyms recognised by other other applications.
9When displayed in a non-graphical environment (for instance, on an alpha-numeric terminal) the characters

forming an escape sequence are stripped out of the string before the string is displayed.

47 SUN/95.45 —Plotting Styles and Attributes

• %f+ : Reset the Font attribute to its ‘normal’ value.

• %c...+ : Change the Colour attribute for subsequent characters. The digits "..." give the
new Colour value.

• %c+ : Reset the Colour attribute to its ‘normal’ value.

• %t...+ : Change the Style attribute for subsequent characters. The digits "..." give the
new Style value.

• %t+ : Reset the Style attribute to its ‘normal’ value.

• %- : Push the current graphics attribute values on to the top of the stack (see %+).

• %+ : Pop attributes values of the top the stack (see %-). If the stack is empty, ‘normal’
attribute values are restored.

PGPLOT escape sequences may also be included in strings that are to be drawn.

SUN/95.45 —Data structures 48

8 Data structures

In an ideal world you would not need to know how your data are stored. It would be transparent.
Starlink applications attempt to achieve this through standard, but extensible, data structures,
and the ability to apparently operate on other formats through the so-called ‘on-the-fly conver-
sion’ (see Section 18.1 and SUN/55).

The official standard data format used by Starlink applications is the NDF (Extensible n-
dimensional Data Format, SUN/33). The data in an NDF is stored using HDS which has
numerous advantages, not least that HDS files are portable between operating systems; both have
file extension .sdf.

The NDF has been carefully designed to facilitate processing by both general applications like
KAPPA and specialist packages. It contains an n-dimensional data array that can store most
astronomical data such as spectra, images and spectral-line data cubes. The NDF may also
contain other items such as a title, axis labels and units, error and quality arrays, and World
Co-ordinate System (WCS) information. There are also places in the NDF, called extensions, to
store any ancillary data associated with the data array, even other NDFs.

The NDF format and its components are described more fully in Appendices H, which includes
commands for manipulating the components.

The NDF format permits arrays to have seven dimensions, but some applications only han-
dle one-dimensional and/or two-dimensional data arrays. The data and variance arrays are
not constrained to a single data type. Valid types are the HDS numeric primitive types, see
Appendix J.

Many applications are generic, that is they can work on all or some of these data types directly.
This makes these applications faster, since there is no need to make a copy of the data converted
to the type supported by the application. If an application is not generic it only processes _REAL
data. Look in the Implementation Status in the help or the reference manual. If none is given
you can assume that processing will occur in _REAL.

In KAPPA the elements of the data array are often called pixels, even if the NDF is not two-
dimensional.

8.1 Restrictions on the Usage of Data Structures

By default, KAPPA plays safe and will not allow you to use the same data structure as both input
and output for a command. This is to minimise the risks of accidentally over-writing valuable
data. So, for instance, if you try the following command:

% cadd in=m31 scalar=10 out=m31

you will find that the value of m31 for Parameter OUT is rejected with a message indicating that
the data structure is already in use, and you will be prompted for an alternative value.

However, KAPPA does allow you to ‘live on the edge’ if you prefer—if you define the environ-
ment variable KAPPA_REPLACE before running a command, then KAPPA will happily overwrite

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

49 SUN/95.45 —Data structures

the input data structure if requested to do so. You can assign any value you like to this en-
vironment variable, since its mere existence is the trigger for this optional behaviour. Note,
this facility is only available in those commands that access the input data structures before the
output data structures (the vast majority).

8.2 Looking at the Data Structures

You can look at a summary of an NDF structure using the task NDFTRACE, and obtain the
values of NDF extension components with the setext option=get command. HDSTRACE

(SUN/102) can be used to look at array values and extensions.

8.3 Editing the Data Structures

There are facilities for editing HDS components, though these should be used with care, lest you
invalidate the file. For instance, if you were to erase the DATA_ARRAY component of an NDF ,
the file would no longer be regarded as an NDF by applications software.

In KAPPA, ERASE will let you remove any component from within an HDS container file, but
you have to know the full path to the component. SETEXT has options to erase extensions and
their contents, without needing to know how these are stored within the HDS file. It also permits
you to create and rename extension components, and assign new values to existing components.
There are a number of commands for manipulating FITS-header information stored in the NDF’s
FITS extension. These are described in Section 18.4.

FIGARO offers some additional tasks (CREOBJ, DELOBJ, and RENOBJ) for editing HDS compo-
nents.

8.4 Native Format

Although HDS files are portable you are recommended to copy them to the host machine, and
run application NATIVE on them for efficiency gains. NATIVE converts the data to the native
format of the machine on which you issue the command. If you don’t do this, every time you
access the data in your NDF , this conversion process occurs. NATIVE also replaces any IEEE
floating-point NaN or Inf values with the appropriate Starlink bad value. The following converts
all the HDS files in the current directory.

% native "*"

http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CREOBJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_DELOBJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RENOBJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

SUN/95.45 —NDF Sections 50

9 NDF Sections

You will frequently want to examine or process only a portion of your dataset, be it to focus on
a given object in an image, or a single spectrum between nominated wavelengths, or a plane
of a cube. You could use NDFCOPY or MANIC in some circumstances to make a new NDF
containing the required data, but this would be inconvenient as you would need more disc
space, and to invent and remember a new filename. You will be pleased to learn that there is a
succinct and powerful alternative that obviates the need to create a new file—the NDF section.
The application just processes a ‘rectangular’ subset, or section, of the NDF that you nominate.
Certainly, it requires you to learn a little syntax, but after you use it a few times it will seem
cheap at the price for the advantages it offers.

An NDF section is defined by specifying the bounds of the portion of the NDF to be processed
immediately following the name of the NDF. You can do this in any place where an NDF name
alone would suffice, for example, on the command line or in response to a prompt or as a default
in an interface file. The syntax is a series of subscripts within parentheses and may be given in
several ways. Here is a simple example.

ICL> stats cluster(101:200,51:150)

This would derive statistics of a 100×100-pixel region starting at pixel indices (101, 51) in the
NDF called cluster. Alternatively, ranges of axis co-ordinates may be given instead of pixel
indices. Besides giving lower and upper bounds as above, you may specify a centre and extent.
Sections are not limited to subsets—supersets are allowed. See the paragraphs below for more
details of these features.

If you do want to make a new NDF from a portion of an existing one, you should use the
command NDFCOPY. An NDF’s shape may be changed in situ by SETBOUND.

Note if you supply an NDF section on a C-shell command line, you must escape the parentheses. For
example, the following are both equivalent to the earlier example.

% stats cluster"(101:200,51:150)"
% stats cluster\(101:200,51:150\)

9.1 Specifying Lower and Upper Bounds

The subscript expression appended to an NDF name to specify a section may be given in several
ways. One possible method (corresponding with the example above) is to give the lower and
upper bounds in each dimension, as follows

NAME(a:b, c:d, ...)

where ‘a:b’, ‘c:d’, (etc.) specify the lower and upper bounds. The bounds specified need not
necessarily lie within the actual bounds of the NDF, because bad pixels (see Section 15) will
be supplied in the usual way, if required, to pad out the NDF’s array components whenever

51 SUN/95.45 —NDF Sections

they are accessed. However, none of the lower bounds should exceed the corresponding upper
bound.

Omitting any of the bounds from the subscript expression will cause the appropriate (lower or
upper) bound of the NDF to be used instead. If you also omit the separating ‘:’, then the lower
and upper bounds of the section will both be set to the same value, so that a single pixel will be
selected for that dimension. Omitting the bounds entirely for a dimension (but still retaining the
comma) will cause the entire extent of that dimension to be used. Thus,

image(,64)

could be used to specify row 64 of a two-dimensional image, while

cube(1, 257:, 100)

would specify column 1, pixels 257 onwards, selected from plane number 100 of a three-
dimensional ‘data cube’, forming a one-dimensional section.

9.2 Specifying Centre and Extent

An alternative form for the subscript expression involves specifying the centre and extent of the
region required along each dimension, as follows

name(p~q, r~s ...)

where ‘p∼q’, ‘r∼s’, (etc.) specify the centre and extent respectively. The extent must be positive.
Thus,

name(100~11,200~5)

would refer to an 11×5-pixel region of an image centred on pixel (100, 200).

If the value before the delimiting ‘∼’ is omitted, it will default to the index of the central pixel
in that dimension (rounded downwards if there are an even number of pixels). If the value
following the ‘∼’ is omitted, it will default to the number of pixels in that dimension. Thus,

image(~100, ~100)

could be used to refer to a 100×100-pixel region located centrally within an image, while

image(10~, 20~)

would specify a section that is the same size as the original image, but displaced so that it is
centred on pixel (10, 20).

SUN/95.45 —NDF Sections 52

9.3 Using World or Axis Co-ordinates to Specify Sections

Not only can you specify sections in terms of pixel indices but also in terms of more-tangible
co-ordinates such as right ascension and declination, wavelength, frequency, and time. Section
locations in such world co-ordinate systems (WCS) (see Section 12) are indicated by non-integer
values; whereas integer values in an NDF section are intepreted as pixel indices. Here an integer
value is defined as one neither containing a decimal point nor an exponent. The WCS bounds
of each section are converted to the nearest pixel indices in order to specify the included data
elements.

Since there may be many co-ordinate systems that could represent your desired section, some
rules are necessary to decide how to interpret the section limits. First, to retain backwards
compatibility (with pre-V1.8 KAPPA), if your NDF has AXIS components then non-integer
values will refer to axis co-ordinates (for a description of AXIS co-ordinates, see Section 12.2).
Otherwise the values are specified within the co-ordinate system represented by the current
Frame in the NDF’s FrameSet (see Section 12.3). Command NDFTRACE will show whether
or not an NDF has AXIS components, and if so, it reports their extents, labels, and units.
NDFTRACE also summarises the properties of the current WCS Frame (or optionally all the
WCS Frames present), if the NDF has a WCS component. You can change the current Frame
with WCSFRAME.

9.3.1 World co-ordinates:

The standard formats used to specify WCS co-ordinates apply.See SUN/210 AST_UNFORMAT
sections “Frame Input Format” and“SkyFrame Input Format” for details and examples.

Here are some examples of WCS co-ordinates defining NDF sections.

spectrum(9000:2E4)

This could specify a region of a spectrum between 9000 and 20000 Ångstrom.

image(12h59m49s~4.5m,27.5d:28d29.8m)

This could refer to a region approximately one degree on each side centred the Coma Cluster.
The section is 4.5 minutes of time along the right-ascension axis centred at 12h59m49s , and
extends from +27◦30′ to +28◦29′48′′ in declination.

ifu(1h34m10.1s:1h34m12.4s,-2d35m:-2d35.5m,6563)

This might specify a region of sky 2.3 seconds of time by 0.5 arcminutes in Hα light from an
integral-field unit.

It is possible to use a colon to separate the fields in sexagesimal celestial and time co-ordinates,
as in the following example that defines the equivalent section as the preceding Coma Cluster
example.

image(12:57:34;13:02:04,27:30:00;28:29:48)

53 SUN/95.45 —NDF Sections

There is a cost; you must use a semicolon to demarcate lower and upper bounds. This is to
enable differentiation of the two uses of the colon.

Using the colon as co-ordinate field separator can leave some degree of ambiguity. For instance,
a subscript expression of “12:34” could mean “use pixel indices 12 to 34”, or could mean “use
the single declination value 12:34”. It is also harder to read, is an extra rule to remember, and
could be error prone. For these reasons, the strong recommendation is to use the dms and hms
notation for celestial and time co-ordinates.

Even given no sky co-ordinate range as in this example,

cube(12:34:56.7,-41:52:09,-100.0;250.0)

do not mix colons for the two uses in the same expression. Hence there is a semicolon to define
the range in the third co-ordinate. The semicolon expression delimiter works with all classes of
co-ordinate system. This example might extract a spectrum from a cube at the right ascension
12h34m56.7s declination −41◦52′9′′ between −100 and 250 km s−1 velocity.

You should also be aware that the non-integer co-ordinates within an NDF section apply to
WCS axes, in contrast to integer bounds that define pixel indices along pixel axes. These are not
necessarily the same. For example, the WCS axes may be rotated or permuted. If the WCS axes
are rotated, the NDF section actually used will be a box just large enough to hold the requested
range of WCS-axis values. Be careful.

9.3.2 Axis co-ordinates:

For axis co-ordinates double-precision arithmetic is used to process the section values, but
either double- or single-precision notation may be used when supplying them. Both linear and
non-linear axis co-ordinates are supported, the values supplied being automatically converted
into the corresponding pixel indices before use. For instance,

spectrum(6500.0:7250.0)

could be used to select the appropriate region of a spectrum calibrated in Ångstroms, while

spectrum(6000.0~500.0)

would select a region of the spectrum approximately from 5750 to 6250.0 Ångstroms (the exact
extent depending the values of the axis co-ordinates), and

spectrum(5500.0~21)

would select a 21-pixel-wide region of the spectrum centred on 5500 Ångstroms.

SUN/95.45 —NDF Sections 54

9.4 Specifying Fractional Extents

A further form for the subscript expression involves specifying a fractional position along each
dimension as a percentage, as follows

name(p%~q%, r%:s%, ...)

where ‘p%∼q%’ specifies the centre and extent as percentages, and ‘r%:s%’ specifies a percentage
range. Thus,

image(25%:75%,50%:~50%)

would refer to the central quarter of the image. Both sections are equivalent. The percentages
are converted to the nearest pixel centre to decide the centre and extents of the sections.

The rules concerning omitted values before or after the delimiting ∼ apply. Thus,

image(40%~, ~50%)

could be used to refer to a full-width, half-height section centred at the (40%, 50%) fractional
position.

A percentage value is not limited to the range 0–100%. In such circumstances the areas beyond
the bounds of the NDF are set to bad. For example,

image(~110%, -5%:105%)

would give an enclosing border of bad pixels, extending 5% of the original dimensions. Both
sections are equivalent.

9.5 Changing Dimensionality

The number of dimensions given when specifying an NDF section need not necessarily corre-
spond with the actual number of NDF dimensions, although usually it will do so.

If you specify fewer dimensions than there are NDF dimensions, then any unspecified bounds
will be set to (1:1) for the purposes of identifying the pixels to which the section should refer.
Conversely, if extra dimensions are given, then the shape of the NDF will be padded with extra
bounds set to (1:1) in order to match the number of dimensions. In all cases, the resulting section
will have the number of dimensions you have actually specified, the padding serving only to
identify the pixels to which the section should refer.

In KAPPA there are a number of applications that can only handle a fixed number of dimensions
(e.g. DISPLAY, LINPLOT, MEDIAN). NDF sections permit such applications to have wider
applicability, since the applications can operate on full NDFs of arbitrary dimensionality. So for
instance, DISPLAY could show planes of a datacube.

55 SUN/95.45 —NDF Sections

9.6 Mixing Bounds Expressions

In the last example (in Section 9.3) both axis co-ordinates and pixel indices were mixed in the
same subscript expression. In fact, any of the features described earlier may be combined when
specifying an NDF section, the only restrictions are as follows.

(1) When the shape of the resulting section is expressed in pixel indices, the lower bound
must not exceed the upper bound in any dimension.

(2) If the bounds for an axis are specified by centre and width values (rather than as lower
and upper bounds), then a WCS value should not be used with a pixel index. That is, the
centre and width values must both refer to the same co-ordinate system.

Thus, all the following might be used as valid specifications for NDF sections

ndf(3.7)
ndf(,5:)
ndf(-77:01h23m45s,,4)
ndf(66~9,4:17)
ndf(~5,6~)
ndf(~,:)
ndf(5500.0~150,)
ndf(2.137~10%)
ndf(3.0~1.5,-78.06D-3:13.0545,,,,)

Many other combinations are obviously possible. In cases where some bounds are given in
pixel indices and some in WCS co-ordinates, two boxes will be formed; one representing the
pixel-index bounds and one representing the WCS bounds. The actual NDF section used will be
the overlap of the two boxes. The pixel box will inherit any pixel index limits supplied in the
bounds expression, and will use default values for any missing limits. These default pixel-index
bounds are just the bounds of the full NDF. Likewise, the WCS box will inherit any WCS limits
supplied in the bounds expression, and will use default values for any missing limits. The
default WCS limits are the bounds of a box that just includes the whole pixel box.

SUN/95.45 —NDF History 56

10 NDF History

During a spring clean of directories to free some space (what d’ y’mean you don’t?), most of us
will have encountered data files whose purpose and worth are long forgotten. We’re reluctant
to remove them in case they contain irreplaceable data. Some people are very good and make
copious notes. . . Even then the result of a casual experiment might not be recorded. For those
who are lazy, such files can be a frequent dilemma. Even a quick look at a plot of the data is
often of little assistance. As you’ve probably surmised, the NDF offers a solution.

Within an NDF you may record history information. This is usually a chronicle of the processing
stages used to form the NDF, including the parameter values of the applications invoked; but
it may also include commentary you provide, for example, the rationale for doing certain
operations.

History is associated with individual NDFs; it is not some global attribute of a data-processing
session. An NDF has a history update mode, which remains with the NDF and any descendant
NDF, until the update mode is altered or the history erased. By default, the update mode is
"Disabled", meaning that no history recording occurs. To permit history recording you must
first switch it on, selecting from three update modes—"Quiet", "Normal", and "Verbose"—
which give increasingly more detailed information.

10.1 Control and Content of History Recording

Task HISSET lets you set the history update mode. The default is "Normal", thus here the
command

% hisset hr1068

switches normal history recording on for NDF hr1068. Thereafter whenever you alter this NDF,
or create another NDF from it, the task automatically records the name of the application that
was run, the date and time, a reference name that identifies the NDF, your username, and some
text comprising the command-line parameters and the full path of the application. In KAPPA the
package name and version is appended to the application name. Other packages may provide
task-dependent additional text.

If disc space is not a concern, you might prefer the verbose level.

% hisset hr1068 verbose

the supplementary information being the machine type, and its operating system name and
version.

For small datasets, such as spectra, the history can amount to a significant part of the NDF’s
size, so for these you might prefer the quiet level. This does not record the command line.

HISSET lets you switch off history recording, if you want to do something ‘off the record’, or
erase the history altogether.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_the_history_component

57 SUN/95.45 —NDF History

% hisset hr1068 disabled
% hisset hr1068 erase

Some applications create new NDFs from scratch, not inheriting the history records and update
mode from an input NDF. Some examples are CREFRAME, TRANDAT, and PSF. Should you
wish these to have history recording enabled as you create such NDFs, there is an environment
variable NDF_AUTO_HISTORY that should be set to a non-zero integer value, or immediately run
HISSET with the new NDF. Note that some applications may choose to disregard the value of
NDF_AUTO_HISTORY for good reason, such as for ancillary NDFs created with an NDF extension.
Whenever this option is exercised, the reference documentation for the task should indicate this
behaviour in its Implementation Notes. There are currently no such applications in KAPPA.

10.2 Adding Commentary to History Recording

Once history recording is enabled, you can add commentary to an NDF using HISCOM.

% hiscom hr1068 i "There may have been cloud during the integration."

You aren’t limited to single lines if you respond to the prompt for the comment. You can give a
series of lines, terminated by supplying !.

% hiscom hr1068
COMMENT - Comment line > The dome may have been obstructing the telescope
COMMENT - Comment line > during the integration. We are not sure that the
COMMENT - Comment line > filter is correct either.
COMMENT - Comment line > !

If you prefer, you may edit some text into a file and append its contents to the history records.
Thus

% hiscom hr1068 f file=comments.lis

appends the text contained in comments.lis to the history records of NDF hr1068.

10.3 Listing History Records

At some point you will want to refer back to the history records. The HISLIST task does this.

% hislist hr1068

History listing for NDF structure /home/scratch/dro/hr1068:

History structure created 1995 Sep 24 11:16:15.000

1: 1995 Sep 24 11:16:15.000 - HISSET (NDFPACK V1.0)

Parameters: MODE=’Normal’ NDF=@hr1068
Software: /star/bin/kappa/hisset

SUN/95.45 —NDF History 58

Before you ask. . . at present there are no parameters for selecting a time interval and there is no
output of the machine and username, but they’re not forgotten.

Here is another example showing a series of history records.

% hislist hr1068 \\

History listing for NDF structure /home/scratch/dro/hr1068sm2:

History structure created 1995 Nov 24 11:16:15.000

1: 1995 Sep 24 11:16:15.000 - HISSET (NDFPACK V1.0)

Parameters: MODE=’Normal’ NDF=@hr1068
Software: /star/bin/kappa/hisset

2: 1995 Sep 24 11:19:53.000 - GAUSMOOTH (KAPPA V0.9)

Parameters: BOX=13 FWHM=5 IN=@hr1068 OUT=@hr1068sm TITLE=! WLIM=!
Software: /star/bin/kappa/gausmooth

3: 1995 Sep 24 11:20:15.000 - HISSET (NDFPACK V1.0)

History update mode changed from NORMAL to VERBOSE.
Parameters: MODE=’Normal’ NDF=@hr1068sm
Software: /star/bin/kappa/hisset

4: 1995 Sep 24 11:20:49.000 - GAUSMOOTH (KAPPA V0.9)

Parameters: BOX=9 FWHM=3 IN=@hr1068sm OUT=@hr1068sm2 TITLE=! WLIM=!
Software: /star/bin/kappa/gausmooth
Machine: alpha, System: OSF1 214 (release V3.2)

5: 1995 Sep 24 11:22:32.000 - HISCOM (NDFPACK V1.0)

Parameters: MODE=’Interface’ NDF=@hr1068sm2 WRAP=TRUE
Software: /star/bin/kappa/hiscom
The dome may have been obstructing the telescope during the integration.
We are not sure that the filter is correct either.

The first history item shows HISSET enabling history. This was followed by a smooth of the
data with GAUSMOOTH. Then the recording level was set to verbose. The fourth record recalls
another smooth, and this time you can see the machine details. Finally, some commentary is
added with HISCOM.

59 SUN/95.45 —The Graphics Database

11 The Graphics Database

Have you ever been in a situation where you would like an application to know about graphics
drawn by some other programme? For instance, you display an image of the sky, then later
you want to obtain the co-ordinates of the stars within the image via the cursor. There are two
main approaches to achieving this functionality. The first is to duplicate the display code in the
CURSOR application. This is wasteful and inflexible. The second is to store information about
‘pictures’ in a database that can be accessed by subsequent graphics programmes. This is the
technique used by KAPPA.

Each graphics application that creates a display on a graphics device, also stores information
describing the display in the graphics database. This is a file, which usually resides in the
user’s home directory, and is often referred to as the AGI database.10 Displays are described
in terms of pictures. A picture is basically a rectangular area on the graphics device within
which an application produces graphical output. Each time an application creates a picture, the
dimensions and position of the picture (together with other ancillary information) are stored in
the graphics database. Subsequent applications can then read this information back from the
database, and use it (for instance) to align new graphics with previously displayed graphics.

The best way to demonstrate the use of the graphics database is to give some illustrated
examples.

11.1 The Graphics Database in Action

The following examples assume that KAPPA is loaded and the graphics device—an X-window
containing a plotting area of 850 by 500 pixels—is available. To create such a window use the
xmake (SUN/130) command:

% xmake xwindows -height 500 -width 850 -colours 64

This command limits the number of colours used by the X-window to 64. It is usually a good
idea to be sparing with X-window colours. Creating X-windows with too many colours can
restrict the availability of colours for other X applications.

First of all we make the X-window the current graphics device (as described in Section 6.1.1). This
selection will remain in force until changed. The following command would not be necessary if
the global parameter already had this value:

% gdset xwindows

Next we shall clear the X-window, and empty the graphics database of xwindows pictures
(pictures relating to other graphics devices are retained):

% gdclear

10“AGI” is the name of the subroutine library that provides access to the graphics database. AGI stands for
“Applications Graphics Interface”, and is documented in SUN/48.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun130.htx/sun130.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun48.htx/sun48.html?xref_

SUN/95.45 —The Graphics Database 60

The display is now clear, but one picture remains in the graphics database; this is the BASE
picture and corresponds to the entire plotting area. To understand why this BASE picture is
required we need to introduce the idea of the current picture.

At any time, one of the pictures stored within the graphics database is nominated as the current
picture. All graphical applications are written so that the graphical output that they create is
scaled to fit within the current picture. Thus, the plotting area used by a graphics application
can be controlled by selecting a suitable current picture before running the application. Since
we have just cleared the database, the only picture remaining is the BASE picture, which
consequently becomes the current picture. This allows subsequent applications to draw in any
part of the plotting area.

We now load a grey-scale colour table into the X-windows and display an IRAS 12 µm image of
M31. The pixel values are scaled so that 10% of the pixels appear as pure black, and 1% appear
as pure white. We ensure that no annotated axes are produced (this will result in the image
being a little larger since no margins need to be left for the axes):

% lutgrey
% display $KAPPA_DIR/iras noaxes
MODE - Method to define the scaling limits /’FLASH’/ > perc
PERCENTILES - Percentiles for scaling /[10,90]/ > 10,99
Data will be scaled from 0.05178363 to 1.051904.

The X-window should now look like Figure 1. The application has displayed the image in the
middle of the current picture (the BASE picture), and has made it as large as possible, subject
to the constraints that it must lie entirely within the current picture. Note, as with many IRAS
images, equatorial north is downwards in this image

Let’s now use the PICLIST command to look at the contents of the graphics database (press
return in response for the prompt for Parameter PICNUM):

% piclist

No. Name Comment Label Ref

C 1 BASE Base picture
2 DATA KAPPA_DISPLAY Ref

PICNUM - Number of new current picture /!/ >

This shows us that there are now two pictures in the database, listed in the order in which they
were created. The current picture is still the base picture, as indicated by the letter C at the left of
the line describing picture number 1. The second picture was created by the KAPPA application
DISPLAY, and has the name DATA, indicating that it contains a representation of a set of data
values. DATA is one of four standard picture names. BASE is another of these standard names.
We shall come across the other two shortly. The PICLIST application allows you to select a
new current picture by supplying a picture number in response to the prompt for parameter
PICNUM. Accepting the null default by pressing return causes the current picture on entry to
be retained.

The above use of DISPLAY illustrates an important rule regarding the behaviour of most
graphical applications; the current picture is not changed by applications that produce graphical

61 SUN/95.45 —The Graphics Database

Figure 1: An IRAS 12 µm image of M31 displayed in the middle of the BASE picture.

output.11 If it were not for this rule, pictures would become progressively smaller, vanishing into
the distance, since new pictures cannot be drawn outside the current picture.

We will now display an optical image of M31. This time we will arrange for it to be placed
towards the left hand side of the X-window. To do this, we first clear the whole X-window and
graphics database using GDCLEAR:

% gdclear

We now create a new picture using the PICDEF command (note, the "\" characters are needed
to prevent the UNIX shell interpreting the square bracket characters):

% picdef mode=cl fraction=\[0.6,1.0\] outline=no

The MODE parameter specifies the position of the new picture within the BASE picture; in this
case "cl" indicates that the new picture is to be centred ("c") vertically within the BASE picture
and placed at the left ("l") hand edge. The FRACTION parameter specifies the dimensions

11This rule does not apply to applications that manage the database itself rather than producing graphical output.
Thus, for instance, it is legal for PICLIST to change the current picture if you request such a change. Also, an
uncontrolled exit from an application, e.g. CTRL/C may leave the database in an abnormal state.

SUN/95.45 —The Graphics Database 62

of the picture; the first value (0.6) gives the horizontal size of the picture as a fraction of the
horizontal size of the BASE picture, and the second value (1.0) gives the vertical size of the
picture as a fraction of the vertical size of the BASE picture. Thus, the new picture is just over
half the width of the BASE picture, and is the full height of the BASE picture. The OUTLINE
parameter specifies whether a box should be drawn on the screen showing the outline of the
new picture. In this case we switch this option off.

If we run PICLIST again, we get:

% piclist

No. Name Comment Label Ref

1 BASE Base picture
C 2 FRAME KAPPA_PICDEF
PICNUM - Number of new current picture /!/ >

The picture created earlier by DISPLAY was deleted when we ran GDCLEAR. The BASE picture
is still there (of course), and we also have the picture created by PICDEF. This is a FRAME
picture, another of the four standard picture names. A FRAME picture acts as a ‘frame’ for other
pictures. A FRAME picture can itself contain other nested FRAME pictures, together with DATA
and KEY pictures. The picture created by PICDEF is the current picture (indicated by the letter C
again), and so subsequent graphics applications will arrange for any pictures they create to fall
entirely within this FRAME picture.

Now display the image, this time including annotated axes around the edges.12 DISPLAY will
ensure that all its output (both the image and the axis annotation) fall within the current picture
(i.e. the picture created by PICDEF above). We scale the pixel values to produce a negative
image in which 1% of the pixels appear black and 30% appear white:

% display axes
IN - NDF to be displayed /@$KAPPA_DIR/iras/ > $KAPPA_DIR/m31
MODE - Method to define scaling limits /’perc’/ >
PERCENTILES - Percentiles for scaling /[10,99]/ > 99,30
Data will be scaled from 10854.78 to 3889.016.

The X-window should now look like Figure 2. We can use PICLIST again to list the pictures
stored in the database:

% piclist
No. Name Comment Label Ref

1 BASE Base picture
C 2 FRAME KAPPA_PICDEF

3 FRAME KAPPA_DISPLAY
4 DATA KAPPA_DISPLAY Ref

PICNUM - Number of new current picture /!/ >

12The current co-ordinate Frame in the image being used is RA/DEC and so the axis will be annotated in RA and
DEC.

63 SUN/95.45 —The Graphics Database

Figure 2: Optical M31 image with axes displayed toward the left of the BASE picture.

There are four pictures this time; the BASE picture, the picture created by PICDEF (number
2), and two pictures created by DISPLAY (numbers 3 and 4). Picture number 2 was made the
current picture by PICDEF and as explained above, DISPLAY did not change this. DISPLAY
creates two pictures, one (the DATA picture) containing just the image area itself, and another
(the FRAME picture) to act as a frame for the DATA picture and the annotated axes.

Let’s say you wanted to display an enlarged sub-section of the image in the top-right corner of
the X-window. First, you need to decide on the bounds of the sub-section to be displayed. Here,
we use a graphics cursor to indicate the bottom left and top-right corners of a box enclosing
the required area. Click the left mouse button at the bottom left and top right corners of a box
enclosing the required sub-section of the image:

% cursor showpixel plot=box maxpos=2

Use the cursor to select up to 2 positions to be reported.
To select a position press the space bar or left mouse button
To forget the previous position press "d" or the middle mouse button
To quit press "." or the right mouse button

Picture comment: KAPPA_DISPLAY, name: DATA, reporting: SKY co-ordinates

RA = 0:41:33.5 (hh:mm:ss.s) Dec = 40:33:01 (ddd:mm:ss)

SUN/95.45 —The Graphics Database 64

(172.4 78.2)

RA = 0:39:25.0 Dec = 40:54:17
(212.8 113.9)

Figure 3: A box is drawn using the CURSOR application.

The box I selected is indicated in Figure 3.

When an application such as DISPLAY produces a DATA picture containing a representation of
an NDF, it saves a copy of the NDF’s WCS component (which contains co-ordinate Frame in-
formation) with the DATA picture in the graphics database. When CURSOR subsequently
reports a position, it uses this saved WCS information to convert the graphics co-ordinates at
the cursor into any of the available co-ordinate Frames. By default, CURSOR reports positions
in the co-ordinate Frame that was current when the NDF was displayed (RA/DEC in this case),
but other co-ordinate Frames may be requested using the FRAME parameter (e.g. FRAME=PIXEL
displays pixel co-ordinates). In addition to the co-ordinate Frames inherited from the NDF, there
are also four extra Frames available.

GRAPHICS – specifies positions in terms of millimetres from the bottom left corner of the
graphics device (e.g. X-window or paper).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

65 SUN/95.45 —The Graphics Database

BASEPIC – similar to GRAPHICS but specifies positions in a normalised co-ordinate system in
which the shorter dimension of the screen or paper has a length of 1.0 (the scales on both
axes are equal).

NDC – similar to BASEPIC but specifies positions in a normalised co-ordinate system in which
the bottom-left corner has co-ordinates (0, 0) and the top-right corner has co-ordinates
(1,1). Thus, for a non-square device the scales on the two axes will be different.

CURPIC – similar to BASEPIC except that it covers only the specified picture. Thus, the bottom-
left corner of each picture is at (0, 0) and the shorter dimension of each picture has length
1.0.

Going through the parameters supplied to the above CURSOR command, the first one (SHOW-
PIXEL) causes the pixel co-ordinates at each selected position to be displayed, in addition to the
co-ordinates selected using Parameter FRAME (which defaults in this case to RA/DEC since
FRAME was not specified). For instance, the first position is at a right ascension of 0h41m33.5s

and a declination of +40◦33′1′′, and has pixel co-ordinates (172.4, 78.2).13 The second parameter
(PLOT=BOX) causes a box to be drawn on the screen between each pair of positions. There are
several other allowed values for the PLOT parameter, which mark the positions in different ways
(markers, poly-lines, chains, text, etc.). The last parameter (MAXPOS=2) is purely a convenience,
and causes the application to terminate when two positions have been supplied. Without this,
you would need to press the right mouse button once the two positions had been given to
indicate that you do not want to supply any more positions.

We now need to create a new FRAME picture to contain the magnified image section. We have
seen how PICDEF can be used to create a FRAME picture of a given size at a given position
within the BASE picture, but there are also several other ways in which PICDEF can be used.
Here, we use PICDEF in ‘cursor’ mode; the bottom left and top-right corners of the new picture
are specified by pointing and clicking with the mouse.14 We use this mode to create a new
FRAME picture occupying the area to the top right of the existing image:

% picdef mode=cursor nooutline

Use the cursor to select 2 distinct points.
To select a point press the space bar or left mouse button
To quit press "." or the right mouse button

Co-ordinates are (0.9155139, 0.5470942) and (1.683106, 0.9799599)

The co-ordinates displayed by PICDEF are BASEPIC co-ordinates.

We now display the required image section in this new FRAME picture. The screen output from
CURSOR above shows that the selected image section runs from pixel 173 to 213 on the first (X)
axis, and from pixel 79 to 114 on the second (Y) axis. To display just this section we include the
pixel bounds in the specification of the input NDF when we run DISPLAY:

13Pixel co-ordinates are fractional, where-as pixel indices are integer. The pixel with indices (1, 1) covers a range of
pixel co-ordinates between 0.0 and 1.0 on each axis, with its centre at pixel co-ordinates (0.5, 0.5).

14Note, by default, the FRAME picture created by PICDEF is not constrained to be within the current picture, it can
be anywhere within the BASE picture.

SUN/95.45 —The Graphics Database 66

% display border noaxes mode=scale high=3889.016 low=10854.78
IN - NDF to be displayed /@m31/ > m31(173:213,79:114)
Data will be scaled from 10854.78 to 3889.016.

Figure 4: The selected section of the NDF is re-displayed.

The X-window should now look like Figure 4.

The string m31(173:213,79:114) is called an NDF section specifier. These are described more
fully in Section 9. The image is surrounded by a thin border instead of fully annotated axes in
order to make the image larger. This is achieved using the BORDER and NOAXES keywords
(equivalent to setting BORDER=YES and AXES=NO). The pixel scaling was specified explicitly
using parameters HIGH and LOW in order to ensure that the image was displayed with the same
grey-scale as the main image (the high and low data values are the data values corresponding to
black and white—or white and black if reversed – and were reported when the main image was
displayed earlier).

Remember the IRAS image of M31 we started with? We’ll now overlay contours of the IRAS
image on top of the magnified section of the visual image we have just displayed. Don’t forget,
these two images have not been aligned—for instance, north is up in the visual image, but
down in the IRAS image. However, both images have information within the WCS component
describing the relationship between pixel co-ordinates and RA/DEC. This WCS information was
stored with the DATA picture created by DISPLAY above, and so can be used by the CONTOUR

67 SUN/95.45 —The Graphics Database

application in order to draw the IRAS contours in alignment with the displayed visual image.15

In addition, we also use CURSOR to mark a position with a text string giving a title for the
contour plot:

% contour noclear noaxes nokey iras mode=perc percentiles=\[55,75,95\]
Alignment has occurred within the SKY Domain.

Contour heights used:
0.5499523, 0.7577766, 1.012756.

% cursor plot=text maxpos=1 minpos=1 strings=’"IRAS 12 \gmm contours"’

Use the cursor to select 1 position to be reported.
To select a position press the space bar or left mouse button
To quit press "." or the right mouse button

Picture comment: Base picture, name: BASE, reporting: BASEPIC
co-ordinates
X = 1.308796 Y = 0.9839679

The X-window should now look like Figure 5.

The most important parameter in the above invocation of CONTOUR is the NOCLEAR keyword
(equivalent to CLEAR=NO). This tells CONTOUR not to clear the graphics device before
drawing the contours. Instead, CONTOUR looks for an existing DATA picture contained within
the current picture. If one is found, then CONTOUR attempts to align the contours using the
WCS information stored with the existing DATA picture. In our case, the current picture is
still the top-right FRAME picture created by PICDEF, and so the contours are aligned using
the WCS information stored with the DATA picture contained within this FRAME picture (i.e.
the magnified image section). CONTOUR tells us that this alignment occurred within the
‘SKY Domain’—if either of the two NDFs had not contained a calibration in a suitable celestial
co-ordinate system, then alignment on the sky could not have been performed. In this case,
CONTOUR would have aligned the contours in the ‘PIXEL Domain’ (i.e. in pixel co-ordinates).

Since we produced no annotated axes, a title string was added using the text drawing abilities
of CURSOR. The pointer was positioned above the contour plot, and the left button clicked. The
specified text string was drawn centred at this cursor position. Note, the string \gm is a ‘PGPLOT
escape sequence’ that represents the Greek letter mu ("µ"). See the PGPLOT manual for a detailed
description of the available escape sequences.

Let’s say we wanted to compare the data values in the visual and IRAS images along a given
line through the magnified sub-section. To do this, we first use the application PROFILE to
create a pair of one-dimensional NDFs containing the data values along the line in each of the
two images. We then display these one-dimensional NDFs using application LINPLOT. First we
choose the line along which the profiles are to be taken, using CURSOR (again!):

% cursor plot=chain marker=3 style=’colour=white’ outcat=zz maxpos=2

15The accuracy of this alignment will depend on the accuracy of the astrometry information supplied with the
image.

SUN/95.45 —The Graphics Database 68

Figure 5: IRAS contours overlayed on the visual image.

Use the cursor to select up to 2 positions to be reported.
To select a position press the space bar or left mouse button
To forget the previous position press "d" or the middle mouse button
To quit press "." or the right mouse button

Picture comment: KAPPA_CONTOUR, name: DATA, reporting: SKY co-ordinates
RA = 0:41:22.7 (hh:mm:ss.s) Dec = 40:35:12 (ddd:mm:ss)
(175.8467 81.82527)

RA = 0:39:56.5 Dec = 40:50:27
(202.917 107.3986)

The pointer is positioned at the two ends of the required profile, and the left button clicked
at each position. The supplied positions are marked by two markers of PGPLOT type 3 (small
crosses), and a white line is drawn between them (forming a ‘chain’). The selected positions are
written to an output catalogue stored in file zz.FIT. We now sample the data in the two images
along this profile to create a pair of one-dimensional NDFs (m31_prof and iras_prof):

% profile m31 incat=zz out=m31_prof
Alignment has occurred within the SKY Domain.

69 SUN/95.45 —The Graphics Database

Profile contains 38 samples.

% profile iras incat=zz out=iras_prof
Alignment has occurred within the SKY Domain.
Profile contains 38 samples.

We want to draw the two line profiles in a new plot in the clear area at the bottom right of the
X-window. We therefore need to create a new FRAME picture. This time we use PICDEF in ‘XY
mode’, in which the bounds of the new FRAME picture are given explicitly using parameters
UBOUND and LBOUND (we could have used cursor mode again; we use XY mode just to
explore the different possibilities):

% picdef mode=xy lbound=\[0.93,0.03\] ubound=\[1.67,0.54\] nooutline
Bounds are (0, 0) and (1.701635, 1)

The bounds are supplied in the BASEPIC Frame (the bounds reported by the application are
the bounds of the entire BASE picture). The new FRAME picture is, as usual, made the current
picture by PICDEF and so any subsequent graphics applications will draw in the new FRAME
picture.

We now draw the first of the two line profiles:

% linplot m31_prof style=’"tickall=0,colour(curve)=black, \
drawtitle=0,label(2)=DSS data value (black)"’

The X-window should now look like Figure 6. The plotting attributes specified by the
STYLE parameter do the following; tickall=0 stops tick marks from being drawn on the
un-labelled edges (i.e. the top and right edges); colour(curve)=black specifies that the data
curve is to be drawn in black; drawtitle=0 prevents a title being drawn at the top of the plot;
label(2)=DSS data value (black) specifies the textual label for the left hand edge.

We now draw the second line plot over the top of the first line plot:

% linplot iras_prof noclear noalign style=’"edge(2)=r,tickall=0, \
colour(curve)=white,drawtitle=0, \
label(2)=IRAS data value (white)"’

Again, the NOCLEAR keyword prevents LINPLOT from clearing the graphics device before
drawing the new line plot. Instead, the new line plot is drawn within the same axes as any
existing line plot within the current picture. By default, the new line plot would adopt the
bounds of the two existing axes. This would be inappropriate in this case since the two images
have very different data scales. To prevent this, we specify the NOALIGN keyword, which
causes the default bounds for the new axes to be determined from the supplied data instead of
the existing line plot. The STYLE parameter is similar to the previous line plot except that the
data values are annotated on the right hand edge (edge(2)=r), the data curve is drawn in white,
and data label is different.

The X-window should now look like Figure 7.

SUN/95.45 —The Graphics Database 70

Figure 6: Data trace through the visual image.

As a final touch, we will add two ‘warp’ lines to the display joining the corners of the box
marking the enlarged image area to the corresponding corners on the enlarged image. CURSOR
can be used to draw these lines, but we need to take a little care. Normally, graphics produced
by CURSOR will be clipped at the edge of the picture in which the supplied positions fall. In
our case, the required lines start in one picture (the main image display DATA picture), but
end in another (the magnified image DATA picture). To avoid the lines being clipped when
they leave the main image DATA picture, we first ensure that the current picture is the BASE
picture (i.e. the whole screen), and we tell CURSOR to report positions within the current picture.
Normally, CURSOR reports each position within the most recent picture under the cursor, but
setting parameter MODE=CURRENT when running CURSOR means that the reported positions
always refer to the co-ordinate system of the current picture. So, first make the BASE picture
the current picture. This is done using PICLIST, remembering that the BASE picture is always
picture number 1:

% piclist picnum=1

We now run CURSOR to draw the first warp line:

% cursor plot=poly mode=current maxpos=2

71 SUN/95.45 —The Graphics Database

Figure 7: Data traces through both images.

Position the pointer over the top left corner of the black box marking the selected image section
in the main image display, and click the left button. Then position the pointer over the top left
corner of the border surrounding the enlarged image display, and click again. A line is drawn
between these two points.

We now run CURSOR again to draw the second warp line:

% cursor plot=poly mode=current maxpos=2

Point and click over the bottom right corners of the two boxes this time. The final X-window
should look now look like Figure 8.

11.2 Other Graphics Database Facilities

Various other facilities related to the graphics database exist as well as those described in the
previous section. This section gives a brief description of a few more:

• A ‘label’ can be associated with a picture, using application PICLABEL. This provides a
convenient ‘handle’ by which pictures can be referred to. For instance:

% piclabel fred

SUN/95.45 —The Graphics Database 72

Figure 8: The complete display with warps.

will give the label FRED to the current picture. This picture could be made current again
at a later time by re-selecting it using PICSEL:

% picsel fred

Any label associated with a picture is displayed in the list produced by PICLIST.

• PICDEF has one further mode—Array. This enables you to create an n×m grid of new
FRAME pictures. It also has a mechanism for labelling all the pictures, so you can easily
switch between the elements of the picture array. You might use the following command
in a shell script to display a series of up to twelve spectra:

% picdef mode=a prefix=spec xpic=3 ypic=4

The bottom-left picture would be labelled SPEC1 and the rest are numbered in sequence
from left to right to SPEC12—the top-right picture. You’d call PICSEL to select each picture
in turn via a while loop in a C-shell script (see Section 19.1). Since this is a common
operation a shorthand command, PICGRID, is available. For instance:

% picgrid 3 4

is equivalent to the previous example, except that the pictures are labelled 1 to 12.

73 SUN/95.45 —The Graphics Database

• You can see that montages of pictures can rapidly be built. Occasionally, you will want
some earlier picture to become the current picture. As we’ve seen, a labelled picture can
be recalled via PICSEL, but not all pictures will be labelled, especially ones with name
DATA, because of the rule that applications must not change the current picture. Another
way to select a new current picture is via the command PICCUR. It displays a cursor.
Move the cursor to lie on top of the picture you require and select a point following the
instructions (usually by pressing the left-button of the mouse), then exit (normally by
hitting the right-hand mouse button). Generally, this will be fine, but you can have cases
where one plot is still visible through a transparent plot drawn subsequently. If the later
picture extends entirely over the image you require, PICCUR will not let you access it.
The moral is “be careful when arranging your pictures”. A picture may only be partially
obscured, so by moving the cursor around and hitting the left-hand button you can often
find a portion that is topmost. PICCUR reports the name, comment and the label (if it
there is one) of the picture in which the cursor is located to assist you. It is usually quite
obvious where pictures begin and end, so in practice it is easier than described here.

• If you do get lost or forget what and where the current picture is, the GDSTATE command
will come to your rescue. You can even plot an outline with the OUTLINE keyword if you
can’t visualise the device co-ordinates. In the following example, the current picture does
not have a label. If it did this too would be listed by GDSTATE:

% gdstate

Status of the xwindows window graphics device...

The current picture is a FRAME picture.
Comment: KAPPA_PICDEF
Current co-ordinate Frame: BASEPIC

Picture bounds in the BASEPIC Frame:
Axis 1 (X) : 0.516 to 0.891
Axis 2 (Y) : 0.010 to 0.605

11.3 The Co-ordinate Frames Associated with a Picture

Each picture in the graphics database has associated with it several co-ordinate Frames. Some of
these describe positions within the displayed data array, and others describe the corresponding
positions on the graphics device. Each Frame is referred to by a Domain name (see Section 12.2
for more information about co-ordinate Frames and Domains).

The following Domains may be used to specify positions within any picture:

GRAPHICS — This gives positions in millimetres from the bottom left corner of the graphics
device.

BASEPIC — This gives positions within a normalised co-ordinate system spanning the BASE
picture (i.e. the entire graphics device). The units on both axes are set so that either the
width or the height of the graphics device, whichever is smaller, is set to 1.0 (put another
way, a unit square would fit in the picture and span the shorter axis). The bottom-left
corner of the graphics device is (0, 0).

SUN/95.45 —The Graphics Database 74

NDC — Normalised Device Co-ordinates, which are similar to BASEPIC but specifies positions
in a normalised co-ordinate system in which the bottom-left corner has co-ordinates (0, 0)
and the top-right corner has co-ordinates (1, 1). Thus, for a non-square device the scales
on the two axes will be different.

CURPIC — similar to BASEPIC except that it covers only the specified picture. Thus, the
bottom-left corner of each picture is at (0, 0) and the shorter dimension of each picture has
length 1.0.

DATA pictures have additional co-ordinate Frames inherited from the WCS information (see
Section 12) associated with the displayed data. The details of the available Frames will depend
on the application that created the picture and the nature of the data. For instance, if an image is
displayed in which the current Frame is a SKY Frame (calibrated in RA/DEC for instance), then
the Domains GRID, PIXEL, AXIS and SKY will also be available.

Pictures created by older applications that do not yet support WCS information will not have all
of these Frames. They will still have GRAPHICS, BASEPIC, NDC and CURPIC Frames, but the
only additional Frames will be:

AGI_WORLD - This corresponds to AGI ‘world’ co-ordinates.

AGI_DATA - This corresponds to AGI ‘data’ co-ordinates.

The interpretation of both these Frames will depend on the application that created the picture,
and should be described in the associated documentation. Note, the AGI_DATA Frame may not
always be present. This again depends on the application.

11.4 The Graphics Database File

The location of the graphics database file can be controlled by setting the environment variable
AGI_USER to the desired location. If AGI_USER is undefined, the database file is placed in your
home directory. Thus by default the file is $HOME/agi_<node>.sdf, where you substitute your
computer’s node name for <node>, e.g. /home/dro/agi_rlsaxp.sdf. A new database is created
when you run a graphics application if none exists. AGI will purge the database for a device if
the graph window has changed size, or if you switch between portrait and landscape formats
for a printer device.

The contents of the graphics database are ephemeral. Therefore you should regularly purge the
database entries with GDCLEAR or delete the database file.

If a graphics application is aborted abnormally (for instance by pressing CTRL/C), the graphics
database may be corrupted, potentially resulting in various forms of peculiar behaviour when
subsequent graphics applications are run. If you get ‘strange’ behaviour when running a
graphics application, deleting the graphics database file and starting again will often cure the
problem.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

75 SUN/95.45 —The Graphics Database

11.5 Working With PostScript Files

Having produced a pretty picture in an X-window, how do we get it on to a piece of paper?
There are basically two ways. The simplest way is to do a screen-shot (i.e. copy the pixel values
from the X-window into a PNG file, or some other suitable graphics format), and then print the
file on a suitable printer. There are many ways to do this, depending on your operating system
(GIMP, ImageMagick, ksnapshot, print screen, etc). The figures in this chapter were created
using this method. It’s easy—but the results only have the resolution of your X screen (typically
72 dots per inch) which is usually not good enough for general publication.

The second method is more involved, but retains the full resolution of your printer (typi-
cally 600 dots per inch or more), producing far superior results. It involves running all the
KAPPAapplications again, but using a suitable encapsulated PostScript graphics device instead
of the X-windows device used earlier in this chapter. Each application will then write its graph-
ical output to one or more disk files. If you elect to use one of the “accumulating” PostScript
devices (as indicated in the device description displayed by GDNAMES), then the PostScript
output from each application will be merged automatically into a single file. If you use one of
the other PostScript devices, each application will produce a separate output file, all of which
must be combined using PSMERGE to create a single PostScript file containing the entire plot,
which can be printed or included in another document.

We will look at these method in more detail in the rest of this section.

11.5.1 The Choice of Graphics Device

If you want to combine the results of several applications into a single plot, you need to specify
an encapsulated PostScript device. These differ from normal PostScript files in that they contain
information which allows them to be included within other PostScript files. The GDNAMES
command displays a list of all the available graphics devices, together with a brief description
of each. This should enable you to select an appropriate device name.16 There may be various
encapsulated PostScript devices available. For instance, you can choose between colour or
monochrome devices, and between portrait or landscape devices. The choice of colour or
monochrome obviously depends on the printer you will use. The choice of landscape or portrait
depends on the shape of the total plot you are producing—for tall narrow plots choose portrait,
for short wide plots choose landscape.17

Creating composite graphical output will be easier if you choose one the devices that are
described as “accumulating”, as this will avoid the need for you to merge separate PostScript
files yourself.

For instance, if you want all applications to write graphical output to a single colour landscape
encapsulated PostScript file set the graphics device as follows:

% gdset apscol_l

16Most encapsulated PostScript devices start with the string "epsf" or "aps".
17The choice or portrait or landscape may also affect the orientation of the plot when the resulting PostScript file is

included in a document.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_

SUN/95.45 —The Graphics Database 76

11.5.2 The PostScript Files

Having selected a suitable encapsulated PostScript graphics device, each KAPPA application will
either modify an existing graphics file, or produce an new output file in your current directory
containing PostScript commands, depending on whether you choose an accumulating device
or not. These files can be examined without needing to be printed by using OKULAR, EVINCE,
ghostview, etc. By default, the output file will be called pgplot.ps.

Note, if you choose not to use an accumulating device, subsequent graphics commands
will overwrite any file created by earlier graphics commands. For this reason you should
rename the output file after running each graphics command. An alternative approach is
to assign a unique value to the DEVICE parameter for each graphics command (rather
than just allowing it to default to the value of the global parameter set using GDSET). For
instance, DEVICE="epsf_l;contour.ps" would cause the command to write its output to
file contour.ps.

11.5.3 Combining the Files into a Single File

This section is only relevant if you are using a non-accumulating device.

Once all applications have been run, you will have a potentially long list of PostScript files in
your current directory (unless you use an accumulating device, in which case you will have only
one). These need to be stacked together to produce a single PostScript file which can either be
printed or included in a document. To do this, we use PSMERGE as follows18:

% psmerge display.ps contour.ps stars.ps > total.ps

This stacks the three specified PostScript files into a single file called total.ps. This will be a
normal (i.e. not encapsulated) PostScript file, so you can print it, but it will be difficult to include
it in a document. If you include the -e option when running PSMERGE, then an encapsulated
PostScript file is created instead:

% psmerge -e display.ps contour.ps stars.ps > total.ps

The output file can be included in other documents but often causes problem when being
printed.

Note, the order in which you supply the input files is important because later files are pasted ‘on
top of’ earlier files, and so can potentially obscure them. In general, you need to list the input
files in the order in which they were created.

PSMERGE has other facilities which allow you to scale, shift and rotate individual input files
before including them in the output. See SUN/164 for details.

18You can include all the PostScript files, including any that do not contain any actual drawing commands.

http://okular.kde.org/
http://wiki.gnome.org/Apps/Evince
http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun164.htx/sun164.html?xref_

77 SUN/95.45 —The Graphics Database

11.5.4 Running the Applications

The main difference between producing X-window output and PostScript output is that there
is no cursor available when using PostScript. This means, for instance, that you cannot use
PICDEF in cursor mode, and you cannot use CURSOR at all! We made use of both these facilities
when we produced Figure 8. Pictures must be defined using PICDEF in XY mode, or one of the
other positional mode (CC, BL, etc.). Annotation such as produced by CURSOR can be created
using LISTMAKE and LISTSHOW. You specify the reference positions for the annotation in any
suitable co-ordinate Frame using LISTMAKE. This creates a positions list file containing these
positions, together with associated WCS information. You then supply this file to LISTSHOW
which marks the positions on the graphics device in any of the ways provided by CURSOR.

11.5.5 Using X-windows to Produce a Prototype

It can often be advantageous to design your final plot using an X-windows graphics device.
This provides more versatility in the form of a graphics cursor and dynamic lookup table, and
also allows you to see the plot more easily. Once the plot looks right in the X-window, you can
then run the drawing commands again specifying a suitable PostScript device instead.

If you choose to do this, it can be a big help to ensure that the X-window you are using has the
same shape as your selected PostScript device. This prevents you accidentally drawing things
within regions of the X-window that are not available in PostScript. To find the require aspect
ratio, do:

% gdclear device=apscol_l
% gdstate device=apscol_l

This clears the PostScript device, and then displays the bounds of the BASE picture (all the other
pictures were erased by GDCLEAR). The results will look something like this:

Status of the apscol_l graphics device...

The current picture is a BASE picture.
Comment: Base picture
Current co-ordinate Frame: BASEPIC

Picture bounds in the BASEPIC Frame:
Axis 1 (X) : 0.000 to 1.455
Axis 2 (Y) : 0.000 to 1.000

This tells you that the aspect ratio (the ratio of the width to the height) of the PostScript device is
1.455. You should now make an X-window with this aspect ratio:

% xdestroy xwindows
% xmake xwindows -height 500 -width 730

SUN/95.45 —The Graphics Database 78

The xdestroy command deletes any existing X-window, and the xmake command creates a
new one with a height of 500 pixels and a width of 730 pixels, giving the required aspect ratio.
Of course, you could produce a larger or smaller X-window so long as the ratio of width to
height is close to 1.455.

Another tip to ease prototyping on an X-window—when you run CURSOR, always store the
selected positions in an output positions list, using Parameter OUTCAT. When you come to
produce the PostScript files, you can then supply these positions lists as inputs to LISTSHOW,
in order to mimic the annotation produced by CURSOR when you were prototyping.

11.5.6 An Example

As an illustrated example, this section describes how to produce a PostScript file containing a
plot similar to that in Figure 8. For clarity (at the time), the earlier sections of this chapter did
not adhere to either of the tips given above when prototyping in an X-window; that is, we did
not choose the shape of the X-window to match our PostScript device, and we did not save the
output from each run of CURSOR in a positions list file. For this reason, the steps taken here are
a little more complicated than they need to be, and do not mimic exactly the steps taken while
prototyping.

First, select and clear the graphics device. We choose a accumulating, monochrome, portrait,
encapsulated PostScript device:

% gdset aps_p
% gdclear
% okular pgplot.ps &

Since we are using an accumulating PostScript device, we have chosen to use OKULAR above
to display the contents of pgplot.ps. We have just run GDCLEAR, and so this will produce a
blank display. Note that we have put OKULAR into the background by appending & to the end
of the command line. This means that OKULAR will continue to run throughtout the following
example. As each subsequent graphics application modifies the contents of pgplot.ps, the
resulting composite plot will be displayed immediately within the OKULAR window, allowing
you to review progress. Other modern document viewers such as EVINCE work in the same way.

In order to produce higher quality axis annotations, we now tell PGPLOT to use embedded
PostScript fonts rather than it’s own internal lower-quality fonts. Specifically, we use a Times
New Roman font:

% setenv PGPLOT_PS_FONT Times

We could instead have set PGPLOT_PS_FONT to “Helvetica”, “Courier”, “NewCentury” or “Zapf”,
to use other fonts.

We will sometimes need to specify positions within the BASE picture. To do this we can either
use the GRAPHICS, the BASEPIC or the NDC Frame, all of which span the entire graphics
device. GRAPHICS is an absolute co-ordinate system giving millimetres from the bottom left
corner of the graphics device, and BASEPIC is a normalised co-ordinate system in which both
axes have the same scale and the shorter dimension of the graphics device has length 1.019. The

19NDC is like BASEPIC but the top-right corner of the device has NDC co-ordinates (1, 1).

http://okular.kde.org/
http://wiki.gnome.org/Apps/Evince

79 SUN/95.45 —The Graphics Database

BASEPIC Frame is usually easier to work with since it does not depend on the size of the paper.
To determine the bounds of the available plotting space in the BASEPIC Frame, use GDSTATE,
having first ensured that the BASE picture is the current picture (this will be the case at the
moment since we have just cleared the database using GDCLEAR):

% gdstate

Status of the epsf_p graphics device...

The current picture is a BASE picture.
Comment: Base picture
Current co-ordinate Frame: BASEPIC

Picture bounds in the BASEPIC Frame:
Axis 1 (X) : 0.000 to 1.000
Axis 2 (Y) : 0.000 to 1.455

The choice of a portrait PostScript device may have surprised you, given that Figure 8 seems
more naturally to fit into a landscape page. Portrait mode was chosen so that the final plot
appears up-right when included in a document. If landscape mode had been chosen, the final
plot would have been rotated by 90◦ when included in a latex document such as this one,
requiring the page to be viewed on its side. However, if we use the entire portrait page, we will
have too much vertical space between the components of the plot. To avoid this we only use
the bottom third (roughly) of the page—that is, we pretend that the top of our ‘page’ is at 0.6
instead of 1.454659.

We first create a FRAME picture at the left hand side of the page covering the full height of our
reduced ‘page’ and 0.6 of the width. We specify the upper and lower bounds of the picture
within the BASEPIC Frame, using the limits found above, giving the FRAME picture the label
‘main’ so that we can easily re-select the picture later. We then display the optical image within
it, including annotated axes:

% picdef mode=xy lbound=\[0.0,0.0\] ubound=\[0.6,0.6\] outline=no
% piclabel main
% display m31 axes mode=perc percentiles=\[30,99\] style="’colour=black,size=0.6’" \

margin=\[0.2,0.02\]

Note, we are using a monochrome PostScript device, and so the colour of all annotation produced
by DISPLAY was set to black using the STYLE parameter. This is done for all applications that
produce graphical output. We also request text 0.6 of the default size. We specified the MARGIN
parameter when running DISPLAY in order to reduce the margin on the right hand side of the
image. By default, DISPLAY leaves a margin equal to 0.2 of the width of the DATA picture. We
reduced this to 0.02 to make more room for the other components of the plot (the first value
supplied for MARGIN is the bottom margin and is left at 0.2).

We now draw a box over this image to mark the ‘selected region’ indicated in Figure 3. In this
particular case, we use LISTMAKE to create a positions list holding the RA and DEC at the two
opposite corners of the box. Alternatively, we could have saved the output from CURSOR while
prototyping, using the OUTCAT parameter. In either case, we use LISTSHOW to draw the box:

SUN/95.45 —The Graphics Database 80

% listmake ndf=m31 outcat=boxpos
POSITION - A position for the output list /!/ > 0:41:33.5 40:33:01
POSITION - A position for the output list /!/ > 0:39:25.0 40:54:17
POSITION - A position for the output list /!/ >

% listshow boxpos plot=box style=’colour=black’

Note, the PostScript output generated by LISTSHOW is merged automatically into the pgplot.ps
file created by the previous graphics applications. If we had chosen not to use an accumulating
device, we would need to rename the new pgplot.ps file created by each graphics application,
and then merge them all together at the end using PSMERGE.

Specifying ndf=m31 resulted in LISTMAKE interpreting the supplied positions as positions
within the current co-ordinate Frame of the NDF m31. It also results in all the WCS information
being copied from the NDF into the output positions list.

We now create a Frame in the top-right corner of the reduced ‘page’ in which a magnified image
of the selected region will be displayed. The picture occupies the remainder of the width left
over by the main image (0.4 of the total width) and half the height.:

% picdef mode=xy lbound=\[0.6,0.3\] ubound=\[1.0,0.6\] outline=no

We now display the selected image section within the FRAME picture just created, and overlay
contours from iras.sdf. We draw the border with twice the default width:

% display ’m31(173:213,79:114)’ border noaxes mode=scale low=3889 high=10854.78 \
borstyle=’width=2’

% picdata
% piclabel mag
% contour noclear noaxes nokey iras mode=perc percentiles=\[55,75,95\]

What are those two extra commands in the middle? Well, we will need to be able to re-select the
DATA picture holding the image when we come to draw the warp-lines. To do this we need to
label the picture now. For this reason, we use PICDATA to select the DATA picture created by
DISPLAY as the current picture, and then use PICLABEL to give the label "mag" to the picture.

We now display a title above this DATA picture. The string is centred horizontally within the
enclosing FRAME picture (i.e. half way between 0.6 and 1.0), and drawn so that its bottom edge
is placed at the top of the Frame:

% listmake frame=basepic outcat=ttlpos
POSITION - A position for the output list /!/ > 0.8 0.6
POSITION - A position for the output list /!/ >

% listshow ttlpos plot=text strings=’"IRAS 12 \gmm contours"’ just=bc

LISTMAKE is used to store the position in a positions list, and then LISTSHOW is used to
draw the title. Again, we could have saved the output from CURSOR in a positions list while
prototyping, instead of using LISTMAKE to create the positions list. The JUST parameter is set
to bc so that the title string is displayed with its bottom centre at the supplied position.

We now draw the line marking the path of the profiles that will be displayed later. We draw
them in white so that they show up against the predominantly dark background of the image:

81 SUN/95.45 —The Graphics Database

% listmake ndf=m31 outcat=prfpos
POSITION - A position for the output list /!/ > 0:41:22.7 40:35:12
POSITION - A position for the output list /!/ > 0:39:56.5 40:50:27
POSITION - A position for the output list /!/ >

% listshow prfpos plot=chain marker=3 style="’colour=white,width=3’"

The line is drawn with three times the default width. We now create the profiles as before:

% profile m31 incat=prfpos out=m31_prof
% profile iras incat=prfpos out=iras_prof

We now create a FRAME picture occupying the remaining area at the bottom right corner of the
page, and display the two profiles in it. We use line style to differentiate the two curves, instead
of colour as we did when prototyping:

% picdef mode=xy lbound=\[0.6,0.0\] ubound=\[1.0,0.3\] outline=no
% linplot m31_prof style=^style1 keystyle=’size=0.7’
% linplot iras_prof noclear noalign style=^style2

The appearances of the two plots are controlled by the two plotting styles contained in the text
files style1 and style2. style1 contains the following attribute settings:

tickall=0
colour=black
gap(2)=1000
drawtitle=0
label(2)=DSS data value (solid)
textlabgap(1)=0.02
labelunits=0

The file style2 contains the following attribute settings:

edge(2)=r
gap(2)=0.2
tickall=0
colour=black
style(curve)=2
drawtitle=0
label(2)=IRAS data value (dashed)
textlabgap(1)=0.02
labelunits=0

Now comes the complicated bit—the warp lines! The problem is that we used the cursor to
define the start and end of these lines when prototyping. This was good enough for an X-
window that has relatively low resolution, but will not do for PostScript. We cannot place the
cursor accurately enough to ensure that there is no visible gap between the end of the line and
the corresponding box corner when using PostScript, so we cannot use the positions found
while prototyping. The only way to ensure that the lines join up properly with the box corners
is to use the co-ordinates of the box corners to define the lines. First, we need to transform the

SUN/95.45 —The Graphics Database 82

box corners into the BASEPIC Frame since both ends of each line must be given within the same
co-ordinate Frame.

We start with the ‘selection box’ drawn over the main image. The corners of this box are
currently stored in the boxpos positions list. This file contains the RA and DEC at the corners of
the box, together with WCS information copied from the NDF m31. But this does not include the
BASEPIC, NDC or CURPIC Frame, which are only available within the WCS information stored
with graphics database pictures. In order to find the BASEPIC co-ordinates at the corners of the
box, we need to align the RA/DEC values in the positions list with the WCS information stored
with the first DATA picture we created (the main image), and then display the corresponding
BASEPIC co-ordinates. LISTSHOW can do this, but we need to change the current picture first.
At the moment, the current picture is the FRAME containing the line plots. If we did not change
the current picture LISTSHOW would assume that the supplied RA/DEC values refer to the line
plots (not to the main image), and would consequently give the wrong BASEPIC co-ordinates.
We use PICSEL to select the FRAME picture containing the main image (so that it becomes the
current picture), and then run LISTSHOW:

% picsel main
% listshow boxpos plot=blank frame=BASEPIC

Title: M31 (Digitised Sky Survey)

Position X Y
identifier

#1 0.3657834 0.1911708
#2 0.4269177 0.245274

The parameter assignment PLOT=BLANK tells LISTSHOW to search the graphics database for a
picture with which the positions in boxpos can be aligned, but without marking the positions in
any way on the screen. Doing this means that the co-ordinate Frames stored with the picture
are available when specifying a value for Parameter FRAME. This is necessary because the
BASEPIC Frame is only available within graphics data base pictures since it describes positions
on a graphics device.

We now find the BASEPIC co-ordinates at the corners of the magnified image. The most simple
way of doing this is to use the same RA/DEC positions. The problem with this approach is
that the bounds of the magnified image were rounded to a whole number of pixels and so may
not correspond exactly to the RA an DEC at the corners of the selection box. A more accurate
method is to use the pixel indices at the corners of the image section to define the box corners.
We first need to create a positions list holding the pixel co-ordinate bounds of the image section,
remembering to reduce the lower pixel index bounds by 1.0 in order to convert the integer pixel
indices into floatingpoint pixel co-ordinates (see Section 12.1 for more information about pixel
co-ordinates and indices):

% listmake frame=pixel dim=2 outcat=magpos
POSITION - A position for the output list /!/ > 172.0 78.0
POSITION - A position for the output list /!/ > 213.0 114.0
POSITION - A position for the output list /!/ >

83 SUN/95.45 —The Graphics Database

We now need to use LISTSHOW to get the corresponding BASEPIC co-ordinates, aligning the
above PIXEL co-ordinates with the DATA picture holding the magnified image section. Another
slight complication arises here since the required DATA picture is obscured by the DATA picture
holding the IRAS contours. Pixel co-ordinates in the IRAS image are totally different to those in
the grey-scale image, and so we need to make sure that LISTSHOW is using the correct DATA
picture. However, we labelled the required DATA picture when it was created and so we can
just use PICSEL to re-select it:

% picsel mag
% listshow magpos plot=blank frame=BASEPIC

Alignment has occurred within the PIXEL Domain.

Title: Output from LISTMAKE

Position X Y
identifier

#1 0.6473798 0.3159827
#2 0.9524395 0.5838399

We now create a positions list containing the BASEPIC co-ordinates at the ends of the upper
warp line, and draw it. By default, LISTSHOW draws within the most recent DATA picture
contained within the current picture. Since the line is not contained within a single DATA
picture, we need to tell LISTSHOW to draw within the BASE picture. This is done by setting
Parameter NAME to BASE (we also revert to drawing in black):

% listmake frame=basepic outcat=war1pos
POSITION - A position for the output list /!/ > 0.3657834 0.245274
POSITION - A position for the output list /!/ > 0.6473798 0.5838399
POSITION - A position for the output list /!/ >

% listshow war1pos plot=poly style=’colour=black’ name=base

The last drawing we need to do is to create the second warp line in the same way:

% listmake frame=basepic outcat=war2pos
POSITION - A position for the output list /!/ > 0.4269177 0.1911708
POSITION - A position for the output list /!/ > 0.9524395 0.3159827
POSITION - A position for the output list /!/ >

% listshow war2pos plot=poly name=base

That’s it. The final output is left in file pgplot.ps and should be visible in the OKULAR window.
It should look like Figure 9. However, if we had chosen not to use an accumulating PostScript
device, we would now be left with lots of PostScript files—one from each graphics application—
that now need to be stacked together to produce the final encapsulated PostScript file:

% psmerge -e display1.ps box.ps display2.ps contour.ps title.ps \
line.ps m31_prof.ps iras_prof.ps war1.ps war2.ps > total.eps

SUN/95.45 —The Graphics Database 84

Figure 9: The equivalent plot produced directly in PostScript.

Note, here we assume that each pgplot.ps file has been renamed to one of the above names
immediately after it has been created, in order to avoid it being over-written by the next graphical
application.

85 SUN/95.45 —Using World Co-ordinate Systems

12 Using World Co-ordinate Systems

12.1 Pixel Indices, Pixel Co-ordinates, and Grid Co-ordinates

In this sub-section we will look at the definition of the four basic co-ordinate systems available
in all NDFs—pixel indices, pixel co-ordinates, grid co-ordinates, and normalised co-ordinates.

Pixel indices are integer values that are used to count the pixels along each axis of an NDF. The
first pixel can be given any arbitrary pixel index, and this value is known as the pixel origin.
When a section is extracted from an NDF, the pixel origin in the extracted section is set so that
each pixel retains its original pixel indices (see Figure 10).

1 2 3 4 5 6 7

3 4 5 6 7

A 1-dimensional array of seven pixels with pixel
indices 1 to 7. The first element in the array has
pixel index 1, therefore the pixel origin is 1.

Pixels 3 to 7 are extracted into a separate array.
Each element in the new array keeps the pixel index
it had in the original array, and so the pixel origin in
this array is 3, not 1.

Figure 10: Pixel indices.

Pixel co-ordinates are floating-point values that allow positions to be specified with sub-pixel
accuracy. They are related to pixel indices as indicated in Figure 11).

Grid co-ordinates are floating-point values that are similar to pixel co-ordinates except that the
origin is fixed so that the first pixel on an axis is centred at a grid co-ordinate value of 1.0, no
matter what the pixel origin is. This corresponds to the FITS idea of ‘pixel co-ordinates’ (FITS
makes no provision for an arbitrary pixel origin). When a section is extracted from an array,
the grid co-ordinates of the extracted section include no knowledge of where the section was
located in the original array. See Figure 12).

Fraction co-ordinates are floating-point values that are normalised pixel or grid co-ordinates
such that each axis extends from zero to one. Thus in Figure 13 pixel co-ordinate 2.0 or grid

SUN/95.45 —Using World Co-ordinate Systems 86

3 4 5 6 7

Pixel indices are integer values — pixel co-ordinates are
floating point values. The pixel with index I covers a range
of pixel co-ordinates from (I - 1.0) to (I).

2.0 3.0 4.0 5.0 6.0 7.0

Pixel Indices

Pixel Co-ordinates

Figure 11: Pixel co-ordinates.

Figure 12: Grid co-ordinates.

co-ordinate 0.5 becomes 0.0 in fraction co-ordinates, and pixel co-ordinate 7.0 or grid co-ordinate
5.5 becomes 1.0 in fraction co-ordinates.

12.2 Co-ordinate Frames, Axes and Domains

A co-ordinate Frame is a system of co-ordinate axes which can be used to specify a position within
an NDF data array. Within an NDF such co-ordinate Frames also have associated descriptive
information such as axis labels, axis units, a Frame title, etc. These are called the attributes of the
Frame, and the most commonly used are listed briefly below (full descriptions of these attributes
are included in Appendix D.

87 SUN/95.45 —Using World Co-ordinate Systems

Figure 13: Fraction co-ordinates.

Digits : Number of digits of precision

Domain : Physical domain described by the co-ordinate system

Epoch : A date & time that defines the co-ordinate system

Format(axis) : Format specification for axis values

Label(axis) : Axis label

Naxes : Number of Frame axes

Symbol(axis) : Axis symbol

System : Specific co-ordinate system used to describe the domain

Title : Frame title

Unit(axis) : Axis physical units

The single most important attribute is the Frame Domain, which is an uppercase character string
indicating the physical domain in which the co-ordinate system is defined. Frames with the
same Domain can, in general, be aligned with each other.

Frames with the following Domain values are defined within every NDF, no matter how the
NDF is created.

GRID — Corresponds to grid co-ordinates.

PIXEL — Corresponds to pixel co-ordinates.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

SUN/95.45 —Using World Co-ordinate Systems 88

FRACTION — Corresponds to normalised pixel or grid co-ordinates where each scaled pixel
axis spans the range zero to one.

AXIS — Corresponds to the co-ordinate system defined by the AXIS structures within the
NDF.

An AXIS structure is a one-dimensional array that maps pixel index along a given axis
on to another related co-ordinate axis (e.g. wavelength) – the values on the other axes
are assumed to be constant. Each dimension in the NDF should have an associated AXIS
structure. Such structures can be created (for instance) using SETAXIS. If the NDF does
not have defined AXIS structures, then a default AXIS Frame will be used in which the
values along each axis correspond to pixel co-ordinates.

AXIS structures can only be used to represent independent axes. For instance, celestial
co-ordinates cannot (in general) be described using AXIS structures because celestial
longitude and latitude may both vary along any given row or column of an NDF.20 If an
application is used that renders the AXIS structures in an NDF invalid, then the AXIS
structures will not be copied to the output NDF. For instance, if ROTATE is used to rotate
an NDF by an angle that is not a multiple of 90◦, then the output NDF will not have any
AXIS structures, and so the AXIS Frame will default to pixel co-ordinates.

The dimensionality of each of these Frames is equal to that of the NDF (e.g. a two-dimensional
NDF will have two-dimensional PIXEL, FRACTION, GRID, and AXIS Frames). Axes within a
Frame are identified by an integer index in the range 1 to the number of axes in the Frame. The
above Frames are not stored permanently in the NDF, but are generated automatically by the
NDF access library each time a reference is made to them.

In addition to the PIXEL, FRACTION, AXIS, and GRID Frames, an NDF may also contain
any number of additional co-ordinates Frames. Descriptions of these extra Frames, together
with recipes for converting positions between them, are stored permanently in the NDFs WCS
component which may be examined using the NDFTRACE command. Application WCSADD
allows new Frames to be added to the WCS component (positions in the new Frame must be
related to the corresponding positions in an existing Frame by one of several different supported
types of Mapping). WCSREMOVE allows Frames to be removed from the WCS component.

Two common additional Frame Domain options are SKY and SPECTRUM. SKY is reserved to refer
to two-dimensional Frames that describe celestial longitude and latitude (known as ‘SkyFrames’).
SPECTRUM is reserved to refer to one-dimensional Frames that describe position within a
spectrum (known as ‘SpecFrames’). These sub-classes of Frame have additional attributes
indicating the particular celestial or spectral co-ordinate system in use (e.g. equatorial, galactic,
ecliptic, wavelength, frequency, radio velocity, optical velocity, etc.), and any required qualifying
parameters (equinox, rest frequency, standard of rest, etc.). Instances of these Frames can be
added to an NDF by importing suitable FITS headers using FITSDIN, FITSIN or the CONVERT
package (see SUN/55). Alternatively, a SkyFrame can be created directly by specifying the pixel
co-ordinates of stars with known celestial co-ordinates (see SETSKY and GAIA).

20For this and other reasons, new applications will avoid using AXIS structures, and make use of the more versatile
WCS component instead.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Mapping
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

89 SUN/95.45 —Using World Co-ordinate Systems

12.3 FrameSets, and the Current Frame

Any co-ordinate Frames described in the WCS component, together with the standard GRID,
FRACTION, PIXEL, and AXIS Frames, form a collection of inter-related Frames called a FrameSet.
A FrameSet contains descriptions of each Frame, plus recipes (called Mappings) describing how
to convert positions from one Frame to another.21

Frames within a FrameSet are distinguished by their attribute values, primarily their Domain
value. In addition, each Frame has an integer Frame index. These indices are (in general) allocated
sequentially in chronological order as Frames are added into the FrameSet. Applications that
require the user to specify a Frame will usually allow the Frame to be specified either by Domain
name, or by index. Frame indices can be examined using NDFTRACE (see below).

One Frame within the FrameSet of an NDF is nominated as the current co-ordinate Frame. When-
ever an application reports positions within an NDF (for instance, when annotating plot axes),
the positions reported will refer to the current co-ordinate Frame. Likewise, when-ever an
application requests a position from the user (for instance, the position to be placed at the
centred of a displayed image), it will expect the position to be given within the current co-
ordinate Frame of the NDF,

The contents of the WCS component of an an NDF can be examined using NDFTRACE. By
default, this just shows the number of co-ordinates Frames defined within the NDF (including
the four standard ones), and the Title and Domain of the current co-ordinate Frame. More detail
can be obtained using the keywords FULLWCS and FULLFRAME. The first causes the Title,
index and Domain of all Frames to be displayed, together with the index of the current Frame.
The second causes a more complete description of each Frame to be displayed, including axis
labels, units, celestial co-ordinate system (for SkyFrames), etc.

The current co-ordinate Frame can also be examined using WCSFRAME. This is an important
application because it also allows you to change the current co-ordinate Frame in the NDF. For
instance:

% wcsframe m31 pixel

will make the PIXEL Frame the current co-ordinate Frame in the NDF m31. After this, all
references to positions within the NDF m31 will refer to pixel co-ordinates. You can also change
the current co-ordinate system using WCSATTRIB:

% wcsattrib myspectrum set system Frequency
% wcsattrib myspectrum set unit GHz
% wcsattrib myspectrum set sor Helio

The above changes the values of the ‘System’, ‘Unit’ and ‘SOR’ attributes of the current Frame
in the NDF myspectrum so that it represents heliocentric frequency in units of GHz (this assumes
that the current Frame in myspectrum is a SpecFrame since only a SpecFrame supports these
particular attribute values).

21A Mapping need not necessarily be defined in both directions. For instance, a Mapping that goes from a
three-dimensional Frame to a two-dimensional Frame (maybe by simply throwing away one of the axis values) may
not be defined in the other direction. KAPPA applications will report an error if a Mapping is not defined in the
required direction. Another common example of a uni-directional Mapping is that between the GRID and AXIS
Frames in cases where the AXIS structures are non-monotonic.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_FrameSet
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Mapping
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

SUN/95.45 —Using World Co-ordinate Systems 90

12.4 Reserved Domain Names

New co-ordinates Frames can be created and added into an NDF using WCSADD. When you
create a new Frame you should give it a meaningful Domain name which indicates the sort of
co-ordinates that it represents. You are free to choose any name you like (white space is removed,
and lower case characters are converted to upper case before using the supplied Domain string),
but you should usually avoid the following reserved Domain names:

GRID — Reserved to represent grid co-ordinates (in units of pixels).

PIXEL — Reserved to represent pixel co-ordinates (in units of pixels).

AXIS — Reserved to represent AXIS co-ordinates (in arbitrary units).

FRACTION — Reserved to represent normalised pixel/grid co-ordinates from zero to one
(unitless).

SKY — Reserved to represent celestial longitude and latitude (in any suitable system, but
always stored internally in units of radians).

SPECTRUM — Reserved to represent position within an electro-magnetic spectrum (various
spectral systems and units are supported).

TIME — Reserved to represent moments in time (various time-scales and units are supported).

DSBSPECTRUM — Reserved to represent position within an dual-sideband electro-magnetic
spectrum.

GRAPHICS — Reserved to represent positions on a graphics device in units of millimetres,
measured from the bottom-left corner of the device.

BASEPIC — Reserved to represent positions on a graphics device in normalised units, in which
the shorter axis of the graphics device has length 1.0.

NDC — Reserved to represent positions on a graphics device in normalised units, in which the
both axes of the graphics device have length 1.0.

CURPIC — Reserved to represent positions in normalised units within each individual graphics
database picture. The shorter axis of each picture has length 1.0 in this Frame.

When two Frames are joined together to form a compound Frame describing a co-ordinate space
of higher dimensionality, the default Domain name for the compound Frame is formed from the
individual Domain names, separated by a hyphen. For instance, the WCS FrameSet associated
with a spectral cube will often contain a (compound) Frame with the Domain name “SKY-
SPECTRUM”. Thus you should also avoid Domain names that contain a hyphen, particularly if
they also contain any of the reserved Domain names listed above.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

91 SUN/95.45 —Using World Co-ordinate Systems

12.5 Specifying a Co-ordinate Frame

Several applications (WCSFRAME, CURSOR, LISTMAKE, etc.) have parameters that are used
to select a co-ordinate Frame. These parameters are usually called FRAME. When selecting a
Frame from an existing FrameSet (e.g. read from the WCS component of an NDF), the Frame
may be specified in one of the following ways:

• As an integer Frame index within the specified FrameSet starting at 1 for the first Frame.

• As a ‘Domain’ name (e.g. PIXEL, AXIS, SKY), selected from those available in the FrameSet.

• As a Sky Co-ordinate System (SCS) specification. This notation has been inherited from the
IRAS90 package (see SUN/163, and can be used to indicate a specific celestial co-ordinate
system. Simply specifying the Domain name SKY will select any SkyFrame that is present,
irrespective of the particular celestial co-ordinate system that the SkyFrame represents.
If you want to request a particular celestial co-ordinate system (e.g. galactic, equatorial,
ecliptic, etc.), then use an SCS specification. If the requested system is not present, but a
related SkyFrame can be found for a different system, then the SkyFrame will be modified
so that it represents the requested system (the Mappings between the SkyFrame and the
other Frames in the FrameSet will also be modified appropriately).

An SCS specification is made up of two parts; a co-ordinate system name, followed by an
optional epoch giving the reference equinox. Any of the three system names EQUATORIAL,
ECLIPTIC and GALACTIC can be used. Case is insignificant, and abbreviations may be
given.

Ecliptic and equatorial co-ordinates are referred to the mean equinox of a given epoch. This
epoch is specified by appending it to the end of the name of the sky co-ordinate system,
in parentheses; for instance EQUATORIAL(1983.5) (only the four most significant decimal
places are used). The epoch may be preceded by a single character, B or J, indicating if the
epoch is a Besselian epoch (B) or a Julian epoch (J). If this character is missing (as in the
above example), then the epoch is assumed to be Besselian if it less than 1984.0, and Julian
otherwise. If no equinox is specified in this way, then a default of B1950.0 is used.

If a Julian epoch is used to specify the reference equinox for an equatorial co-ordinate
system, then the equatorial co-ordinates are assumed to be in the IAU 1976, FK5, Fricke
system. If the equinox is specified using a Besselian epoch, then the co-ordinates are
assumed to be in the FK4, Bessel-Newcomb system.

When a Frame is specified using an SCS specification, it will usually also be necessary to
specify the epoch at which the positions were determined. This will be done using the
separate Parameter EPOCH. This epoch is required because some celestial co-ordinate
systems are non-inertial and rotate slowly with respect to other celestial co-ordinate
systems, introducing fictitious proper motions. Knowing the date at which the positions
were determined allows the effect of this fictitious proper motion to be eliminated when
converting between different systems.

When specifying a new Frame (rather than selecting an existing Frame from a FrameSet), you
can either give a Domain name, or an SCS specification, but you cannot give a Frame index.
Any string may be used as a Domain name, and you will usually be required to specify the
number of axes in the Frame. The exception to this is if you specify one of the Domain names

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_FrameSet
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163{}.htx/sun163{}.html?xref_)
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

SUN/95.45 —Using World Co-ordinate Systems 92

SKY, GRAPHICS, NDC, CURPIC or BASEPIC, in which case a two-dimensional Frame is always
created.

The nature of the current Frame can also be changed using WCSATTRIB, which allows new
values to be assigned to specified Frame attributes. For instance, assigning a new value to the
System attribute will change the co-ordinate system used to describe positions within the domain
covered by the Frame. The main attributes relevant to Frames are described in Appendix D.

12.6 Propagation of WCS Information

KAPPA applications that create an output NDF on the basis of a given input NDF usually copy
the contents of the WCS component from the input to the output, modifying it as appropriate
to take account of any linear mapping of pixel co-ordinates introducing by the application. The
following are exceptions to this rule:

• Applications in which positions in the output NDF are not straight-forwardly related to
corresponding positions in the input NDF (e.g. ELPROF, CHAIN, RESHAPE).

• Applications in which the output NDF is not a direct representation of the input NDF (e.g.
FOURIER).

The output NDFs produced by such applications will contain no WCS component (but they
will still have the four standard Frames—GRID, FRACTION, PIXEL and AXIS—albeit the AXIS
Frame will probably just describe pixel co-ordinates since these applications will not usually
copy the AXIS structures either).

The application WCSCOPY can be used to copy the WCS component from one NDF to another,
optionally introducing a linear transformation of pixel co-ordinates in the process. This can be
used to add WCS information back into an NDF that has been stripped of WCS information by
one of the above applications.

12.7 Reading WCS Information Stored in Other Forms

When a KAPPA application requires WCS information, it looks first in the WCS component of
the NDF. If no WCS component is defined within the NDF, then it will attempt to obtain WCS
information from two other locations, in the following order:

(1) If an IRAS90 astrometry structure (see SUN/163) is present within the NDF, then WCS
information will be read from it, and added to the FrameSet holding the GRID, FRACTION,
PIXEL, and AXIS Frames. IRAS90 astrometry structures have been used by several
applications packages in the past for storing astrometry information. KAPPA contains the
SETSKY application which can be used to create such a structure, either by supplying
the required numerical parameters (pixel size, image orientation, etc.), or by doing a
least-squares fit to a set of pixel co-ordinates with corresponding celestial co-ordinates.

(2) If no IRAS90 astrometry structure can be found, an attempt is made to read WCS informa-
tion from the FITS header cards in the FITS extension.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_FrameSet

93 SUN/95.45 —Using World Co-ordinate Systems

Note, KAPPA applications always write WCS information in the form of a standard WCS
component. You should remember that astrometry information stored within an IRAS90 or
FITS extension will not be corrected to take account of geometric manipulation produced by
applications such as ROTATE, COMPAVE, etc. Use of such applications will render IRAS90 and
FITS astrometry information incorrect. For this reason, applications always warn the user if
astrometry information is being read from an IRAS90 or FITS extension. These extensions can
be deleted if necessary, using the ERASE command. For instance:

% erase m31.more.iras90
% erase m31.more.fits

will erase the IRAS90 and FITS extensions from the NDF m31.

12.8 Using SETSKY to Add a Celestial Co-ordinate Frame to an NDF

As mentioned in the previous section, the SETSKY application stores astrometry information
within an NDF in the form of either a WCS component or an IRAS90 astrometry structure.

To use SETSKY, you need to know the celestial co-ordinates at a set of points within the image.
You may be able to find these by comparing your image with other images, such as those
available from the Digitised Sky Survey, which already have astrometry information associated
with them. You create a text file holding the pixel and celestial co-ordinates at a single position
on each line. For instance, if you have five known RA/DEC (B1950) positions in your image, the
file may look like:

0 49 05.9, 42 25 30, 32, 266
0 48 31.7, 40 03 36, 39, 29
0 37 03.0, 40 04 48, 258, 31
0 36 54.6, 42 26 47, 257, 268
0 45 47.7, 41 54 03, 93, 213

The first column gives the RA values (hours, minutes and seconds), the second gives the DEC
values (degrees, arcminutes and arcseconds), the third gives the pixel X co-ordinates, and the
fourth gives the pixel Y co-ordinates.

If this file is called pos.dat, then the following command can be used to create a WCS compo-
nent:

% setsky m31 ^pos.dat coords=’equ(b1950)’ epoch=1998.0 projtype=gno

Trying GNOMONIC projection...

These parameter values give an RMS positional error of 0.3647723 pixels ...
Projection type : GNOMONIC
Sky co-ordinates of reference point : 0h 40m 31.29s, 42d 37m 53.15s
Image co-ordinates of reference point: (190.3287,285.795)
Pixel dimensions : (36.04451,36.00686) arcsecs
Position angle of image Y axis : 359d 38m 35.77s
Tilt of celestial sphere : 0d 0m 0.00s

SUN/95.45 —Using World Co-ordinate Systems 94

Note the up-arrow character ("^") before the file name (pos.dat). This tells SETSKY that the
string is a file name. A gnomonic (or tangent plane) projection was requested using the PROJTYPE
parameter. If no projection type is specified then SETSKY will try four different projections
(gnomonic, Aitoff, Lambert equivalent cylindrical, and orthographic) in turn, and choose the
one that gives the smallest RMS position error.

An alternative way to add a celestial co-ordinate Frame to an NDF is to use the facilities of
GAIA (see SUN/214). This provides much more sophisticated facilities.

12.9 Converting an AXIS structure to a SpecFrame

For many years, the calibration of spectral axes has been recorded in the form of AXIS structures
within the NDF. As mentioned above, each pixel axis in an NDF has an associated AXIS structure,
which is a one-dimensional array containing an element for each pixel on the associated axis.
The value of each element gives the ‘axis’ value for the pixel.

Spectral axis calibration can now also be recorded in the form of a ‘SpecFrame’ within the
WCS component. A SpecFrame is a Frame that can describe spectral axes in many different
forms (wavelength, frequency, various forms of velocity, etc.), with many different units, and
measured in various rest frames. A SpecFrame ‘knows’ how to convert between all these
different forms. Let’s say you have two spectra—in one the current co-ordinate Frame is
a SpecFrame representing frequency in GHz as measured in the rest frame of the telescope
(i.e. ‘topocentric frequency’), and in the other the current co-ordinate Frame is a SpecFrame
representing radio velocity in km/s measured in the kinematic Local Standard of Rest. You
want to overlay plots of these two spectra for comparison purposes, so you display the first
using LINPLOT. This produces a plot in which the x axis is frequency measured in GHz. You
then display the second spectrum, again using LINPLOT but this time specifying clear=no on
the command line in order to prevent the previous plot from being erased. The SpecFrame
representing radio velocity in the second spectrum automatically adjusts itself to represent the
same system as the currently displayed plot (topocentric frequency in this example), so the plots
can be compared directly. The conversion includes the effects of the Doppler shift caused by the
differing standards of rest used by the two spectra.

So the question arises; “How can I add a SpecFrame to my existing NDFs that only have an
AXIS structure?”. This is simple to do using the WCSADD command. Let’s assume you have a
one-dimensional NDF called fred containing an AXIS structure holding the frequency at the
centre of each pixel in units of GHz. The following command will add an appropriate SpecFrame
to the WCS component of the NDF (and will also make it the current Frame):

% wcsadd fred frame=axis maptype=unit frmtype=spec domain=SPECTRUM \
attrs="’System=freq,Unit=GHz’"

The FRMTYPE parameter indicates that a SpecFrame should be created. The ATTRS parameter
gives the attribute values to be assigned to the SpecFrame (note the quotes to protect the string
from interpretation by the UNIX shell). The DOMAIN parameter is given the default domain
for a SpecFrame (and should usually not be changed). The MAPTYPE and FRAME parameters
indicate that this new SpecFrame should be connected to the existing AXIS Frame using a
UnitMap—i.e. the frequency values held within the AXIS structure are identical to the frequency
values described by the SpecFrame.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

95 SUN/95.45 —Using World Co-ordinate Systems

The above setting for the ATTRS parameter gives the bare minimum of information—there are
several other items of information that could have been given. For instance, the above command
does not indicate the standard of rest to which the frequency values refer. Neither does it
indicate the source position, date of observation, or the observers geographical position (all of
which may be needed to enable conversion between different standards of rest). In general you
should specify as much information as you can. To do this, you can either include the extra
information in the ATTRS parameter value above, or you can add the information later using
WCSATTRIB. For example:

% wcsattrib fred remap=no set Stdofrest topo
% wcsattrib fred remap=no set RefRA ’"10:12:24.2"’
% wcsattrib fred remap=no set RefDec ’"-32:10:14"’
% wcsattrib fred remap=no set Epoch ’"2003-10-2 12:13:00"’
% wcsattrib fred remap=no set ObsLat ’"N19:49:33"’
% wcsattrib fred remap=no set ObsLon ’"W155:28:47"’

These commands set new values for named attributes within the current Frame of NDF fred.
These attributes are described in Appendix D. The inclusion of "remap=no" is important: it
tells the command to change the Frame attribute without changing the Mappings between
Frames accordingly. If the default value of "remap=yes" were used, the Mappings that connect
the SpecFrame to the other Frames within the WCS FrameSet would be modified in order to
ensure that the position of each pixel is unchanged. The default mode ("remap=yes") should
be used if you already have a fully and correctly specified SpecFrame within the WCS com-
ponent which you want to change to describe a different system. For instance, if you have a
SpecFrame describing frequency at each pixel, and you want to change it so that it describes the
corresponding wavelength at each pixel, then doing:

% wcsattrib fred set System wave

will modify the Mapping between the pixel Frame and the SpecFrame using the relationship
“wavelength = speed of light/frequency”.

However, if you have a partially or incorrectly specified SpecFrame you should usually use
"remap=no". For instance, of the above SpecFrame, which gives the frequency at each pixel,
was discovered to be incorrect in that the AXIS values were actually wavelength values and
not frequency at all, then you would want to correct the WCS component by changing the
System attribute of the SpecFrame from "freq" to "wave". In this situation you want to leave
the Mapping from the pixel Frame to the spectral Frame unchanged since the Mapping already
gives the correct wavelength value (previously, but erroneously, thought to be a frequency value).
So here you would do:

% wcsattrib fred remap=no set System wave

12.10 Specifying Attributes for sub-Frames within Compound Frames

Let’s say you have a spectral cube in which the WCS axes are wavelength, RA and Dec. In
this case, the current co-ordinate Frame will actually be a ‘compound’ Frame containing two

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Mapping
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_FrameSet

SUN/95.45 —Using World Co-ordinate Systems 96

‘component’ Frames; a one-dimensional spectral Frame and a two-dimensional sky Frame. If we
consider an attribute such as System (which all classes of Frame have), we now seem to have
three different Systems to consider; the System value for the component spectral Frame, the
System value for the component sky Frame and the System value for the compound Frame as a
whole. So if we want to set the spectral system to "optical velocity", and celestial system to
"Galactic" what do we do? The answer is to include the index of an axis within the attribute
name. If WCS axis 1 is the spectral axis, 2 is the RA axis and 3 is the Dec. axis, then we would
do the following:

% wcsattrib fred set "System(1)" vopt
% wcsattrib fred set "System(2)" galactic

In fact, we could have used "System(3)" in place of "System(2)" since Axes 2 and 3 are both
contained within the same sky Frame and so setting the System attribute for either one will have
the same effect. We could now examine the attributes as follows:

% wcsattrib fred get "System(1)"
% wcsattrib fred get "System(2)"

These commands will display vopt and Galactic, as expected. Note, the following command:

% wcsattrib fred get "System"

will display Compound since it is displaying the System value of the compound Frame as a whole
(because no axis index was included).

To continue this example, the SpecFrame class (which represents spectral axes) has an attribute
called StdOfRest (standard of rest). This attribute is specific to the SpecFrame class and is not
recognised by other classes of Frames. If we do:

% wcsattrib fred set "StdOfRest" LSRK

we will get an error saying the attribute name is unknown. This is because compound Frames
do not have a StdOfRest attribute. If we want to set the standard of rest, we must indicate the
index of the spectral axis as follows:

% wcsattrib fred set "StdOfRest(1)" LSRK

Likewise, if we wanted to set the Equinox attribute of the sky Frame, we could say:

% wcsattrib fred set "Equinox(2)" "J2003.5"

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

97 SUN/95.45 —Interaction Mode

13 Interaction Mode

We have seen the different co-ordinate systems KAPPA uses. Now we address how the applica-
tions obtain co-ordinate information itself. Applications often permit a variety of mechanisms
for obtaining those co-ordinates. Typical possibilities are as follows.

Catalogue — In this mode the application reads a file containing a positions list. This can
either be a FITS binary table, or a text file in STLformat, and can contain WCS information
allowing positions within the catalogue to be aligned with other data. Positions lists can
be created by several applications such as CURSOR, LISTMAKE, CENTROID, etc.

Cursor — This mode utilises the cursor of the current graphics device. For this to work the
array must already be displayed as an image, or a contour plot, or line plot (provided
the application handles one-dimensional data), and the picture is stored in the graphics
database.

Interface — This mode obtains co-ordinates from the parameter system, usually in response to
prompting.

File — In this mode the application reads a text file containing a list of co-ordinates in free
format, one object per record. There may be commentary lines in the file beginning with
or !. The format and syntax of the files are ad hoc, and are described in the application
documentation.

Applications that permit these options have a parameter, called MODE, by which you can
control how positional data are to be acquired. It would be tedious to have to specify a mode
for each application, therefore KAPPA has a global parameter—the interaction mode—to which
each application’s interaction-mode parameter is defaulted. The global value remains in force
until you change it by assigning an application’s interaction mode on the command line. The
following examples shows the effect of the global parameter. For compactness GLOBALS will
merely show the interaction mode.

First we display an image on the xw windows device.

ICL> gdset xw
ICL> display $KAPPA_DIR/ccdframec mode=pe \
Data will be scaled from 2366.001 to 2614.864.
ICL> globals
The current interaction mode is : <undefined>

Now we obtain the centroids of a couple of stellar/galaxian images via each of the interaction
modes. First in cursor mode. Note that CENTROID obtains the name of the input NDF from the
graphics database in this mode. If you need to preview which NDF is going to be selected use
the PICIN command.

ICL> centroid mode=c
Current picture has name: DATA, comment: KAPPA_DISPLAY.
Using /star/bin/kappa/ccdframec as the input NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_STLREF

SUN/95.45 —Interaction Mode 98

To select a point press the left button on the mouse or trackerball.
To exit press the right button.
Use the cursor to select one point.

Input guess position was 86.23534, 295.0848
Output centroid position is 86.41057, 295.1141

Use the cursor to select one point.

Input guess position was 73.32529, 318.9757
Output centroid position is 72.76437, 318.9484

Use the cursor to select one point.

If we look at the global parameters again, indeed we see that it has become cursor mode.

Now we’ll see the effect of changing the mode parameter. Note that unless it is undefined or the
application does not support the current mode, you must change the mode on the command
line. First we shall prompt for the co-ordinates. A null ends the loop.

ICL> centroid mode=i
NDF - Array to be analysed /@/star/bin/kappa/ccdframec/ >
INIT - Guess at co-ordinates of star-like feature /108.8,403.5/ > 86,295

Input guess position was 86, 295
Output centroid position is 86.41057, 295.1141

INIT - Guess at co-ordinates of star-like feature /86,295/ > 73.3,319

Input guess position was 73.3, 319
Output centroid position is 72.76437, 318.9484

INIT - Guess at co-ordinates of star-like feature /73.3,319/ > !

Finally, we can create a text file called starlist.dat and run CENTROID in file mode.

ICL> cat > starlist.dat
86 295
73 320
CTRL/D
ICL> centroid mode=f
COIN - File of initial positions /@centroid.lis/ > starlist.dat
NDF - Array to be analysed /@$KAPPA_DIR/ccdframec/ >

Input guess position was 86, 295
Output centroid position is 86.41057, 295.1141

Input guess position was 73, 320
Output centroid position is 72.76437, 318.9484

Such co-ordinate files can also be created interactively with images by CURSOR.

99 SUN/95.45 —Graphics Device Colour Table and Palette

14 Graphics Device Colour Table and Palette

The PGPLOT graphics package, which is used by KAPPA, draws images and line graphics using
a set of ‘pens’. The number of pens available is limited to 256, even on modern 16- or 24-bit
graphics devices which nominally have ‘millions’ of colours. On older 8-bit graphics devices,
the number of available pens may be fewer than 256 if any other applications have ‘grabbed’
colours for their own use.

Each PGPLOT pen draws in a single colour, but you can choose what that colour will be for
each pen. This allocation of colours to pens is called the PGPLOT ‘colour table’. Each pen has
a corresponding integer index within the table. On 8-bit graphics devices you can allocate any
arbitrary combination of red, green and blue to a pen (each colour is specified as an ‘intensity’
in the range zero to one). On 16- and 24-bit devices you can only allocate one of the ‘millions’ of
colours known to the graphics device. For instance, on 16 bit devices it is common to allocate 5
bits each to the red and blue intensity and the remaining 6 bits to the green intensity. This means
that red and blue can only be set accurate to 1 part in 32 on these devices, which may result in
colours not being exactly as you want them.

On an 8-bit device, any changes thatyou make to the colour table are immediately reflected in
the visual appearance of the display. For instance, if you set Pen 1 to red, then draw something
using Pen 1, it will appear red on the screen. If you then change Pen 1 to blue, the previously
drawn graphics will immediately change colour without you needing to re-draw them. This is
not usually true for 16- and 24-bit devices. That is, changing pen colours will usually have no
effect on previously drawn graphics. In order to see the effects of the changed pen colour, you
will need to re-display the graphics.

In many image procesing and visualisation systems the full colour table is used to draw images.
This has the disadvantage that if you want to annotate images with captions or axes, plot
coloured borders about images, plot graphs etc, yet simultaneously display images with certain
colour tables, there may be conflict of interests. For instance, a linear grey-scale colour table’s
first few pens will be almost black. By default, these same pens, particularly Pen 1, are used by
the graphics system for line graphics, thus any plots will be invisible. If you reset colour Pen 1
to white, the appearance of your image alters. Whenever you alter the colour table to enhance
the look of your image, it will affect the line graphics.

To circumvent this dilemma, KAPPA reserves a portion of the colour table, called the palette, that
is unaffected by changes to the rest of the colour table. It is shown schematically below. The
palette currently contains a fixed 16 pens. n is the total number of pens. In KAPPA the remainder
of the pens is called the colour table. It is easy to confuse this use of the term ‘colour table’, with
the PGPLOT colour table described above. To sumarize again, in KAPPA the ‘colour table’ is that
part of the PGPLOT colour table that has not been reserved for annotation (i.e. the whole colour
table minus the first 16 pens which form the annotation palette). The context should usually
make it obvious which understanding of the phrase ‘colour table’ is being used.

http://www.astro.caltech.edu/~tjp/pgplot/

SUN/95.45 —Graphics Device Colour Table and Palette 100

....

....0 1516 N−1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Palette Colour Table

14.1 Lookup Tables

A list of colours to be allocated to each pen in the colour table is called a lookup table. Lookup
tables comprise a series of red, green and blue (RGB) intensities, each normalised to 1.0; they may
be stored in NDFs—indeed some are provided with KAPPA—or be coded within applications.

A lookup table may be transferred into the display’s colour table. However, the number of pens
in the colour table is usually not the same as the number of colours in the lookup table and so a
simple substitution is not possible. Therefore, KAPPA squeezes or stretches the lookup table to
make it fit in the available number of colour-table pens. Normally, linear interpolation between
adjacent lookup-table entries defines the resultant colour, though you can select a nearest-
neighbour algorithm. The latter is suited to lookup tables with sharp boundaries between
contrasting colours, e.g. a series of coloured blocks, and the former to smoothly varying lookup
tables where there are no obvious discontinuities, e.g. spectrum-like.

Let’s have a few examples.

% lutheat
% lutramps
% lutread pastel
% lutable li ex sawtooth nn
% lutsave pirated

LUTHEAT loads the standard ‘heat’ lookup table into the colour table using linear interpolation,
whilst LUTRAMPS loads the standard coloured ramps using the nearest neighbours in the
lookup table. LUTREAD reads the lookup table stored in the DATA_ARRAY of the NDF called
pastel and maps it on to the colour table via linear interpolation. In the fourth example the
lookup table in NDF sawtooth is mapped on to the colour table via a linear nearest-neighbour
method. ex tells LUTABLE to read an external file. In the final example LUTSAVE saves the
current colour table into a lookup-table NDF called pirated. LUTSAVE is quite useful as you can
steal other people’s attractive colour tables that they’ve carelessly left in the display’s memory!
It does not matter should the display not have a palette, since

ICL> lutsave pirated full

will save the full set of pens (including the first 16) to the NDF.

14.2 Manipulating Colour Tables

LUTEDIT provides a complete graphical-user-interface which allows colour tables to be created
or modified in many different ways.

101 SUN/95.45 —Graphics Device Colour Table and Palette

14.3 Creating Lookup Tables

14.3.1 From a Text File

You can make a text file of the RGB intensities and use TRANDAT to create the NDF , or
manipulate the colour table and then save it in a lookup-table NDF. If you choose the second
option remember that all RGB intensities must lie in the range 0.0–1.0, where 1.0 is the maximum
intensity; and that equal red, green, and blue intensities yields a shade of grey. So for example if
you want a six equal blocks of red, blue, yellow, pink, sienna and turquoise you could create the
text file col6.dat with contents

Red, blue, yellow, pink, sienna, and turquoise LUT
1.0 0.0 0.0
0.0 0.0 1.0
1.0 1.0 0.0
0.9 0.56 0.56
0.56 0.42 0.14
0.68 0.92 0.92

and then run TRANDAT to make the NDF called collut6.

% trandat col6 collut6 shape=’[3,6]’ auto

14.3.2 Running LUTEDIT

There is an interactive task called LUTEDIT for creating and editing lookup tables. The LUTEDIT
command fires up a complete graphical-user-interface. This includes its own help system via a
"short help" window at the bottom of the interface which describes the control currently under
the pointer, and also via the usual "Help" button at the right-hand end of the menu bar.

14.4 Palette

There are four commands for controlling the palette (Section 14), all beginning PAL (in addition,
the colours in the current palette can be listed using GDSTATE). If you inherit the graphics
device after a non-KAPPA user or after a device reset, you will probably have to reset the palette.
You can do this either by loading the default palette—black, white, the primary then secondary
colours, and eight equally spaced grey levels—with the command PALDEF; or load a palette
you’ve created yourself via PALREAD. You modify the palette by changing individual colours
within it using PALENTRY. The colour specification can be a named colour (see Appendix F for
a list), or RGB intensities. For example,

% palentry 1 Skyblue
% palentry 14 [1.0,1.0,0.3]

would make palette index 1 sky blue and index 14 a pale yellow. Once you have a palette you
like, save it in an NDF with PALSAVE.

Palette entry 0 is the background colour. By choosing a palette colour equal to the background
colour, features may be ‘erased’.

SUN/95.45 —Graphics Device Colour Table and Palette 102

14.5 Persistence of Palettes and Colour Tables

PGPLOT re-initializes the palette and colour table each time it is started up, wiping out the colours
you had previously selected with such care! For this reason, KAPPA keeps a copy of the ‘current’
palette and colour table in a special file. Each time a graphics application is run, the current
colour table and palette are read back from this file, and used to reset the pen colours in the
PGPLOT colour table before any drawing is performed. Some application change the colour
table or palette; PALENTRY, LUTABLE, etc.. When such applications terminates, they write the
modified colour table or palette back to the file so that it will be used by subsequent graphics
applications.

Separate palettes and colour tables are maintained for each known graphics device, so run-
ning LUTGREY on an xwindows device will have no effect on the colour table used for
PostScript devices (for instance). The palettes for all known devices are stored in a file called
kappa_palette.sdf located within your ADAM directory (usually $HOME/adam). The colour
tables for all known devices are stored in a file called kappa_lut.sdf located within the same
directory.

103 SUN/95.45 —Masking, Bad Values, and Quality

15 Masking, Bad Values, and Quality

Masking is the process by which you can exclude portions of your data from data processing
or analysis. Suppose that you are doing surface photometry of a bright galaxy, part of the data
reduction is to measure the background contribution around the galaxy and to subtract it. You
usually want to avoid inclusion of light from the galaxy in your estimation of the background.
A convenient method for doing this is to mask the galaxy during the background fitting.

There are two techniques used for masking. One employs special bad values (also known as
magic or invalid values). These appear within the data or variance arrays in place of the actual
values, and indicate that the pixel is to be ignored or is undefined. They are destructive22 and so
some people don’t like them, but you can always mask your data into a new, temporary NDF.
With a little care, bad values are quite effective and they are used throughout KAPPA. By its
nature, a bad value can only indicate a logical, two-state condition about a data element—it is
either good or bad—and so this technique is sometimes called flagging.

In contrast, the second technique, uses a quality array. This permits many more attributes or
qualities of the data to be associated with each pixel. In the current implementation there may
be up to 255 integer values, or 8 single-bit logical flags. Thus quality can be regarded as offering
8 logical masks extending over the data or variance arrays, and can signify the presence or
absence of a particular property if the bit has value 1 or 0 respectively. An application of quality
to satellite data might include the detector used to measure the value, some indicator of the
time each pixel was observed, was the observation made within the Earth’s radiation belts,
and whether or not the pixel contains a reseau mark. By selecting only those data with the
appropriate quality values, you process only the data with the desired properties. This can be
very powerful. However, it does have the drawback of having to store at least an extra byte per
pixel in your NDF.

The two methods are not mutually exclusive; the NDF permits their simultaneous use in a
dataset.

Now we’ll look at both of these techniques in detail and demonstrating the relevant KAPPA

tasks.

15.1 Bad-pixel Masking

Bad pixels are flagged with the Starlink standard values (see Section 5 of SUN/39), which for
_REAL is the most-negative value possible.

In addition to tasks that routinely create bad values in the output value is undefined, KAPPA

offers many applications for flagging pixels with certain properties or locations.

15.1.1 Doing it the ARD Way

To mask a region or a series of regions within an NDF, you can create an ASCII Region Defini-
tion (ARD) text file. ARD has a powerful syntax for combining regions and supplying WCS
information, described fully in SUN/183. An ARD file comprises keywords that define a region,
such as RECT to specify a rectangular box; operators that enable regions to be combined, for

22That is, the special bad value replaces the original data values, and so the original data values are lost.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun39.htx/sun39.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_ARDKeywords
http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_ARDOperators

SUN/95.45 —Masking, Bad Values, and Quality 104

instance .AND. that will form the intersection of two regions; and statements to define the world
co-ordinate system and dimensionality. For further details see the three sections called Regions,
Operators, and Statements in SUN/183.

Here is an example of the creation of an ARD file.

% cat myard.ard
COFRAME(PIXEL)
PIXEL(23.5, -17.2)
ELLIPSE(75.2, 296.6, 33, 16, 78)
POLYGON(109.5, 114.5, 122.5, 131.5, 199.5, 124.5)
CIRCLE(10, 10, 40) .AND. .NOT. CIRCLE(10, 10, 30)
COFRAME(SKY,SYSTEM=FK5,EQUINOX=2000)
CIRCLE(10:09:12.2, -45:12:13, ::40)
CTRL/D

The COFRAME statements indicate the co-ordinate system in which subsequent positions are
supplied. Its first argument is the domain. Here the first COFRAME(PIXEL) refers to pixel co-
ordinates. Note that these are not the same as pixel indices, as they are displaced by −0.5 with
respect to pixel indices. The second COFRAME selects a SKY domain using the FK5 system, so
that regular equatorial co-ordinates may be supplied as arguments to subsequent keywords.
Other possible values for System include ECLIPTIC and GALACTIC. If no COFRAME or WCS
statement is present, the default co-ordinate system is pixel co-ordinates transformed by any
COEFFS, OFFSET, TWIST, STRETCH, SCALE statements. Note that the ARDMASK application,
used to mask data with an ARD file, has a DEFPIX parameter where you can choose whether
the default co-ordinates are pixel or those of the current WCS Frame. if there is no COFRAME
or WCS statement in your ARD file. Still you are recommended to supply a COFRAME or WCS
statement in your ARD files to avoid accidentally selecting the wrong regions.

In this example, the regions are: the single pixel at co-ordinates (23.5, -17.2); an ellipse centred at
(75.2, 296.6) with semi-major axis of 33 pixels and semi-minor axis of 16 pixels, at orientation 78◦

clockwise from the x axis; a triangle with vertices at pixel indices (110, 115), (123, 132), (200, 125);
an annulus centred on pixel co-ordinates (10.0, 10.0) between radius 30 and 40 pixels; and a
circle centred on RA 10:09:12.2, and DEC -45:12:13 of radius 40 arcseconds.

Operators combine regions using a Fortran-like logical expression, where each keyword acts
like a logical operand acted upon by the adjoinning operators. Statements are ignored in such
logical expressions. There is an implicit .OR. operator for every keyword on a new line. Thus
pixels that lie in any of the above regions (the union) are selected.

Where a keyword (such as CIRCLE, RECT, POLYGON) defines an area or volume a pixel is
deemed to be part of that region if its centre lies on or within the boundary of the region. For
regions of zero volume (such as keywords PIXEL, LINE, COLUMN), the pixel is regarded as
part of the region when the locus of the region passes through that pixel. So for example, a
PIXEL region will be the pixel emcompassing the supplied co-ordinates; and for a LINE, the
selected pixels are all that intersect with the line’s locus.

Here are some more examples of ARD files.

COFRAME(GRID)
ROTBOX(12, 15, 20, 10, 36.3) .AND. .NOT. (COLUMN(13) .OR. ROW(8))

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_ARDStatements

105 SUN/95.45 —Masking, Bad Values, and Quality

Now the co-ordinates are Grid co-ordinates. This selects all the pixels with a rotated box except
those in thirteenth column or eighth row. Note the use of parentheses to adjust or clarify the
precedence. The box is centred on grid pixel (12, 15) has sides of length 20 and 10 pixels. The
first side of the box—the one with length 20—is at an angle of 36.3◦ measured anticlockwise
from the X axis.

DIMENSION(3)
CIRCLE(10.3, 21.6, 32.9, 10.4)
LINE(1.1, 2.2, 3.3, 4.4, 5.5, 6.6)

This defines a sphere centred at pixel co-ordinates (10.3, 21.6, 32.9) with radius 10.4 pixels, and a
line from (1.1, 2.2, 3.3) to (4.4, 5.5, 6.6).

CIRCLE(10.3, 21.6, 32.9, 10.4)

This defines a sphere centred at pixel co-ordinates (10.3, 21.6, 32.9) with radius 10.4 pixels.

.NOT. ELLIPSE(75.2, 296.6, 33, 16, 78)

This selects the whole array except for the ellipse defined as before. Something like this might
be useful for excluding a galaxy image before fitting to the background around the galaxy.

There are more details and further ARD facilities described in SUN/183. If you do not wish to
read SUN/183, you’ll be relieved to learn that there are shortcuts for two-dimensional data. . .

The first is is provided by GAIA by its Image Analysis→ Image Regions... tool. Here you
can select region types and interactively adjust the region locations and shapes, and then record
the selected regions in an ARD file. However, it does not provide the boolean operators other
than .OR. to combine a series of regions, or use co-ordinates other than pixel.

KAPPA offers its own interactive graphical tool for generating ARD files. To use ARDGEN you
must first display your data on a device with a cursor, such as an X-terminal. DISPLAY with
a grey-scale lookup table is probably best for doing that. The grey lets you see the coloured
overlays clearly. The following example assumes that the current co-ordinate Frame in the
NDF is PIXEL (i.e. pixel co-ordinates). Consequently all positions are shown below in pixel
co-ordinates. If the current co-ordinate Frame in the NDF was not PIXEL but (say) SKY, then
ARDGEN would produce positions in SKY co-ordinates. The ARD file generated by ARDGEN
always contains a description of the co-ordinate system in which positions are specified, allowing
later applications to interpret them correctly, and convert them (if necessary) into other co-
ordinate systems.

% ardgen demo.ard
Current picture has name: DATA, comment: KAPPA_DISPLAY.
SHAPE - Region shape /’CIRCLE’/ >

At this point you can select a shape. Enter ? to get the list. Once you’ve selected a shape you’ll
receive instructions.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/gaia.htx/gaia.html?xref_regions

SUN/95.45 —Masking, Bad Values, and Quality 106

SHAPE - Region shape /’COLUMN’/ > ellipse

Region type is "ELLIPSE". Identify the centre, then one end of the semi-major
axis, and finally one other point on the ellipse.

To select a position press the space bar or left mouse button
To exit press "." or the right mouse button

Once you have defined one ellipse, you can define another or exit to the OPTION prompt. In
addition to keyboard 1, pressing the right-hand mouse button has the same effect. Thus in the
example, the new shape is a rotated box.

Region completed. Identify another ’ELLIPSE’ region...
OPTION - Next operation to perform /’SHAPE’/ > shape
SHAPE - Region shape /’ELLIPSE’/ > rotbox

Region type is "ROTBOX". Identify the two end points of any edge and then give
a point on the opposite edge.
Region completed. Identify another ’ROTBOX’ region...

If you make a mistake, use the ‘Undo’ option. Alternatively, enter List at the OPTION prompt
to see a list of the regions. Note the ‘Region Index’ of the region(s) you wish to remove, and
select the Delete option. At the REGION prompt, give a list of the regions you want to remove.
If you change your mind, enter ! at the prompt for Parameter REGIONS, and no regions are
deleted.

Now suppose you want to combine or invert regions in some way, you supply Combine at the
OPTION prompt. So suppose we have created the following regions in $KAPPA_DIR/ccdframe.

Region Region Description
Index

1 - ELLIPSE(174.1, 234.4, 82.2, -43.5, 65.64783)
2 - ELLIPSE(168.1, 209.1, 29.4, -19.7, 9.441798)
3 - ELLIPSE(42.2, 244.1, 13, -10.3, 111.8452)
4 - ROTBOX(40.5, 219.2, 63.8, 38.3, 37.24281)
5 - RECT(141.5, 1.4, 143.9, 358.8)
6 - POLYGON(229.8, 247.7,

233.4, 247.7,
233.4, 258.6,
231, 267,
229.8, 265.8,
228.6, 256.2)

We want to form the region inside the first ellipse but not inside the second. This done in two
stages. First we invert the second ellipse, meaning that pixels are included if they are not inside
this ellipse, by combining with the NOT operator.

OPTION - Next operation to perform /’SHAPE’/ > comb
OPERATOR - How to combine the regions /’AND’/ > not
OPERANDS - Indices of regions to combine or invert /6/ > 2

107 SUN/95.45 —Masking, Bad Values, and Quality

This removes the original Region 2, decrements the region numbers of the other regions following
2 by one, so that Region 3 becomes 2, 4 becomes 3, and so on. A new Region 7 is the inverted
ellipse. The renumbering makes it worth listing the regions before combining regions. The
second stage is to combine it with Region 1, using the AND operator. This includes pixels if they
are in both regions. In this example, that means all the pixels outside the second ellipse but
which lie within the first.

OPTION - Next operation to perform /’SHAPE’/ > com
OPERATOR - How to combine the regions /’AND’/ >
OPERANDS - Indices of regions to combine or invert /[6,7]/ > 1,6

Here is another example of combination. This creates a region for pixels are included provided
they are in one of two regions, but not in both. Here we apply the .XOR. operator to the small
ellipse and the first rotated box.

OPTION - Next operation to perform /’SHAPE’/ > comb
OPERATOR - How to combine the regions /’AND’/ > xor
OPERANDS - Indices of regions to combine or invert /[4,5]/ > 1,2

Here is the final set of regions.

OPTION - Next operation to perform /’SHAPE’/ > list

Region Region Description
Index

1 - RECT(141.5, 1.4, 143.9, 358.8)
2 - POLYGON(229.8, 247.7,

233.4, 247.7,
233.4, 258.6,
231, 267,
229.8, 265.8,
228.6, 256.2)

3 - (ELLIPSE(174.1, 234.4, 82.2, -43.5, 65.64783)
.AND.
(.NOT. ELLIPSE(168.1, 209.1, 29.4, -19.7, 9.441798)))

4 - (ELLIPSE(42.2, 244.1, 13, -10.3, 111.8452)
.XOR.
ROTBOX(40.5, 219.2, 63.8, 38.3, 37.24281))

Once you are done, enter "Exit" at the OPTION prompt, and the ARD file is created. "Quit"
also leaves the programme, but the ARD file is not made.

Having created the ARD file it is straightforward to generate a masked image with ARDMASK23:

% ardmask $KAPPA_DIR/ccdframec demo.ard ardccdmask

SUN/95.45 —Masking, Bad Values, and Quality 108

Figure 14: Masking of $KAPPA_DIR/ccdframec. To the left shows the original ARDMASK regions,
and to the right shows the final masked regions after some have been combined.

Figure 14 shows the image with the original regions outlined to the left. Note only the section
(:270, :360) is displayed. To see where you have masked, use DISPLAY, which lets you define a
colour for bad pixels using the BADCOL parameter.

% display ardccdmask badcol=red \\

To the right of Figure 14 is the final masked image.

15.1.2 SEGMENT and ZAPLIN

SEGMENT is ostensibly for copying polygonal regions from one NDF to another. You may also
use SEGMENT to copy bad pixels into the polygonal regions by giving the null value for one of
the two input NDFs. For instance,

% segment in1=! in2=$KAPPA_DIR/ccdframec out=ccdmask

23You can also plot the outline of the selected regions on top of a display image using ARDPLOT.

109 SUN/95.45 —Masking, Bad Values, and Quality

NDF ccdmask will have bad values inside the polygons, whereas

% segment in2=! in1=$KAPPA_DIR/ccdframec out=ccdmask

the pixels exterior to the polygons are flagged. SEGMENT lets you define the polygon vertices
interactively, like in ARDGEN, but you can also use text files, or respond to prompting.

ZAPLIN also has an option to fill in rectangular areas when Parameter ZAPTYPE has value Bad.

15.1.3 Special Filters for Inserting Bad Values

There are applications that mask pixels if their values meet certain criteria.

SETMAGIC flags those pixels with a nominated value. It is most useful during conversion of
imported data whose data system uses bad-pixel values different from Starlink’s.

FFCLEAN removes defects smaller than a nominated size from an image or vector NDF . It flags
those pixels that deviate from a smoothed version of the NDF by more than some number of
standard deviations from the local mean.

ERRCLIP flags pixels that have errors larger than some supplied limit or signal-to-noise ratios
below a threshold. The errors come from the VARIANCE component of the NDF. Thus you can
exclude unreliable data from analysis.

THRESH flags pixels that have data values within or outside some specified range.

15.2 Quality Masking

All the NDF tasks in KAPPA use quality yet there is no obvious sign in individual applications
how particular values of quality are selected. What gives? The meanings attached to the quality
bits will inevitably be quite specific for specialist software packages, but KAPPA tasks aim to
be general purpose. To circumvent this conflict there is an NDF component called the bad-bits
mask that forms part of the quality information. Like a QUALITY value, the bad-bits mask is
an unsigned byte. Its purpose is to convert the eight quality flags into a single logical value for
each pixel, which can then be processed just like a bad pixel.

When data are read from the NDF by mapping into memory, the quality of each pixel is combined
with the bad-bits mask; if a result of this quality masking is FALSE, that pixel is assigned the bad
value for processing. This does not change the original values stored in the NDF; it only affects
the mapped data.

So how do the quality and bad-bits mask combine to form a logical value? They form the
bit-wise ‘AND’ and test it for equality for 0. None the wiser? Regard each bit in the bad-bits
mask as a switch to activate detection of the corresponding bit in a pixel’s quality. The switch is
on if it has value 1, and is off if it has value 0. Thus if the pixel is flagged only if one or more of
the eight bits has both quality and the corresponding bad-bit set to 1. Here are some examples:

QUALITY: 10000001 10000001

Bad-bits: 01000100 01000101

Bits on: ˆ

Result: TRUE FALSE

SUN/95.45 —Masking, Bad Values, and Quality 110

The application SETBB allows you to modify the bad-bits mask in an NDF. It allows you to
specify the bit pattern in a number of ways including decimal and binary as illustrated below.

% setbb RO950124 5
% setbb RO950124 b101

These both set the bad-bits mask to 00000101 for the NDF RO950124. SETBB also allows you to
combine an existing NDF bad-bits mask with another mask using the operators AND and OR.
OR lets you switch on additional bits without affecting those already on; AND lets you turn off
selected bits leaving the rest unchanged.

% setbb RO950124 b00010001 or
% setbb RO950124 b11101110 and

The first example sets bits 1 and 5 but leaves the other bits of the mask unaltered, whereas the
second switches off the same bits.

Now remembering which bit corresponds to which could be a strain on the memory. It would
be better if some meaning was attached to each bit through a name. There are four general
tasks that address this. SETQUAL sets quality values and names; SHOWQUAL lists the named
qualities; REMQUAL removes named qualities; and QUALTOBAD uses a logical expression
containing the named quality properties to create a copy of your NDF in which pixels satisfying
the quality expression are set bad. See Section 16 for more information about using these tasks.
Once you have defined quality names, you can set the bad-bits mask with SETBB to mask pixels
with those named quality attributes.

% setbb RO950124 spike
% setbb RO950124 ’"spike,back"’

The first example might set the bad-bits mask to exclude spike artefacts. The second could mask
both spikes and background pixels. Thus it might be used to select the spectral lines not affected
by noise spikes in a spectral cube. Other logical combinations are possible using the AND and
OR operators.

15.3 Removing bad pixels

Sometimes having bad pixels present in your data is a nuisance, say because some application
outside of KAPPA does not recognise them, or you want to integrate the flux of a source. KAPPA

offers a number of options for removing bad values. Which of these is appropriate depends on
the reason why you want to remove the bad pixels.

First you could replace the bad values with some other reasonable value, such as zero.

% nomagic old new 0 comp=all

Here dataset new is the same as dataset old except that any bad value in the data or variance
array has now become zero.

If you wanted some representative value used based upon neighbouring pixels, use the GLITCH
command.

111 SUN/95.45 —Masking, Bad Values, and Quality

% glitch old new mode=bad

This replaces the bad values in the data and variance arrays with the median of the eight
neighbouring pixels. This works fine for isolated bad pixels but not for large blocks. If your data
are generally flat, large areas can be replaced using the FILLBAD task.

% fillbad old new size=4

The value of Parameter SIZE should be about half the diameter of the largest region of bad
pixels. Both the data array and variance arrays are filled.

You may replace individual pixels or rectangular sections using CHPIX.

% chpix old new
SECTION - Section to be set to a constant /’55,123’/ >
NEWVAL - New value for the section /’60’/ >
SECTION - Section to be set to a constant /’1:30,-10:24’/ >
NEWVAL - New value for the section /’-1’/ >
SECTION - Section to be set to a constant /’1:30,-10:24’/ > !

This replaces pixel (55, 123) with value 60, and the region from (1, −10) to (30, 24) with −1. The
final ! ends the loop of replacements. If you supply NEWVAL on the command line, only one
replacement occurs.

It is also possible to paste other datasets where your bad values lie with the PASTE and SEG-
MENT tasks.

% paste old fudge"(10:20,29:30)" out=new

The dataset old is a copy of dataset new, except in the 22-pixel region (10, 29) to (20, 30), where
the values originate from the fudge dataset.

SUN/95.45 —Using Quality Names 112

16 Using Quality Names

16.1 Introduction

As described in Section 15, an NDF may optionally contain a component called QUALITY. If
this component exists, it will be an array with the same bounds as the main DATA array. Each
element in the QUALITY array can be used to store several flags that are associated with the
corresponding element in the DATA array. These flags may be used to indicate that the DATA
value holds some specified property. For instance, one of the flags may be used to indicate if the
corresponding DATA values are saturated, another may be used to indicate if the DATA value
lies within a background area, and so on.

You are free to use the flags in whatever way seems most suited to the particular process being
performed. You can set (or reset) any of the flags within any sub-region of the NDF using
application SETQUAL. Each of the flags is referred to by a Quality Name specified by the user.
Names that reflect the nature of the quality should be used, e.g. the quality name SATURATED
could be used to flag saturated data values. These quality names get stored within the NDF
and can be used to refer to the quality flag when running later applications. The terminology
adopted here is that an element of the DATA array ‘holds’ the quality SATURATED (for instance) if
the flag that is associated with the quality name SATURATED is set for the corresponding element
within the QUALITY array.

The number of quality names that can be stored within an NDF is limited, and therefore it
may become necessary to remove quality names that are no longer needed to make room for
new ones. The applications SHOWQUAL and REMQUAL allow you to do this. SHOWQUAL
displays a list of the quality names currently defined within an NDF, and REMQUAL removes
specified quality names from an NDF.

Some applications have a Parameter QEXP, which may be used to specify that the application is
only to use data values that hold a specified selection of qualities. As an example, when running
QUALTOBAD you could (for instance) specify a value of BACKGROUND for the QEXP parameter.
This means that only those data values for which the flag associated with the quality name
BACKGROUND is set, are to be set bad. The quality name BACKGROUND must previously have been
defined and assigned to the appropriate data values using application SETQUAL.

The specification of the data values to be used by an application can be more complex than
this, and can depend on several qualities combined together using ‘Boolean’ operators. For
instance, assigning the value .NOT. (SOURCE_A .OR. SOURCE_B) would cause the application
to use only those data values that hold neither of the qualities SOURCE_A and/or SOURCE_B. These
sort of strings are known as quality expressions.

16.2 Quality Names

Quality names are names by which the user refers to particular flags stored in the QUAL-
ITY component of the NDF. They must not be longer than 15 characters. Leading blanks are
ignored, and they are always stored in upper case, even if they are supplied by the user in
lower case. Embedded blanks are considered to be significant. Quality names must not contain
any fullstops ("."), and there are three reserved names that cannot be used; these are ANY,
IRQ_BAD_SLOT and IRQ_FREE_SLOT.

113 SUN/95.45 —Using Quality Names

16.3 Quality Expressions

Quality names may be combined together using Boolean operators into complex quality expres-
sions. The quality expression is evaluated at each element within the NDF by substituting a
value of true or false for each quality name used in the expression, depending on whether or not
that element holds the specified quality. Elements are used if the quality expression evaluates
to a true value. Boolean operators are delimited on each side by a period (e.g. .AND.). The
operands on which these operators act must be either a quality name (which must be defined
within the NDF), or one of the Boolean constants .TRUE. and .FALSE. Parentheses can be used
to nest expressions.

Quality expressions can be up to 254 characters long, and must not contain more than 40 symbols
(Boolean operators, constants, or quality names). Some attempts are made to simplify a quality
expression to reduce the run time needed to evaluate the expression for every data value.

The precedence of the Boolean operators decreases in the following order; .NOT., .AND., .OR.,
.XOR., .EQV. (the final two have equal precedence). In an expression such as (A .XOR. B .EQV.
C .XOR. D) in which all operators have equal precedence, the evaluation proceeds from left
to right, i.e. the expression is evaluated as (((A .XOR. B) .EQV. C) .XOR. D). If there
is any doubt about the order in which an expression will be evaluated, parentheses should be
used to ensure the required order of evaluation.

.NOT. - The expression (.NOT.A) is true only if A is false.

.AND. - The expression (A.AND.B) is true only if A and B are both true.

.OR. - The expression (A.OR.B) is true if either (or both) of A or B are true.

.XOR. - The expression (A.XOR.B) is true if either A is true and B is false, or A is false and B is
true.

.EQV. - The expression (A.EQV.B) is true if either A is true and B is true, or A is false and B is
false.

SUN/95.45 —Processing Groups of Data Files 114

17 Processing Groups of Data Files

When a KAPPA application requests an input or output data file (either an NDF or a positions
list), you may optionally give a group of several data files rather than just one. In this case, the
application is automatically re-run until all the supplied data files have been processed. For
instance, in the following command:

% display in="../a*" mode=perc accept

a group of NDFs (all those beginning with “a” in the parent directory) are assigned to the IN
parameter, and the DISPLAY command is automatically re-run to display each NDF in the
fashion of a (rather slow!) movie.

Another example:

% stats ndf=^files

will display the pixel statistics of all NDFs listed within the text file files. The “^” character
indicates that the following string (files) is not the name of an NDF, but the name of a text file
from which NDF names should be read.

% wcsframe ’"image_a,image_b,image_c"’ sky

This will set the current co-ordinate Frame for the three NDFs image_a, image_b and image_c so
that celestial sky co-ordinates are used to refer to positions within the NDFs, if possible.

% cursor outcat="’first,^list_names’"

This will run CURSOR several times, allowing you to select display positions using a cursor. On
the first invocation, the selected positions are written to a positions list stored in file first.FIT.
Positions selected on subsequent invocations are written to positions lists with names read from
the text file list_names. Finally, if this CURSOR command is followed by:

% listshow accept

LISTSHOW will display the contents of all the catalogues created previously by CURSOR.

If an application has more than one NDF or positions list parameter, each parameter should be
given the same number of values (i.e. data files). A warning is issued if any parameter is given
too many values, but processing continues normally until the smallest group is exhausted. For
instance, the following example adds NDF a1 to a2, and b1 to b2, putting the results in a3 and
b3:

% add in1="’a1,b1’" in2="’a2,b2’" out="’a3,b3’"

115 SUN/95.45 —Processing Groups of Data Files

If (say) an extra NDF had been specified for Parameter IN2, the application would have been
invoked twice to process the first two pairs, and then a warning message would have been
displayed saying that too many NDFs were specified for Parameter IN2.

There is a special case in which this rule does not apply. If only a single value is given for an
data file parameter, the same value is used repeatedly on all invocations of the application. So,
for instance, if a single NDF had been given for Parameter IN2 in the above ADD example, the
application would have again been run twice, using the same NDF for Parameter IN2 on each
invocation.

The OUT parameter in the above example could alternatively have been specified as out="’*|1|3|’".
Here, the asterisk (*) represents the base-names, a1 and b1, of the NDFs supplied for the first
NDF parameter to be accessed (IN1). The following string, |1|3|, means replace all occurrences of
1 with 3, thus giving the final NDF names a3 and b3.

17.1 Applications that Process Groups of NDFs

The majority of applications with NDF parameters use each NDF parameter to access a single
NDF, and supplying more than one NDF will result in the application being re-run as described
above. The application then accesses a single NDF on each invocation. Some applications,
however, have NDF parameters that are explicitly described in the reference section of this
document as being associated with a group of NDFs. An example is WCSALIGN that has a
Parameter IN to read a group of NDFs that are to be aligned with each other. Such applications
process all the specified NDFs in a single invocation. For the purposes of the multiple invocation
scheme described above, such parameters are not considered to be ‘NDF’ parameters, and will
not cause the application to be re-run.

17.2 What about the other Parameters?

When an application is re-run to process multiple data files, all the parameters not associated
with NDFs or positions lists retain their values from one invocation to the next. So, for instance,
the assignment for the MODE parameter in the earlier DISPLAY example is retained and used
for all subsequent invocations of the application, you are not prompted for a new value each
time the application runs.

This is usually what you want, but beware that there are times when this behaviour may trip
you up. Sometimes an application may prompt for a new parameter value while in the middle
of processing a group of NDFs. This can occur for instance, if the initial value you supplied
on the first invocation is inappropriate for the NDF currently being processed. For instance,
supposing you use WCSFRAME to set the current co-ordinate Frame to SKY for a group of
NDFs. To do this, you would set the FRAME parameter to SKY either on the command line
or when prompted during the first invocation. This value would be retained for subsequent
invocations, but what happens if one of the NDFs does not have a SKY Frame defined in its
WCS component? Not surprisingly, you get an error message identifying the NDF, and you
are asked to supply a new value for FRAME. You could, for instance supply PIXEL as the new
value. This changes the current value of the FRAME parameter to PIXEL, and this value will
consequently be used for any remaining NDFs.

If you do not specify a value for a parameter, the default value used by the first invocation
will be re-used for all subsequent invocations. Note that the default value for some parameters

SUN/95.45 —Processing Groups of Data Files 116

(for instance the CENTRE parameter of the DISPLAY command) is the null value !. This is
usually interpreted as a request for the application to find an appropriate value itself for the
parameter. In these cases, the parameter value is ! and is re-used on all invocations, resulting
in the application finding and using a potentially different value on each invocation. So, for
instance, the above DISPLAY example will find and use an appropriate CENTRE value for each
displayed image. If you want to use the same CENTRE value for all images you should specify
it explicitly on the command line, for instance:

% display in="../a*" mode=perc centre="’12:00:00 -32:00:00’" accept

17.3 Output Parameters

If you tried out the examples at the start of this section, you may be wondering what happened
about the output parameters for STATS. The STATS application writes the various statistics
it calculates to lots of output parameters, which can be used by subsequent applications. If
an application is re-run several times to process different data files then the values left in
the application’s output parameters will be the values created on the last invocation of the
application.

17.4 What Happens if an Error Occurs?

If an application fails to execute successfully, the error report will be displayed, and then
cancelled.24 This means that any remaining NDFs will continued to be processed normally.

The exception to this is that if the error is an ‘abort request’ (caused by supplying two exclamation
marks for a parameter), then the loop exits immediately. That is, no remaining NDFs are
processed.

17.5 What about Applications that Re-use Parameters?

Some applications use a single parameter to obtain a series of values from the user. Examples
are the INIT parameter of CENTROID and the OPTION parameter of SETEXT. Remembering
that parameters that are not associated with either an NDF or a positions list retain their values
between invocations, it is not surprising that care is needed when using such application to
process groups of NDFs. For instance, when using CENTROID you supply a null parameter
value (i.e. a single exclamation mark !) as the final value for the INIT parameter to indicate
that you do not wish to find any more centroids. Since parameter values are retained between
invocations when processing groups of NDFs, this null value becomes the first value to be used
by any subsequent invocation. The next invocation of CENTROID finds INIT set to a null value,
assumes that no more centroids are to be found, and exits immediately! The same goes for all
subsequent invocations until the group of NDFs has been exhausted.

The only way (currently) to avoid this behaviour is to specify the INIT parameter value on
the command line. CENTROID takes this as an indication that you only want to find a single
centroid, and so does not attempt to get a new value for INIT, thus leaving the supplied value

24This is called ‘flushing’ the error.

117 SUN/95.45 —Processing Groups of Data Files

for the next invocation. The same value for INIT is thus used by all invocations. Of course, this
means you can only find a single centroid in each NDF.25

Most applications that re-use one or more parameters during a single invocation have some
similar means of indicating that you do not want to be prompted for a new value. For some (like
CENTROID), putting the parameter value on the command line accomplishes this. Some others
(such as SETEXT) have a LOOP parameter that can be set FALSE to indicate that parameters
should not be accessed more than once. The reference documentation for each command should
be consulted for details.

17.6 Introducing a Pause Between Invocations

Sometimes you may want to slow down the speed at which data files are processed. For instance,
if you display several small images using a single DISPLAY command, you may want time
to examine each image before moving on to the next. You can introduce a delay between
invocations by setting the shell environment variable KAPPA_LOOP_DELAY to the required delay
time (in units of seconds). For instance, in the C-shell:

% setenv KAPPA_LOOP_DELAY 2.5

causes a delay of 2.5 seconds between invocations of any KAPPA command. To remove the delay,
you should undefined KAPPA_LOOP_DELAY. In C-shell:

% unsetenv KAPPA_LOOP_DELAY

17.7 Reporting the Data Files being Processed

When processing a single data file, some applications report the name of the file and some do
not. Normally, no extra information is given when processing groups of data files. This means
that sometimes you get to see the names of the files as they are processed, and some times you
do not. It just depends on the application.

However, it is often very useful to see the names of the files as they are processed. For instance, if
an error occurs processing one of the files, it is useful to know which file failed. If the application
doesn’t display this information, then you can force it to by setting the shell environment
variable KAPPA_REPORT_NAMES to an arbitrary value.26 For instance, in the C-shell:

% setenv KAPPA_REPORT_NAMES 1

This causes the value used for each data file parameter to be displayed in the form "parameter = value"
on each invocation. To go back to the normal, quiet reporting scheme, you should undefined
KAPPA_REPORT_NAMES. In C-shell:

% unsetenv KAPPA_REPORT_NAMES

25If this is a problem, you can always put the INIT values into a file or positions list, using a different value for the
MODE parameter.

26The actual value does not matter.

SUN/95.45 —Processing Groups of Data Files 118

17.8 The Syntax for Specifying Groups of Data Files

The group of NDFs or positions lists to be used for a given parameter is specified by a group
expression. This is also the syntax used to give groups of plotting attributes when specifying
graphics STYLE parameters. The group expression syntax is described in Section 4.13.

A group of output data files may be specified by modifying the names of a corresponding set
of input data files. This is easy enough when the application only has one parameter for input
data files, but what happens if more than one parameter is associated with a group of input data
files? Which parameter is used to define the group of input data files on which the names of
the output data files are based? The answer is “the first one to be accessed”. For instance, ADD
takes two input NDFs, adds them together and produces a single output NDF. When running
ADD, you are prompted first for Parameter IN1, and then for Parameter IN2, and finally for
Parameter OUT. Thus, if you give the string "a_"* for OUT, the names of the output NDFs
will be derived from the NDFs supplied for Parameter IN1, because IN1 is accessed first (i.e.
prompted for before IN2).

Note, when choosing the input parameter on which output data files are based, no significance
is attached to whether the input and output file types match. That is, the first input parameter
to be accessed if used, irrespective of whether it is associated with an NDF or a positions list.

A feature that may sometimes be useful is the facility for providing a shell command in response
to a prompt for a group of data files. To do this, enclose the command within the usual backward
quotes (‘), as you would when substituting the output from a command into another shell
command. The command should generate a set of explicit file names, with file types. Note, you
will need to escape any characters that are normally interpreted as part of the syntax of a group
expression, such as "|" or ",", by preceding them with a backslash "\".

17.9 Using non-NDF Data Formats

In addition to processing Starlink NDF structures, KAPPAcan also process many non-NDF
(‘foreign’) data files. This is achieved through ‘on-the-fly conversion’ (see Section 18.1 and
SUN/55).

When this scheme is in use, you need not include explicit file types for all input file names. If no
file type is given, the file with the highest priority file type amongst all files with the specified
base name will be used. The priority of a file type is determined by its position within the list of
file types given by NDF_FORMATS_IN environment variable (see Section 18.1). File types near the
start of the list have higher priority than those that follow. Note, native NDF files always have
the highest priority and will be used (if they exist) in preference to all other files types.

17.10 Disabling Multiple Invocations of Applications

In certain circumstances, you may possibly want to disable the automatic re-invocation of KAPPA

applications to process groups of data files. This can be done by setting the environment variable
KAPPA_LOOP_DISABLE to an arbitrary value.27 For instance, in the C-shell:

% setenv KAPPA_LOOP_DISABLE 1

27The actual value does not matter.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

119 SUN/95.45 —Processing Groups of Data Files

will cause all NDF and positions list parameters to accept only a single data file, and each
application will be run only once. Note, the extra facilities for specifying data files provided
by the group expression syntax will not then be available. To re-enable looping, you should
undefine KAPPA_LOOP_DISABLE. In C-shell:

% unsetenv KAPPA_LOOP_DISABLE

SUN/95.45 —Getting Data into KAPPA 120

18 Getting Data into KAPPA

KAPPA utilises general data structures within an HDS container file, with file extension .sdf.
Most of the examples in this documentation processing is performed on data in this NDF format
generated from within KAPPA. Generally, you will already have data in ‘foreign’ formats, that
is formats other than the Starlink standard, particularly in the FITS (Flexible Image Transport
System), IRAF, and FIGARO DST formats.

18.1 Automatic Conversion

Although KAPPA tasks do not work directly with ‘foreign’ formats, they can made to appear
that they do. What happens is that the format is converted ‘on-the-fly’ to a scratch NDF, which
is then processed by KAPPA. If the processing creates an output NDF or modifies the scratch
NDF, this may be back-converted ‘on-the-fly’ too, and not necessarily to the original data format.
At the end, the scratch NDF is deleted. So for example you could have an IRAF image file, use
BLOCK to filter the array, and output the resultant array as a FITS file.

We must first define the names of the recognised formats and a file extension associated with
each format. In practice you’ll most likely do this with the convert command, which creates
these definitions for many popular formats. The file extension determines in which format a file
is written. There is an environment variable called NDF_FORMATS_IN which defines the allowed
formats in a comma-separated list with the file extensions in parentheses. Here is an example.

% setenv NDF_FORMATS_IN ’FITS(.fit),IRAF(.imh),FIGARO(.dst)’

Once defined it lets you run KAPPA tasks on FITS, IRAF, or FIGARO files, like

% stats m51.fit
% stats m51.dst

would compute the statistics of a FITS file m51.fit, and then a FIGARO file m51.dst.

The environment variable also defines a search order. Had you entered

% stats m51

STATS would first look for an NDF called m51 (stored in file m51.sdf). If it could not locate that
NDF, STATS would then look for a file called m51.fit, and then m51.imh, and finally m51.dst,
stopping once a file was found and associating the appropriate format with it. If none of the
files exist, you’ll receive a “file not found” error message.

You can still define an NDF section (see Section 9) when you access an existing data file in a
foreign format. Thus

% stats m51.imh"(100:200,200~81)"

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://fits.gsfc.nasa.gov/
http://iraf.noao.edu/iraf-homepage.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

121 SUN/95.45 —Getting Data into KAPPA

would derive the statistics for x pixels between 100 and 200, and y pixels 160 to 240 in the IRAF
file m51.imh.

The conversion tasks may be your own for some private format, but normally they will come
from the CONVERT package (SUN/55). If you want to learn how to add conversions to the
standard ones, you should consult SSN/20.

There is an environment variable that defines the format of new data files. This could be assigned
the same value as NDF_FORMATS_OUT, though they don’t have to be.

% setenv NDF_FORMATS_OUT ’FITS(.fit),IRAF(.imh),FIGARO(.dst)’

If you supply the file extension when a KAPPA task creates a new dataset, and it appears in
NDF_FORMATS_OUT, you’ll get a file in that format. So for instance,

% ffclean in=m51.dst out=m51_cleaned.dst \\

cleans m51.dst and stores the result in m51_cleaned.dst. On the other hand, if you only give
the dataset name

% ffclean in=m51.dst out=m51_cleaned \\

the output dataset would be the first in the NDF_FORMATS_OUT list. Thus if you want to work
predominantly in a foreign format, place it first in the NDF_FORMATS_IN and NDF_FORMATS_OUT
lists.

If you want to create an output NDF, you must insert a full stop at the head of the list.

% setenv NDF_FORMATS_OUT ’.,FITS(.fit),IRAF(.imh),FIGARO(.dst)’

This is the recommended behaviour. If you just want to propagate the input data format, insert
an asterisk at the start of the output-format list.

% setenv NDF_FORMATS_OUT ’*,.,FITS(.fit),IRAF(.imh),FIGARO(.dst)’

This only affects applications that create a dataset using information propagated from an existing
dataset. For instance, if the above NDF_FORMATS_OUT were defined,

% ffclean in=m51.dst out=m51_cleaned \\

would now create m51_cleaned.dst. If there is no propagation in the given application, the
asterisk is ignored.

You can retain the scratch NDF by setting the environment variable NDF_KEEP to 1. This is useful
if you intend to work mostly with NDFs and will save the conversion each time you access the
dataset.

The convert command, which sets up definitions for the CONVERT package, defines the lists of
input and output formats as follows.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn20.htx/ssn20.html?xref_

SUN/95.45 —Getting Data into KAPPA 122

% setenv NDF_FORMATS_IN \
’FITS(.fit),FIGARO(.dst),IRAF(.imh),STREAM(.das),UNFORMATTED(.unf),UNF0(.dat),
ASCII(.asc),TEXT(.txt),GIF(.gif),TIFF(.tif),GASP(.hdr),COMPRESSED(.sdf.Z),
GZIP(.sdf.gz),FITS(.fits),FITS(.fts),FITS(.FTS),FITS(.FITS),FITS(.FIT),
FITS(.lilo),FITS(.lihi),FITS(.silo),FITS(.sihi),FITS(.mxlo),FITS(.rilo),
FITS(.rihi),FITS(.vdlo),FITS(.vdhi),STREAM(.str)’

% setenv NDF_FORMATS_OUT \
’.,FITS(.fit),FIGARO(.dst),IRAF(.imh),STREAM(.das),UNFORMATTED(.unf),
UNF0(.dat),ASCII(.asc),TEXT(.txt),GIF(.gif),TIFF(.tif),GASP(.hdr),
COMPRESSED(.sdf.Z),GZIP(.sdf.gz)’

See the CONVERT documentation for more details of these conversions.

18.2 Other Routes for Data Import

You can run CONVERT (cf. SUN/55) directly to perform conversions. There is also TRANDAT,
which will read a text file of data values, or co-ordinates and data values into an NDF, and
ASCIN in the FIGARO package (SUN/86).

18.3 FITS readers

The automatic conversion does not allow you the full control of the conversion that direct use
of a FITS reader offers and it does not deal with the special properties of tape. For full control
of the conversion process, you should use the FITS2NDF and MTFITS2NDF commands form
the CONVERTpackage. FITS2NDF reads disk FITS files, and MTFITS2NDF reads FITS files from
magnetic tape.

For historical reasons, KAPPA contains its own additional FITS readers; FITSIN for reading
data from tape, and FITSDIN for reading data from disk. These do not currently have all the
features of the corresponding CONVERTcommands (for instance, they do not allow an NDF
to be created from a specified FITS extension). For this reason, you should normally use the
CONVERT commands described in SUN/55.

Let’s see the KAPPA FITS readers in action.

18.3.1 Reading FITS Tapes

FITSIN reads FITS files stored on tape. For efficiency, you should select the ‘no-rewind’ device
for the particular tape drive, for example /dev/nrmt0h on OSF/1 and /dev/rmt/1n on Solaris.

We ask for the second file on the tape, and the headers are displayed so we can decide whether
this is the file we want. It is so we supply a name of an NDF to receive the FITS file. If it wasn’t
we would enter ! to the OUT prompt. The FMTCNV parameter asks whether the data are to
be converted to _REAL, using the FITS keywords BSCALE and BZERO, if present. If you are
wondering why there is (1) after the file number, that’s present because FITS files can have
sub-files, stored as FITS extensions.

% fitsin
MT - Tape deck /@/dev/nrmt0h/ >

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ASCIN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_FITS2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_MTFITS2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

123 SUN/95.45 —Getting Data into KAPPA

The tape is currently positioned at file 1.
FILES - Give a list of the numbers of the files to be processed > 2
File # 2(1) Descriptors follow:
SIMPLE = T
BITPIX = 16
NAXIS = 2
NAXIS1 = 400
NAXIS2 = 590
DATE = ’03/07/88’ /Date tape file created
ORIGIN = ’ING ’ /Tape writing institution
OBSERVER= ’CL ’ /Name of the Observer
TELESCOP= ’JKT ’ /Name of the Telescope
INSTRUME= ’AGBX ’ /Instrument configuration
OBJECT = ’SYS:ARCCL.002’ /Name of the Object
BSCALE = 1.0 /Multiplier for pixel values
BZERO = 0.0 /Offset for pixel values
BUNIT = ’ADU ’ /Physical units of data array
BLANK = 0 /Value indicating undefined pixel

: : :
: : :
: : :

END
FMTCNV - Convert data? /NO/ >
OUT - Output image > ff1
Completed processing of tape file 2 to ff1.
MORE - Any more files? /NO/ >

We can trace the structure to reveal the 2-byte integer CCD image. Notice that the FITS headers
are stored verbatim in a component .MORE.FITS. This is the FITS extension. The extension
contents can be listed with FITSLIST. There is more on this NDF extension and its purpose in
Section 18.4.

% hdstrace ff1
FF1 <NDF>

DATA_ARRAY(400,590) <_WORD> 216,204,220,221,202,222,220,206,218,221,
... 216,218,218,204,221,218,219,222,221,218

TITLE <_CHAR*13> ’SYS:ARCCL.002’
UNITS <_CHAR*3> ’ADU’
MORE <EXT> {structure}

FITS(84) <_CHAR*80> ’SIMPLE = T’,’BI...’
... ’ ...’,’ ING PACKEND’,’END’

End of Trace.

If you have many FITS files to read there is a quick method for extracting all files or a selection.
In automatic mode the output files are generated without manual intervention and the headers
aren’t reported for efficiency. Should you want to see the headers, write them to a text file via
the LOGFILE parameter. The cost of automation is a restriction on the names of the output files,
but if you have over a hundred files on a tape are you really going to name them individually?

The following example extracts the fourth to sixth, and eighth files. Note that the [] are needed
because the value for Parameter FILES is a character array.

SUN/95.45 —Getting Data into KAPPA 124

% fitsin auto
MT - Tape deck /@/dev/nrmt0h/ >
FMTCNV - Convert data? /NO/ > y
PREFIX - Prefix for the NDF file names? /’FITS’/ > JKT
FILES - Give a list of the numbers of the files to be processed > [4-6,8]
Completed processing of tape file 4 to JKT4.
Completed processing of tape file 5 to JKT5.
Completed processing of tape file 6 to JKT6.
Completed processing of tape file 8 to JKT8.
MORE - Any more files? /NO/ >

You can list selected FITS headers from a FITS tape without attempting to read in the data into
NDFs by using FITSHEAD. You can redirect its output to a file to browse at your leisure, and
identify the files you want to convert. So for instance,

% fitshead /dev/nrmt1h > headers.lis

lists all the FITS headers from a FITS tape on device /dev/nrmt1h to file headers.lis.

After running FITSIN you may notice a file USRDEVDATASET.sdf in the current directory. This
HDS file records the current position of the tape, so you can use FITSIN to read a few files, and
then run it again a little later, and FITSIN can carry on from where you left off. In other words
FITSIN does not have to rewind to the beginning of the tape to count files. When you’re finished
you should delete this file.

18.3.2 Reading FITS Files

For many years there was officially no such thing as disc FITS. However, ad hoc implementations
have existed for a long time. Of these, FITSDIN will handle files adhering to the FITS rules for
blocking (and more), but it doesn’t process byte-swapped ‘FITS’ files. Thus it can process files
with fixed-length records of semi-arbitrary length; so, for example, files mangled during network
transfer, which have 512-byte records rather than the customary 2880, may be read. However,
it will not handle, VAX FITS files as may be produced with FIGARO’s WDFITS. FITSDIN will
accept a list of files with wildcards. However, a comma-separated list must be enclosed in
quotation marks. Also wildcards must be protected. Here are some examples so you get the
idea.

% fitsdin ’*.fit’
% fitsdin *.fit
ICL> fitsdin *.fit
% fitsdin ’"i*.fit,abc123.fts"’
ICL> fitsdin "i*.fit,abc123.fts"

In the following example a floating-point file is read (BITPIX=−32) and so FMTCNV is not
required.

% fitsdin ’*.fits’

2 files to be processed...

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_WDFITS

125 SUN/95.45 —Getting Data into KAPPA

Processing file number 1: /home/scratch/dro/gr.fits.
File /scratch/dro/gr.fits(1) Descriptors follow:
SIMPLE = T / Standard FITS format
BITPIX = -32 / No. of bits per pixel
NAXIS = 2 / No. of axes in image
NAXIS1 = 512 / No. of pixels
NAXIS2 = 256 / No. of pixels
EXTEND = T / FITS extension may be present
BLOCKED = T / FITS file may be blocked

BUNIT = ’none given ’ / Units of data values

CRPIX1 = 1.000000000000E+00 / Reference pixel
CRVAL1 = 0.000000000000E+00 / Coordinate at reference pixel
CDELT1 = 1.000000000000E+00 / Coordinate increment per pixel
CTYPE1 = ’ ’ / Units of coordinate
CRPIX2 = 1.000000000000E+00 / Reference pixel
CRVAL2 = 0.000000000000E+00 / Coordinate at reference pixel
CDELT2 = 1.000000000000E+00 / Coordinate increment per pixel
CTYPE2 = ’ ’ / Units of coordinate

ORIGIN = ’ESO-MIDAS’ / Written by MIDAS
OBJECT = ’artificial image’ / MIDAS desc.: IDENT(1)

: : :
: : :
: : :

HISTORY ESO-DESCRIPTORS END

END
OUT - Output image > gr
Completed processing of disc file /home/scratch/dro/gr.fits to gr.
File has illegal-length blocks (512). Blocks should be a multiple (1--10) of the
FITS record length of 2880 bytes.
Processing file number 2: /home/scratch/dro/indef.fits.
File /home/scratch/dro/indef.fits(1) Descriptors follow:
SIMPLE = T / FITS STANDARD
BITPIX = 32 / FITS BITS/PIXEL
NAXIS = 2 / NUMBER OF AXES
NAXIS1 = 256 /
NAXIS2 = 20 /
BSCALE = 3.7252940008E28 / REAL = TAPE*BSCALE + BZERO
BZERO = 7.9999999471E37 /
OBJECT = ’JUNK[1/1]’ /
ORIGIN = ’KPNO-IRAF’ /

: : :
: : :
: : :

END
OUT - Output image > iraf
Completed processing of disc file /home/scratch/dro/indef.fits to iraf.

NDFTRACE shows that the object name is written to the NDF’s title, that axes derived from the
FITS headers are present, and that gr is a _REAL NDF.

SUN/95.45 —Getting Data into KAPPA 126

% ndftrace gr

NDF structure /home/scratch/dro/iraf:
Title: artificial image
Units: none given

Shape:
No. of dimensions: 2
Dimension size(s): 512 x 256
Pixel bounds : 1:512, 1:256
Total pixels : 131072

Axes:
Axis 1:

Label : Axis 1
Units : pixel
Extent: -0.5 to 511.5

Axis 2:
Label : Axis 2
Units : pixel
Extent: -0.5 to 255.5

Data Component:
Type : _REAL
Storage form: PRIMITIVE
Bad pixels may be present

Extensions:
FITS <_CHAR*80>

Both FITSIN and FITSDIN write the FITS headers into an NDF extension called FITS within
your NDF. The extension is a literal copy of all the 80-character ‘card images’ in order. These can
be inspected or written to a file via the command FITSLIST. There is more on this NDF extension
and its purpose in Section 18.4.

18.4 The FITS Airlock

18.4.1 NDF Extensions

An important feature of the NDF is that it is designed to be extensible. The NDF has components
whose meanings are well defined and universal, and so they can be accessed by general-purpose
software, such as KAPPA and CONVERT provide; but the NDF also allows independent extensions
to be defined and added, which can store auxiliary information to suit the needs of a specialised
software package. (Note that the term extension here refers to a structure within the NDF for
storing additional data, and is neither the file extension .sdf nor extensions like BINTABLE
within the FITS file.) An extension is only processed by software that understands the meanings
obeys the processing rules of the various components of the extension. Other programmes
propagate the extension information unaltered.

The existence of extensions makes it straightforward to write general utilities for converting an
arbitrary format into an NDF. The idea being that every specialist package should not have to

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_

127 SUN/95.45 —Getting Data into KAPPA

have its own conversion tools such as a FITS reader. However, this still leaves the additional
data that requires specialist knowledge to move it into the appropriate extension components.
The aim is to make the conversions themselves extensible, with add-on operations to move the
specialist information to and from the extensions. This is where the FITS ‘airlock’ comes in.

The FITS data format comprises a header followed by the data array or table. The header
contains a series of 80-character lines each of which contains the keyword name, a value and an
optional comment. There are also some special keywords for commentary. The meanings of
most keywords are undefined, and so can be used to transport arbitrary ancillary information,
subject to FITS syntax limitations. There is a special NDF extension called FITS, which mirrors
this functionality, and may be added to an NDF. It therefore can act as an airlock between the
general-purpose conversion tools and specialist packages.

18.4.2 Importing and Exporting from and to the FITS Extension

The FITS extension comprises a one-dimensional array of 80-character strings that follow FITS-
header formatting rules. In the case of FITSIN and FITSDIN, each FITS extension is a verbatim
copy of the FITS header of the input file. Other conversion tools like IRAF2NDF and UNF2NDF
of CONVERT can also create a FITS extension in the same fashion. On export, standard conversion
tools propagate the FITS extension to any FITS headers or equivalent in the foreign format.
However, information which is derivable from the standard NDF components, such as the array
dimensions, data units, and linear axes, replaces any equivalent headers from FITS extension.

You use your knowledge, or the writer of the specialist package provides import tools, to
recognise certain FITS keywords and to attribute meaning to them, and then to move or process
their values to make the specialist extensions. One such is the PREPARE task in IRAS90. Similarly,
the reverse operation—exporting the extension information—can occur too, prior to converting
the NDF into another data format.

KAPPA offers two simple tools for the importing and exporting of extension information: FIT-
SIMP and FITSEXP. They both use a text file, which acts as a translation table between the FITS
keyword and extension components. Starting with FITSIMP, its translation table might look like
this.

ORDER_NUMBER _INTEGER ORDNUM
PLATE_SCALE _REAL SCALE ! The plate scale in arcsec/mm
SMOOTHED _LOGICAL FILTERED

It consists of three fields: the first is the name of the component in the chosen extension, the
second is the HDS data type of that component, and the third is the FITS keyword. Optional
comments can appear following an exclamation mark. So if we placed these lines in file imptable,
we could create an extension called MYEXT of data type MJC_EXT (if it did not already exist)
containing components ORDER_NUMBER, PLATE_SCALE, and SMOOTHED.

% fitsimp mydata imptable myext mjc_ext

Should any of the keywords not exist in the FITS extension, you’ll be warned. If the extension
already exists, you don’t need to specify the extension data type. FITSIMP will even handle
hierarchical keywords and those much-loved ING packets from La Palma.

Going in the opposite direction, the text translation file could look like this

http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_IRAF2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_UNF2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Getting Data into KAPPA 128

MYEXT.ORDER_NUMBER ORDNUM(LAST) The spectral order number
MYEXT.PLATE_SCALE SCALE The plate scale in arcsec/mm
MYEXT.SMOOTHED FILTERED

where the first column is the ‘name’ of the extension component to be copied to the FITS
extension. The ‘name’ includes the extension name and substructures. The second column
gives the FITS keyword to which to write the value. A further keyword in parentheses instructs
FITSEXP to place the new FITS header immediately before the header with that keyword. If
the second keyword is absent from the translation-table record or the FITS extension, the new
header appears immediately before the END header line in the FITS extension. Thus the value
of ORDER_NUMBER in extension MYEXT, creates a new keyword in the FITS extension called
ORDNUM, and it is located immediately prior the keyword LAST.

18.4.3 Listing the FITS Extension and keywords

If you don’t want to be bothered with NDF extensions, you might just want to know the value
of some FITS keyword, say the exposure time, as part of your data processing. FITSLIST lists the
contents of the FITS extension of an NDF or file. You can even search for keywords with grep.

% fitslist myndf | grep "ELAPSED ="

This would find the keyword ELAPSED in the FITS extension of NDF myndf. (Keywords are 8
characters long and those with values are immediately followed by an equals sign.) However,
the recommended way is to use the FITSVAL command. Since this command only reports the
value, it is particularly useful in scripts that need ancillary-data values during processing. The
following obtains the value of keyword ELAPSED.

% fitsval myndf ELAPSED

In a script you may need to know whether the keyword exists and take appropriate action.

filterpre = ‘fitsexist myndf filter‘
if ($filterpre == "TRUE") then

filter = ‘fitsval myndf filter‘
else

prompt -n "Filter > "
set filter = $<

endif

Shell variable filterpres would be assigned "TRUE" when the FILTER card is present, and
"FALSE" otherwise. (The ‘ ‘ quotes cause the enclosed command to be executed.) So the user
of the script would be prompted for a filter name whenever the NDF did not contain that
information.

129 SUN/95.45 —Getting Data into KAPPA

18.4.4 Creating and Editing the FITS Extension

Besides the conversion utilities, you can import your own FITS extension using FITSTEXT. You
first prepare a FITS-like header in a text file. For example,

% fitstext myndf myfile

places the contents of myfile in the NDF called myndf. This is not advised unless you are
familiar with the rules for writing FITS headers. See the NOST A User’s Guide to FITS (URL
http://archive.stsci.edu/fits/users_guide/). Other useful FITS documents, test files, and
software are available at the FITS Support Office Home Page (URL http://fits.gsfc.nasa.gov/).

FITSTEXT does perform some limited validation of the FITS headers, and informs you of any
problems it detects. See the FITSHEAD Notes in Appendix C for details.

A safer bet for a hand-crafted FITS extension is to edit an existing FITS extension to change a
value, or use existing lines as templates for any new keywords you wish to add. FITSEDIT lets
you do this with your favourite text editor. Define the environment variable EDITOR to your
editor, say

% setenv EDITOR jed

to choose jed. If you don’t do this, and EDITOR is unassigned, FITSEDIT selects the vi editor.
Then to edit the NDF extension is simple.

% fitsedit myndf

This edits the FITS extension of the NDF called myndf. FITSEDIT extracts the file into a
temporary file (zzfitsedit.tmp) which you edit, and then uses FITSTEXT to restore the FITS
extension. It therefore has the same parsing of the edited FITS headers as FITSTEXT provides.

18.4.5 Easy way to create and edit the FITS Extension

Should you wish to write a new value without knowing about FITS, or in a script where manual
editing is undesirable, the FITSWRITE command does the job. So for example,

% fitswrite myndf filter value=K

will create a keyword FILTER with value K in the FITS extension of the NDF called myndf. If the
extension does not exist, this command will first create it.

The FITSMOD command has several editing options including the ability to delete a keyword:

% fitsmod myndf airmass edit=delete

here it removes the AIRMASS header; or rename a keyword:

% fitsmod myndf band rename newkey=filter

http://archive.stsci.edu/fits/users_guide/
http://fits.gsfc.nasa.gov/

SUN/95.45 —Getting Data into KAPPA 130

as in this example, where keyword BAND becomes keyword FILTER; or update an existing
keyword:

% fitsmod myndf filter edit=u value=\$V comment=’"Standard filter name"’

this example modifies the comment string associated with the FILTER keyword, leaving the
value unchanged.

For routine operations requiring many operations on a dataset, FITSMOD lets you specify the
editing instructions in a text file.

131 SUN/95.45 —Procedures

19 Procedures

Applications from KAPPA and other packages can be combined in procedures and scripts to
customise and automate data processing. In addition to giving literal values to application
parameters, you can include ICL or C-shell variables on the command line, whose values are
substituted at run time. It is also possible to write parameter data into variables, and hence pass
them to another application, or use the variables to control subsequent processing.

19.1 C-shell scripts

The C-shell Cookbook contains many ingredients and recipes, and features many KAPPA com-
mands. So there is little point repeating them here other than to direct you to a documented
script in $KAPPA_DIR/multiplot.csh.

19.2 ICL Procedures

You should consult the ICL Users’ Guide for details about writing ICL syntax, procedures,
and functions, but you’re a busy researcher. . . For a quick overview the two-page summary on
“Writing ICL command files and procedures” in SUN/101 is recommended reading, even though
much of the document is dated and still refers to VMS. Here we’ll just show some example
procedures that can be adapted and cover points not mentioned in SUN/101.

Let’s start with something simple. You want to ‘flash’ a series of images, each with a yellow
border. First you write the following procedure called FLASH. It has one argument INPIC, that
passes the name of the NDF you want to display. When you substitute an ICLvariable for a
parameter value you enclose it in parentheses. The lines beginning with { are comments.

PROC FLASH INPIC
{
{ Procedure for displaying an image without scaling.
{

DISPLAY IN=(INPIC) MODE=FL
END PROC

To make ICL recognise your procedure you must ‘load’ it. The command

ICL> LOAD FLASH

will load the file FLASH.ICL. Thereafter in the ICL session you can invoke FLASH for many NDFs.
The following will display the NDFs called GORDON and FLOOD side-by-side.

ICL> PICGRID 2 1
ICL> FLASH GORDON
ICL> PICSEL 2
ICL> FLASH FLOOD

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sc4.htx/sc4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun101.htx/sun101.html?xref_

SUN/95.45 —Procedures 132

It would be tedious to have to load lots of individual procedures, but you don’t. If you have
related procedures that you regularly require they can be concatenated into a single file which
you load. Better still is to add definitions for each of the procedures in your ICL login file. This is
defined as the value of the ICL_LOGIN environment variable. A reasonable place is in your home
directory and you’d define it like this.

% setenv ICL_LOGIN $HOME/login.icl

However, the file doesn’t have to be in your home directory, or called login.icl, but it’s conve-
nient to do so. Suppose you have three procedures: FLASH, PICGREY in file $MY_DIR/display_proc.icl,
and FILTER in /home/user1/dro/improc.icl. In your $HOME/login.icl you could add the
following

defproc flash $MY_DIR/display_proc.icl
defproc sfilt $HOME/user1/dro/improc.icl filter
defproc picgr(ey) $MY_DIR/display_proc.icl

which defines three commands that will be available each time you use ICL: FLASH which will
run your FLASH procedure, PICGREY to execute the PICGREY procedure, and SFILT which
runs the FILTER procedure. In addition PICGREY can be abbreviated to PICGR or PICGRE. So
now you can load and run your procedure. Let’s have some more example procedures.

Suppose you have a series of commands to run on a number of files. You could create a
procedure to perform all the stages of the processing, deleting the intermediate files that it
creates.

PROC UNSHARPMASK NDFIN CLIP NDFOUT

{ Insert ampersands to tell the command-line interpreter than these
{ strings are file names.

IF SUBSTR(NDFIN, 1, 1) <> ’@’
NDFIN = ’@’ & (NDFIN)

END IF
IF SUBSTR(JUNK, 1, 1) <> ’@’

NDFOUT = ’@’ & (NDFOUT)
END IF

{ Clip the image to remove the cores of stars and galaxies above
{ a nominated threshold.

THRESH (NDFIN) TMP1 THRHI=(CLIP) NEWHI=(CLIP) \

{ Apply a couple of block smoothings with boxsizes of 5 and 13
{ pixels. Delete the temporary files as we go along.

BLOCK tmp1 tmp2 BOX=5
! rm tmp1.sdf
BLOCK tmp2 tmp3 BOX=13
! rm tmp2.sdf

{ Multiply the smoothed image by a scalar.
CMULT tmp3 0.8 tmp4
! rm tmp3.sdf

133 SUN/95.45 —Procedures

{ Subtract the smoothed and renormalised image from the input image.
{ The effect is to highlight the fine detail, but still retain some
{ of the low-frequency features.

SUB (NDFIN) tmp4 (NDFOUT)
! rm tmp4.sdf

END PROC

There is a piece of syntax to note which often catches people out. Filenames, data objects, and
devices passed via ICL variables to applications, such as NDFIN and NDFOUT in the above
example, must be preceded by an @.

A common use of procedures is likely to be to duplicate processing for several files. Here is an
example procedure that does that. It uses some intrinsic functions which look just like Fortran.

PROC MULTISTAT

{ Prompt for the number of NDFs to analyse. Ensure that it is positive.
INPUTI Number of frames: (NUM)
NUM = MAX(1, NUM)

{ Find the number of characters required to format the number as
{ a string using a couple of ICL functions.

NC = INT(LOG10(I)) + 1

{ Loop NUM times.
LOOP FOR I=1 TO (NUM)

{ Generate the name of the NDF to be analysed via the ICL function
{ SNAME.

FILE = ’@’ & SNAME(’REDX’,I,NC)

{ Form the statistics of the image.
STATS NDF=(FILE)

END LOOP
END PROC

If NUM is set to 10, the above procedure obtains the statistics of the images named REDX1,
REDX2, . . . REDX10. The ICL variable FILE is in parentheses because its value is to be substituted
into Parameter NDF.

Here is another example, which could be used to flat field a series of CCD frames. Instead
of executing a specific number of files, you can enter an arbitrary sequence of NDFs. When
processing is completed a !! is entered rather than an NDF name, and that exits the loop. Note
the ˜ continuation character (it’s not required but it’s included for pedagogical reasons).

PROC FLATFIELD

{ Obtain the name of the flat-field NDF. If it does not have a
{ leading @ insert one.

INPUT "Which flat field frame?: " (FF)
IF SUBSTR(FF, 1, 1) <> ’@’

SUN/95.45 —Procedures 134

FF = ’@’ & (FF)
END IF

{ Loop until there are no further NDFs to flat field.
MOREDATA = TRUE
LOOP WHILE MOREDATA

{ Obtain the frame to flat field. Assume that it will not have
{ an @ prefix. Generate a title for the flattened frame.

INPUT "Enter frame to flat field (!! to exit): " (IMAGE)
MOREDATA = IMAGE <> ’!!’
IF MOREDATA

TITLE = ’Flat field of ’ & (IMAGE)
IMAGE = ’@’ & (IMAGE)

{ Generate the name of the flattened NDF.
IMAGEOUT = (IMAGE) & ’F’
PRINT Writing to (IMAGEOUT)

{ Divide the image by the flat field.
DIV IN1=(IMAGE) IN2=(FF) OUT=(IMAGEOUT) ~

TITLE=(TITLE)
END IF

END LOOP
END PROC

Some KAPPA applications, particularly the statistical ones, produce output parameters, which
can be passed between applications via ICL variables. Here is an example to draw a contour plot
centred about a star in a nominated data array from only the star’s approximate position. The
region about the star is stored in an output NDF file. Note the syntax required to define the
value of Parameter INIT; the space between the left bracket and parenthesis is essential.

PROC COLSTAR FILE,X,Y,SIZE,OUTFILE

{+
{ Arguments:
{ FILE = FILENAME (Given)
{ Input NDF containing one or more star images.
{ X = REAL (Given)
{ The approximate x position of the star.
{ Y = REAL (Given)
{ The approximate y position of the star.
{ SIZE = REAL (Given)
{ The half-width of the region about the star’s centroid to be
{ plotted and saved in the output file.
{ OUTFILE = FILENAME (Given)
{ Output primitive NDF of 2*%SIZE+1 pixels square (unless
{ constrained by the size of the data array or because the location
{ of the star is near an edge of the data array.
{-

{ Ensure that the filenames have the @ prefix.
IF SUBSTR(FILE, 1, 1) <> ’@’

135 SUN/95.45 —Procedures

NDF = ’@’ & (FILE)
ELSE

NDF = (FILE)
END IF
IF SUBSTR(OUTFILE, 1, 1) <> ’@’

NDFOUT = ’@’ & (OUTFILE)
ELSE

NDFOUT = (OUTFILE)
END IF

{ Search for the star in a 21x21 pixel box. The centroid of the
{ star is stored in the ICL variables XC and YC.

CENTROID NDF=(NDF) INIT=[(X&’,’&Y)] XCEN=(XC) YCEN=(YC) ~
MODE=INTERFACE SEARCH=21 MAXSHIFT=14

{ Convert the co-ordinates to pixel indices.
IX = NINT(XC + 0.5)
IY = NINT(YC + 0.5)

{ Find the upper and lower bounds of the data array to plot. Note
{ this assumes no origin information in stored in the data file.

XL = MAX(1, IX - SIZE)
YL = MAX(1, IY - SIZE)
XU = MAX(1, IX + SIZE)
YU = MAX(1, IY + SIZE)

{ Create a new NDF centred on the star.
NDFCOPY IN=(NDF)((XL):(XU),(YL):(YU)) OUT=(NDFOUT)

{ Draw a contour plot around the star on the current graphics device
{ at the given percentiles.

CONTOUR NDF=(NDFOUT) MODE=PE PERCENTILES=[80,90,95,99]

{ Exit if an error occurred, such as not being able to find a star
{ near the supplied position, or being unable to make the plot.

EXCEPTION ADAMERR
PRINT Unable to find or plot the star.

END EXCEPTION
END PROC

SUN/95.45 —Problems Problems 136

20 Problems Problems

20.1 Errors

A detailed list of error codes and their meanings is not available. KAPPA produces descriptive
contextual error messages, which are usually straightforward to comprehend. Some of these
originate in the underlying infrastructure software. Error messages from KAPPA begin with the
name of the application reporting the error. The routine may have detected the error, or it has
something to say about the context of the error.

The remainder of the section describes some difficulties you may encounter and how to overcome
them. Please suggest additions to this compilation.

20.2 No Match

When running KAPPA from the UNIX shell, your command fails with a “No Match” error
message. This means you have forgotten to protect a wildcard character, such as *, ?, so they
they are passed to the KAPPA command and not interpreted by the UNIX shell. You can precede
the wildcard character with \, or surround the wildcard characters in " " quotes. Here are some
examples.

% ndftrace ccd\?_ff
% stats *118_"[b-d]?"

20.3 Unable to Obtain Work Space

Error messages like “Unable to create a work array” may puzzle you. They are accompanied by
additional error messages that usually pinpoint the reason for the failure of the application to
complete. Many applications require temporary or work space to perform their calculations.
This space is stored in an HDS file within directory $HDS_SCRATCH and most likely is charged
to your disc quota. (If you have not redefined this environment variable, it will point to your
current directory.) So one cause for the message is insufficient disc quota available to store
the work space container file or to extend it. A second reason for the message is that your
computer cannot provide sufficient virtual memory to map the workspace. In this case you can
try increasing your process limits using the C-shell built-in function limit. You can find your
current limits by entering limit. You should see a list something like this.

cputime unlimited
filesize unlimited
datasize 131072 kbytes
stacksize 2048 kbytes
coredumpsize unlimited
memoryuse 89232 kbytes
vmemoryuse 1048576 kbytes
descriptors 4096

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

137 SUN/95.45 —Problems Problems

The relevant keywords are datasize and the vmemoryuse. In effect datasize specifies the
maximum total size of data files you can map at one time in a single programme. The default
should be adequate for most purposes and only need be modified for those working with large
images or cubes. The vmemoryuse specifies the maximum virtual memory you can use.

% limit datasize 32768

sets the maximum size of mapped data to 32 megabytes. Values cannot exceed the system limits.
You can list these with the -h qualifier.

% limit -h
cputime unlimited
filesize unlimited
datasize 1048576 kbytes
stacksize 32768 kbytes
coredumpsize unlimited
memoryuse 89232 kbytes
vmemoryuse 1048576 kbytes
descriptors 4096

Although you can set your limits to the system maxima, it doesn’t mean that you should
just increase your quotas to the limits. You might become unpopular with some of your
colleagues, especially if you accidentally try to access a huge amount of memory. If you cannot
accommodate your large datasets this way, you should fragment your data array, and process
the pieces separately.

After receiving this error message in an ICLsession you may need to delete the scratch file by
hand. The file is called txxx.sdf, where xxxx is a process identifier. A normal exit from ICLwill
delete the work-space container file.

20.4 Application Automatically Picks up the Wrong NDF

Some applications read the name of the NDF used to create a plot or image from the graphics
database in order to save typing. Once in a while you’ll say “that’s not the one I wanted”. This is
because AGI finds the last DATA picture situated within the current picture. Abort the application
via !!, then use PICCUR or PICLIST to select the required FRAME picture enclosing the DATA
picture, or even select the latter directly. You can override the AGI NDF also by specifying the
required NDF on the command line, provided it has pixels whose indices lies within the world
co-ordinates of the DATA picture. Thus

% inspect myndf

will inspect the NDF called myndf. The command PICIN will show the last DATA picture and
its associated NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun48.htx/sun48.html?xref_

SUN/95.45 —Problems Problems 138

20.5 Unable to Store a Picture in the Graphics Database

You may receive an error message, which says failed to store such-and-such picture in the
graphics database. For some reason the database was corrupted due to reasons external to
KAPPA. Don’t worry, usually your plot will have appeared, and to fix the problem run GDCLEAR
or delete the database file ($AGI_USER/agi_<node>.sdf, where you substitute your system’s
node name for <node>). You will need to redraw the last plot if you still require it, say for
interaction.

20.6 Line Graphics are Invisible on an Graphics Device

The reason for invisible line graphics on your graphics device is because it is drawn in black or
a dark grey. Most likely is that some person has been using other software on your graphics
device or that is has been reset. PALDEF will set up the default colours for the palette, and so
most line graphics will then appear in white. Alternatively,

% palentry 1 white

will normally suffice.

20.7 Error Obtaining a Locator to a Slice of an HDS array

If the above error appears from DAT_SLICE and you are (re)prompted for an NDF , the most
likely cause is that you have asked an IMAGE application to process an NDF section. Use
NDFCOPY to make a subset before running the application in question, or process the whole
NDF.

20.8 Badly placed ()’s

This means that you have forgotten to ‘escape’ parentheses, probably when defining an NDF
section in the UNIX shell. Try inserting a backslash before each parenthesis or enclosing all the
special characters inside " " quotes.

% stats myndf\(100:200,\)
% linplot spectrum"(5087.0~30)"

20.9 Attempt to use ’positional’ parameter value (x) in an unallocated position

Check the usage of the application you are running. One way of adding positional parameters
unintentionally, is to forget to escape the " from the shell when supplying a string with spaces
or wildcards. For example, this error would arise if we entered

% settitle myndf "A title"

instead of say

% settitle myndf ’"A title"’

which protects all special characters between the single quotes.

139 SUN/95.45 —Problems Problems

20.10 The choice x is not in the menu. The options are. . .

You have either made an incorrect selection, or you have forgotten to escape a metacharacter.
For the former, you can select a new value from the list of valid values presented in the error
message. For the latter, part of another value is being interpreted as a positional value for the
parameter the task is complaining about.

% linplot $KAPPA_DIR/spectrum style="Title=Red-giant plot"
!! The choice plot is not in the menu. The options are
! Data,Quality,Error,Variance.
! Invalid selection for Parameter COMP.

Here it thinks that plot is a positional value. Escape the " to cure the problem.

% linplot $KAPPA_DIR/spectrum style=’"Title=Red-giant plot"’

20.11 Annotated axes show the wrong co-ordinate system

Each NDF has an associated current co-ordinate system which is used when reporting positions
within the NDF, or when obtaining positions from the user. If you want to either see, or give,
positions in a different co-ordinate system, you need to change the current co-ordinate system
(more often called the current co-ordinate frame) of the NDF by using command WCSFRAME.
For instance,

% wcsframe m57 pixel

will cause all subsequent commands to use pixel co-ordinates when reporting positions, or
obtaining positions.

20.12 “I’ve Got This FITS Tape”

Certain combinations of magnetic tape produced on one model of tape drive but read on a
different model seem to generate parity errors that are detected by the MAG_ library that FITSIN
uses. However, this doesn’t mean that you won’t be able to read your FITS tape. The UNIX
tape-reading commands seem less sensitive to these parity errors.

Thus you should first attempt to convert the inaccessible FITS files on tape to disc files using
the UNIX dd command, and then use the FITSDIN application to generate the output NDF or
foreign format. For example to convert a FITS file from device /dev/nrst0 to an NDF called
ndfname, you might enter

% dd if=/dev/nrst0 ibs=2880 of=file.fits
% fitsdin files=file.fits out=ndfname
% rm file.fits

where file.fits is the temporary disc-FITS file. The 2880 is the length of a FITS record in bytes.
Repeated dd commands to a no-rewind tape device (those with the n prefix on OSF/1 and the
n suffix on Solaris) will copy successive files. To skip over files or rewind the tape, use the mt
command. For example,

SUN/95.45 —Problems Problems 140

% mt -f /dev/rmt/1n fsf 3
: : :

% mt -f /dev/rmt/1n asf 4

moves the tape on device /dev/rmt/1n forward three files, then moves to the fourth file,

% mt bsf 2

moves back two files on the default tape drive (defined by the environment variable TAPE), and

% mt -f /dev/nrmt0h rewind

rewinds to the start of the tape on device /dev/nrmt0h. Thus it is possible to write a script for
extracting and converting a series of files including ranges, just like FITSIN does.

If the above approach fails, try another tape drive.

20.13 FITSIN does not Recognise my FITS Tape

If you attempt to read a FITS magnetic tape with FITSIN, you might receive an error like this

% fitsin
% MT - Tape deck /@/dev/nrmt1h/ > /dev/nrmt3l
!! Object ’/DEV/NRMT3L’ not found.
! DAT_FIND: Error finding a named component in an HDS structure.
! /dev/nrmt3l: MAG__UNKDV, Unable to locate device in DEVDATASET

when you enter the device name. The magnetic-tape system uses an HDS file called the
device dataset (DEVDATASET) to store the position of the tape between invocations of Starlink
applications.

When FITSIN is given a name, the magnetic-tape system validates the name to check that it
is a known device. There should be a devdataset.sdf file (within /star/etc at Starlink sites)
containing a list of at least all the available drives at your site. What FITSIN is complaining
about above, is that the device you have given is not included in the DEVDATASET file. Now
this might be because you mistyped the device name, or that the particular device is not
accessible on the particular machine, or because your computer manager has not maintained
the DEVDATASET when a drive was added. You can look at the contents of the DEVDATASET
with this command.

% hdstrace /star/etc/devdataset

Oh and one other point: make sure the tape is loaded in the drive. Yes this mistake has happened
(not mentioning any names) and it is very hard to diagnose remotely.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

141 SUN/95.45 —Problems Problems

20.14 It Used to Work. . . and Weird Errors

There is a class of error that arises when an HDS file is corrupted. The specific message will
depend on the file concerned and where in the file the corruption occurred. The most likely
reason for file corruption is breaking into a task at the wrong moment, or trying to write to a file
at the same time.

If you want to process simultaneously from different sessions—say one interactive and another
in batch—it is wise to redefine the environment variables ADAM_USER, and AGI_USER if you want
graphics on the same machine. The environment variables should point to a separate existing
directory for each additional session. This will keep the global and application parameters, and
the graphics database separate for each session.

The way to look for corrupted HDS files is trace them. Assuming that $ADAM_USER and
$AGI_USER are defined,

% hdstrace $ADAM_USER/GLOBALS full
% hdstrace $ADAM_USER/ardmask full
% hdstrace $AGI_USER/agi_cacvad full

traces the GLOBALS file, the application you were running when the weird error occurred (here
ARDMASK), and the graphics database for machine cacvad. Once you have identified the
problem file, delete it. If that proves to be the globals file, you might want to retain the output
from HDSTRACE, so that you can restore their former values. Deleting the graphics database is
something you should do regularly, so that’s not a problem.

If you have been running KAPPA from ICL, you will need to check of the integrity of the monolith
parameter file, instead the individual parameter file. It will be one of these depending on
the type of task that failed: graphics, NDF components, or the rest (mostly image processing)
corresponding to these three monolith interface files.

% hdstrace $ADAM_USER/kapview_mon full
% hdstrace $ADAM_USER/ndfpack_mon full
% hdstrace $ADAM_USER/kappa_mon full

If that doesn’t cure the problem, send a log of the session demonstrating the problem to the
Starlink Software support mailing list (starlink@jiscmail.ac.uk), and we shall endeavour to
interpret it for you, and find out what’s going wrong.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Custom KAPPA 142

21 Custom KAPPA

21.1 Tasks

KAPPA applications can be modified to suit your particular requirements. Since this document
is not a programmer’s guide, instructions are not given here. Programmers should contact the
author for details until a new Programmer’s Guide appears to replace the old SUN/101, which
was a good summary of Starlink infrastructure libraries and programming.

All the source files can be found in /star/kappa/*.tar on Starlink machines. The /star path
may be different outside of Starlink, so check with your computer manager. There is a separate
tar file for each KAPPA subroutine library (with a _sub suffix) and the interface files, with
obvious names. The remaining files: the monolith routines, link scripts, include files, the help
source, shell scripts, ICL procedures, and test data are in kappa_source.tar. There is also a
Starlink standard makefile and mk script.

Many of the general-purpose subroutines which previously formed part of KAPPA have now
been moved into a separate software item called KAPLIBS (see SUN/238). KAPPA itself now links
against the libraries in KAPLIBS .

Here is a worked example. Suppose that you have _REAL-type datasets for which you want to
compute statistics including the skewness and kurtosis. One way is to modify STATS. First to
save typing define environment variables, say STAR and KAPPA and KAPLIBS to point to where
the Starlink software, KAPPA and KAPLIBS source is stored. Next we extract the source files to
change.

% setenv STAR /star
% setenv KAPPA /star/sources/kappa
% setenv KAPLIBS /star/sources/kaplibs
% tar xf $KAPPA/kappa_sub.tar stats.
% tar xf $KAPPA/kappa_ifls.tar stats.ifl
% tar xf $KAPLIBS/kapgen_sub.tar kpg1_statr.f
% tar xf $KAPLIBS/kapgen_sub.tar kpg1_stdsr.f
% tar xf $KAPPA/kappa_source.tar kappa_link_adam

We modify kpg1_statr.f to compute the additional statistics; kpg1_stdsr.f to list the statistics;
stats.f to update the documentation, to use the revised argument lists of the subroutines,
and to output the new statistics to parameters; and stats.ifl to add the output parameters.
kappa_link_adam need not be modified, but it is needed during linking.

Next some soft links to include files need to be made.

% star_dev
% ndf_dev
% prm_dev
% par_dev
% kaplibs_dev

For some other application and subroutines, you can find what is needed by trying to compile
them and see which include files the compiler cannot locate. You then invoke the appropriate

http://www.starlink.ac.uk/cgi-bin/htxserver/sun101.htx/sun101.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun238.htx/sun238.html?xref_

143 SUN/95.45 —Custom KAPPA

package definitions: pkg_dev, where pkg is the three-letter package abbreviation. Now compile
the modified code. This is for OSF/1:

% f77 -O -c -nowarn stats.f kpg1_statr.f kpg1_stdsr.f

and this is for Solaris:

% f77 -O -PIC -c -w stats.f kpg1_statr.f kpg1_stdsr.f

The -nowarn and -w prevent warning messages appearing.

And this is for Linux:

% g77 -fno-second-underscore -O -c stats.f kpg1_statr.f kpg1_stdsr.f

Now link the task to produce a new stats executable.

% alink stats.o -o stats kpg1_statr.o kpg1_stdsr.o \
-L$STAR/lib ‘./kappa_link_adam‘

If you want to use KAPPA subroutines for your own application here are words of warning: the
code may undergo alterations of subroutine name or argument lists, and those without a pkg_ prefix will
either be replaced or renamed. Therefore, you should copy the modules you need.

21.2 Parameters

If you don’t like KAPPA’s parameter defaults, or its choice of which parameters get prompted
for and which get defaulted, then you can change them. Extract the interface file from
/star/kappa/kappa_ifls.tar to your work directory and make the required modifications,
and then recompile it. See SUN/115 on the meanings and possible values of the fieldnames, and
how to recompile the interface file. If you use ICL, you’ll need to modify a monolith interface file:
$KAPPA_DIR/kappa_mon.ifl, kapview_mon.ifl or ndfpack_mon.ifl. Finally, you will need to
specify a search path that includes the directory containing your modified interface file.

% setenv ADAM_IFL /home/scratch/dro/ifls:/usr/local/kappa

This asks Starlink programmes to look in /home/scratch/dro/ifls to find the interface file,
and if there isn’t one to look in /usr/local/kappa. If the interface file search is unsuccessful,
the directory containing the executable is assumed. Thus if you’ve not created your own
interface file for a task, you’ll get the released version. Of course, once you have done this, the
documentation in Appendix C will no longer be correct.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Acknowledgments 144

21.3 Commands

There is an easier method of tailoring KAPPA to your requirements. If you frequently use certain
commands, especially those with a long list of keywords and fixed values, you can define some
C-shell aliases or ICL symbols for the commands. Like the shell’s $HOME/.login, ICL has a login
file. (See “ICL for Unix” Appendix in SUN/144, or SSN/64 for details.) If you add symbols to
this file, each time you activate ICL these abbreviations will be available to you without further
typing. What you should do is to create a login.icl in a convenient directory, and assign the
environment variable ICL_LOGIN to that directory in your $HOME/.login file.

It is possible to have several ICL login files, each for different work in different directories. Now
to abbreviate a command you put a DEFSTRING entry into the ICL login file. For example,

DEFSTRING MYC{ON} CONTOUR CLEAR=F PENROT MODE=AU NCONT=7

defines MYC or MYCO or MYCON to run CONTOUR without clearing the screen, with pen rotation
and seven equally spaced contour heights. The symbols are not limited to KAPPA. Indeed they
can include shorthands for shell commands. For example,

DEFSTRING DA ls -al

would make DA produce a directory listing of all files with sizes and modification dates.

You can check what the current login files are as follows.

% printenv | grep ICL_LOGIN

For shell usage similar definitions can be made with aliases. For example,

% alias mycon contour clear=f penrot mode=au ncont=7

is the equivalent of the DEFSTRING above, except that in keeping with UNIX tradition the
command is in lowercase, and the alias cannot be abbreviated.

22 Acknowledgments

Several people have contributed complete KAPPAprogrammes, or have upgraded earlier ver-
sions, or have written original code (which eventually became included in KAPPA after rework-
ing). Mark Taylor and Rodney Warren-Smith both re-wrote some of the old IMAGE applications
to use the NDF_ library. Rodney also supplied several other programmes, especially ones that
now form the basis of NDFPACK. Other contributions have come from Alasdair Allan, Steven
Beard, Wei Gong, Rhys Morris, Jo Murray, Grant Privett, and Richard Saxton. The original
KAPPA was derived from Mark McCaughrean’s RAPI2D and Ken Hartley’s ASPIC Kernel, though
little remains. Thanks also to Rodney Warren-Smith for permitting this document to include
a few modified pages of his SUN/33 on NDF sections and co-ordinate systems; and to many
useful suggestions from users and programmers over the years including Chris Clayton, Peter
Draper, Jim Emerson, Horst Meyerdierks, Andy Scott, and Martin Shaw. Mike Lawden helped
produce the quick-reference card.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_icl_for_unix
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn64.htx/ssn64.html?xref_

145 SUN/95.45 —Acknowledging this Software

23 Acknowledging this Software

Please acknowledge the use of this software in any publications arising from research in which
it has played a significant rôle. Please also acknowledge the use of any other Starlink software
in such publications. The following is suggested as a suitable form of words:

The authors acknowledge the use of the following software provided by the UK Starlink
Project: KAPPA,... Starlink is run by CCLRC on behalf of PPARC.

SUN/95.45 —Classified KAPPA commands 146

A Classified KAPPA commands

KAPPA applications may be classified in terms of their functions as follows.

A.1 DATA IMPORT & EXPORT

A.1.1 Image generation and input

CREFRAME Generates a test two-dimensional NDF from a selection of several types.

FITSDIN Reads a FITS disc file composed of simple, group or table objects.

FITSHEAD Lists the headers of FITS files.

FITSIMP Imports FITS information into an NDF extension.

FITSIN Reads a FITS tape composed of simple, group or table files.

MATHS Evaluates mathematical expressions applied to NDF data structures.

TRANDAT Converts free-format data into an NDF.

A.1.2 Preparation for output

FITSEDIT Edits the FITS extension of an NDF.

FITSEXP Exports NDF-extension information into an NDF FITS extension.

FITSMOD Edits an NDF FITS extension via a text file or parameters.

FITSTEXT Creates an NDF FITS extension from a text file.

FITSWRITE Writes a new keyword to the FITS extension.

A.2 DATA DISPLAY

A.2.1 Detail enhancement

CARPET Creates a cube representing a carpet plot of an image.

COLCOMP Produces a colour composite image from 1, 2 or 3 individual NDFs.

HISTEQ Performs an histogram equalisation on an NDF.

LAPLACE Performs a Laplacian convolution as an edge detector in a two-dimensional
NDF.

SHADOW Enhances edges in a two-dimensional NDF using a shadow effect.

THRESH Edits an NDF such that array values below and above two thresholds
take constant values.

http://fits.gsfc.nasa.gov/

147 SUN/95.45 —Classified KAPPA commands

A.2.2 Device selection

GDNAMES Shows which graphics devices are available.

GDSET Selects a current graphics device.

A.2.3 Display control

CURSOR Reports the co-ordinates of points selected using the cursor.

GDCLEAR Clears a graphics device and purges its database entries.

GDSTATE Shows the current status of a graphics device.

A.2.4 Graphics Database

PICBASE Selects the BASE picture from the graphics database.

PICCUR Uses a cursor to select the current picture.

PICDATA Selects the last DATA picture from the graphics database.

PICDEF Defines a new graphics-database FRAME picture or an array of FRAME
pictures.

PICEMPTY Finds the first empty FRAME picture in the graphics database.

PICENTIRE Finds the first unobscured and unobscuring FRAME picture in the graph-
ics database.

PICFRAME Selects the last FRAME picture from the graphics database.

PICGRID Creates an array of FRAME pictures.

PICIN Finds the attributes of a picture interior to the current picture.

PICLABEL Labels the current graphics-database picture.

PICLAST Selects the last picture from the graphics database.

PICLIST Lists the pictures in the graphics database for a device.

PICSEL Selects a graphics-database picture by its label.

PICTRANS Transforms co-ordinates between the current and BASE pictures.

PICVIS Finds the first unobscured FRAME picture in the graphics database.

PICXY Creates a new picture defined by co-ordinate bounds.

SUN/95.45 —Classified KAPPA commands 148

A.2.5 Lookup/Colour tables

LUTABLE Manipulates an graphics device colour table.

LUTBGYRW Loads the BGYRW lookup table.

LUTCOL Loads the standard colour lookup table.

LUTCOLD Loads the cold lookup table.

LUTCONT Loads a lookup table to give the display the appearance of a contour
plot.

LUTEDIT Creates or edits an graphics device colour table.

LUTFC Loads the standard false-colour lookup table.

LUTGREY Loads the standard grey-scale lookup table.

LUTHEAT Loads the heat lookup table.

LUTIKON Loads the default Ikon lookup table.

LUTNEG Loads the standard negative grey-scale lookup table.

LUTRAMPS Loads the coloured-ramps lookup table.

LUTREAD Loads an graphics device lookup table from an NDF.

LUTSAVE Saves the current colour table of an graphics device in an NDF.

LUTSPEC Loads a spectrum-like lookup table.

LUTVIEW Draws a colour-table key.

LUTWARM Loads the warm lookup table.

LUTZEBRA Loads a pseudo-contour lookup table.

A.2.6 Output

ARDPLOT Plots the boundaries of regions described in an ARD file over an
existing picture.

CLINPLOT Draws a spatial grid of line plots for an axis of a cube NDF.

CONTOUR Contours a two-dimensional NDF.

DISPLAY Displays a one- or two-dimensional NDF.

DRAWNORTH Draws arrows parallel to the axes.

DRAWSIG Draws ±n standard-deviation lines on a line plot.

ELPROF Creates a radial or azimuthal profile of a two-dimensional image.

LINPLOT Draws a line plot of the data values in a one-dimensional NDF.

149 SUN/95.45 —Classified KAPPA commands

LISTSHOW Displays the positions stored in a positions list.

LOOK Outputs the values of specified NDF pixels to the screen or a text file.

MLINPLOT Draws a multi-line plot of the data values in a two-dimensional NDF.

OUTLINE Draws the outline of a two-dimensional NDF.

SCATTER Displays a scatter plot between data in two NDFs.

VECPLOT Plots a two-dimensional vector map.

A.2.7 Palette

PALDEF Loads the default palette to a colour table.

PALENTRY Enters a colour into an graphics device’s palette.

PALREAD Fills the palette of a colour table from an NDF.

PALSAVE Saves the current palette of a colour table to an NDF.

A.3 DATA MANIPULATION

A.3.1 Arithmetic

ADD Adds two NDF data structures.

CADD Adds a scalar to an NDF data structure.

CDIV Divides an NDF by a scalar.

CMULT Multiplies an NDF by a scalar.

CSUB Subtracts a scalar from an NDF data structure.

CUMULVEC Sums the values cumulatively in a one-dimensional NDF.

DIV Divides one NDF data structure by another.

EXP10 Takes the base-10 exponential of each pixel of an NDF.

EXPE Takes the exponential of each pixel of an NDF (base e).

EXPON Takes the exponential (specified base) of each pixel of am NDF.

LOG10 Takes the base-10 logarithm of each pixel of an NDF.

LOGAR Takes the logarithm of each pixel of an NDF (specified base).

LOGE Takes the natural logarithm of each pixel of an NDF.

MAKESNR Creates a signal-to-noise array from an NDF with Variance.

MATHS Evaluates mathematical expressions applied to NDF data structures.

SUN/95.45 —Classified KAPPA commands 150

MULT Multiplies two NDF data structures.

POW Takes the specified power of each pixel of a data array.

SUB Subtracts one NDF data structure from another.

TRIG Performs a trigonometric transformation on an NDF.

A.3.2 Combination

CALPOL Calculates polarisation parameters.

COLCOMP Produces a colour composite image from 1, 2 or 3 individual NDFs.

COMPLEX Converts between representations of complex data.

INTERLEAVE Forms a higher-resolution NDF by interleaving a set of NDFs.

KSTEST Compares data sets using the Kolmogorov-Smirnov test.

NORMALIZE Normalises one NDF to a similar NDF by calculating a scale factor
and zero difference.

WCSMOSAIC Tiles a group of NDFs using World Co-ordinate System information.

A.3.3 Compression and expansion

CARPET Creates a cube representing a carpet plot of an image.

CHANMAP Creates a channel map from a cube NDF by compressing slices
along a nominated axis

COLLAPSE Reduces the number of axes in an NDF by collapsing it along a
nominated axis.

COMPADD Reduces the size of an NDF by adding values in rectangular boxes.

COMPAVE Reduces the size of an NDF by averaging values in rectangular
boxes.

COMPICK Reduces the size of an NDF by picking equally spaced pixels.

INTERLEAVE Forms a higher-resolution NDF by interleaving a set of NDFs.

NDFCOMPRESS Compresses an NDF so that it occupies less disk space.

PIXDUPE Expands an NDF by pixel duplication.

PLUCK Plucks slices from an NDF at arbitrary positions.

REGRID Uses an arbitrary mapping to regrid an NDF.

SQORST Squashes or stretches an NDF.

WCSALIGN Aligns a group of NDFs using WCS information.

151 SUN/95.45 —Classified KAPPA commands

A.3.4 Configuration change

CHAIN Concatenates a series of vectorized NDFs.

FLIP Reverses an NDF’s pixels along a specified dimension.

MANIC Converts all or part of an NDF from one dimensionality to another.

NDFCOPY Copies an NDF (or NDF section) to a new location.

PERMAXES Permutes the axes of an NDF.

PIXBIN Places each pixel value in an input NDF into an output bin.

PLUCK Plucks slices from an NDF at arbitrary positions.

PROFILE Creates a one-dimensional profile through an n-dimensional NDF.

REGRID Uses an arbitrary mapping to regrid an NDF.

RESHAPE Reshapes an NDF, treating its arrays as vectors.

ROTATE Rotates a two-dimensional NDF about its centre through any angle.

SETBOUND Sets new bounds for an NDF.

SLIDE Shifts pixels in an NDF by a given amount along each axis.

WCSSLIDE Applies a translational correction to the WCS in an NDF.

A.3.5 Filtering

BLOCK Smooths an NDF using an n-dimensional rectangular box filter.

CONVOLVE Convolves a pair of one- or two-dimensional NDFs together.

FFCLEAN Removes defects from a substantially flat one- or two-dimensional
NDF.

FOURIER Performs forward and inverse Fourier transforms of one- or two-
dimensional NDFs.

GAUSMOOTH Smooths a one- or two-dimensional image using a Gaussian filter.

LUCY Performs a Richardson-Lucy deconvolution of a one- or two-dimensional
array.

MEDIAN Smooths a two-dimensional data array using a weighted median
filter.

MEM2D Performs a Maximum-Entropy deconvolution of a two-dimensional
NDF.

ODDEVEN Removes odd-even defects from a one-dimensional NDF.

WIENER Applies a Wiener filter to a one- or two-dimensional array.

SUN/95.45 —Classified KAPPA commands 152

A.3.6 HDS components

ERASE Erases an HDS object.

NATIVE Converts an HDS object to native machine data representation.

A.3.7 NDF array components

NDFCOMPRESS Compresses an NDF so that it occupies less disk space.

NDFCOPY Copies an NDF (or NDF section) to a new location.

PERMAXES Permutes the axes of an NDF.

QUALTOBAD Assigns bad values to pixels with given qualities.

REMQUAL Removes named qualities stored in an NDF QUALITY component.

SETBAD Sets new bad-pixel flag values for an NDF.

SETBB Sets a new value for the quality bad-bits mask of an NDF.

SETBOUND Sets new bounds for an NDF.

SETORIGIN Sets a new pixel origin for an NDF.

SETQUAL Assigns a specified quality to selected pixels within an NDF.

SETTYPE Sets a new numeric type for the DATA and VARIANCE components
of an NDF.

SETVAR Sets new values for the VARIANCE component of an NDF data
structure.

SHOWQUAL Displays the named qualities stored in an NDF QUALITY compo-
nent.

A.3.8 NDF axis components

AXCONV Expands spaced axes in an NDF into the primitive form.

AXLABEL Sets a new label value for an axis within an NDF data structure.

AXUNITS Sets a new units value for an axis within an NDF data structure.

PERMAXES Permutes the axes of an NDF.

SETAXIS Sets values for an axis array component within an NDF data structure.

SETNORM Sets a new value for one or all of an NDF’s axis-normalisation flags.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

153 SUN/95.45 —Classified KAPPA commands

A.3.9 NDF character components

SETLABEL Sets a new label for an NDF data structure.

SETTITLE Sets a new title for an NDF data structure.

SETUNITS Sets a new units value for an NDF data structure.

A.3.10 NDF extensions

FITSEDIT Edits the FITS extension of an NDF.

FITSEXIST Inquires whether or not a keyword exists in a FITS extension.

FITSEXP Exports NDF-extension information into an NDF FITS extension.

FITSLIST Lists the FITS extension of an NDF.

FITSMOD Edits an NDF FITS extension via a text file or parameters.

FITSTEXT Creates an NDF FITS extension from a text file.

FITSVAL Reports the value of a keyword in the FITS extension.

FITSWRITE Writes a new keyword to the FITS extension.

SETEXT Manipulates the contents of a specified NDF extension.

SETSKY Stores WCS Information in an NDF.

A.3.11 NDF History

HISCOM Adds commentary to the history of an NDF.

HISLIST Lists NDF history records.

HISSET Sets the NDF history update mode.

A.3.12 NDF Provenance

PROVADD Stores provenance information in an NDF.

PROVMOD Modifies provenance information for an NDF.

PROVREM Removes selected provenance information from an NDF.

PROVSHOW Displays provenance information for an NDF.

SUN/95.45 —Classified KAPPA commands 154

A.3.13 NDF World Co-ordinate Systems

PERMAXES Permutes the axes of an NDF.

WCSADD Creates a Mapping and optionally adds a new co-ordinate Frame into
the WCS component of an NDF.

WCSALIGN Aligns a group of NDFs using WCS information.

WCSATTRIB Manages attribute values associated with the WCS component of an
NDF.

WCSCOPY Copies WCS information from one NDF to another.

WCSFRAME Changes the current co-ordinate Frame in the WCS component of an
NDF.

WCSMOSAIC Tiles a group of NDFs using World Co-ordinate System information.

WCSREMOVE Removes co-ordinate Frames from the WCS component of an NDF.

WCSSHOW Examines the internal structure of a WCS description.

WCSSLIDE Applies a translational correction to the WCS in an NDF.

WCSTRAN Transforms a position from one NDF co-ordinate Frame to another.

A.3.14 Pixel editing and masking

ARDGEN Creates a text file describing selected regions of an image.

ARDMASK Uses an ARD file to set some pixels of an NDF to be bad.

ARDPLOT Plots the boundaries of regions described in an ARD file over an
existing picture.

CHPIX Replaces the values of selected pixels in an NDF.

COPYBAD Copies the bad-pixel mask from one NDF to another.

ERRCLIP Removes pixels with large errors from an NDF.

EXCLUDEBAD Copies a two-dimensional NDF excluding any bad rows or columns.

FFCLEAN Removes defects from a substantially flat one- or two-dimensional
NDF.

FILLBAD Removes regions of bad values from an NDF.

GLITCH Replaces bad pixels in a two-dimensional image with the local me-
dian.

MFITTREND Fits independent trends to data lines that are parallel to an axis.

MOCGEN Creates a Multi-Order Coverage (MOC) map describing regions of
an image.

155 SUN/95.45 —Classified KAPPA commands

NOMAGIC Replaces all occurrences of magic-value pixels in an NDF array with
a new value.

OUTSET Sets pixels outside a specified circle in a two-dimensional NDF to a
specified value.

PASTE Pastes a series of NDFs upon each other.

REGIONMASK Applies a mask to a region of an NDF.

RIFT Adds a scalar to a section of an NDF data structure to correct rift-
valley defects.

SEGMENT Copies polygonal segments from one NDF to another.

SETMAGIC Replaces all occurrences of a given value in an NDF array with the
bad value.

SUBSTITUTE Replaces all occurrences of a given value in an NDF array with
another value.

THRESH Edits an NDF such that array values below and above two thresholds
take

ZAPLIN Replaces regions in a two-dimensional NDF by bad values or by
linear interpolation.

A.3.15 Polarimetry

CALPOL Calculates polarisation parameters.

A.3.16 Resampling and transformations

ALIGN2D Aligns a pair of two-dimensional NDFs by minimising the residuals
between them.

PIXBIN Places each pixel value in an input NDF into an output bin.

PLUCK Plucks slices from an NDF at arbitrary positions.

REGRID Uses an arbitrary mapping to regrid an NDF.

WCSALIGN Aligns a group of NDFs using WCS information.

WCSMOSAIC Tiles a group of NDFs using World Co-ordinate System information.

A.3.17 Surface and vector fitting

FITSURFACE Fits a polynomial surface to two-dimensional data array.

MAKESURFACE Creates a two-dimensional NDF from the coefficients of a polyno-
mial surface.

MFITTREND Fits independent trends to data lines that are parallel to an axis.

SURFIT Fits a polynomial or spline surface to a two-dimensional data array
using blocking.

SUN/95.45 —Classified KAPPA commands 156

A.4 DATA ANALYSIS

A.4.1 Statistics

APERADD Derives statistics of pixels within a specified aperture of an NDF.

HISTAT Computes ordered statistics for an NDF’s pixels using an histogram.

HISTOGRAM Computes an histogram of an NDF’s values.

MSTATS Does cumulative statistics over a sequence of NDFs.

NUMB Counts the number of elements of an NDF with values or absolute
values above or below a threshold.

STATS Computes simple statistics for an NDF’s pixels.

A.4.2 Other

BEAMFIT Fits beam features in a two-dimensional NDF.

CENTROID Finds the centroids of star-like features in an NDF.

NORMALIZE Normalises one NDF to a similar NDF by calculating a scale factor
and zero-point difference.

PSF Determines the parameters of a model star profile by fitting star images
in a two-dimensional NDF.

SURFIT Fits a polynomial or spline surface to a two-dimensional data array.

A.5 SCRIPTING TOOLS

CALC Evaluates a mathematical expression.

CONFIGECHO Displays a named parameter from a group of configuration parame-
ters.

NDFECHO Expands a group expression into a list of explicit NDF names.

PARGET Obtains the value or values of an application parameter.

A.6 INQUIRIES & STATUS

GLOBALS Displays the values of the KAPPA global parameters.

FITSEXIST Inquires whether or not a keyword exists in a FITS extension.

FITSLIST Lists the FITS extension of an NDF.

FITSVAL Reports the value of a keyword in the FITS extension.

NDFCOMPARE Compares a pair of NDFs for equivalence.

NDFTRACE Displays the attributes of an NDF data structure.

NOGLOBALS Resets the KAPPA global parameters.

157 SUN/95.45 —Quotas to run KAPPA

A.7 MISCELLANEOUS

COMPLEX Converts between representations of complex data.

KAPHELP Gives help about KAPPA.

LISTMAKE Creates a catalogue holding a positions list.

KAPVERSION Checks the version number of the installed package.

B Quotas to run KAPPA

No special quotas are needed to run KAPPA. If you have large datasets you might need to
increase the datasize limit in the C-shell.

% limit datasize 65336

sets the maximum size of a data file to 64 megabytes. To list the current values use the limit
command without any arguments.

SUN/95.45 —Specifications of KAPPA applications 158

C Specifications of KAPPA applications

C.1 Explanatory Notes

The specification of parameters has the following format.

name = type (access)
description

This format also includes a Usage entry. This shows how the application is invoked from the
command line. It lists the positional parameters in order followed by any prompted keyword
parameters using a “KEYWORD=?” syntax. Defaulted keyword parameters do not appear.
Positional parameters that are normally defaulted are indicated by being enclosed in square
brackets. Keyword (i.e. not positional) parameters are needed where the number of parameters
are large, and usually occur because they depend on the value of another parameter. These are
denoted by a curly brace; the parameters on each line are related, and each line is mutually
exclusive. An example should clarify.

contour ndf [comp] mode ncont [key] [device]

low =? high =?
percentiles =?
sigmas =?

mode

NDF, COMP, MODE, NCONT, KEY, DEVICE, and SMOOTHING are all positional parameters.
Only NDF, MODE, and NCONT would be prompted if not given on the command line. The
remaining parameters depend on the value of MODE. If the mode is to nominate a list of
contour heights, HEIGHTS will be needed (MODE = "Free"); alternatively, if the mode requires
a start height and spacing between contours FIRSTCNT and STEPCNT should be specified
(MODE = "Linear" or "Magnitude"). Note that there are other modes that do not require
additional information, and hence no more parameters.

There is also an Examples section. This shows how to run the application from the command line.
More often you’ll enter the command name and just some of the parameters, and be prompted
for the rest. Note that the examples are the strings expected by the tasks. They are operating-system
neutral as KAPPA has run on several different operating systems. UNIX shells or operating-system
command languages will often interpret as special characters some or all of []()\^~"’$*? that may form
part of the KAPPA command-line syntax. So in practice you should escape any such special characters
that appear in these examples, as appropriate to your command language or shell. For instance, from
the C-shell the fourth example of COMPAVE could be written like the following.

compave cosmos galaxy ’[4,3]’ weight title=’"COSMOS compressed"’
compave cosmos galaxy \[4,3\] weight title=\"COSMOS compressed\"

Backslash escapes individual special characters, whereas quotes placed around text escape all
occurrences of special characters within the quotes.

Some parameters will only be used when another parameter has a certain value or mode. These
are indicated by the name of the mode in parentheses at the end of the parameter description,

159 SUN/95.45 —Specifications of KAPPA applications

but before any default, e.g. Parameter DEVICE in CENTROID is only relevant when Parameter
MODE is "Cursor".

%name means the value of parameter name.

The description entry has a notation scheme to indicate normally defaulted parameters, i.e. those
for which there will be no prompt. For such parameters a matching pair of square brackets ([])
terminates the description. The content between the brackets mean

[] Empty brackets means that the default is created dynamically by the application, and may
depend on the values of other parameters. Therefore, the default cannot be given explicitly.

[,] As above, but there are two default values that are created dynamically.

[default] Occasionally, a description of the default is given in normal type, e.g. the size of the
plotting region in a graphics application, where the exact default values depend on the
device chosen.

[default] If the brackets contain a value in the teletype typeface, this is the explicit default
value.

SUN/95.45 —Specifications of KAPPA applications 160 ADD

ADD
Adds two NDF data structures

Description:
The routine adds two NDF data structures pixel-by-pixel to produce a new NDF.

Usage:
add in1 in2 out

Parameters:

IN1 = NDF (Read)
First NDF to be added.

IN2 = NDF (Read)
Second NDF to be added.

OUT = NDF (Write)
Output NDF to contain the sum of the two input NDFs.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN1 to be used instead. [!]

Examples:
add a b c

This adds the NDF called b to the NDF called a, to make the NDF called c. NDF c inherits
its title from a.

add out=c in1=a in2=b title="Co-added image"

This adds the NDF called b to the NDF called a, to make the NDF called c. NDF c has the
title "Co-added image".

Notes:

If the two input NDFs have different pixel-index bounds, then they will be trimmed to
match before being added. An error will result if they have no pixels in common.

Related Applications :

KAPPA: CADD, CDIV, CMULT, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, HIS-
TORY, WCS, and VARIANCE components of an NDF data structure and propagates
all extensions.

161 ADD SUN/95.45 —Specifications of KAPPA applications

• The UNITS component is propagated only if it has the same value in both input
NDFs.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Huge NDFs are supported.

SUN/95.45 —Specifications of KAPPA applications 162 ALIGN2D

ALIGN2D
Aligns a pair of two-dimensional NDFs by minimising the residuals

between them.

Description:
This application attempts to align a two-dimensional input NDF with a two-dimensional
reference NDF in pixel co-ordinates, using an affine transformation of the form:

Xin = C1 + C2Xref + C3Yref

Yin = C4 + C5Xref + C6Yref

where (Xin,Yin) are pixel co-ordinates in the input NDF, and (Xref,Yref) are pixel co-ordinates
in the reference NDF. The coefficient values (C1–C6) are determined by doing a least-
squares fit that minimises the sum of the squared residuals between the reference NDF
and the transformed input NDF. If variance information is present in either NDF, it is used
to determine the SNR of each pixel which is used to weight the residuals within the fit,
so that noisy data values have less effect on the fit. The best fit coefficients are displayed
on the screen and written to an output parameter. Optionally, the transformation may be
applied to the input NDF to create an output NDF (see Parameter OUT). It is possible to
restrict the transformation in order to prevent shear, rotation, scaling, etc. (see Parameter
FORM).

It is possible to exclude from the fitting process areas of the input NDF that are poorly
correlated with the corresponding areas in the reference NDF (e.g. flat background areas
that contain only noise). See Parameter CORLIMIT.

Usage:
align2d in ref out

Parameters:

BOX = _INTEGER (Read)
The box size, in pixels, over which to calculate the correlation coefficient between
the input and reference images. This should be set to an estimate of the maximum
expected shift between the two images, but should not be less than typical size of
features within the two images. See also Parameter CORLIMIT. [5]

CONSERVE = _LOGICAL (Read)
If set TRUE, then the output pixel values will be scaled in such a way as to preserve
the total data value in a feature on the sky. The scaling factor is the ratio of the output
pixel size to the input pixel size. This option can only be used if the Mapping is
successfully approximated by one or more linear transformations. Thus an error will
be reported if it used when the TOL parameter is set to zero (which stops the use of

163 ALIGN2D SUN/95.45 —Specifications of KAPPA applications

linear approximations), or if the Mapping is too non-linear to be approximated by a
piece-wise linear transformation. The ratio of output to input pixel size is evaluated
once for each panel of the piece-wise linear approximation to the Mapping, and is
assumed to be constant for all output pixels in the panel. This parameter is ignored if
the NORM parameter is set FALSE. [TRUE]

CORLIMIT = _REAL (Read)
If CORLIMIT is not null (!), each pixel in the input image is checked to see if the
pixel values in its locality are well correlated with the corresponding locality in the
reference image. The input pixel is excluded from the fitting process if the local
correlation is below CORLIMIT. The supplied value should be between zero and 1.0.
The size of the locality used around each input pixel is given by Parameter BOX. [!]
In addition, if a value is supplied for CORLIMIT, the input and reference pixel values
that pass the above check are scaled so that they have a mean value of zero and a
standard deviation of unity before being used in the fitting process. [!]

FITVALS = _LOGICAL (Read)
If TRUE, the fitting process will adjust the scale and offset of the input data values, in
addition to the geometric position of the the input values, in order to minimise the
sum of the squared residuals. [FALSE]

FORM = _INTEGER (Read)
The form of the affine transformation to use:

• 0 — full unrestricted six-coefficient fit;
• 1 — shift, rotation and a common X/Y scale but no shear;
• 2 — shift and rotation but no scale or shear; or
• 3 — shift but not rotation, scale or shear.

[0]

IN = NDF (Read)
NDF to be transformed.

METHOD = LITERAL (Read)
The method to use when sampling the input pixel values (if resampling), or dividing
an input pixel value between a group of neighbouring output pixels (if rebinning).
For details of these schemes, see the descriptions of routines AST_RESAMPLEx and
AST_REBINSEQx in SUN/210. METHOD can take the following values.

• "Linear" — When resampling, the output pixel values are calculated by bi-linear
interpolation among the four nearest pixels values in the input NDF. When
rebinning, the input pixel value is divided bi-linearly between the four nearest
output pixels. Produces smoother output NDFs than the nearest-neighbour
scheme, but is marginally slower.
• "Nearest" — When resampling, the output pixel values are assigned the value of

the single nearest input pixel. When rebinning, the input pixel value is assigned
completely to the single nearest output pixel.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling) or transformed input pixel centre (rebinning), and
sinc(z) = sin(z)/z. Use of this scheme is not recommended.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_REBINSEQ\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/95.45 —Specifications of KAPPA applications 164 ALIGN2D

• "SincSinc" — Uses the sinc(πx)sinc(kπx) A valuable general-purpose scheme,
intermediate in its visual effect on NDFs between the bi-linear and nearest-
neighbour schemes.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. Gives similar results to the
"SincSinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling), or transformed input pixel centre (rebinning), and
somb(z) = 2 ∗ J1(z)/z. J1 is the first-order Bessel function of the first kind. This
scheme is similar to the "Sinc" scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "Gauss" — Uses the e−kx2

kernel. The FWHM of the Gaussian is given by Param-
eter PARAMS(2), and the point at which to truncate the Gaussian to zero is given
by Parameter PARAMS(1).
• "BlockAve" — Block averaging over all pixels in the surrounding N-dimensional

cube. This option is only available when resampling (i.e. if REBIN is set to FALSE).
All methods propagate variances from input to output, but the variance estimates
produced by interpolation schemes other than nearest neighbour need to be treated
with care since the spatial smoothing produced by these methods introduces cor-
relations in the variance estimates. Also, the degree of smoothing produced varies
across the NDF. This is because a sample taken at a pixel centre will have no contribu-
tions from the neighbouring pixels, whereas a sample taken at the corner of a pixel
will have equal contributions from all four neighbouring pixels, resulting in greater
smoothing and lower noise. This effect can produce complex Moiré patterns in the
output variance estimates, resulting from the interference of the spatial frequencies
in the sample positions and in the pixel-centre positions. For these reasons, if you
want to use the output variances, you are generally safer using nearest-neighbour
interpolation. The initial default is "Nearest". [current value]

NORM = _LOGICAL (Read)
In general, each output pixel contains contributions from multiple input pixel values,
and the number of input pixels contributing to each output pixel will vary from pixel
to pixel. If NORM is set TRUE (the default), then each output value is normalised by
dividing it by the number of contributing input pixels, resulting in each output value
being the weighted mean of the contributing input values. However, if NORM is set
FALSE, this normalisation is not applied. See also Parameter CONSERVE. [TRUE]

OUT = NDF (Write)
An optional output NDF to contain a copy of IN aligned with OUT. No output is
created if null (!) is supplied. If FITVALS is TRUE, the output data values will be
scaled so that they have the same normalisation as the reference values.

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods.
PARAMS(1) is required by all the above schemes. It is used to specify how many
pixels are to contribute to the interpolated result on either side of the interpolation

165 ALIGN2D SUN/95.45 —Specifications of KAPPA applications

or binning point in each dimension. Typically, a value of 2 is appropriate and the
minimum allowed value is 1 (i.e. one pixel on each side). A value of zero or fewer
indicates that a suitable number of pixels should be calculated automatically. [0]
PARAMS(2) is required only by the SombCos, Gauss, SincSinc, SincCos, and Sinc-
Gauss schemes. For the SombCos, SincSinc, and SincCos schemes, it specifies the
number of pixels at which the envelope of the function goes to zero. The minimum
value is 1.0, and the run-time default value is 2.0. For the Gauss and SincGauss
scheme, it specifies the full-width at half-maximum (FWHM) of the Gaussian en-
velope measured in output pixels. The minimum value is 0.1, and the run-time
default is 1.0. On astronomical images and spectra, good results are often obtained
by approximately matching the FWHM of the envelope function, given by PARAMS(
2), to the point-spread function of the input data. []

REBIN = _LOGICAL (Read)
Determines the algorithm used to calculate the output pixel values. If a TRUE value is
given, a rebinning algorithm is used. Otherwise, a resampling algorithm is used. See
the “Choice of Algorithm” topic below. [current value]

REF = NDF (Read)
NDF to be used as a refernece.

TOL = _DOUBLE (Read)
The maximum tolerable geometrical distortion that may be introduced as a result of
approximating non-linear Mappings by a set of piece-wise linear transforms. Both
algorithms approximate non-linear co-ordinate transformations in order to improve
performance, and this parameter controls how inaccurate the resulting approximation
is allowed to be, as a displacement in pixels of the input NDF. A value of zero will
ensure that no such approximation is done, at the expense of increasing execution
time. [0.05]

WLIM = _REAL (Read)
This parameter is only used if REBIN is set TRUE. It specifies the minimum number
of good pixels which must contribute to an output pixel for the output pixel to be
valid. Note, fractional values are allowed. A null (!) value causes a very small
positive value to be used resulting in output pixels being set bad only if they receive
no significant contribution from any input pixel. [!]

Results Parameters:

RMS = _DOUBLE (Write)
An output parameter to which is written the RMS residual between the aligned data and
the reference data.

TR(6) = _DOUBLE (Write)
An output parameter to which are written the coefficients of the fit. If FITVALS is TRUE,
then this will include the scale and offset (written to the seventh and eighth entries).

Examples:
align2d my_data orionA my_corrected form=2

Aligns the two-dimensional NDF called my_data with the two-dimensional NDF called
orionA, putting the aligned image in a new NDF called my_corrected. The transformation
is restricted to a shift of origin and a rotation.

SUN/95.45 —Specifications of KAPPA applications 166 ALIGN2D

Related Applications :

KAPPA: WCSALIGN.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, WCS, LABEL, TITLE, and
UNITS components of an NDF data structure.

• All non-complex numeric data types can be handled.

Choice of Algorithm :

The algorithm used to produce the output image is determined by the REBIN parameter,
and is based either on resampling the output image or rebinning the input image.

The resampling algorithm steps through every pixel in the output image, sampling the
input image at the corresponding position and storing the sampled input value in the
output pixel. The method used for sampling the input image is determined by the
METHOD parameter. The rebinning algorithm steps through every pixel in the input
image, dividing the input pixel value between a group of neighbouring output pixels,
incrementing these output pixel values by their allocated share of the input pixel value,
and finally normalising each output value by the total number of contributing input values.
The way in which the input sample is divided between the output pixels is determined by
the METHOD parameter.

Both algorithms produce an output in which the each pixel value is the weighted mean
of the near-by input values, and so do not alter the mean pixel values associated with a
source, even if the pixel size changes. Thus the total data sum in a source will change if
the input and output pixel sizes differ. However, if the CONSERVE parameter is set TRUE,
the output values are scaled by the ratio of the output to input pixel size, so that the total
data sum in a source is preserved.

A difference between resampling and rebinning is that resampling guarantees to fill the
output image with good pixel values (assuming the input image is filled with good input
pixel values), whereas holes can be left by the rebinning algorithm if the output image
has smaller pixels than the input image. Such holes occur at output pixels which receive
no contributions from any input pixels, and will be filled with the value zero in the
output image. If this problem occurs the solution is probably to change the width of the
pixel spreading function by assigning a larger value to PARAMS(1) and/or PARAMS(2)
(depending on the specific METHOD value being used).

Both algorithms have the capability to introduce artefacts into the output image. These
have various causes described below.

• Particularly sharp features in the input can cause rings around the corresponding
features in the output image. This can be minimised by suitable settings for the
METHOD and PARAMS parameters. In general such rings can be minimised by
using a wider interpolation kernel (if resampling) or spreading function (if rebinning),
at the cost of degraded resolution.

167 ALIGN2D SUN/95.45 —Specifications of KAPPA applications

• The approximation of the Mapping using a piece-wise linear transformation (con-
trolled by Parameter TOL) can produce artefacts at the joints between the panels of
the approximation. These can occur when using the rebinning algorithm, or when
using the resampling algorithm with CONSERVE set to TRUE. They are caused by
the discontinuities between the adjacent panels of the approximation, and can be
minimised by reducing the value assigned to the TOL parameter.

SUN/95.45 —Specifications of KAPPA applications 168 APERADD

APERADD
Integrates pixel values within an aperture of an NDF

Description:
This routine displays statistics for pixels that lie within a specified aperture of an NDF . The
aperture can either be circular (specified by Parameters CENTRE and DIAM), or arbitrary
(specified by Parameter ARDFILE). If the aperture is specified using Parameters CENTRE
and DIAM, then it must be either one- or two-dimensional.

The following statistics are displayed:

• The total number of pixels within the aperture

• The number of good pixels within the aperture

• The total data sum within the aperture

• The standard deviation on the total data sum (that is, the square root of the sum of
the individual pixel variances)

• The mean pixel value within the aperture

• The standard deviation on the mean pixel value (that is, the standard deviation on
the total data sum divided by the number of values)

• The standard deviation of the pixel values within the aperture

If individual pixel variances are not available within the input NDF (i.e. if it has no
VARIANCE component), then each pixel is assumed to have a constant variance equal to
the variance of the pixel values within the aperture. There is an option to weight pixels
so that pixels with larger variances are given less weight (see Parameter WEIGHT). The
statistics are displayed on the screen and written to output parameters. They may also be
written to a log file.

A pixel is included if its centre is within the aperture, and is not included otherwise. This
simple approach may not be suitable for accurate aperture photometry, especially where
the aperture diameter is less than about ten times the pixel size. A specialist photometry
package should be used if accuracy, rather than speed, is paramount.

Usage:
aperadd ndf centre diam

Parameters:

ARDFILE = FILENAME (Read)
The name of an ARD file containing a description of the aperture. This allows
apertures of almost any shape to be used. If a null (!) value is supplied then the
aperture is assumed to be circular with centre and diameter given by Parameters
CENTRE and DIAM. ARD files can be created either ‘by hand’ using an editor, or
using a specialist application such as ARDGEN.

169 APERADD SUN/95.45 —Specifications of KAPPA applications

The co-ordinate system in which positions within the ARD file are given should be
indicated by including suitable COFRAME or WCS statements within the file (see
SUN/183), but will default to pixel co-ordinates in the absence of any such statements.
For instance, starting the file with a line containing the text "COFRAME(SKY,System=FK5)"
would indicate that positions are specified in RA/DEC (FK5,J2000). The state-
ment "COFRAME(PIXEL)" indicates explicitly that positions are specified in pixel co-
ordinates. [!]

CENTRE = LITERAL (Read)
The co-ordinates of the centre of the circular aperture. Only used if Parameter
ARDFILE is set to null. The position must be given in the current co-ordinate Frame of
the NDF (supplying a colon ":" will display details of the current co-ordinate Frame).
The position should be supplied as a list of formatted axis values separated by spaces
or commas. See also Parameter USEAXIS. The current co-ordinate Frame can be
changed using application WCSFRAME.

DIAM = LITERAL (Read)
The diameter of the circular aperture. Only used if Parameter ARDFILE is set to null.
If the current co-ordinate Frame of the NDF is a SKY Frame (e.g. RA and DEC), then
the value should be supplied as an increment of celestial latitude (e.g. DEC). Thus,
"10.2" means 10.2 degrees, "0:30" would mean 30 arcminutes, and "0:0:1" would
mean 1 arcsecond. If the current co-ordinate Frame is not a SKY Frame, then the
diameter should be specified as an increment along Axis 1 of the current co-ordinate
Frame. Thus, if the current Frame is PIXEL, the value should be given simply as a
number of pixels.

LOGFILE = FILENAME (Read)
Name of the text file to log the results. If null, there will be no logging. Note this is
intended for the human reader and is not intended for passing to other applications.
[!]

MASK = NDF (Write)
An output NDF containing the pixel mask used to evaluate the reported statistics.
The NDF will contain a positive integer value for pixels that are included in the
statistics, and bad values for all other pixels. The pixel bounds of the NDF will be the
smallest needed to encompass all used pixels. [!]

MEAN = _DOUBLE (Write)
The mean of the pixel values within the aperture.

NDF = NDF (Read)
The input NDF.

NGOOD = _INTEGER (Write)
The number of good pixels within the aperture.

NUMPIX = _INTEGER (Write)
The total number of pixels within the aperture.

SIGMA = _DOUBLE (Write)
The standard deviation of the pixel values within the aperture.

SIGMEAN = _DOUBLE (Write)
The standard deviation on the mean pixel value. If variances are available this is the
RMS value of the standard deviations associated with each included pixel value. If

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_

SUN/95.45 —Specifications of KAPPA applications 170 APERADD

variances are not available, it is the standard deviation of the pixel values divided by
the square root of the number of good pixels in the aperture.

SIGTOTAL = _DOUBLE (Write)
The standard deviation on the total data sum. Only created if variances are available
this is the RMS value of the standard deviations associated with each included pixel
value. If variances are not available, it is the standard deviation of the pixel values
divided by the square root of the number of good pixels in the aperture.

TOTAL = _DOUBLE (Write)
The total of the pixel values within the aperture.

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has too many
axes. A group of strings should be supplied specifying the axes which are to be used
when specifying the aperture using Parameters ARDFILE, CENTRE, and DIAM. Each
axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are used. [!]

WEIGHT = _LOGICAL (Read)
If a TRUE value is supplied, and the input NDF has a VARIANCE component, then
pixels with larger variances will be given smaller weight in the statistics. The weight
associated with each pixel is proportional to the reciprocal of its variance. The
constant of proportionality is chosen so that the mean weight is unity. The pixel value
and pixel variance are multiplied by the pixels weight before being used to calculate
the statistics. The calculation of the statistics remains unchanged in all other respects.
[FALSE]

Examples:
aperadd neb1 "13.5,201.3" 20

This calculates the statistics of the pixels within a circular aperture of NDF neb1.
Assuming the current co-ordinate Frame of neb1 is PIXEL, the aperture is centred at pixel
co-ordinates (13.5, 201.3) and has a diameter of 20 pixels.

aperadd neb1 "15:23:43.2 -22:23:34.2" "10:0"

This also calculates the statistics of the pixels within a circular aperture of NDF
neb1. Assuming the current co-ordinate Frame of neb1 is a SKY Frame describing RA and
DEC, the aperture is centred at RA 15:23:43.2 and DEC -22:23:34.2, and has a diameter of
10 arcminutes.

171 APERADD SUN/95.45 —Specifications of KAPPA applications

aperadd ndf=neb1 ardfile=outline.dat logfile=obj1

This calculates the statistics of the pixels within an aperture of NDF neb1 de-
scribed within the file outline.dat. The file contains an ARD description of the required
aperture. The results are written to the log file obj1.

Notes:

• The statistics are not displayed on the screen when the message filter environment
variable MSG_FILTER is set to QUIET. The creation of output parameters and the log
file is unaffected by MSG_FILTER.

ASCII-region-definition Descriptors :

The ARD file may be created by ARDGEN or written manually. In the latter case consult
SUN/183 for full details of the ARD descriptors and syntax; however, much may be learnt
from looking at the ARD files created by ARDGEN and the ARDGEN documentation.
There is also a in Section 15.1.1.

Related Applications :

KAPPA: STATS, MSTATS, ARDGEN, ARDMASK, ARDPLOT, WCSFRAME.

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, and VARIANCE components
of an NDF data structure.

• Processing of bad pixels and automatic quality masking are supported.

• Bad pixels and quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_

SUN/95.45 —Specifications of KAPPA applications 172 ARDGEN

ARDGEN
Creates a text file describing selected regions of an image

Description:
This is an interactive tool for selecting regions of a displayed image using a cursor, and
then storing a description of the selected regions in a text file in the form of an ‘ARD
Description’ (see SUN/183). This text file may subsequently be used in conjunction with
packages such as CCDPACK or ESP.

The application initially obtains a value for the SHAPE parameter and then allows you
to identify either one or many regions of the specified shape, dependent on the value of
Parameter STARTUP. When the required regions have been identified, a value is obtained
for Parameter OPTION, and that value determines what happens next. Options include
obtaining further regions, changing the current region shape, listing the currently defined
regions, leaving the application, etc. Once the selected action has been performed, another
value is obtained for OPTION, and this continues until you choose to leave the application.

Instructions on the use of the cursor are displayed when the application is run. The points
required to define a region of the requested shape are described whenever the current
region shape is changed using Parameter SHAPE. Once the points required to define a
region have been given an outline of the entire region is drawn on the graphics device
using the pen specified by Parameter PALNUM.

In the absence of any other information, subsequent application will use the union (i.e. the
logical OR) of all the defined regions. However, regions can be combined in other ways
using the COMBINE option (see Parameter OPTION). For instance, two regions originally
defined using the cursor could be replaced by their region of intersection (logical AND),
or a single region could be replaced by its own exterior (logical NOT). Other operators can
also be used (see Parameter OPERATOR).

Usage:
ardgen ardout shape option [device] [startup] [palnum] [poicol] operands=? operator=?

regions=?
option

Parameters:

ARDOUT = FILENAME (Write)
Name of the text file in which to store the description of the selected regions.

DEVICE = DEVICE (Read)
The graphics device on which the regions are to be selected. [Current graphics
device]

OPERANDS() = _INTEGER (Read)
A pair of indices for the regions which are to be combined together using the operator
specified by Parameter OPERATOR. If the operator is "NOT", then only one region

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_

173 ARDGEN SUN/95.45 —Specifications of KAPPA applications

index need be supplied. Region indices are displayed by the "List" option (see
Parameter OPTION).

OPERATOR = LITERAL (Read)
The operator to use when combining two regions into a single region. The pixels
included in the resulting region depend on which of the following operators is
selected.

• "AND" — Pixels are included if they are in both of the regions specified by Param-
eter OPERANDS.
• "EQV" — Pixels are included if they are in both or neither of the regions specified

by Parameter OPERANDS.
• "NOT" — Pixels are included if they are not inside the region specified by Param-

eter OPERANDS.
• "OR" — Pixels are included if they are in either of the regions specified by Param-

eter OPERANDS. Note, an OR operator is implicitly assumed to exist between
each pair of adjacent regions unless some other operator is specified.
• "XOR" — Pixels are included if they are in one, but not both, of the regions

specified by Parameter OPERANDS.

OPTION= LITERAL (Read)
A value for this parameter is obtained when you choose to end cursor input (by press-
ing the relevant button as described when the application starts up). It determines
what to do next. The following options are available:

• "Combine" — Combine two previously defined regions into a single region using
a Boolean operator, or invert a previously defined region using a Boolean .NOT.
operator. See Parameters OPERANDS and OPERATOR. The original regions are
deleted and the new combined (or inverted) region is added to the end of the list
of defined regions.
• "Delete" — Delete previously defined regions, see Parameter REGIONS.
• "Draw" — Draw the outline of the union of one or more previously defined

regions, see Parameter REGIONS.
• "Exit" — Write out the currently defined regions to a text file and exit the

application.
• "List" — List the textual descriptions of the currently defined regions on the

screen. Each region is described by an index value, a keyword corresponding to
the shape, and various arguments describing the extent and position of the shape.
These arguments are described in the “Notes” section below.
• "Multi" — The cursor is displayed and you can then identify multiple regions

of the current shape, without being re-prompted for OPTION after each one.
These regions are added to the end of the list of currently defined regions. If the
current shape is "Polygon", "Frame" or "Whole" (see Parameter SHAPE) then
multiple regions cannot be defined and the selected option automatically reverts
to "Single".
• "Single" — The cursor is displayed and you can then identify a single region

of the current shape. You are re-prompted for Parameter OPTION once you

SUN/95.45 —Specifications of KAPPA applications 174 ARDGEN

have defined the region. The identified region is added to the end of the list of
currently defined regions.
• "Shape" — Change the shape of the regions created by the "Single" and "Multi"

options. This causes a new value for Parameter SHAPE to be obtained.
• "Style" — Change the drawing style by providing a new value for Parameter

STYLE.
• "Quit" — Quit the application without saving the currently defined regions.
• "Undo" — Undo the changes made to the list of ARD regions by the previous

option. Note, the undo list can contain upto 30 entries. Entries are only stored
for options which actually produce a change in the list of regions.

REGIONS() = LITERAL (Read)
The list of regions to be deleted or drawn. Regions are numbered consecutively from
1 and can be listed using the "List" option (see Parameter OPTION). Single regions
or a set of adjacent regions may be specified, e.g. assigning [4,6-9,12,14-16] will
delete regions 4,6,7,8,9,12,14,15,16. (Note that the brackets are required to distinguish
this array of characters from a single string including commas. The brackets are
unnecessary when there is only one item.) The numbers need not be in ascending
order.
If you wish to delete or draw all the regions enter the wildcard ∗. For instance, 5-∗
will delete or draw from 5 to the last region.

SHAPE = LITERAL (Read)
The shape of the regions to be defined using the cursor. After selecting a new shape,
you are immediately requested to identify multiple regions as if "Multi" had been
specified for Parameter OPTION. The currently available shapes are listed below.

• "Box" — A rectangular box with sides parallel to the co-ordinate axes, defined
by its centre and one of its corners.
• "Circle" — A circle, defined by its centre and radius.
• "Column" — A single value on Axis 1, spanning all values on Axis 2.
• "Ellipse" — An ellipse, defined by its centre, one end of the major axis, and one

other point which can be anywhere on the ellipse.
• "Frame" — The whole image excluding a border of constant width, defined by a

single point on the frame.
• "Point" — A single pixel.
• "Polygon" — Any general polygonal region, defined by up to 200 vertices.
• "Rectangle" — A rectangular box with sides parallel to the co-ordinate axes,

defined by a pair of diagonally opposite corners.
• "Rotbox" — A rotated box, defined by both ends of an edge, and one point on

the opposite edge.
• "Row" — A single value on Axis 2, spanning all values on Axis 1.
• "Whole" — The whole of the displayed image.

STARTUP = LITERAL (Read)
Determines if the application starts up in "Multi" or "Single" mode (see Parameter
OPTION). ["Multi"]

175 ARDGEN SUN/95.45 —Specifications of KAPPA applications

UNDO = _LOGICAL (Read)
Used to confirm that it is OK to proceed with an "Undo" option. The consequences of
proceeding are described before the parameter is obtained.

Examples:
ardgen extract.txt circle exit startup=single

This example allows you to create a text file (extract.txt) describing a single
circular region of the image displayed on the current graphics device. The application
immediately exits after the region has been identified. This example may be useful in
scripts or command procedures since there is no prompting.

Notes:

• An image must previously have been displayed on the graphics device.

• The arguments for the textual description of each shape are as follows :

– "Box" — The co-ordinates of the centre, followed by the lengths of the two sides.
– "Circle" — The co-ordinates of the centre, followed by the radius.
– "Column" — The Axis 1 co-ordinate of the column.
– "Ellipse" — The co-ordinates of the centre, followed by the lengths of the

semi-major and semi-minor axes, followed by the angle between Axis 1 and the
semi-major axis (in radians).

– "Frame" — The width of the border.
– "Point" — The co-ordinates of the pixel.
– "Polygon" — The co-ordinates of each vertex in the order given.
– "Rectangle" — The co-ordinates of two diagonally opposite corners.
– "Rotbox" — The co-ordinates of the box centre, followed by the lengths of the

two sides, followed by the angle between the first side and Axis 1 (in radians).
– "Row" — The Axis 2 co-ordinate of the row.
– "Whole" — No arguments.

• The shapes are defined within the current co-ordinate Frame of the displayed NDF.
For instance, if the current co-ordinate Frame of the displayed NDF is RA/DEC, then
"COLUMN" regions will be curves of constant DEC, "ROW" regions will be curves of
constant RA (assuming Axis 1 is RA and Axis 2 is DEC), straight lines will correspond
to geodesics, etc. Numerical values will be stored in the output text file in the current
co-ordinate Frame of the NDF. WCS information will also be stored in the output text
file allowing the stored positions to be converted to other systems (pixel co-ordinates,
for instance).

Related Applications :

KAPPA: ARDPLOT, ARDMASK, LOOK, REGIONMASK; CCDPACK; ESP.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_

SUN/95.45 —Specifications of KAPPA applications 176 ARDMASK

ARDMASK
Uses an ARD file to set some pixels of an NDF to be bad

Description:
This task allows regions of an NDF to be masked, so that they can (for instance) be
excluded from subsequent data processing. ARD (ASCII Region Definition) descriptions
(SUN/183) stored in a text file define which pixels of the data array are masked. An output
NDF is created which is the same as the input file except that all pixels specified by the
ARD file have been assigned either the bad value or a specified constant value. This value
can be assigned to either the inside or the outside of the specified ARD region.

If positions in the ARD description are given using a co-ordinate system that has one fewer
axes than the input NDF, then each line or plane in the NDF will be masked independently
using the supplied ARD description. For instance, if a two-dimensional ARD description
that uses (RA,Dec) to specify positions is used to mask a three-dimensional (ra,dec,velocity)
NDF, then each velocity plane in the NDF will be masked independently.

Usage:
ardmask in ardfile out

Parameters:
ARDFILE = FILENAME (Read)

The name of the ARD file containing a description of the parts of the image to
be masked out, i.e. set to bad. The co-ordinate system in which positions within
this file are given should be indicated by including suitable COFRAME or WCS
statements within the file (see SUN/183), but will default to pixel co-ordinates
or current WCS Frame co-ordinates in the absence of any such statements (see
Parameter DEFPIX). For instance, starting the file with a line containing the text
"COFRAME(SKY,System=FK5)" would indicate that positions are specified in RA/DEC
(FK5,J2000). The statement "COFRAME(PIXEL)" indicates explicitly that positions are
specified in pixel co-ordinates.

COMP = LITERAL (Read)
The NDF array component to be masked. It may be "Data", or "Variance", or
"Error", or "All", (where "Error" is equivalent to "Variance"). ["All"]

CONST = LITERAL (Given)
The constant numerical value to assign to the region, or the string "bad". ["bad"]

DEFPIX = _LOGICAL (Read)
If a TRUE value is supplied for DEFPIX, then co-ordinates in the supplied ARD file
will be assumed to be pixel co-ordinates. Otherwise, they are assumed to be in the
current WCS co-ordinate system of the supplied NDF. [TRUE]

IN = NDF (Read)
The name of the source NDF.

INSIDE = _LOGICAL (Read)
If a TRUE value is supplied, the constant value is assigned to the inside of the region
specified by the ARD file. Otherwise, it is assigned to the outside. [TRUE]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_

177 ARDMASK SUN/95.45 —Specifications of KAPPA applications

OUT = NDF (Write)
The name of the masked NDF.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Examples:
ardmask a1060 galaxies.ard a1060_sky title="A1060 galaxies masked"

This flags pixels defined by the ARD file galaxies.ard within the NDF called
a1060 to create a new NDF called a1060_sky. a1060_sky has a title="A1060 galaxies
masked". This might be to flag the pixels where bright galaxies are located to exclude them
from sky-background fitting.

ardmask in=ic3374 ardfil=ardfile.txt out=ic3374a

This example uses as the source image the NDF called ic3374 and sets the pixels
specified by the ARD description contained in ardfile.txt to the bad value. The resultant
image is output to the NDF called ic3374a. The title is unchanged.

ASCII-region-definition Descriptors :

The ARD file may be created by ARDGEN or written manually. In the latter case consult
SUN/183 for full details of the ARD descriptors and syntax; however, much may be learnt
from looking at the ARD files created by ARDGEN and the ARDGEN documentation.
There is also a in Section 15.1.1.

Related Applications :

KAPPA: ARDGEN, ARDPLOT, LOOK, REGIONMASK.

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, QUALITY, LABEL, TITLE,
UNITS, HISTORY, and VARIANCE components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All numeric data types can be handled.

SUN/95.45 —Specifications of KAPPA applications 178 ARDPLOT

ARDPLOT
Plot regions described in an ARD file

Description:
This application draws the outlines of regions described in a supplied two-dimensional
ARD file (an ‘ARD Description’ (see SUN/183). If there is an existing picture on the
graphics device, the outlines are drawn over the top of the previously displayed picture,
aligned (if possible) in the current co-ordinate Frame of the previously drawn picture.
If the graphics device is empty (or if the CLEAR parameter is set TRUE) the outlines are
drawn using a default projection—the size of the area plotted can be controlled by the
SIZE parameter. Note, the facility to plot on an empty device is currently only available
for two-dimensional regions specified using Parameter REGION.

Usage:
ardplot ardfile [device] [regval]

Parameters:

ARDFILE = FILENAME (Read)
The name of a file containing an ‘ARD Description’ of the regions to be outlined. The
co-ordinate system in which positions within this file are given should be indicated
by including suitable COFRAME or WCS statements within the file (see SUN/183),
but will default to pixel co-ordinates in the absence of any such statements. For
instance, starting the file with a line containing the text "COFRAME(SKY,System=FK5)"
would indicate that positions are specified in RA/DEC (FK5,J2000). The state-
ment "COFRAME(PIXEL)" indicates explicitly that positions are specified in pixel
co-ordinates. The ARDFILE parameter is only accessed if Parameter REGION is
given a null (!) value.

CLEAR = _LOGICAL (Read)
TRUE if the current picture is to be cleared before the Region is display. [FALSE]

DEVICE = DEVICE (Read)
The plotting device. [Current graphics device]

REGION = FILENAME (Read)
The name of a file containing an AST Region to be outlined, or null (!) if the ARD
region defined by Parameter ARDFILE is to be outlined. Suitable files can be created
using the ATOOLS package. [!]

REGVAL = _INTEGER (Read)
Indicates which regions within the ARD description are to be outlined. If zero (the
default) is supplied, then the plotted boundary encloses all the regions within the
ARD file. If a positive value is supplied, then only the region with the specified
index is outlined (the first region in the ARD file has index 2, for historical reasons).
If a negative value is supplied, then all regions with indices greater than or equal
to the absolute value of the supplied index are outlined. See SUN/183 for further
information on the numbering of regions within an ARD description. The REGVAL
parameter is only accessed if Parameter REGION is given a null (!) value. [0]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_

179 ARDPLOT SUN/95.45 —Specifications of KAPPA applications

SIZE = _REAL (Read)
The size of the plot to create, given as a multiple of the size of the Region being
plotted. This parameter is only accessed if no DATA picture can be found on the
graphics device, or CLEAR is TRUE. A SIZE value of 1.0 causes the plot to be the
same size as the Region being plotted. A value of 2.0 causes the plot to be twice the
size of the Region, etc. [2.0]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the curves.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the plotted curves is controlled by the attributes Colour(Curves),
Width(Curves), etc. [current value]

SUN/95.45 —Specifications of KAPPA applications 180 ARDPLOT

Examples:
ardplot bulge

Draws an outline around all the regions included in the ardfile named bulge.
The outline is drawn on the current graphics device and is drawn in alignment with the
previous picture.

Notes:

• A DATA picture must already exist on the selected graphics device before running
this command. An error will be reported if no DATA picture can be found.

• The application stores a new DATA picture in the graphics database. On exit the
current database picture for the chosen device reverts to the input picture.

Related Applications :

KAPPA: ARDGEN, ARDMASK, LOOK.

181 AXCONV SUN/95.45 —Specifications of KAPPA applications

AXCONV
Expands spaced axes in an NDF into the primitive form

Description:
This application routine converts in situ an NDF’s axis centres in the ‘spaced’ form into
‘simple’ form. Applications using the NDF_ library, such as KAPPA, are not currently
capable of supporting spaced arrays, but there are packages that produce NDF files with
this form of axis, notably ASTERIX. This application provides a temporary method of
allowing KAPPA et al. to handle these NDF datasets.

Usage:
axconv ndf

Parameters:

NDF = NDF (Read and Write)
The NDF to be modified.

Examples:
axconv rosat256

This converts the spaced axes in the NDF called rosat256 into simple form.

Related Applications :

KAPPA: SETAXIS.

Implementation Status:

• Only axes with a real data type are created.

SUN/95.45 —Specifications of KAPPA applications 182 AXLABEL

AXLABEL
Sets a new label value for an axis within an NDF data structure

Description:
This routine sets a new value for a LABEL component of an existing NDF AXIS data
structure. The NDF is accessed in update mode and any pre-existing LABEL component is
over-written with a new value. Alternatively, if a ‘null’ value (!) is given for the LABEL
parameter, then the NDF’s axis LABEL component will be erased. If an AXIS structure
does not exist, a new one whose centres are pixel co-ordinates is created.

Usage:
axlabel ndf label dim

Parameters:
DIM = _INTEGER (Read)

The axis dimension for which the label is to be modified. There are separate labels for
each NDF dimension. The value must lie between 1 and the number of dimensions
of the NDF. This defaults to 1 for a one-dimensional NDF. The suggested default is
the current value. []

NDF = NDF (Read and Write)
The NDF data structure in which an axis LABEL component is to be modified.

LABEL = LITERAL (Read)
The value to be assigned to the NDF’s axis LABEL component (e.g. "Wavelength"
or "Fibre index"). LABEL describes the quantity measured along the axis. This
value may later be used by other applications for labelling graphs or as a heading for
columns in tabulated output. The suggested default is the current value.

Examples:
axlabel ngc253 "Offset from nucleus" 2

Sets the LABEL component of the second axis dimension of the NDF structure
ngc253 to have the value "Offset from nucleus".

axlabel ndf=spect label=Wavelength

Sets the axis LABEL component of the one-dimensional NDF structure spect to
have the value "Wavelength".

axlabel datafile label=! dim=3

By specifying a null value (!), this example erases any previous value of the
LABEL component for the third dimension in the NDF structure datafile.

Related Applications :

KAPPA: AXUNITS, SETAXIS, SETLABEL.

183 AXUNITS SUN/95.45 —Specifications of KAPPA applications

AXUNITS
Sets a new units value for an axis within an NDF data structure

Description:
This routine sets a new value for a UNITS component of an existing NDF AXIS data
structure. The NDF is accessed in update mode and any pre-existing UNITS component is
over-written with a new value. Alternatively, if a ‘null’ value (!) is given for the UNITS
parameter, then the NDF’s axis UNITS component will be erased. If an AXIS structure
does not exist, a new one whose centres are pixel co-ordinates is created.

Usage:
axunits ndf units dim

Parameters:

DIM = _INTEGER (Read)
The axis dimension for which the units is to be modified. There are separate units for
each NDF dimension. The value must lie between 1 and the number of dimensions
of the NDF. This defaults to 1 for a one-dimensional NDF. The suggested default is
the current value. []

NDF = NDF (Read and Write)
The NDF data structure in which an axis UNITS component is to be modified.

UNITS = LITERAL (Read)
The value to be assigned to the NDF’s axis UNITS component (e.g. "Pixels" or
"km/s"). UNITS describes the physical units of the quantity measured along the
axis. This value may later be used by other applications for labelling graphs and
other forms of display where the NDF’s axis co-ordinates are shown. The suggested
default is the current value.

Examples:
axunits ngc253 "arcsec" 2

Sets the UNITS component of the second axis dimension of the NDF structure
ngc253 to have the value "arcsec".

axunits ndf=spect units=Angstrom

Sets the axis UNITS component of the one-dimensional NDF structure spect to
have the value "Angstrom".

axunits datafile units=! dim=3

By specifying a null value (!), this example erases any previous value of the
UNITS component for the third dimension in the NDF structure datafile.

SUN/95.45 —Specifications of KAPPA applications 184 AXUNITS

Related Applications :

KAPPA: AXLABEL, SETAXIS, SETUNITS.

185 BEAMFIT SUN/95.45 —Specifications of KAPPA applications

BEAMFIT
Fits beam features in a two-dimensional NDF

Description:
This fits generalised Gaussians (cf. PSF) to beam features within the data array of a
two-dimensional NDF given approximate initial co-ordinates. It uses an unconstrained
least-squares minimisation involving the residuals and a modified Levenberg-Marquardt
algorithm. The beam feature is a set of connected pixels which are either above or below
the surrounding background region. The errors in the fitted coefficients are also calculated.

You may apply various constraints. These are either fixed, or relative. Fixed values include
the FWHM, background level, or the shape exponent that defaults to 2 thus fits a normal
distribution. Relative constraints define the properties of secondary beam features with
respect to the primary (first given) feature, and can specify amplitude ratios, and beam
separations in Cartesian or polar co-ordinates.

Four methods are available for obtaining the initial positions, selected using Parameter
MODE:

• from the parameter system (see Parameters POS, POS2–POS5);

• using a graphics cursor to indicate the feature in a previously displayed data array
(see Parameter DEVICE);

• from a specified positions list (see Parameter INCAT); or

• from a simple text file containing a list of co-ordinates (see Parameter COIN).

In the first two modes the application loops, asking for new feature co-ordinates until it is
told to quit or encounters an error or the maximum number of features is reached. The
last is five, unless Parameters POS2—POS5 define the location of the secondary beams
and then only the primary beam’s position is demanded.

BEAMFIT both reports and stores in parameters its results. These are fit coefficients and
their errors, the offsets and position angles of the secondary beam features with respect to
the primary beam, and the offset of the primary beam from a reference position. Also a
listing of the fit results may be written to a log file geared more towards human readers,
including details of the input parameters (see Parameter LOGFILE).

Usage:

beamfit ndf [mode]

incat=?

[beams]

coin=?

[beams] pos pos2-pos5=?
mode

Parameters:

SUN/95.45 —Specifications of KAPPA applications 186 BEAMFIT

AMPRATIO() = _REAL (Read)
If number of beam positions given by BEAMS is more than one, this specifies the ratio
of the amplitude of the secondary beams to the primary. Thus you should supply
one fewer value than the number of beams. If you give fewer than that the last ratio
is copied to the missing values. The ratios would normally be negative, usually −1
or −0.5. AMPRATIO is ignored when there is only one beam feature to fit. [!]

BEAMS = _INTEGER (Read)
The number of beam positions to fit. This will normally be 1, unless a chopped
observation is supplied, when there may be two or three beam positions. This
parameter is ignored for "File" and "Catalogue" modes, where the number comes
from the number of beam positions read from the files; and for "Interface" mode
when the beam positions POS, POS2, etc. are supplied in full on the command line
without BEAMS. In all modes there is a maximum of five positions, which for "File"
or "Catalogue" modes will be the first five. [1]

CIRCULAR = _LOGICAL (Read)
If set TRUE only circular beams will be fit. [FALSE]

COIN = FILENAME (Read)
Name of a text file containing the initial guesses at the co-ordinates of beams to be
fitted. It is only accessed if Parameter MODE is given the value "File". Each line
should contain the formatted axis values for a single position, in the current Frame of
the NDF. Axis values can be separated by spaces, tabs or commas. The file may
contain comment lines with the first character # or !.

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which the beam positions
will be reported is displayed before the positions themselves. [current value]

DEVICE = DEVICE (Read)
The graphics device which is to be used to give the initial guesses at the beam
positions. Only accessed if Parameter MODE is given the value "Cursor". [Current
graphics device]

FITAREA() = _INTEGER (Read)
Size in pixels of the fitting area to be used. This should fully encompass the beam
and also include some background signal. If only a single value is given, then it will
be duplicated to all dimensions so that a square region is fitted. Each value must be
at least 9. A null value requests that the full data array is used. [!]

FIXAMP = _DOUBLE (Read)
This specifies the fixed amplitude of the first beam. Secondary sources arising from
chopped data use FIXAMP multiplied by the AMPRATIO. A null value indicates that
the amplitude should be fitted. [!]

FIXBACK = _DOUBLE (Read)
If a non-null value is supplied then the model fit will use that value as the constant
background level otherwise the background is a free parameter of the fit. [!]

FIXFWHM = LITERAL (Read)
If this is set TRUE then the model fit will use the full-width half-maximum values
for the beams supplied through Parameter FWHM. FALSE demands that the FWHM
values are free parameters of the fit. [FALSE]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

187 BEAMFIT SUN/95.45 —Specifications of KAPPA applications

FIXPOS = _LOGICAL (Read)
If TRUE, the supplied position of each beam is used and the centre co-ordinates of
the beam features are not fit. FALSE causes the initial estimate of the location of each
beam to come from the source selected by Parameter MODE, and all these locations
are part of the fitting process (however note the exception when FIXSEP=TRUE. It is
advisable not to use this option in the inaccurate "Cursor" mode. [FALSE]

FIXSEP = _LOGICAL (Read)
If TRUE, the separations of secondary beams from the primary beam are fixed, and
this takes precedence over Parameter FIXPOS. If FALSE, the beam separations are free
to be fitted (although it is actually the centres being fit). It is advisable not to use this
option in the inaccurate "Cursor" mode. [FALSE]

FWHM = LITERAL (Read)
The initial full-width half-maximum (FWHM) values for each beam. These become
fixed values if FIXFWHM is set TRUE.
A number of options are available.

• A single value gives the same circular FWHM for all beams.
• When Parameter CIRCULAR is TRUE, supply a list of values one for each of the

number of beams. These should be supplied in the same order as the correspond-
ing beam positions.
• A pair of values sets the major- and minor-axis values for all beams, provided

Parameter CIRCULAR is FALSE.
• Major- and minor-axis pairs, whose order should match that of the corresponding

beams. Again CIRCULAR should be FALSE.

Multiple values are separated by commas. An error is issued should none of these
options be offered.
If the current co-ordinate Frame of the NDF is a SKY Frame (e.g. right ascension
and declination), then the value should be supplied as an increment of celestial
latitude (e.g. declination). Thus, "5.7" means 5.7 arcseconds, "20:0" would mean
20 arcminutes, and "1:0:0" would mean 1 degree. If the current co-ordinate Frame
is not a SKY Frame, then the widths should be specified as an increment along Axis
1 of the current co-ordinate Frame. Thus, if the Current Frame is PIXEL, the value
should be given simply as a number of pixels.
Null requests that BEAMFIT itself estimates the initial FWHM values. [!]

GAUSS = _LOGICAL (Read)
If TRUE, the shape exponent is fixed to be 2; in other words the beams are modelled
as two-dimensional normal distributions. If FALSE, the shape exponent is a free
parameter in each fit. [TRUE]

INCAT = FILENAME (Read)
A catalogue containing a positions list giving the initial guesses at the beam positions,
such as produced by applications CURSOR, LISTMAKE, etc. It is only accessed if
Parameter MODE is given the value "Catalogue".

LOGFILE = FILENAME (Read)
Name of the text file to log the results. If null, there will be no logging. Note this is
intended for the human reader and is not intended for passing to other applications.
[!]

SUN/95.45 —Specifications of KAPPA applications 188 BEAMFIT

MARK = LITERAL (Read)
Only accessed if Parameter MODE is given the value "Cursor". It indicates which
positions are to be marked on the screen using the marker type given by Parameter
MARKER. It can take any of the following values.

• "Initial" — The position of the cursor when the mouse button is pressed is
marked.
• "Fit" — The corresponding fit position is marked.
• "Ellipse" — As "Fit" but it also plots an ellipse at the HWHM radii and orienta-

tion.
• "None" — No positions are marked.

[current value]

MARKER = INTEGER (Read)
This parameter is only accessed if Parameter MARK is set TRUE. It specifies the type
of marker with which each cursor position should be marked, and should be given
as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2 gives
a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or equal
to −31. [current value]

MODE = LITERAL (Read)
The mode in which the initial co-ordinates are to be obtained. The supplied string
can be one of the following values.

• "Interface" — positions are obtained usingparameters POS, POS2–POS5.
• "Cursor" — positions are obtained using the graphics cursor of the device speci-

fied by Parameter DEVICE.
• "Catalogue" — positions are obtained from a positions list using Parameter

INCAT.
• "File" — positions are obtained from a text file using Parameter COIN. [current

value]

NDF = NDF (Read)
The NDF structure containing the data array to be analysed. In cursor mode (see
Parameter MODE), the run-time default is the displayed data, as recorded in the
graphics database. In other modes, there is no run-time default and the user must
supply a value. []

PLOTSTYLE = GROUP (Read)
A group of attribute settings describing the style to use when drawing the graphics
markers specified by Parameter MARK.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>

189 BEAMFIT SUN/95.45 —Specifications of KAPPA applications

where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

POLAR = _LOGICAL (Read)
If TRUE, the co-ordinates supplied through POS2–POS5 are interpreted in polar co-
ordinates (offset, position angle) about the primary beam. The radial co-ordinate is a
distance measured in units of the latitude axis if the current WCS Frame is a SKY
DOMAIN or the first axis for other Frames. For a SKY current WCS Frame, position
angle follows the standard convention of North through East. For other Frames the
angle is measured from the second axis anticlockwise, e.g. for a PIXEL Frame it would
be from y through negative x, not the standard x through y.
If FALSE, the co-ordinates are the regular axis co-ordinates in the current Frame.
POLAR is only accessed when there is more than one beam to fit. [TRUE]

POS = LITERAL (Read)
When MODE = "Interface" POS specifies the co-ordinates of the primary beam
position. This is either merely an initial guess for the fit, or if Parameter FIXPOS is
TRUE, it defines a fixed location. It is specified in the current co-ordinate Frame of the
NDF (supplying a colon ":" will display details of the current co-ordinate Frame).
A position should be supplied as a list of formatted WCS axis values separated by
spaces or commas, and should lie within the bounds of the NDF.
If the initial co-ordinates are supplied on the command line without BEAMS the
number of contiguous POS, POS2,. . . parameters specifies the number of beams to
be fit. If the initial co-ordinates are supplied on the command line without BEAMS
specified only one beam will be fit.

POS2-POS5 = LITERAL (Read)
When MODE = "Interface" these parameters specify the co-ordinates of the sec-
ondary beam positions. These should lie within the bounds of the NDF. For each
parameter the supplied location may be merely an initial guess for the fit, or if Pa-
rameter FIXPOS is TRUE, it defines a fixed location, unless Parameter FIXSEP is TRUE,
whereupon it defines a fixed separation from the primary beam.
For POLAR = FALSE each distance should be given as a single literal string containing
a space- or comma-separated list of formatted axis values measured in the current
co-ordinate Frame of the NDF. The allowed formats depends on the class of the
current Frame. Supplying a single colon ":" will display details of the current Frame,
together with an indication of the format required for each axis value, and a new
parameter value is then obtained.
If Parameter POLAR is TRUE, POS2–POS5 may be given as an offset followed by a
position angle. See Parameter POLAR for more details of the sense of the angle and
the offset co-ordinates.
The parameter name increments by 1 for each subsequent beam feature. Thus POS2
applies to the first secondary beam (second position in all), POS3 is for the second

SUN/95.45 —Specifications of KAPPA applications 190 BEAMFIT

secondary beam, and so on. As the total number of parameters required is one fewer
than the value of Parameter BEAMS, POS2–POS5 are only accessed when BEAMS
exceeds 1.

REFPOS = LITERAL (Read)
The reference position. This is often the desired position for the beam. The offset
of the primary beam with respect to this point is reported and stored in Parameter
REFOFF. It is only accessed if the current WCS Frame in the NDF is not a SKY Domain
containing a reference position.
The co-ordinates are specified in the current WCS Frame of the NDF (supplying a
colon ":" will display details of the current co-ordinate Frame). A position should be
supplied either as a list of formatted WCS axis values separated by spaces or commas.
A null value (!) requests that the centre of the supplied map is deemed to be the
reference position.

RESID = NDF (Write)
The map of the residuals (data minus model) of the fit. It inherits the properties of
the input NDF, except that its data type is _DOUBLE or _REAL depending on the
precision demanded by the type of IN, and no variance is propagated. A null (!)
value requests that no residual map be created. [!]

TITLE = LITERAL (Read)
The title for the NDF to contain the residuals of the fit. If null (!) is entered the NDF
will not contain a title. ["KAPPA - BEAMFIT"]

VARIANCE = _LOGICAL (Read)
If TRUE, then any VARIANCE component present within the input NDF will be used
to weight the fit; the weight used for each data value is the reciprocal of the variance.
If set to FALSE or there is no VARIANCE present, all points will be given equal weight.
[FALSE]

Results Parameters:

AMP(2 * BEAMS) = _DOUBLE (Write)
The amplitude and its error for each beam.

BACK(2 * BEAMS) = _DOUBLE (Write)
The background level and its error at each beam position.

CENTRE(2 * BEAMS) = LITERAL (Write)
The formatted co-ordinates and their errors of each beam in the current co-ordinate Frame
of the NDF.

GAMMA(2 * BEAMS) = _DOUBLE (Write)
The shape exponent and its error for each beam.

MAJFWHM(2 * BEAMS) = _DOUBLE (Write)
The major-axis FWHM and its error, measured in the current co-ordinate Frame of the
NDF, for each beam. Note that the unit for sky co-ordinate Frames is radians.

MINFWHM(2 * BEAMS) = _DOUBLE (Write)
The minor-axis FWHM and its error, measured in the current co-ordinate Frame of the
NDF, for each beam. Note that the unit for sky co-ordinate Frames is radians.

191 BEAMFIT SUN/95.45 —Specifications of KAPPA applications

OFFSET() = LITERAL (Write)
The formatted offset and its error of each secondary beam feature with respect to the
primary beam. They are measured in the current Frame of the NDF along a latitude axis if
that Frame is in the SKY Domain, or the first axis otherwise. The number of values stored
is twice the number of beams. The array alternates an offset, then its corresponding error,
appearing in beam order starting with the first secondary beam.

ORIENT(2 * BEAMS) = _DOUBLE (Write)
The orientation and its error, measured in degrees for each beam. If the current WCS
Frame is a SKY Frame, the angle is measured from North through East. For other Frames
the angle is from the x-axis through y.

PA() = _REAL (Write)
The position angle and its errors of each secondary beam feature with respect to the
primary beam. They are measured in the current Frame of the NDF from North through
East if that is a SKY Domain, or anticlockwise from the y axis otherwise. The number of
values stored is twice the number of beams. The array alternates a position angle, then its
corresponding error, appearing in beam order starting with the first secondary beam.

REFOFF(2) = LITERAL (Write)
The formatted offset followed by its error of the primary beam’s location with respect to
the reference position (see Parameter REFPOS). The offset might be used to assess the
optical alignment of an instrument. The ofset and its error are measured in the current
Frame of the NDF along a latitude axis if that Frame is in the SKY Domain, or the first axis
otherwise. The error is derived entirely from the uncertainities in the fitted position of the
primary beam, i.e. the reference position has no error attached to it. By definition the error
is zero when FIXPOS is TRUE.

RMS = _REAL (Write)
The primary beam position’s root mean-squared deviation from the fit.

SUM = _DOUBLE (Write)
The total data sum of the multi-Gaussian fit above the background. The fit is evaluated
at the centre of every pixel in the input NDF (including bad-valued pixels). The fitted
background level is then removed from the fit value, and the sum of these is written to
this output parameter.

Examples:
beamfit mars_3pos i 1 "5.0,-3.5"

This finds the Gaussian coefficients of the primary beam feature in the NDF
called mars_3pos, using the supplied beam’s centre. The co-ordinates are measured in the
NDF’s current co-ordinate Frame. In this case they are offsets in arcseconds.

beamfit ndf=mars_3pos mode=interface beams=1 init1="5.0,-3.5" fixback=0

As above but now the background is fixed to be zero.

beamfit mars_3pos i pos="5.0,-3.5"

SUN/95.45 —Specifications of KAPPA applications 192 BEAMFIT

As the first example. The presence of POS indicates a single is required.

beamfit ndf=mars_3pos mode=interface beams=1 pos="5.0,-3.5" fixfwhm
fwhm=16.5 gauss=f

As above but now the Gaussian is constrained to have a FWHM of 16.5 arcsec-
onds and be circular, but the shape exponent is not constrained to be 2.

beamfit mars_3pos in beams=1 fwhm=16.5 fitarea=51 pos="5.,-3.5"

As above but now the fitted data is restricted to areas 51×51 pixels about the
initial guess positions. All the other examples use the full array. Also the FWHM value is
now just an initial guess.

beamfit mars_3pos int 3 "5.0,-3.5" ampratio=-0.5 resid=mars_res

As the first example except this finds the Gaussian coefficients of the primary
beam feature and two secondary features. The secondary features have fixed amplitudes
that are half that of the primary feature and of the opposite polarity. The residuals after
subtracting the fit are stored in NDF mars_res. In all the other examples no residual map
is created.

beamfit mars_3pos int 2 "5.0,-3.5" pos2="60.0,90" fixpos

This finds the Gaussian coefficients of the primary beam feature and a secondary feature
in the NDF called mars_3pos. The supplied co-ordinates (5.0,−3.5) define the centre, i.e.
they are not fitted. Also the secondary beam is fixed at 60 arcseconds towards the East
(position angle 90 degrees).

beamfit mars_3pos int 2 "5.0,-3.5" pos2="60.0,90" fixsep

As the previous example, except now the separation of the second position is
fixed at 60 arcseconds towards the East from the primary beam, instead of being an
absolute location.

beamfit mars_3pos int 2 "5.0,-3.5" pos2="-60.5,0.6" polar=f fixpos

As the last-but-one example, but now location of the secondary beam is fixed at
(−55.5,−2.9).

beamfit s450 int beams=2 fwhm="7.9,25" ampratio=0.06 circular
pos=’"0:0:0,0:0:0"’ nopolar pos2="0:0:0,0:0:0"

This fits two superimposed circular Gaussians in the NDF called s450, whose
current WCS is SKY. The beam second being fixed at 6 percent the strength of the first,
with initial widths of 7.9 and 25 arcseconds.

193 BEAMFIT SUN/95.45 —Specifications of KAPPA applications

beamfit mode=cu beams=1

This finds the Gaussian coefficients of the primary beam feature of an NDF, us-
ing the graphics cursor on the current graphics device to indicate the approximate centre
of the feature. The NDF being analysed comes from the graphics database.

beamfit uranus cu 2 mark=ce plotstyle=’colour=red’ marker=3

This fits to two beam features in the NDF called uranus via the graphics cursor
on the current graphics device. The beam positions are marked using a red asterisk.

beamfit uranus file 4 coin=features.dat logfile=uranus.log

This fits to the beam features in the NDF called uranus. The initial positions are
given in the text file features.dat in the current co-ordinate Frame. Only the first four
positions will be used. The last three positions are in polar co-ordinates with respect to the
primary beam. A log of selected input parameter values, and the fitted coefficients and
errors is written to the text file uranus.log.

beamfit uranus mode=cat incat=uranus_beams polar=f

This example reads the initial guess positions from the positions list in file
uranus_beams.FIT. The number of beam features fit is the number of positions in
the catalogue subject to a maximum of five. The input file may, for instance, have been
created using the application CURSOR.

Notes:

• All positions are supplied and reported in the current co-ordinate Frame of the NDF.
A description of the co-ordinate Frame being used is given if Parameter DESCRIBE
is set to a TRUE value. Application WCSFRAME can be used to change the current
co-ordinate Frame of the NDF before running this application if required.

• The uncertainty in the positions are estimated iteratively using the curvature matrix
derived from the Jacobian, itself determined by a forward-difference approximation.

• The fit parameters are not displayed on the screen when the message filter environ-
ment variable MSG_FILTER is set to QUIET.

• If the fitting fails there are specific error codes that can be tested and appropriate
action taken in scripts: PDA__FICMX when it is impossible to derive fit errors, and
KAP__LMFOJ when the fitted functions from the Levenberg-Marquardt minimisation
are orthogonal to the Jacobian’s columns (usually indicating that FITAREA is too
small).

Related Applications :

KAPPA: PSF, CENTROID, CURSOR, LISTSHOW, LISTMAKE; ESP: GAUFIT; FIGARO:
FITGAUSS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_GAUFIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITGAUSS

SUN/95.45 —Specifications of KAPPA applications 194 BEAMFIT

Implementation Status:

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
double-precision floating point.

195 BLOCK SUN/95.45 —Specifications of KAPPA applications

BLOCK
Smooths an NDF using an n-dimensional rectangular box filter.

Description:
This application smooths an n-dimensional NDF using a rectangular box filter, whose
dimensionality is the same as that of the NDF being smoothed. Each output pixel is either
the mean or the median of the input pixels within the filter box. The mean estimator
provides one of the fastest methods of smoothing an image and is often useful as a general-
purpose smoothing algorithm when the exact form of the smoothing point-spread function
is not important.

It is possible to smooth in selected dimensions by setting the boxsize to 1 for the dimensions
not requiring smoothing. For example you can apply two-dimensional smoothing to the
planes of a three-dimensional NDF (see Parameter BOX). If it has three dimensions,
then the filter is applied in turn to each plane in the cube and the result written to the
corresponding plane in the output cube.

Usage:
block in out box [estimator]

Parameters:

BOX() = _INTEGER (Read)
The sizes (in pixels) of the rectangular box to be applied to smooth the data. These
should be given in axis order. A value set to 1 indicates no smoothing along that
axis. Thus, for example, BOX=[3,3,1] for a three-dimensional NDF would apply a
3x3-pixel filter to all its planes independently.
If fewer values are supplied than the number of dimensions of the NDF, then the final
value will be duplicated for the missing dimensions.
The values given will be rounded up to positive odd integers, if necessary, to retain
symmetry.

ESTIMATOR = LITERAL (Read)
The method to use for estimating the output pixel values. It can be either "Mean" or
"Median". ["Mean"]

IN = NDF (Read)
The input NDF to which box smoothing is to be applied.

OUT = NDF (Write)
The output NDF which is to contain the smoothed data.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the input NDF to be
used. [!]

WLIM = _REAL (Read)
If the input image contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the smoothing box before
a valid output pixel is generated. It can be used, for example, to prevent output

SUN/95.45 —Specifications of KAPPA applications 196 BLOCK

pixels from being generated in regions where there are relatively few good pixels to
contribute to the smoothed result.
By default, a null (!) value is used for WLIM, which causes the pattern of bad pixels
to be propagated from the input image to the output image unchanged. In this case,
smoothed output values are only calculated for those pixels which are not bad in the
input image.
If a numerical value is given for WLIM, then it specifies the minimum fraction of good
pixels which must be present in the smoothing box in order to generate a good output
pixel. If this specified minimum fraction of good input pixels is not present, then a
bad output pixel will result, otherwise a smoothed output value will be calculated.
The value of this parameter should lie between 0.0 and 1.0 (the actual number used
will be rounded up if necessary to correspond to at least one pixel). [!]

Examples:
block aa bb 9

Smooths the two-dimensional image held in the NDF structure aa, writing the
result into the structure bb. The smoothing box is 9 pixels square. If any pixels in the input
image are bad, then the corresponding pixels in the output image will also be bad. Each
output pixel is the mean of the corresponding input pixels.

block spectrum spectrums [5,1] median title="Smoothed spectrum"

Smooths the one-dimensional data in the NDF called spectrum using a box size
of 5 pixels, and stores the result in the NDF structure spectrums. Each output pixel is the
median of the corresponding input pixels. If any pixels in the input image are bad, then
the corresponding pixels in the output image will also be bad. The output NDF has the
title "Smoothed spectrum".

block ccdin(123,) ccdcol [1,9]

Smooths the 123rd column in the two-dimensional NDF called ccdin using a box
size of 9 pixels, and stores the result in the NDF structure ccdcol. The first value of the
smoothing box is ignored as the first dimension has only one element. Each output pixel
is the mean of the corresponding input pixels.

block in=image1 out=image2 box=[5,7] estimator=median

Smooths the two-dimensional image held in the NDF structure image1 using a
rectangular box of size 5×7 pixels. The smoothed image is written to the structure image2.
Each output pixel is the median of the corresponding input pixels.

block etacar etacars box=[7,1] wlim=0.6

Smooths the specified image data using a rectangular box 7×1 pixels in size.
Smoothed output values are generated only if at least 60% of the pixels in the smoothing
box are good, otherwise the affected output pixel is bad.

197 BLOCK SUN/95.45 —Specifications of KAPPA applications

block in=cubein out=cubeout box=[3,3,7]

Smooths the three-dimensional NDF called cubein using a box that has three ele-
ments along the first two axes and seven along the third. The smoothed cube is written to
NDF cubeout.

block in=cubein out=cubeout box=[3,1,7]

As the previous example, except that planes comprising the first and third axes
are smoothed independently for all lines.

Timing :

When using the mean estimator, the execution time is approximately proportional to the
number of pixels in the image to be smoothed and is largely independent of the smoothing
box size. This makes the routine particularly suitable for applying heavy smoothing to an
image. Execution time will be approximately doubled if a variance array is present in the
input NDF.

The median estimator is much slower than the mean estimator, and is heavily dependent
on the smoothing box size.

Related Applications :

KAPPA: CONVOLVE, FFCLEAN, GAUSMOOTH, MEDIAN; FIGARO: ICONV3, IS-
MOOTH, IXSMOOTH, MEDFILT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF and propagates all extensions. In
addition, if the mean estimator is used, the VARIANCE component is also processed.
If the median estimator is used, then the output NDF will have no VARIANCE com-
ponent, even if there is a VARIANCE component in the input NDF.

• Processing of bad pixels and automatic quality masking are supported. The bad-pixel
flag is also written for the data and variance arrays.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point, or double precision if appropriate.

• Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IXSMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT

SUN/95.45 —Specifications of KAPPA applications 198 CADD

CADD
Adds a scalar to an NDF data structure

Description:
The routine adds a scalar (i.e. constant) value to each pixel of an NDF’s data array to
produce a new NDF data structure.

Usage:
cadd in scalar out

Parameters:

IN = NDF (Read)
Input NDF data structure, to which the value is to be added.

OUT = NDF (Write)
Output NDF data structure.

SCALAR = _DOUBLE (Read)
The value to be added to the NDF’s data array.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
cadd a 10 b

This adds ten to the NDF called a, to make the NDF called b. NDF b inherits its
title from a.

cadd title="HD123456" out=b in=a scalar=17.3

This adds 17.3 to the NDF called a, to make the NDF called b. NDF b has the
title "HD123456".

Related Applications :

KAPPA: ADD, CDIV, CMULT, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Huge NDFs are supported.

199 CALC SUN/95.45 —Specifications of KAPPA applications

CALC
Evaluates a mathematical expression

Description:
This task evaluates an arithmetic expression and reports the result. It main rôle is to
perform floating-point arithmetic in scripts. A value "Bad" is reported if there was an error
during the calculation, such as a divide by zero.

Usage:
calc exp [prec] fa-fz=? pa-pz=?

Parameters:
EXP = LITERAL (Read)

The mathematical expression to be evaluated, e.g. "-2.5∗LOG10(PA)". In this ex-
pression constants may either be given literally or represented by the variables PA,
PB, . . . PZ. The expression may contain sub-expressions represented by the variables
FA, FB, . . . FZ. Values for those sub-expressions and constants which appear in the
expression will be requested via the application’s parameter of the same name.
FORTRAN 77 syntax is used for specifying the expression, which may contain the
usual intrinsic functions, plus a few extra ones. An appendix in SUN/61 gives a
full description of the syntax used and an up-to-date list of the functions available.
The arithmetic operators (+,-,/,∗,∗∗) follow the normal order of precedence. Using
matching (nested) parentheses will explicitly define the order of expression evaluation.
The expression may be up to 132 characters long.

FA-FZ = LITERAL (Read)
These parameters supply the values of ‘sub-expressions’ used in the expression EXP.
Any of the 26 may appear; there is no restriction on order. These parameters should
be used when repeated expressions are present in complex expressions, or to shorten
the value of EXP to fit within the 132-character limit. Sub-expressions may contain
references to other sub-expressions and constants (PA-PZ). An example of using
sub-expressions is:

EXP > PA∗ASIND(FA/PA)∗X/FA
FA > SQRT(X∗x+ y∗Y)
PA > 10.1

where the parameter name is to the left of > and its value is to the right of the >.

PA-PZ = _DOUBLE (Read)
These parameters supply the values of constants used in the expression EXP and
sub-expressions FA-FZ. Any of the 26 may appear; there is no restriction on order.
Using parameters allows the substitution of repeated constants using one reference.
This is especially convenient for constants with many significant digits. It also allows
easy modification of parameterised expressions provided the application has not
been used with a different EXP in the interim. The parameter PI has a default value
of 3.14159265359D0. An example of using parameters is:

EXP > SQRT(PX∗PX+PY∗PY)∗EXP(PX-PY)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun61.htx/sun61.html?xref_

SUN/95.45 —Specifications of KAPPA applications 200 CALC

PX > 2.345
PY > -0.987

where the parameter name is to the left of > and its value is to the right of the >.

PREC = LITERAL (Read)
The arithmetic precision with which the transformation functions will be evaluated
when used. This may be either "_REAL" for single precision, "_DOUBLE" for double
precision, or "_INTEGER" for integer precision. Elastic precisions are used, such
that a higher precision will be used if the input data warrant it. So for example if
PREC="_REAL", but double-precision data were to be transformed, double-precision
arithmetic would actually be used. The result is reported using the chosen precision.
["_REAL"]

Results Parameters:

RESULT = LITERAL (Write)
The result of the evaluation.

Examples:
Shell usage:

The syntax in the following examples apply to the shell.

calc "27.3∗1.26"

The reports the value of the expression 27.3∗1.26, i.e. 34.398.

calc exp="(pa+pb+pc+pd)/4.0" pa=$med1 pb=$med2 pc=$med3 pd=$med4

This reports the average of four values defined by script variables med1, med2,
med3, and med4.

calc "42.6∗pi/180"

This reports the value in radians of 42.6 degrees.

calc "(mod(PO,3)+1)/2" prec=_integer po=$count

This reports the value of the expression "(mod($count,3)+1)/2)" where $count
is the value of the shell variable count. The calculation is performed in integer arithmetic,
thus if count equals 2, the result is 1 not 1.5.

calc "sind(pa/fa)∗fa" fa="log(abs(pb+pc))" pa=2.0e-4 pb=-1 pc=$x

This evaluates sind(0.0002/log(abs($x−1)))∗log(abs($x−1)) where $x is the value
of the shell variable x.

ICL usage:

201 CALC SUN/95.45 —Specifications of KAPPA applications

For ICL usage only those expressions containing parentheses need to be in quotes, though
ICLitself provides the arithmetic. So the above examples would be

calc 27.3∗1.26

The reports the value of the expression 27.3∗1.26, i.e. 34.398.

calc exp="(pa+pb+pc+pd)/4.0" pa=(med1) pb=(med2) pc=(med3) pd=(med4)

This reports the average of four values defined by ICLvariables med1, med2,
med3, and med4.

calc 42.6∗pi/180

This reports the value in radians of 42.6 degrees.

calc "(mod(PO,3)+1)/2" prec=_integer po=(count)

This reports the value of the expression "(mod((count),3)+1)/2)" where (count) is
the value of the ICLvariable count. The calculation is performed in integer arithmetic, thus
if count equals 2, the result is 1 not 1.5.

calc "sind(pa/fa)∗fa" fa="log(abs(pb+pc))" pa=2.0e-4 pb=-1 pc=(x)

This evaluates sind(0.0002/log(abs((x)−1)))∗log(abs((x)−1)) where (x) is the value of
the ICL variable x.

Implementation Status:
On OSF/1 systems an error during the calculation results in a core dump. On Solaris,
undefined values are set to one. These are due to problems with the TRANSFORM
infrastructure.

Related Applications :

KAPPA: MATHS.

SUN/95.45 —Specifications of KAPPA applications 202 CALPOL

CALPOL
Calculates polarisation parameters

Description:
This routine calculates various parameters describing the polarisation described by four
intensity arrays analysed at 0◦, 45◦, 90◦, and 135◦ to a reference direction. Variance values
are stored in the output NDFs if all the input NDFs have variances and you give a
TRUE value for Parameter VARIANCE.

By default, three output NDFs are created holding percentage polarisation, polarisation
angle and total intensity. However, NDFs holding other quantities, such as the Stokes
parameters, can also be produced by overriding the default null values associated with
the corresponding parameters. The creation of any output NDF can be suppressed by
supplying a null value for the corresponding parameter.

There is an option to correct the calculated values of percentage polarisation and polarised
intensity to take account of the statistical bias introduced by the asymmetric distribution of
percentage polarisation (see Parameter DEBIAS). This correction subtracts the variance of
the percentage polarisation from the squared percentage polarisation, and uses the square
root of this as the corrected percentage polarisation. The corresponding polarised intensity
is then found by multiplying the corrected percentage polarisation by the total intensity.
Returned variance values take no account of this correction.

Usage:
calpol in1 in2 in3 in4 p theta i

Parameters:
DEBIAS = _LOGICAL (Read)

TRUE if a correction for statistical bias is to be made to percentage polarisation and
polarised intensity. This correction cannot be used if any of the input NDFs do not
contain variance values, or if you supply a FALSE value for Parameter VARIANCE.
[FALSE]

I = NDF (Write)
An output NDF holding the total intensity derived from all four input NDFs.

IN1 = NDF (Read)
An NDF holding the measured intensity analysed at an angle of 0◦ to the reference
direction. The primary input NDF.

IN2 = NDF (Read)
An NDF holding the measured intensity analysed at an angle of 45◦ to the reference
direction. The suggested default is the current value.

IN3 = NDF (Read)
An NDF holding the measured intensity analysed at an angle of 90◦ to the reference
direction. The suggested default is the current value.

IN4 = NDF (Read)
An NDF holding the measured intensity analysed at an angle of 135◦ to the reference
direction. The suggested default is the current value.

203 CALPOL SUN/95.45 —Specifications of KAPPA applications

IA = NDF (Write)
An output NDF holding the total intensity derived from input NDFs IN1 and IN3.
[!]

IB = NDF (Write)
An output NDF holding the total intensity derived from input NDFs IN2 and IN4.
[!]

IP = NDF (Write)
An output NDF holding the polarised intensity. [!]

P = NDF (Write)
An output NDF holding percentage polarisation.

Q = NDF (Write)
An output NDF holding the normalised Stokes parameter, Q. [!]

U = NDF (Write)
An output NDF holding the normalised Stokes parameter, U. [!]

THETA = NDF (Write)
An output NDF holding the polarisation angle in degrees.

VARIANCE = _LOGICAL (Read)
TRUE if output variances are to be calculated. This parameter is only accessed if all
input NDFs contain variances, otherwise no variances are generated. [TRUE]

Examples:
calpol m51_0 m51_45 m51_90 m51_135 m51_p m51_t m51_i ip=m51_ip

This example produces NDFs holding percentage polarisation, polarisation an-
gle, total intensity and polarised intensity, based on the four NDFs M51_0, m51_45,
m51_90 and m51_135.

calpol m51_0 m51_45 m51_90 m51_135 m51_p m51_t m51_i ip=m51_ip novariance

As above except that variance arrays are not computed.

calpol m51_0 m51_45 m51_90 m51_135 m51_p m51_t m51_i ip=m51_ip

As the first example except that there is a correction for statistical bias in the
percentage polarisation and polarised intensity, assuming that all the input NDFs have a
VARIANCE array.

calpol m51_0 m51_45 m51_90 m51_135 q=m51_q p=m51_p

This example produces NDFs holding the Stokes Q and U parameters, again
based on the four NDFs M51_0, m51_45, m51_90 and m51_135.

Notes:

SUN/95.45 —Specifications of KAPPA applications 204 CALPOL

• A bad value will appear in the output data and variance arrays when any of the four
input data values is bad, or if the total intensity in the pixel is not positive. The output
variance values are also undefined when any of the four input variances is bad or
negative, or any computed variance is not positive, or the percentage polarisation is
not positive.

• If the four input NDFs have different pixel-index bounds, then they will be trimmed
to match before being added. An error will result if they have no pixels in common.

• The output NDFs are deleted if there is an error during the formation of the polarisa-
tion parameters.

• The output NDFs obtain their QUALITY, AXIS information, and TITLE from the IN1
NDF. The following labels and units are also assigned:

I "Total Intensity" UNITS of IN1

IA "Total Intensity" UNITS of IN1

IB "Total Intensity" UNITS of IN1

IP "Polarised Intensity" UNITS of IN1

P "Percentage Polarisation" "%"

Q "Stokes Q" —

U "Stokes U" —

THETA "Polarisation Angle" "Degrees"

Related Applications :

KAPPA: VECPLOT; POLPACK: POLCAL, POLVEC; TSP.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun223.htx/sun223.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun223.htx/sun223.html?xref_POLCAL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun223.htx/sun223.html?xref_POLVEC
http://www.starlink.ac.uk/cgi-bin/htxserver/sun66.htx/sun66.html?xref_

205 CARPET SUN/95.45 —Specifications of KAPPA applications

CARPET
Creates a cube representing a carpet plot of an image

Description:
This application creates a new three-dimensional NDF from an existing two-dimensional
NDF. The resulting NDF can, for instance, be viewed with the three-dimensional iso-
surface facilities of the GAIA image viewer, in order to create a display similar to a carpet
plot of the image (the iso-surface at value zero represents the input image data values).

The first two pixel axes (x and y) in the output cube correspond to the pixel axes in the
input image. The third pixel axis (z) in the output cube is proportional to data value in
the input image. The value of a pixel in the output cube measures the difference between
the data value implied by its z-axis position, and the data value of the corresponding
pixel in the input image. Two schemes are available (see Parameter MODE): the output
pixel values can be either simply the difference between these two data values, or the
difference divided by the standard deviation at the corresponding pixel in the input image
(as determined either from the VARIANCE component in the input NDF or by Parameter
SIGMA).

Usage:
carpet in out [ndatapix] [range] [mode] [sigma]

Parameters:

IN = NDF (Read)
The input two-dimensional NDF.

MODE = LITERAL (Read)
Determines how the pixel values in the output cube are calculated.

• "Data" — the value of each output pixel is equal to the difference between the
data value implied by its position along the data value axis, and the value of the
corresponding pixel in the input image.
• "Sigma" — this is the same as "Data" except that the output pixel values are

divided by the standard deviation implied either by the VARIANCE component
of the input image, or by the SIGMA parameter.

["Data"]

NDATAPIX = _INTEGER (Read)
The number of pixels to use for the data value axis in the output cube. The pixel
origin of this axis will be 1. The dynamic default is the square root of the number of
pixels in the input image. This gives a fairly ‘cubic’ output cube. []

OUT = NDF (Write)
The output three-dimensional NDF.

RANGE = LITERAL (Read)
RANGE specifies the range covered by the data value axis (i.e. the third pixel axis)
in the output cube. The supplied string should consist of up to three sub-strings,

http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

SUN/95.45 —Specifications of KAPPA applications 206 CARPET

separated by commas. For all but the option where you give explicit numerical
limits, the first sub-string must specify the method to use. If supplied, the other two
sub-strings should be numerical values as described below (default values will be
used if these sub-strings are not provided). The following options are available.

• lower,upper — You can supply explicit lower and upper limiting values. For
example, "10,200" would set the lower limit on the output data axis to 10 and
its upper limit to 200. No method name prefixes the two values. If only one
value is supplied, the "Range" method is adopted. The limits must be within the
dynamic range for the data type of the input NDF array component.
• "Percentiles" — The default values for the output data axis range are set to the

specified percentiles of the input data. For instance, if the value "Per,10,99"
is supplied, then the lowest 10% and highest 1% of the data values are beyond
the bounds of the output data value axis. If only one value, p1, is supplied, the
second value, p2, defaults to (100 - p1). If no values are supplied, the values
default to "5,95". Values must be in the range 0 to 100.
"Range" — The minimum and maximum array values are used. No other sub-
strings are needed by this option. Null (!) is a synonym for the "Range" method.
• "Sigmas" — The limits on the output data value axis are set to the specified

numbers of standard deviations below and above the mean of the input data.
For instance, if the supplied value is "sig,1.5,3.0", then the data value axis
extends from the mean of the input data minus 1.5 standard deviations to the
mean plus 3 standard deviations. If only one value is supplied, the second value
defaults to the supplied value. If no values are supplied, both default to "3.0".

The limits adopted for the data value axis are reported unless Parameter RANGE
is specified on the command line. In this case values are only calculated where
necessary for the chosen method.
The method name can be abbreviated to a single character, and is case insensitive.
The initial default value is "Range". The suggested defaults are the current values, or
! if these do not exist. [current value]

SIGMA = _REAL (Read)
The standard deviation to use if Parameter MODE is set to "Sigma". If a null (!) value
is supplied, the standard deviations implied by the VARIANCE component in the
input image are used (an error will be reported if the input image does not have a
VARIANCE component). If a SIGMA value is supplied, the same value is used to
scale all output pixels. [!]

Examples:
carpet m31 m31-cube mode=sigma

Asssuming the two-dimensional NDF in file m31.sdf contains a VARIANCE component,
this will create a three-dimensional NDF called m31-cube in which the third pixel axis
corresponds to data value in NDF m31, and each output pixel value is the number of
standard deviations of the pixel away from the corresponding input data value. If you
then use GAIA to view the cube, an iso-surface at value zero will be a carpet plot of the
data values in m31, an iso-surface at value -1.0 will be a carpet plot showing data values
one standard deviation below the m31 data values, and an iso-surface at value +1.0 will

207 CARPET SUN/95.45 —Specifications of KAPPA applications

be a carpet plot showing data values one sigma above the m31 data values. This can help
to visualise the errors in an image.

Implementation Status:

• Any VARIANCE and QUALITY components in the input image are not propagated
to the output cube.

SUN/95.45 —Specifications of KAPPA applications 208 CDIV

CDIV
Divides an NDF by a scalar

Description:
This application divides each pixel of an NDF by a scalar (constant) value to produce a
new NDF.

Usage:
cdiv in scalar out

Parameters:
IN = NDF (Read)

Input NDF structure whose pixels are to be divided by a scalar.
OUT = NDF (Write)

Output NDF structure.
SCALAR = _DOUBLE (Read)

The value by which the NDF’s pixels are to be divided.
TITLE = LITERAL (Read)

A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
cdiv a 100.0 b

Divides all the pixels in the NDF called a by the constant value 100.0 to produce
a new NDF called b.

cdiv in=data1 out=data2 scalar=-38

Divides all the pixels in the NDF called data1 by −38 to give data2.

Related Applications :

KAPPA: ADD, CADD, CMULT, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.
• Processing of bad pixels and automatic quality masking are supported.
• All non-complex numeric data types can be handled. Arithmetic is carried out

using the appropriate floating-point type, but the numeric type of the input pixels is
preserved in the output NDF.
• Huge NDFs are supported.

209 CENTROID SUN/95.45 —Specifications of KAPPA applications

CENTROID
Finds the centroids of star-like features in an NDF

Description:
This routine takes an NDF and returns the co-ordinates of the centroids of features in
its data array given approximate initial co-ordinates. A feature is a set of connected
pixels which are above or below the surrounding background region. For example, a
feature could be a star or galaxy on the sky, although the applications is not restricted to
two-dimensional NDFs.

Four methods are available for obtaining the initial positions, selected using Parameter
MODE:

• from the parameter system (see Parameter INIT);

• Using a graphics cursor to indicate the feature in a previously displayed data array
(see Parameter DEVICE);

• from a specified positions list (see Parameter INCAT); or

• from a simple text file containing a list of co-ordinates (see Parameter COIN).

In the first two modes the application loops, asking for new feature co-ordinates until it is
told to quit or encounters an error.

The results may optionally be written to an output positions list which can be used to pass
the positions on to another application (see Parameter OUTCAT), or to a log file geared
more towards human readers, including details of the input parameters (see Parameter
LOGFILE).

The uncertainty in the centroid positions may be estimated if variance values are available
within the supplied NDF (see Parameter CERROR).

Usage:

centroid ndf [mode]

init

coin=?

incat=?

[search] [maxiter] [maxshift] [toler]

mode

Parameters:

CATFRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be stored in
the output catalogue associated with Parameter OUTCAT. The string supplied for
CATFRAME can be one of the following options.

• A domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.

SUN/95.45 —Specifications of KAPPA applications 210 CENTROID

• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see
SUN/163).

If a null (!) value is supplied, the positions will be stored in the current Frame. [!]

CATEPOCH = _DOUBLE (Read)
The epoch at which the sky positions stored in the output catalogue were determined.
It will only be accessed if an epoch value is needed to qualify the co-ordinate Frame
specified by COLFRAME. If required, it should be given as a decimal years value,
with or without decimal places ("1996.8" for example). Such values are interpreted
as a Besselian epoch if less than 1984.0 and as a Julian epoch otherwise.

CERROR = _LOGICAL (Read)
If TRUE, errors in the centroided position will be calculated. The input NDF must
contain a VARIANCE component in order to compute errors. [FALSE]

COIN = FILENAME (Read)
Name of a text file containing the initial guesses at the co-ordinates of features to
be centroided. Only accessed if Parameter MODE is given the value "File". Each
line should contain the formatted axis values for a single position, in the current
Frame of the NDF. Axis values can be separated by spaces, tabs or commas. The file
may contain comment lines with the first character # or !.

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which the centroided
positions will be reported is displayed before the positions themselves. [current
value]

DEVICE = DEVICE (Read)
The graphics device which is to be used to give the initial guesses at the centroid
positions. Only accessed if Parameter MODE is given the value "Cursor". [Current
graphics device]

GUESS = _LOGICAL (Read)
If TRUE, then the supplied guesses for the centroid positions will be included in the
screen and log file output, together with the accurate positions. [current value]

INCAT = FILENAME (Read)
A catalogue containing a positions list giving the initial guesses at the centroid
positions, such as produced by applications CURSOR, LISTMAKE. Only accessed if
Parameter MODE is given the value "Catalogue".

INIT = LITERAL (Read)
An initial guess at the co-ordinates of the next feature to be centroided, in the current
co-ordinate Frame of the NDF (supplying a colon ":" will display details of the
current co-ordinate Frame). The position should be supplied as a list of formatted
axis values separated by spaces or commas. INIT is only accessed if parameter
MODE is given the value "Interface". If the initial co-ordinates are supplied on the
command line only one centroid will be found; otherwise the application will ask for
further guesses, which may be terminated by supplying the null value (!).

LOGFILE = FILENAME (Read)
Name of the text file to log the results. If null, there will be no logging. Note this is
intended for the human reader and is not intended for passing to other applications.
[!]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

211 CENTROID SUN/95.45 —Specifications of KAPPA applications

MARK = LITERAL (Read)
Only accessed if Parameter MODE is given the value "Cursor". It indicates which
positions are to be marked on the screen using the marker type given by Parameter
MARKER. It can take any of the following values.

• "Initial": The position of the cursor when the mouse button is pressed is
marked.
• "Centroid": The corresponding centroid position is marked.
• "None": No positions are marked.

[current value]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter MARK is set TRUE. It specifies the type
of marker with which each cursor position should be marked, and should be given
as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2 gives a
cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or equal to
−31. [current value]

MAXITER = _INTEGER (Read)
Maximum number of iterations to be used in the search. It must be in the range 1–9.
The dynamic default is 3. [9]

MAXSHIFT() = _REAL (Read)
Maximum shift in each dimension allowed between the guess and output positions
in pixels. Each must lie in the range 0.0–26.0. If only a single value is given, then it
will be duplicated to all dimensions. The dynamic default is half of SEARCH + 1.
[9.0]

MODE = LITERAL (Read)
The mode in which the initial co-ordinates are to be obtained. The supplied string
can be one of the following values.

• "Interface" — positions are obtained using Parameter INIT.
• "Cursor" — positions are obtained using the graphics cursor of the device speci-

fied by Parameter DEVICE.
• "Catalogue" — positions are obtained from a positions list using Parameter

INCAT.
• "File" — positions are obtained from a text file using Parameter COIN.

[current value]

NDF = NDF (Read)
The NDF structure containing the data array to be analysed. In cursor mode (see
Parameter MODE), the run-time default is the displayed data, as recorded in the
graphics database. In other modes, there is no run-time default and the user must
supply a value. []

NSIM = _INTEGER (Read)
The number of simulations or realisations using the variance information in order
to estimate the error in the centroid position. The uncertainty in the centroid error
decreases as one over the square root of NSIM. The range of acceptable values is
3–10000. [100]

SUN/95.45 —Specifications of KAPPA applications 212 CENTROID

OUTCAT = FILENAME (Write)
The output catalogue in which to store the centroided positions. If a null value (!) is
supplied, no output catalogue is produced. See also Parameter CATFRAME. [!]

PLOTSTYLE = GROUP (Read)
A group of attribute settings describing the style to use when drawing the graphics
markers specified by Parameter MARK.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

POSITIVE = _LOGICAL (Read)
TRUE, if array features are positive above the background. [TRUE]

SEARCH() = _INTEGER (Read)
Size in pixels of the search box to be used. If only a single value is given, then it
will be duplicated to all dimensions so that a square, cube or hypercube region is
searched. Each value must be odd and lie in the range 3–51. [9]

TITLE = LITERAL (Read)
A title to store with the output catalogue specified by Parameter OUTCAT, and to
display before the centroid positions are listed. If a null (!) value is supplied, the title
is taken from any input catalogue specified by Parameter INCAT, or is a fixed string
including the name of the NDF. [!]

TOLER = _REAL (Read)
Accuracy in pixels required in centroiding. Iterations will stop when the shift between
successive centroid positions is less than the accuracy. The accuracy must lie in the
range 0.0–2.0. [0.05]

Results Parameters:

CENTRE = LITERAL (Write)
The formatted co-ordinates of the last centroid position, in the current Frame of the NDF.

ERROR = LITERAL (Write)
The errors associated with the position written to Parameter CENTRE.

213 CENTROID SUN/95.45 —Specifications of KAPPA applications

XCEN = LITERAL (Write)
The formatted x co-ordinate of the last centroid position, in the current co-ordinate Frame
of the NDF.

XERR = LITERAL (Write)
The error associated with the value written to Parameter XCEN.

YCEN = LITERAL (Write)
The formatted y co-ordinate of the last centroid position, in the current co-ordinate Frame
of the NDF.

YERR = LITERAL (Write)
The error associated with the value written to Parameter YCEN.

Examples:
centroid cluster cu

This finds the centroids in the NDF called cluster via the graphics cursor on the
current graphics device.

centroid cluster cu search=21 mark=ce plotstyle=’colour=red’

This finds the centroids in the NDF called cluster via the graphics cursor on the
current graphics device. The search box for the centroid is 21 pixels in each dimension.
The centroid positions are marked using a red symbol.

centroid cluster i "21.7,5007.1"

This finds the centroid of the object in the two-dimensional NDF called cluster
around the current Frame co-ordinate (21.7,5007.1).

centroid arp244(6„) i "40,30" toler=0.01

This finds the two-dimensional centroid of the feature near pixel (6,40,30) in the
three-dimensional NDF called arp244 (assuming the current co-ordinate Frame of the
NDF is PIXEL). The centroid must be found to 0.01 pixels.

centroid cluster cu xcen=(xp) ycen=(yp)

This finds the centroid of an object in the two-dimensional NDF called cluster
using a graphics cursor, and writes the centroid co-ordinates to ICL variables XP and YP
for use in other applications.

centroid cluster mode=file coin=objects.dat logfile=centroids.log

This finds the centroids in the NDF called cluster. The initial positions are given
in the text file objects.dat in the current co-ordinate Frame. A log of the input parameter
values, initial and centroid positions is written to the text file centroids.log.

SUN/95.45 —Specifications of KAPPA applications 214 CENTROID

centroid cluster mode=cat incat=a outcat=b catframe=ecl

This example reads the initial guess positions from the positions list in file a.FIT,
and writes the accurate centroid positions to positions list file b.FIT, storing the output
positions in ecliptic co-ordinates. The input file may, for instance, have been created using
the application CURSOR.

Notes:

• All positions are supplied and reported in the current co-ordinate Frame of the NDF.
A description of the co-ordinate Frame being used is given if Parameter DESCRIBE
is set to a TRUE value. Application WCSFRAME can be used to change the current
co-ordinate Frame of the NDF before running this application if required.
• In Cursor or Interface mode, only the first 200 supplied positions will be stored in

the output catalogue. Any further positions will be displayed on the screen but not
stored in the output catalogue.
• The centroid positions are not displayed on the screen when the message filter

environment variable MSG_FILTER is set to QUIET. The creation of output parameters
and files is unaffected by MSG_FILTER.

Estimation of Centroid Positions :

Each centroid position is obtained by projecting the data values within a search box centred
on the supplied position, on to each axis in turn. This forms a set of profiles for the feature,
one for each axis. An estimate of the background at each point in these profiles is made and
subtracted from the profile. This flattens the profile backgrounds, removing any slope in
the data. Once the profiles have been flattened in this way, and estimate of the background
noise in each is made. The centroid of the feature is then found using only the data above
the noise level.

Successive estimates of the centroid position are made by using the previous estimate of
the centroid as the initial position for another estimation. This loop is repeated up to a
maximum number of iterations, though it normally terminates when a desired accuracy
has been achieved.

The achieved accuracy is affected by noise, and the presence of non-Gaussian or over-
lapping features, but typically an accuracy better than 0.1 pixel is readily attainable for
stars. The error in the centroid position may be estimated by a Monte-Carlo method using
the data variance to generate realisations of the data about the feature (see Parameter
CERROR). Each realisation is processed identically to the actual data, and statistics are
formed to derive the standard deviations.

Related Applications :

KAPPA: PSF, CURSOR, LISTSHOW, LISTMAKE.

Implementation Status:

• The processing of bad pixels and all non-complex numeric data types is supported.

215 CHAIN SUN/95.45 —Specifications of KAPPA applications

CHAIN
Concatenates a series of vectorized NDFs

Description:
This application concatenates a series of NDFs in the order supplied and treated as vectors,
to form a one-dimensional output NDF. The dimensions of the NDFs may be different,
and indeed so may their dimensionalities.

Usage:
chain in c1 [c2] [c3] ... [c25] out=?

Parameters:

IN = NDF (Read)
The base NDF after which the other input NDFs will be concatenated.

OUT = NDF (Write)
The one-dimensional NDF resulting from concatenating the input NDFs.

C1-C25 = NDF (Read)
The NDFs to be concatenated to the base NDF. The NDFs are joined in the order C1,
C2, . . . C25. There can be no missing NDFs, e.g. in order for C3 to be processed there
must be a C2 given as well. A null value (!) indicates that there is no NDF. NDFs C2
to C25 are defaulted to !. At least one NDF must be pasted, therefore C1 may not be
null.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the base
NDF to the output NDF. [!]

Examples:
chain obs1 obs2 out=stream

This concatenates the NDF called obs2 on to the arrays in the NDF called obs1
to produce the one-dimensional NDF stream.

chain c1=obs2 c2=obs1 in=obs3 out=stream

This concatenates the NDF called obs2 on to the arrays in the NDF called obs3,
and then concatenates the arrays from obs1 to them to produce the one-dimensional NDF
stream.

Related Applications :

KAPPA: PASTE, RESHAPE.

Implementation Status:

SUN/95.45 —Specifications of KAPPA applications 216 CHAIN

• This routine correctly processes the DATA, QUALITY, VARIANCE, LABEL, TITLE,
UNITS, and HISTORY, components of an NDF data structure and propagates all
extensions. Propagation is from the base NDF. WCS, and AXIS information is lost.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

217 CHANMAP SUN/95.45 —Specifications of KAPPA applications

CHANMAP
Creates a channel map from a cube NDF by compressing slices along

a nominated axis

Description:
This application creates a two-dimensional channel-map image from a three-dimensional
NDF. It collapses along a nominated pixel axis in a series of slices. The collapsed slices
are tiled with no margins to form the output image. This grid of channel maps is filled
from left to right, and bottom to top. A specified range of axis values can be used instead
of the whole axis (see Parameters LOW and HIGH). The number of channels and their
arrangement into an image is controlled through Parameters NCHAN and SHAPE.

For each output pixel, all corresponding input pixel values between the channel bounds
of the nominated axis to be collapsed are combined together using one of a selection of
estimators, including a mean, mode, or median, to produce the output pixel value.

Usage:
chanmap in out axis nchan shape [low] [high] [estimator] [wlim]

Parameters:
AXIS = LITERAL (Read)

The axis along which to collapse the NDF. This can be specified using one of the
following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to
the number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If the axes of
the current Frame are not parallel to the NDF pixel axes, then the pixel axis which is
most nearly parallel to the specified current Frame axis will be used.

CLIP = _REAL (Read)
The number of standard deviations about the mean at which to clip outliers for the
"Mode", "Cmean" and "Csigma" statistics (see Parameter ESTIMATOR). The applica-
tion first computes statistics using all the available pixels. It then rejects all those
pixels whose values lie beyond CLIP standard deviations from the mean and will
then re-evaluate the statistics. For "Cmean" and "Csigma" there is currently only one
iteration, but up to seven for "Mode".
The value must be positive. [3.0]

ESTIMATOR = LITERAL (Read)
The method to use for estimating the output pixel values. It can be one of the
following options.

SUN/95.45 —Specifications of KAPPA applications 218 CHANMAP

• "Mean" — Mean value
• "WMean" — Weighted mean in which each data value is weighted by the reciprocal

of the associated variance. (2)
• "Mode" — Modal value (4)
• "Median" — Median value. Note that this is extremely memory and CPU in-

tensive for large datasets; use with care! If strange things happen, use "Mean".
(3)
• "Absdev" — Mean absolute deviation from the unweighted mean. (2)
• "Cmean" — Sigma-clipped mean. (4)
• "Csigma" — Sigma-clipped standard deviation. (4)
• "Comax" — Co-ordinate of the maximum value.
• "Comin" — Co-ordinate of the minimum value.
• "FBad" — Fraction of bad pixel values.
• "FGood" — Fraction of good pixel values.
• "Integ" — Integrated value, being the sum of the products of the value and

pixel width in world co-ordinates. Note that for sky co-ordinates the width is
measured in radians.
• "Iwc" — Intensity-weighted co-ordinate, being the sum of each value times its

co-ordinate, all divided by the integrated value (see the "Integ" option).
• "Iwd" — Intensity-weighted dispersion of the co-ordinate, normalised like "Iwc"

by the integrated value. (4)
• "Max" — Maximum value.
• "Min" — Minimum value.
• "NBad" — Count of bad pixel values.
• "NGood" — Count of good pixel values.
• "Rms" — Root-mean-square value. (4)
• "Sigma" — Standard deviation about the unweighted mean. (4)
• "Sum" — The total value.

The selection is restricted if each channel contains three or fewer pixels. For instance,
measures of dispersion like "Sigma" and "Iwd" are meaningless for single-pixel
channels. The minimum number of pixels per channel for each estimator is given in
parentheses in the list above. Where there is no number, there is no restriction. If you
supply an unavailable option, you will be informed, and presented with the available
options. ["Mean"]

HIGH = LITERAL (Read)
Together with Parameter LOW, this parameter defines the range of values for the
axis specified by Parameter AXIS to be divided into channels. For example, if AXIS
is 3 and the current Frame of the input NDF has axes RA/DEC/Wavelength, then
a wavelength value should be supplied. If, on the other hand, the current Frame in
the NDF was the PIXEL Frame, then a pixel co-ordinate value would be required for
the third axis (note, the pixel with index I covers a range of pixel co-ordinates from
(I − 1) to I).
Note, HIGH and LOW should not be equal. If a null value (!) is supplied for either
HIGH or LOW, the entire range of the axis fragmented into channels. [!]

219 CHANMAP SUN/95.45 —Specifications of KAPPA applications

IN = NDF (Read)
The input NDF. This must have three dimensions.

LOW = LITERAL (Read)
Together with Parameter HIGH this parameter defines the range of values for the
axis specified by Parameter AXIS to be divided into channels. For example, if AXIS
is 3 and the current Frame of the input NDF has axes RA/DEC/Frequency, then a
frequency value should be supplied. If, on the other hand, the current Frame in the
NDF was the PIXEL Frame, then a pixel co-ordinate value would be required for the
third axis (note, the pixel with index I covers a range of pixel co-ordinates from (I− 1)
to I).
Note, HIGH and LOW should not be equal. If a null value (!) is supplied for either
HIGH or LOW, the entire range of the axis fragmented into channels. [!]

NCHAN = _INTEGER (Read)
The number of channels to appear in the channel map. It must be a positive integer
up to the lesser of 100 or the number of pixels along the collapsed axis.

OUT = NDF (Write)
The output NDF.

SHAPE = _INTEGER (Read)
The number of channels along the x axis of the output NDF. The number along the
y axis will be (NCHAN-1)/SHAPE. A null value (!) asks the application to select
a shape. It will generate one that gives the most square output NDF possible. The
value must be positive and no more than the value of Parameter NCHAN.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the input NDF has more
than three axes. A group of three strings should be supplied specifying the three axes
which are to be retained in a collapsed slab.
Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the three used pixel axes within
the NDF are used. [!]

WLIM = _REAL (Read)
If the input NDF contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the range of collapsed input
pixels before a valid output pixel is generated. It can be used, for example, to prevent

SUN/95.45 —Specifications of KAPPA applications 220 CHANMAP

output pixels from being generated in regions where there are relatively few good
pixels to contribute to the collapsed result.
WLIM specifies the minimum fraction of good pixels which must be present in order
to generate a good output pixel. If this specified minimum fraction of good input
pixels is not present, then a bad output pixel will result, otherwise a good output
value will be calculated. The value of this parameter should lie between 0.0 and 1.0
(the actual number used will be rounded up if necessary to correspond to at least one
pixel). [0.3]

221 CHANMAP SUN/95.45 —Specifications of KAPPA applications

Examples:
chanmap cube chan4 lambda 4 2 4500 4550

The current Frame in the input three-dimensional NDF called cube has axes with labels
"RA", "DEC" and "Lambda", with the lambda axis being parallel to the third pixel axis. The
above command extracts four slabs of the input cube between wavelengths 4500 and
4550 Ångstroms, and collapses each slab, into a single two-dimensional array with RA
and DEC axes forming a channel image. Each channel image is pasted into a 2×2 grid
within the output NDF called chan4. Each pixel in the output NDF is the mean of the
corresponding input pixels with wavelengths in 12.5-Ångstrom bins.

chanmap in=cube out=chan4 axis=3 low=4500 high=4550 nchan=4 shape=2

The same as above except the axis to collapse along is specified by index (3)
rather than label (lambda), and it uses keywords rather than positional parameters.

chanmap cube chan4 3 4 2 9.0 45.0

This is the same as the above examples, except that the current Frame in the in-
put NDF has been set to the PIXEL Frame (using WCSFRAME), and so the high and low
axis values are specified in pixel co-ordinates instead of Ångstroms, and each channel
covers nine pixels. Note the difference between floating-point pixel co-ordinates, and
integer pixel indices (for instance the pixel with index 10 extends from pixel co-ordinate
9.0 to pixel co-ordinate 10.0).

chanmap in=zcube out=vel7 axis=1 low=-30 high=40 nchan=7 shape=!
estimator=max

This command assumes that the zcube NDF has a current co-ordinate system
where the first axis is radial velocity (perhaps selected using WCSFRAME and WCSAT-
TRIB), and the second and third axes are "RA", and "DEC". It extracts seven velocity slabs
of the input cube between −30 and +40 km/s, and collapses each slab, into a single
two-dimensional array with RA and DEC axes forming a channel image. Each channel
image is pasted into a default grid (likely 4×2) within the output NDF called vel7. Each
pixel in the output NDF is the maximum of the corresponding input pixels with velocities
in 10-km/s bins.

Notes:

• The collapse is always performed along one of the pixel axes, even if the current
Frame in the input NDF is not the PIXEL Frame. Special care should be taken if the
current-Frame axes are not parallel to the pixel axes. The algorithm used to choose
the pixel axis and the range of values to collapse along this pixel axis proceeds as
follows.
The current-Frame co-ordinates of the central pixel in the input NDF are determined
(or some other point if the co-ordinates of the central pixel are undefined). Two
current-Frame positions are then generated by substituting in turn into this central

SUN/95.45 —Specifications of KAPPA applications 222 CHANMAP

position each of the HIGH and LOW values for the current-Frame axis specified
by Parameter AXIS. These two current-Frame positions are transformed into pixel
co-ordinates, and the projections of the vector joining these two pixel positions on to
the pixel axes are found. The pixel axis with the largest projection is selected as the
collapse axis, and the two end points of the projection define the range of axis values
to collapse.

• The WCS of the output NDF retains the three-dimensional co-ordinate system of
the input cube for every tile, except that each tile has a single representative mean
co-ordinate for the collapsed axis.

• The slices may have slightly different pixel depths depending where the boundaries
of the channels lie in pixel co-ordinates. Excise care interpreting estimators like "Sum"
or ensure equal numbers of pixels in each channel.

Related Applications :

KAPPA: COLLAPSE, CLINPLOT.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, LABEL, TITLE, UNITS, WCS,
and HISTORY components of the input NDF; and propagates all extensions. AXIS
and QUALITY are not propagated.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• The origin of the output NDF is at (1,1).

• Huge NDFs are supported.

223 CHPIX SUN/95.45 —Specifications of KAPPA applications

CHPIX
Replaces the values of selected pixels in an NDF

Description:
This application replaces selected elements of an NDF array component with specified
values.

Two methods are available for obtaining the regions and replacement values, selected
through Parameter MODE:

• from the parameter system (see Parameters SECTION and NEWVAL). The task loops
until there are no more elements to change, indicated by a null value in response to a
prompt. For non-interactive processing, supply the value of Parameter NEWVAL on
the command line.

• The second approach uses a text file, that is especially beneficial where there are
too many section and value pairs to enter manually. The file should contain two
space-separated columns; the first column is the NDF section to replace, and the
second supplies the value to insert into the section (see Parameter FILE).

Usage:
chpix in out section newval [comp]

Parameters:
COMP = LITERAL (Read)

The name of the NDF array component to be modified. The options are: "Data",
"Error", "Quality" or "Variance". "Error" is the alternative to "Variance" and
causes the square of the supplied replacement value to be stored in the output
VARIANCE array. ["Data"]

FILE = FILENAME (Read)
Name of a text file containing the sections and replacement values. It is only accessed
if Parameter MODE is given the value "File". Each line should contain an NDF
section of a region (see Parameter SECTION), then one or more spaces, followed by
the replacement value. The value is either numeric or "Bad", the latter requests that
the bad value be inserted into the section. The file may contain comment lines with
the first character # or !.

IN = NDF (Read)
NDF structure containing the array component to be modified.

MODE = LITERAL (Read)
The mode in which the sections and replacement values are to be obtained. The
supplied string can be one of the following values.

• "Interface" — sections and values are obtained via Parameters SECTION and
NEWVAL respectively.
• "File" — sections and values are obtained from a text file specified by Parameter

FILE.

SUN/95.45 —Specifications of KAPPA applications 224 CHPIX

["Interface"]

NEWVAL = LITERAL (Read)
Value to substitute in the output array element or elements. The range of allowed
values depends on the data type of the array being modified. NEWVAL="Bad"
instructs that the bad value appropriate for the array data type be substituted. Placing
NEWVAL on the command line permits only one section to be replaced. If there
are multiple replacements, a null value (!) terminates the loop. If the section being
modified contains only a single pixel, then the original value of that pixel is used as
the suggested default value.

OUT = NDF (Write)
Output NDF structure containing the modified version of the array component.

SECTION = LITERAL (Read)
The elements to change. This is defined as an NDF section, so that ranges can be
defined along any axis, and be given as pixel indices or axis (data) co-ordinates. So for
example "3,4,5" would select the pixel at (3,4,5); "3:5," would replace all elements
in Columns 3 to 5; ",4" replaces Line 4. See Section 9 for details. A null value (!)
terminates the loop during multiple replacements.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Results Parameters:

OLDVAL = LITERAL (Write)
If the section being modified contains only a single pixel, then the original value of
that pixel is written out to this output parameter.

Examples:
chpix rawspec spectrum 55 100

Assigns the value 100 to the pixel at index 55 within the one-dimensional
NDF called rawspec, creating the output NDF called spectrum.

chpix rawspec spectrum 10:19 0 error

Assigns the value 0 to the error values at indices 10 to 19 within the one-
dimensional NDF called rawspec, creating the output NDF called spectrum. The
rawspec dataset must have a variance compoenent.

chpix in=rawimage out=galaxy section="∼20,100:109" newval=bad

Assigns the bad value to the pixels in the section ∼20,100:109 within the
two-dimensional NDF called rawimage, creating the output NDF called galaxy. This
section is the central 20 pixels along the first axis, and pixels 110 to 199 along the
second.

chpix in=zzcha out=zzcha_c section="45,21," newval=-1

225 CHPIX SUN/95.45 —Specifications of KAPPA applications

Assigns value −1 to the pixels at index (45, 21) within all planes of the
three-dimensional NDF called zzcha, creating the output NDF called zzcha_c.

chpix harpcube harpmasked mode=file file=badbaseline.txt

T his reads the text file called badbaseline.txt to obtain the editing commands to
be applied to the NDF called harpcube to form the NDF harpmasked.

Related Applications :

KAPPA: ARDMASK, FILLBAD, GLITCH, NOMAGIC, REGIONMASK, SEGMENT, SET-
MAGIC, SUBSTITUTE, ZAPLIN; FIGARO: CSET, ICSET, NCSET, TIPPEX.

Implementation Status:

• The routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF; and propagates all
extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_NCSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

SUN/95.45 —Specifications of KAPPA applications 226 CLINPLOT

CLINPLOT
Draws a spatial grid of line plots for an axis of a cube NDF

Description:
This application displays a three-dimensional NDF as a series of line plots of array value
against position, arranged on a uniform spatial grid and plotted on the current graphics
device. The vertical axis of each line plot represents array value, and the horizontal axis
represents position along a chosen axis (see Parameter USEAXIS). All the line plots have
the same axis limits.

This application will typically be used to display a grid of spectra taken from a cube
in which the current WCS Frame includes one spectral axis (e.g. frequency) and two
spatial axes (e.g. RA and Dec). For this reason the following documentation refers to the
‘spectral axis’ and the ‘spatial axes’. However, cubes containing other types of axes can
also be displayed, and references to ‘spectral’ and ‘spatial’ axes should be interpreted
appropriately.

A rectangular grid of NX by NY points (see Parameters NX and NY) is defined over the
spatial extent of the cube, and a spectrum is drawn at each such point. If NX and NY
equal the spatial dimensions of the cube (which is the default for spatial axes of fewer
than 31 pixels), then one spectrum is drawn for every spatial pixel in the cube. For speed,
the spectrum will be binned up so that the number of elements in the spectrum does not
exceed the horizontal number of device pixels available for the line plot.

Annotated axes for the spatial co-ordinates may be drawn around the grid of line plots (see
Parameter AXES). The appearance of these and the space they occupy may be controlled
in detail (see Parameters STYLE and MARGIN).

The plot may take several different forms such as a "join-the-dots" plot, a "staircase"
plot, a "chain" plot (see Parameter MODE). The plotting style (colour, founts, text size,
etc.) may be specified in detail using Parameter SPECSTYLE.

The data value at the top and bottom of each line plot can be specified using Parameters
YBOT and YTOP. The defaults can be selected in several ways including percentiles (see
Parameter LMODE).

The current picture is usually cleared before plotting the new picture, but Parameter
CLEAR can be used to prevent this, allowing the plot (say) to be drawn over the top of a
previously displayed grey-scale image.

The range and nature of the vertical and horizontal axes in each line plot can be displayed
in a key to the right of the main plot (see Parameter KEY). Also, an option exists to add
numerical labels to the first (i.e. bottom-left) line plot, see Parameter REFLABEL. However,
due to the nature of the plot, the text used may often be too small to read.

Usage:
clinplot ndf [useaxis] [device] [nx] [ny]

Parameters:

227 CLINPLOT SUN/95.45 —Specifications of KAPPA applications

ALIGN = _LOGICAL (Read)
Controls whether or not the spectra should be aligned spatially with an existing data
plot. If ALIGN is TRUE, each spectrum will be drawn in a rectangular cell that is
centred on the corresponding point on the sky. This may potentially cause the spectra
to overlap, depending on their spatial separation. If ALIGN is FALSE, then the spectra
are drawn in a regular grid of equal-sized cells that cover the entire picture. This may
cause them to be drawn at spatial positions that do not correspond to their actual
spatial positions within the supplied cube. The dynamic default is TRUE if Parameter
CLEAR is TRUE and there is an existing DATA picture on the graphics device. []

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes describing the spatial are to be drawn around
the outer edges of the plot. The appearance of the axes can be controlled using the
STYLE parameter. The dynamic default is to draw axes only if the CLEAR parameter
indicates that the graphics device is not being cleared. []

BLANKEDGE = _LOGICAL (Read)
If TRUE then no tick marks or labels are placed on the edges of line plots that touch the
outer spatial axes (other edges that do not touch the outer axes will still be annotated).
This can avoid existing tick marks being over-written when drawing a grid of spectra
over the top of a picture that includes annotated axes. The dynamic default is TRUE if
and only if the graphics device is not being cleared (i.e. Parameter CLEAR is FALSE)
and no spatial axes are being drawn (i.e. Parameter AXES is FALSE). []

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If FALSE, then the
display is left uncleared and an attempt is made to align the spatial axes of the new
plot with any spatial axes of the existing plot. Thus, for instance, a while light image
may be displayed using DISPLAY, and then spectra drawn over the top of the image
using this application. [TRUE]

COMP = LITERAL (Read)
The NDF array component to be displayed. It may be "Data", "Quality", "Variance",
or "Error" (where "Error" is an alternative to "Variance" and causes the square
root of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DEVICE = DEVICE (Read)
The name of the graphics device used to display the cube. [Current graphics device]

FILL = _LOGICAL (Read)
If FILL is set to TRUE, then the display will be ‘stretched’ to fill the current picture
in both directions. This can be useful to elongate the spectra to reveal more detail
by using more of the display surface at the cost of different spatial scales, and when
the spatial axes have markedly different dimensions. The dynamic default is TRUE if
either of the spatial dimensions is one. and FALSE otherwise. []

KEY = _LOGICAL (Read)
If TRUE, then a ‘key’ will be drawn to the right of the plot. The key will include
information about the vertical and horizontal axes of the line plots, including the
maximum and minimum value covered by the axis and the quantity represented by
the axis. The appearance of this key can be controlled using Parameter KEYSTYLE,
and its position can be controlled using Parameter KEYPOS. [TRUE]

SUN/95.45 —Specifications of KAPPA applications 228 CLINPLOT

KEYPOS() = _REAL (Read)
Two values giving the position of the key. The first value gives the gap between the
right-hand edge of the grid plot and the left-hand edge of the key (0.0 for no gap, 1.0
for the largest gap). The second value gives the vertical position of the top of the key
(1.0 for the highest position, 0.0 for the lowest). If the second value is not given, the
top of the key is placed level with the top of the grid plot. Both values should be in
the range 0.0 to 1.0. If a key is produced, then the right-hand margin specified by
Parameter MARGIN is ignored. [current value]

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the text in the key can be changed by setting new values for the
attributes Colour(Strings), Font(Strings) etc. [current value]

LMODE = LITERAL (Read)
LMODE specifies how the defaults for Parameters YBOT and YTOP (the lower and
upper limit of the vertical axis of each line plot) should be found. The supplied string
should consist of up to three sub-strings, separated by commas. The first sub-string
must specify the method to use. If supplied, the other two sub-strings should be
numerical values as described below (default values will be used if these sub-strings
are not provided). The following methods are available.

• "Range" — The minimum and maximum data values in the supplied cube are
used as the defaults for YBOT and YTOP. No other sub-strings are needed by this
option.
• "Extended" — The minimum and maximum data values in the cube are extended

by percentages of the data range, specified by the second and third sub-strings.
For instance, if the value "Ex,10,5" is supplied, then the default for YBOT is set
to the minimum data value minus 10% of the data range, and the default for
YTOP is set to the maximum data value plus 5% of the data range. If only one

229 CLINPLOT SUN/95.45 —Specifications of KAPPA applications

value is supplied, the second value defaults to the supplied value. If no values
are supplied, both values default to "2.5".
• "Percentile" — The default values for YBOT and YTOP are set to the specified

percentiles of the data in the supplied cube. For instance, if the value "Per,10,99"
is supplied, then the default for YBOT is set so that the lowest 10% of the plotted
points are off the bottom of the plot, and the default for YTOP is set so that
the highest 1% of the points are off the top of the plot. If only one value, p1, is
supplied, the second value, p2, defaults to (100− p1). If no values are supplied,
the values default to "5,95".
• "Sigma" — The default values for YBOT and YTOP are set to the specified

numbers of standard deviations below and above the mean of the data. For
instance, if the value "sig,1.5,3.0" is supplied, then the default for YBOT is
set to the mean of the data minus 1.5 standard deviations, and the default for
YTOP is set to the mean plus 3 standard deviations. If only one value is supplied,
the second value defaults to the supplied value. If no values are provided both
default to "3.0".

The method name can be abbreviated to a single character, and is case insensitive.
The initial value is "Range". [current value]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the outer spatial axes for axis annotations,
given as fractions of the corresponding dimension of the current picture. The actual
margins used may be increased to preserve the aspect ratio of the data. Four values
may be given, in the order: bottom, right, top, left. If fewer than four values are
given, extra values are used equal to the first supplied value. If these margins are too
narrow any axis annotation may be clipped. If a null (!) value is supplied, the value
used is (for all edges); 0.15 if annotated axes are being produced; and 0.0 otherwise.
The initial default is null. [current value]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter MODE is set to "Chain" or "Mark". It
specifies the symbol with which each position should be marked, and should be
given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2
gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or
equal to −31. [current value]

MODE = LITERAL (Read)
Specifies the way in which data values are represented. MODE can take the following
values.

• "Histogram" — An histogram of the points is plotted in the style of a ‘staircase’
(with vertical lines only joining the y-axis values and not extending to the base of
the plot). The vertical lines are placed midway between adjacent x-axis positions.
Bad values are flanked by vertical lines to the lower edge of the plot.
• "GapHistogram" — The same as the "Histogram" option except bad values are

not flanked by vertical lines to the lower edge of the plot, leaving a gap.
• "Line" — The points are joined by straight lines.
• "Point" — A dot is plotted at each point.
• "Mark" — Each point is marker with a symbol specified by Parameter MARKER.

SUN/95.45 —Specifications of KAPPA applications 230 CLINPLOT

• "Chain" — A combination of "Line" and "Mark".

The initial default is "Line". [current value]

NDF = NDF (Read)
The input NDF structure containing the data to be displayed. It should have three
significant axes, i.e. whose dimensions are greater than 1.

NX = _INTEGER (Read)
The number of spectra to draw in each row. The spectra will be equally spaced over
the bounds of the x pixel axis. The dynamic default is the number of pixels along the
x axis of the NDF, so long as this value is no more than 30. If the x axis spans more
than 30 pixels, then the dynamic default is 30 (meaning that some spatial pixels will
be ignored). []

NY = _INTEGER (Read)
The number of spectra to draw in each column. The spectra will be equally spaced
over the bounds of the y pixel axis. The dynamic default is the number of pixels along
the y axis of the NDF, so long as this value is no more than 30. If the y axis spans
more than 30 pixels, then the dynamic default is 30 (meaning that some spatial pixels
will be ignored). []

REFLABEL = _LOGICAL (Read)
If TRUE then the first line plot (i.e. the lower-left spectrum) will be annotated with
numerical and textual labels describing the two axes. Note, due to the small size of
the line plot, such text may be too small to read on some graphics devices. [current
value]

SPECAXES = _LOGICAL (Read)
TRUE if axes are to be drawn around each spectrum. The appearance of the axes can
be controlled using the SPECSTYLE parameter. [TRUE]

SPECSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
axes and data values in the spectrum line plots.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).

231 CLINPLOT SUN/95.45 —Specifications of KAPPA applications

By default the axes have interior tick marks, and are without labels and a title to
avoid overprinting on adjacent plots.
The appearance of the data values is controlled by the attributes Colour(Curves),
Width(Curves), etc. (the synonym Lines may be used in place of Curves). [current
value]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the annotated
outer spatial axes (see Parameter AXES).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

USEAXIS = LITERAL (Read)
The WCS axis that will appear along the horizontal axis of each line plot (the other
two axes will be used as the spatial axes). The axis can be specified using one of the
following options.

• Its integer index within the current Frame of the NDF (in the range 1 to 3 in the
current frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. The dynamic
default is the index of any spectral axis found in the current Frame of the NDF. []

YBOT = _REAL (Read)
The data value for the bottom edge of each line plot. The dynamic default is chosen
in a manner determined by Parameter LMODE. []

YTOP = _REAL (Read)
The data value for the top edge of each line plot. The dynamic default is chosen in a
manner determined by Parameter LMODE. []

SUN/95.45 —Specifications of KAPPA applications 232 CLINPLOT

Examples:
clinplot cube useaxis=3

Plots a set of line plots of data values versus position along the third axis for
the three-dimensional NDF called cube on the current graphics device. Axes are drawn
around the grid of plots indicating the spatial positions in the current co-ordinate Frame.
The third axis may not be spectral and the other two axes need not be spatial.

clinplot cube margin=0.1

As above, but if a search locates a spectral axis in the world co-ordinate system,
this is plotted along the horizontal of the line plots, and the other axes are deemed to be
spatial. Also the margin for the spatial axes is reduced to 0.1 to allow more room for the
grid of line plots.

clinplot map(∼5,∼5,) useaxis=3 noaxes

Plots data values versus position for the central 5-by-5 pixel region of the three-
dimensional NDF called map on the current graphics device. No spatial axes are
drawn.

clinplot map(∼5,∼5,) useaxis=3 noaxes device=ps_l mode=hist

As the previous example but now the output goes to a text file (pgplot.ps) which can be
printed on a PostScript printer and the data are plotted in histogram form.

clinplot nearc v style="title=Ne Arc variance" useaxis=1 reflabel=f

Plots variance values versus position along Axis 1, for each spatial position in
dimensions two and three, for the three dimensional NDF called nearc on the current
graphics device. The plot has a title of "Ne Arc variance". No labels are drawn around
the lower-left line plot.

clinplot ndf=speccube noclear specstyle="colour(curves)=blue"

Plots data values versus pixel co-ordinate at each spatial position for the three-
dimensional NDF called speccube on the current graphics device. The plot is drawn over
any existing plot and inherits the spatial bounds of the previous plot. The data are drawn
in blue, probably to distinguish it from the previous plot drawn in a different colour.

Notes:

•
If no Title is specified via the STYLE parameter, then the TITLE component in the
NDF is used as the default title for the annotated axes. Should the NDF not have
a TITLE component, then the default title is instead taken from current co-ordinate

233 CLINPLOT SUN/95.45 —Specifications of KAPPA applications

Frame in the NDF, unless this attribute has not been set explicitly, whereupon the
name of the NDF is used as the default title.

• If all the data values at a spatial position are bad, no line plot is drawn at that location.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, data plots, and optional key;
a KEY picture to store the key if present; and a DATA picture containing just the data
plots. The world co-ordinates in the DATA picture will correspond to the offset along
a spectrum on the horizontal axis, data value on the vertical axis, and the two spatial
co-ordinates for that spectrum. On exit the current database picture for the chosen
device reverts to the input picture.

Related Applications :

KAPPA: DISPLAY, LINPLOT, MLINPLOT; FIGARO: SPECGRID; SPLAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, WCS, and UNITS components of the input NDF.

• Processing of bad pixels and automatic quality masking are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun243.htx/sun243.html?xref_

SUN/95.45 —Specifications of KAPPA applications 234 CMULT

CMULT
Multiplies an NDF by a scalar

Description:
This application multiplies each pixel of an NDF by a scalar (constant) value to produce a
new NDF.

Usage:
cmult in scalar out

Parameters:
IN = NDF (Read)

Input NDF structure whose pixels are to be multiplied by a scalar.
OUT = NDF (Write)

Output NDF structure.
SCALAR = _DOUBLE (Read)

The value by which the NDF’s pixels are to be multiplied.
TITLE = LITERAL (Read)

A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
cmult a 12.5 b

Multiplies all the pixels in the NDF called a by the constant value 12.5 to produce a new
NDF called b.

cmult in=rawdata out=newdata scalar=-19

Multiplies all the pixels in the NDF called rawdata by −19 to give newdata.

Related Applications :

KAPPA: ADD, CADD, CDIV, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.
• Processing of bad pixels and automatic quality masking are supported.
• All non-complex numeric data types can be handled. Arithmetic is carried out

using the appropriate floating-point type, but the numeric type of the input pixels is
preserved in the output NDF.
• Huge NDFs are supported.

235 COLCOMP SUN/95.45 —Specifications of KAPPA applications

COLCOMP
Produces a colour composite of up to three two-dimensional NDFs

Description:
This application combines up to three two-dimensional NDFs, using a different primary
colour (red, green or blue) to represent each NDF. The resulting colour composite image is
available in two forms; as an NDF with an associated colour table (see Parameters OUT
and LUT), and as an ASCII PPM image file (see Parameter PPM). The full pixel resolution
of the input NDFs is retained. Note, this application does not actually display the image,
it just creates various output files which must be displayed using other tools (see below).

The data values in each of the input NDFs which are to be mapped on to zero intensity and
full intensity can be given manually using Parameters RLOW, RHIGH, GLOW, GHIGH,
BLOW and BHIGH, but by default they are evaluated automatically. This is done by
finding specified percentile points within the data histograms of each of the input images
(see Parameter PERCENTILES).

The NDF outputs are intended to be displayed with KAPPA application DISPLAY, using
the command:

display <out> scale=no lut=<lut>

where “<out>” and “<lut>” are the names of the NDF image and colour table created
by this application using Parameters OUT and LUT. The main advantage of this NDF form
of output over the PPM form is that any WCS or AXIS information in the input NDFs is
still available, and can be used to create axis annotations by the DISPLAY command. The
graphics device which will be used to display the image must be specified when running
this application (see Parameter DEVICE).

The PPM form of output can be displayed using tools such as xv, or converted into other
forms (GIF or JPEG, for instance) using tools such as ppmtogif and cjpeg from the NetPbm
or PbmPlus packages. These tools provide more sophisticated colour quantisation methods
than are used by this application when creating the NDF outputs, and so may give better
visual results.

Usage:
colcomp inr ing inb out lut [device]

Parameters:

BADCOL = LITERAL (Read)
The colour with which to mark any bad (i.e. missing) pixels in the display. There are
a number of options described below.

• "MAX" — The maximum colour index used for the display of the image.
• "MIN" — The minimum colour index used for the display of the image.
• An integer — The actual colour index. It is constrained between 0 and the

maximum colour index available on the device.

SUN/95.45 —Specifications of KAPPA applications 236 COLCOMP

• A named colour — Uses the named colour from the palette, and if it is not present,
the nearest colour from the palette is selected.
• An HTML colour code such as #ff002d.

If the colour is to remain unaltered as the lookup table is manipulated choose an
integer between 0 and 15, or a named colour. Note, if only the PPM output is to
be created (see Parameter PPM), then a named colour must be given for BADCOL.
[current value]

BHIGH = _DOUBLE (Read)
The data value corresponding to full blue intensity. If a null (!) value is supplied, the
value actually used will be determined by forming a histogram of the data values
in the NDF specified by Parameter INB, and finding the data value at the second
histogram percentile specified by Parameter PERCENTILES. [!]

BLOW = _DOUBLE (Read)
The data value corresponding to zero blue intensity. If a null (!) value is supplied, the
value actually used will be determined by forming a histogram of the data values in
the NDF specified by Parameter INB, and finding the data value at the first histogram
percentile specified by Parameter PERCENTILES. [!]

DEVICE = DEVICE (Read)
The name of the graphics device which will be used to display the NDF output (see
Parameter OUT). This is needed only to determine the number of available colours.
No graphics output is created by this application. This parameter is not accessed if a
null (!) value is supplied for Parameter OUT. The device must have at least 24 colour
indices or grey-scale intensities. [current graphics device]

GHIGH = _DOUBLE (Read)
The data value corresponding to full green intensity. If a null (!) value is supplied,
the value actually used will be determined by forming a histogram of the data values
in the NDF specified by Parameter ING, and finding the data value at the second
histogram percentile specified by Parameter PERCENTILES. [!]

GLOW = _DOUBLE (Read)
The data value corresponding to zero green intensity. If a null (!) value is supplied,
the value actually used will be determined by forming a histogram of the data
values in the NDF specified by Parameter ING, and finding the data value at the first
histogram percentile specified by Parameter PERCENTILES. [!]

INB = NDF (Read)
The input NDF containing the data to be displayed in blue. A null (!) value may be
supplied in which case the blue intensity in the output will be zero at every pixel.

ING = NDF (Read)
The input NDF containing the data to be displayed in green. A null (!) value may be
supplied in which case the green intensity in the output will be zero at every pixel.

INR = NDF (Read)
The input NDF containing the data to be displayed in red. A null (!) value may be
supplied in which case the red intensity in the output will be zero at every pixel.

LUT = NDF (Write)
Name of the output NDF to contain the colour lookup table which should be used
when displaying the NDF created using Parameter OUT. This colour table can be

237 COLCOMP SUN/95.45 —Specifications of KAPPA applications

loaded using LUTREAD, or specified when the image is displayed. This parameter is
not accessed if a null (!) value is given for Parameter OUT.

RHIGH = _DOUBLE (Read)
The data value corresponding to full red intensity. If a null (!) value is supplied, the
value actually used will be determined by forming a histogram of the data values
in the NDF specified by Parameter INR, and finding the data value at the second
histogram percentile specified by Parameter PERCENTILES. [!]

RLOW = _DOUBLE (Read)
The data value corresponding to zero red intensity. If a null (!) value is supplied, the
value actually used will be determined by forming a histogram of the data values in
the NDF specified by Parameter INR, and finding the data value at the first histogram
percentile specified by Parameter PERCENTILES. [!]

OUT = NDF (Write)
The output colour composite image in NDF format. Values in this output image are
integer colour indices into the colour table created using Parameter LUT. The values
are shifted to account for the indices reserved for the palette (i.e. the first entry in
the colour table is addressed as entry 16, not entry 1). The NDF is intended to be
used as the input data in conjunction with display scale=false. If a null value (!)
is supplied, no output NDF will be created.

PERCENTILES(2) = _REAL (Read)
The percentiles that define the default scaling limits. For example, [25,75] would scale
between the quartile values. [5,95]

PPM = FILE (Write)
The name of the output text file to contain the PPM form of the colour composite
image. The colours specified in this file represent the input data values directly. They
are not quantised or dithered in any way. Also note that because this is a text file,
containing formatted data values, it is portable, but can be very large, and slow to
read and write. If a null (!) value is supplied, no PPM output is created. [!]

Examples:
colcomp m31_r m31_g m31_b m31_col m31_lut

Combines the 3 NDFs m31_r, m31_g, and m31_b to create a colour composite
image stored in NDF m31_col. A colour look up table is also created and stored in NDF
m31_lut. It is assumed that the output image will be displayed on the current graphics
device. The created colour composite image should be displayed using the command:

display m31_col scale=no lut=m31_lut

colcomp m31_r m31_g m31_b out=! ppm=m31.ppm

As above, but no NDF outputs are created. Instead, a file called m31.ppm is cre-
ated which (for instance) can be displayed using the command:

xv m31.ppm

It can be converted to a GIF (for instance, for inclusion in WWW pages) using the com-
mand:

ppmquant 256 m31.ppm | ppmtogif > m31.gif

SUN/95.45 —Specifications of KAPPA applications 238 COLCOMP

These commands assume you have xv, ppmquant and ppmtogif installed at your site.
None of them are part of KAPPA.

Notes:

• The output image (PPM or NDF) covers the area of overlap between the input NDFs
at full resolution. If the input NDFs are very large is is a good idea to compress
them first (for instance, using COMPAVE) to reduce the size of the output images.
Note, compressing the output NDF will normally produce spurious colours in the
compressed image.

• The output image is based on the values in the DATA components of the input NDFs.
Any VARIANCE and QUALITY arrays in the input NDFs are ignored.

Related Applications :

KAPPA: DISPLAY, LUTREAD; XV; PBMPLUS; NETPBM.

Implementation Status:

• The HISTORY, WCS, and AXIS components, together with any extensions are
propagated to the output NDF, from the first supplied input NDF.

• Processing of bad pixels and automatic quality masking are supported.

• Only data of type _REAL can be processed directly. Data of other types will be
converted to _REAL before being processed.

239 COLLAPSE SUN/95.45 —Specifications of KAPPA applications

COLLAPSE
Reduces the number of axes in an n-dimensional NDF by

compressing it along a nominated axis

Description:
This application collapses a nominated axis of an n-dimensional NDF , producing an
output NDF with one fewer axes than the input NDF. A specified range of axis values can
be used instead of the whole axis (see Parameters LOW and HIGH).

For each output pixel, all corresponding input pixel values between the specified bounds
of the nominated axis to be collapsed are combined together using one of a selection of
estimators, including a mean, mode, or median, to produce the output pixel value.

Possible uses include such things as collapsing a range of wavelength planes in a three-
dimensional RA/DEC/Wavelength cube to produce a single two-dimensional RA/DEC
image, or collapsing a range of slit positions in a two-dimensional slit position/wavelength
image to produce a one-dimensional wavelength array.

Usage:
collapse in out axis [low] [high] [estimator] [wlim]

Parameters:

AXIS = LITERAL (Read)
The axis along which to collapse the NDF. This can be specified using one of the
following options.

•
Its integer index within the current Frame of the input NDF (in the range 1 to
the number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If the axes of
the current Frame are not parallel to the NDF pixel axes, then the pixel axis which is
most nearly parallel to the specified current Frame axis will be used.

CLIP = _REAL (Read)
The number of standard deviations about the mean at which to clip outliers for the
"Mode", "Cmean" and "Csigma" statistics (see Parameter ESTIMATOR). The applica-
tion first computes statistics using all the available pixels. It then rejects all those
pixels whose values lie beyond CLIP standard deviations from the mean and will
then re-evaluate the statistics. For "Cmean" and "Csigma" there is currently only one
iteration, but up to seven for "Mode".
The value must be positive. [3.0]

SUN/95.45 —Specifications of KAPPA applications 240 COLLAPSE

COMP = LITERAL (Read)
The name of the NDF array component for which statistics are required: "Data",
"Error", "Quality" or "Variance" (where "Error" is the alternative to "Variance"
and causes the square root of the variance values to be taken before computing the
statistics). If "Quality" is specified, then the quality values are treated as numerical
values (in the range 0 to 255). ["Data"]

ESTIMATOR = LITERAL (Read)
The method to use for estimating the output pixel values. It can be one of the
following options. The first five are more for general collapsing, and the remainder
are for cube analysis.

• "Mean" — Mean value
• "WMean" — Weighted mean in which each data value is weighted by the reciprocal

of the associated variance (not available for COMP="Variance" or "Error").
• "Mode" — Modal value
• "Median" — Median value. Note that this is extremely memory and CPU inten-

sive for large datasets; use with care! If strange things happen, use "Mean".
• "FastMed" — Faster median using Wirth’s algorithm for selecting the kth value,

rather than a full sort. Weighting is not supported, thus this option is unavailable
if both Parameter VARIANCE is TRUE and the input NDF contains a VARIANCE
component.

• "Absdev" — Mean absolute deviation from the unweighted mean.
• "Cmean" — Sigma-clipped mean.
• "Csigma" — Sigma-clipped standard deviation.
• "Comax" — Co-ordinate of the maximum value.
• "Comin" — Co-ordinate of the minimum value.
• "FBad" — Fraction of bad pixel values.
• "FGood" — Fraction of good pixel values.
• "Integ" — Integrated value, being the sum of the products of the value and

pixel width in world co-ordinates. Note that for sky co-ordinates the width is
measured in radians. co-ordinates.
• "Iwc" — Intensity-weighted co-ordinate, being the sum of each value times its

co-ordinate, all divided by the integrated value (see the "Integ" option).
• "Iwd" — Intensity-weighted dispersion of the co-ordinate, normalised like "Iwc"

by the integrated value.
• "Max" — Maximum value.
• "Min" — Minimum value.
• "NBad" — Count of bad pixel values.
• "NGood" — Count of good pixel values.
• "Rms" — Root-mean-square value.
• "Sigma" — Standard deviation about the unweighted mean.
• "Sum" — The total value.

["Mean"]

241 COLLAPSE SUN/95.45 —Specifications of KAPPA applications

HIGH = LITERAL (Read)
A formatted value for the axis specified by Parameter AXIS. For example, if AXIS
is 3 and the current Frame of the input NDF has axes RA/DEC/Wavelength, then
a wavelength value should be supplied. If, on the other hand, the current Frame in
the NDF was the PIXEL Frame, then a pixel co-ordinate value would be required for
the third axis (note, the pixel with index I covers a range of pixel co-ordinates from
(I − 1) to I). Together with Parameter LOW, this parameter gives the range of axis
values to be compressed. Note, HIGH and LOW should not be equal since. If a null
value (!) is supplied for either HIGH or LOW, the entire range of the axis is collapsed.
[!]

IN = NDF (Read)
The input NDF.

LOW = LITERAL (Read)
A formatted value for the axis specified by Parameter AXIS. For example, if AXIS
is 3 and the current Frame of the input NDF has axes RA/DEC/Wavelength, then
a wavelength value should be supplied. If, on the other hand, the current Frame in
the NDF was the PIXEL Frame, then a pixel co-ordinate value would be required
for the third axis (note, the pixel with index I covers a range of pixel co-ordinates
from (I − 1) to I). Together with Parameter HIGH, this parameter gives the range of
axis values to be compressed. Note, LOW and HIGH should not be equal since. If
a null value (!) is supplied for either LOW or HIGH, the entire range of the axis is
collapsed. [!]

OUT = NDF (Write)
The output NDF.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TRIM = _LOGICAL (Read)
This parameter controls whether the collapsed axis should be removed from the
co-ordinate systems describing the output NDF. If a TRUE value is supplied, the
collapsed WCS axis will be removed from the WCS FrameSet of the output NDF, and
the collapsed pixel axis will also be removed from the NDF, resulting in the output
NDF having one fewer pixel axes than the input NDF. If a FALSE value is supplied, the
collapsed WCS and pixel axes are retained in the output NDF, resulting in the input
and output NDFs having the same number of pixel axes. In this case, the pixel-index
bounds of the collapse axis will be set to (1:1) in the output NDF (that is, the output
NDF will span only a single pixel on the collapse axis). Thus, setting TRIM to FALSE
allows information to be retained about the range of values over which the collapse
occurred. [TRUE]

VARIANCE = _LOGICAL (Read)
A flag indicating whether a variance array present in the NDF is used to weight
data values while forming the estimator’s statistic, and to derive output variance. If
VARIANCE is TRUE and the NDF contains a variance array, this array will be used
to define the weights, otherwise all the weights will be set equal. By definition this
parameter is set to FALSE when COMP is "Variance" or "Error".
The VARIANCE parameter is ignored and set to FALSE when there are more than
300 pixels along the collapse axis and ESTIMATOR is "Median", "Mode", "Cmean",

SUN/95.45 —Specifications of KAPPA applications 242 COLLAPSE

or "Csigma". This prevents the covariance matrix from being huge. For "Median"
estimates of variance come from mean variance instead. The other affected estimators
switch to use equal weighting. [TRUE]

WCSATTS = GROUP (Read)
A group of attribute settings which will be used to make temporary changes to
the properties of the current co-ordinate Frame in the WCS FrameSet before it is
used. Supplying a list of attribute values for this parameter is equivalent to invoking
WCSATTRIB on the input NDF prior to running this command, except that no
permanent change is made to the NDF (however the changes are propagated through
to the output NDF).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Any unspecified attributes will retain the value they have in
the supplied NDF. No attribute values will be changed if a null value (!) is supplied.
Any unrecognised attributes are ignored (no error is reported). [!]

WLIM = _REAL (Read)
If the input NDF contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the range of collapsed input
pixels before a valid output pixel is generated. It can be used, for example, to prevent
output pixels from being generated in regions where there are relatively few good
pixels to contribute to the collapsed result.
WLIM specifies the minimum fraction of good pixels which must be present in order
to generate a good output pixel. If this specified minimum fraction of good input
pixels is not present, then a bad output pixel will result, otherwise a good output
value will be calculated. The value of this parameter should lie between 0.0 and 1.0
(the actual number used will be rounded up if necessary to correspond to at least one
pixel). [0.3]

Examples:
collapse m31 profile axis=RA low="0:36:01" high="0:48:00"

Collapses the two-dimensional NDF called m31 along the right-ascension axis,
from "0:36:01" to "0:48:00", and puts the result in an output NDF called profile.

collapse cube slab lambda 4500 4550

The current Frame in the input three-dimensional NDF called cube has axes with labels
"RA", "DEC" and "Lambda", with the lambda axis being parallel to the third pixel axis. The
above command extracts a slab of the input cube between wavelengths 4500 and 4550
Ångstroms, and collapses this slab into a single two-dimensional output NDF called slab

243 COLLAPSE SUN/95.45 —Specifications of KAPPA applications

with RA and DEC axes. Each pixel in the output NDF is the mean of the corresponding
input pixels with wavelengths between 4500 and 4550 Ångstroms.

collapse cube slab 3 4500 4550

The same as the previous example except the axis to collapse along is specified
by index (3) rather than label (lambda).

collapse cube slab 3 101.0 134.0

This is the same as the second example, except that the current Frame in the in-
put NDF has been set to the PIXEL Frame (using WCSFRAME), and so the high and low
axis values are specified in pixel co-ordinates instead of Ångstroms. Note the difference
between floating-point pixel co-ordinates, and integer pixel indices (for instance the pixel
with index 10 extends from pixel co-ordinate 9.0 to pixel co-ordinate 10.0).

collapse cube slab 3 low=99.0 high=100.0

This is the same as the second example, except that a single pixel plane in the
cube (pixel 100) is used to create the output NDF. Following the usual definition of pixel
co-ordinates, pixel 100 extends from pixel co-ordinate 99.0 to pixel co-ordinate 100.0. So
the given HIGH and LOW values encompass the single pixel plane at pixel 100.

Notes:

• The collapse is always performed along one of the pixel axes, even if the current
Frame in the input NDF is not the PIXEL Frame. Special care should be taken if the
current-Frame axes are not parallel to the pixel axes. The algorithm used to choose
the pixel axis and the range of values to collapse along this pixel axis proceeds as
follows.
The current-Frame co-ordinates of the central pixel in the input NDF are determined
(or some other point if the co-ordinates of the central pixel are undefined). Two
current-Frame positions are then generated by substituting in turn into this central
position each of the HIGH and LOW values for the current-Frame axis specified
by Parameter AXIS. These two current-Frame positions are transformed into pixel
co-ordinates, and the projections of the vector joining these two pixel positions on to
the pixel axes are found. The pixel axis with the largest projection is selected as the
collapse axis, and the two end points of the projection define the range of axis values
to collapse.

• A warning is issued (at the normal reporting level) whenever any output values are
set bad because there are too few contributing data values. This reports the fraction
of flagged output data generated by the WLIM parameter’s threshold.
No warning is given when Parameter WLIM=0. Input data containing only bad
values are not counted in the flagged fraction, since no potential good output value
has been lost.

SUN/95.45 —Specifications of KAPPA applications 244 COLLAPSE

Related Applications :

KAPPA: WCSFRAME, COMPAVE, COMPICK, COMPADD, MANIC.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF; and propagates all extensions.
QUALITY is not propagated.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

• Huge NDFs are supported.

245 COMPADD SUN/95.45 —Specifications of KAPPA applications

COMPADD
Reduces the size of an NDF by adding values in rectangular boxes

Description:
This application takes an NDF data structure and reduces it in size by integer factors
along each dimension. The compression is achieved by adding the values of the input
NDF within non-overlapping ‘rectangular’ boxes whose dimensions are the compression
factors. The additions may be normalised to correct for any bad values present in the input
NDF. The exact placement of the boxes can be controlled using Parameter ALIGN.

Usage:
compadd in out compress [wlim]

Parameters:

ALIGN = LITERAL (Read)
This parameter controls the placement of the compression boxes within the input
NDF (also see Parameter TRIM). It can take any of the following values:

• "ORIGIN" — The compression boxes are placed so that the origin of the pixel
co-ordinate Frame (i.e. pixel co-ordinates (0,0)) in the input NDF corresponds
to a corner of a compression box. This results in the pixel origin being retain
in the output NDF. For instance, if a pair of two-dimensional images which
have previously been aligned in pixel co-ordinates are compressed, then using
this option ensures that the compressed images will also be aligned in pixel
co-ordinates.
• "FIRST" — The compression boxes are placed so that the first pixel in the input

NDF (for instance, the bottom-left pixel in a two-dimensional image) corresponds
to the first pixel in a compression box. This can result in the pixel origin being
shifted by up to one compression box in the output image. Thus, images which
were previously aligned in pixel co-ordinates may not be aligned after compres-
sion. You may want to use this option if you are using a very large box to reduce
the number of dimensions in the data (for instance summing across the entire
width of an image to produce a one-dimensional array).
• "LAST" — The compression boxes are placed so that the last pixel in the input

NDF (for instance, the top-right pixel in a two-dimensional image) corresponds
to the last pixel in a compression box. See the "FIRST" option above for further
comments.

["ORIGIN"]

AXWEIGHT = _LOGICAL (Read)
When there is an AXIS variance array present in the NDF and AXWEIGHT=TRUE the
application forms weighted averages of the axis centres using the variance. For all
other conditions the non-bad axis centres are given equal weight during the averaging
to form the output axis centres. [FALSE]

SUN/95.45 —Specifications of KAPPA applications 246 COMPADD

COMPRESS() = _INTEGER (Read)
Linear compression factors to be used to create the output NDF. There should be
one for each dimension of the NDF. If fewer are supplied the last value in the list
of compression factors is given to the remaining dimensions. Thus if a uniform
compression is required in all dimensions, just one value need be entered. All values
are constrained to be in the range one to the size of its corresponding dimension. The
suggested default is the current value.

IN = NDF (Read)
The NDF structure to be reduced in size.

NORMAL = _LOGICAL (Read)
When there are bad pixels present in the summation box these are ignored. Therefore
a simple addition of the input-array component’s values will yield a result discordant
with neighbouring output pixels that were formed from summation of all the pixels
in the box. When NORMAL=TRUE the output values are normalised: the addition
is multiplied by the ratio of the number of pixels in the box to the number of good
pixels therein to arrive at the output value. When NORMAL=FALSE the output values
are always just the sum of the good pixels. [TRUE]

OUT = NDF (Write)
NDF structure to contain compressed version of the input NDF.

PRESERVE = _LOGICAL (Read)
If the input data type is to be preserved on output then this parameter should be set
TRUE. However, this may result in overflows for integer types and hence additional
bad values written to the output NDF. If this parameter is set FALSE then the output
data type will be one of _REAL or _DOUBLE, depending on the input type. [FALSE]

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TRIM = _LOGICAL (Read)
If Parameter TRIM is set TRUE, the output NDF only contains data for compression
boxes which are entirely contained within the input NDF. Any pixels around the edge
of the input NDF which are not contained within a compression box are ignored. If
TRIM is set FALSE, the output NDF contains data for all compression boxes which
have any overlap with the input NDF. All pixels outside the bounds of the NDF are
assumed to be bad. That is, any boxes which extend beyond the bounds of the input
NDF are padded with bad pixels. See also Parameter ALIGN. [current value]

WLIM = _REAL (Read)
If the input NDF contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the addition box before
a valid output pixel is generated. It can be used, for example, to prevent output
pixels from being generated in regions where there are relatively few good pixels to
contribute to the smoothed result.
WLIM specifies the minimum fraction of good pixels which must be present in the
summation box in order to generate a good output pixel. If this specified minimum
fraction of good input pixels is not present, then a bad output pixel will result,
otherwise the output value will be the sum of the good values. The value of this
parameter should lie between 0.0 and 1.0 (the actual number used will be rounded
up if necessary to correspond to at least one pixel). [0.3]

247 COMPADD SUN/95.45 —Specifications of KAPPA applications

Examples:
compadd cosmos galaxy 4

This compresses the NDF called cosmos summing four times in each dimension,
and stores the reduced data in the NDF called galaxy. Thus if cosmos is two-dimensional,
this command would result in a sixteen-fold reduction in the array components.

compadd cosmos profile [10000,1] wlim=0 align=first trim=no

This compresses the two-dimensional NDF called cosmos to produce a one-dimensional
NDF called profile. This is done using a compression box which is 1 pixel high, but which
is wider than the whole input image. Each pixel in the output NDF thus corresponds to
the sum of the corresponding row in the input image. WLIM is set to zero to ensure that
bad pixels are ignored. ALIGN is set to "FIRST" so that each compression box is flush
with the left edge of the input image. TRIM is set to NO so that compression boxes which
extend outside the bounds of the input image (which will be all of them if the input image
is narrower than 10000 pixels) are retained in the output NDF.

compadd cosmos galaxy 4 wlim=1.0

This compresses the NDF called cosmos adding four times in each dimension,
and stores the reduced data in the NDF called galaxy. Thus if cosmos is two-dimensional,
this command would result in a sixteen-fold reduction in the array components. If a
summation box contains any bad pixels, the output pixel is set to bad.

compadd cosmos galaxy 4 0.0 preserve

As above except that a summation box need only contains a single non-bad pix-
els for the output pixel to be good, and galaxy’s array components will have the same as
those in cosmos.

compadd cosmos galaxy [4,3] nonormal title="COSMOS compressed"

This compresses the NDF called cosmos adding four times in the first dimen-
sion and three times in higher dimensions, and stores the reduced data in the NDF
called galaxy. Thus if cosmos is two-dimensional, this command would result in a
twelve-fold reduction in the array components. Also, if there are bad pixels there will be
no normalisation correction for the missing values. The title of the output NDF is "COSMOS
compressed".

compadd in=arp244 compress=[1,1,3] out=arp244cs

Suppose arp244 is a huge NDF storing a spectral-line data cube, with the third
dimension being the spectral axis. This command compresses arp244 in the spectral
dimension, adding every three pixels to form the NDF called arp244cs.

Notes:

SUN/95.45 —Specifications of KAPPA applications 248 COMPADD

• The axis centres and variances are averaged, whilst the widths are summed and
always normalised for bad values.

Related Applications :

KAPPA: BLOCK, COMPAVE, COMPICK, PIXDUPE, SQORST, REGRID; FIGARO: ISTRETCH,
YSTRACT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF and propagates all extensions.
QUALITY is not processed since it is a series of flags, not numerical values.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTRETCH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_YSTRACT

249 COMPAVE SUN/95.45 —Specifications of KAPPA applications

COMPAVE
Reduces the size of an NDF by averaging values in rectangular boxes

Description:
This application takes an NDF data structure and reduces it in size by integer factors
along each dimension. The compression is achieved by averaging the input NDF within
non-overlapping ‘rectangular’ boxes whose dimensions are the compression factors. The
averages may be weighted when there is a variance array present. The exact placement of
the boxes can be controlled using Parameter ALIGN.

Usage:
compave in out compress [wlim]

Parameters:

ALIGN = LITERAL (Read)
This parameter controls the placement of the compression boxes within the input
NDF (also see Parameter TRIM). It can take any of the following values:

• "ORIGIN" — The compression boxes are placed so that the origin of the pixel
co-ordinate Frame (i.e. pixel co-ordinates (0,0)) in the input NDF corresponds
to a corner of a compression box. This results in the pixel origin being retain
in the output NDF. For instance, if a pair of two-dimensional images which
have previously been aligned in pixel co-ordinates are compressed, then using
this option ensures that the compressed images will also be aligned in pixel
co-ordinates.
• "FIRST" — The compression boxes are placed so that the first pixel in the input

NDF (for instance, the bottom-left pixel in a two-dimensional image) corresponds
to the first pixel in a compression box. This can result in the pixel origin being
shifted by up to one compression box in the output image. Thus, images which
were previously aligned in pixel co-ordinates may not be aligned after compres-
sion. You may want to use this option if you are using a very large box to reduce
the number of dimensions in the data (for instance averaging across the entire
width of an image to produce a one-dimensional array).
• "LAST" — The compression boxes are placed so that the last pixel in the input

NDF (for instance, the top-right pixel in a two-dimensional image) corresponds
to the last pixel in a compression box. See the "FIRST" option above for further
comments. ["ORIGIN"]

AXWEIGHT = _LOGICAL (Read)
When there is an AXIS variance array present in the NDF and AXWEIGHT=TRUE the
application forms weighted averages of the axis centres using the variance. For all
other conditions the non-bad axis centres are given equal weight during the averaging
to form the output axis centres. [FALSE]

COMPRESS() = _INTEGER (Read)
Linear compression factors to be used to create the output NDF. There should be

SUN/95.45 —Specifications of KAPPA applications 250 COMPAVE

one for each dimension of the NDF. If fewer are supplied the last value in the list
of compression factors is given to the remaining dimensions. Thus if a uniform
compression is required in all dimensions, just one value need be entered. The
suggested default is the current value.

IN = NDF (Read)
The NDF structure to be reduced in size.

OUT = NDF (Write)
NDF structure to contain compressed version of the input NDF.

PRESERVE = _LOGICAL (Read)
If the input data type is to be preserved on output then this parameter should be set
TRUE. However, this will probably result in a loss of precision. If this parameter is set
FALSE then the output data type will be one of _REAL or _DOUBLE, depending on
the input type. [FALSE]

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TRIM = _LOGICAL (Read)
If Parameter TRIM is set TRUE, the output NDF only contains data for compression
boxes which are entirely contained within the input NDF. Any pixels around the edge
of the input NDF which are not contained within a compression box are ignored. If
TRIM is set FALSE, the output NDF contains data for all compression boxes which
have any overlap with the input NDF. All pixels outside the bounds of the NDF are
assumed to be bad. That is, any boxes which extend beyond the bounds of the input
NDF are padded with bad pixels. See also Parameter ALIGN. [current value]

WEIGHT = _LOGICAL (Read)
When there is a variance array present in the NDF and WEIGHT=TRUE the application
forms weighted averages of the data array using the variance. For all other conditions
the non-bad pixels are given equal weight during averaging. [FALSE]

WLIM = _REAL (Read)
If the input NDF contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the averaging box before
a valid output pixel is generated. It can be used, for example, to prevent output
pixels from being generated in regions where there are relatively few good pixels to
contribute to the smoothed result.
WLIM specifies the minimum fraction of good pixels which must be present in the
averaging box in order to generate a good output pixel. If this specified minimum
fraction of good input pixels is not present, then a bad output pixel will result,
otherwise an averaged output value will be calculated. The value of this parameter
should lie between 0.0 and 1.0 (the actual number used will be rounded up if necessary
to correspond to at least one pixel). [0.3]

Examples:
compave cosmos galaxy 4

This compresses the NDF called cosmos averaging four times in each dimension,
and stores the reduced data in the NDF called galaxy. Thus if cosmos is two-dimensional,
this command would result in a sixteen-fold reduction in the array components.

251 COMPAVE SUN/95.45 —Specifications of KAPPA applications

compave cosmos profile [10000,1] wlim=0 align=first trim=no

This compresses the two-dimensional NDF called cosmos to produce a one-dimensional
NDF called profile. This is done using a compression box which is 1 pixel high, but which
is wider than the whole input image. Each pixel in the output NDF thus corresponds to
the average of the corresponding row in the input image. WLIM is set to zero to ensure
that bad pixels are ignored. ALIGN is set to "FIRST" so that each compression box is flush
with the left edge of the input image. TRIM is set to NO so that compression boxes which
extend outside the bounds of the input image (which will be all of them if the input image
is narrower than 10000 pixels) are retained in the output NDF.

compave cosmos galaxy 4 wlim=1.0

This compresses the NDF called cosmos averaging four times in each dimension,
and stores the reduced data in the NDF called galaxy. Thus if cosmos is two-dimensional,
this command would result in a sixteen-fold reduction in the array components. If an
averaging box contains any bad pixels, the output pixel is set to bad.

compave cosmos galaxy 4 0.0 preserve

As above except that an averaging box need only contains a single non-bad pix-
els for the output pixel to be good, and galaxy’s array components will have the same as
those in cosmos.

compave cosmos galaxy [4,3] weight title="COSMOS compressed"

This compresses the NDF called cosmos averaging four times in the first dimen-
sion and three times in higher dimensions, and stores the reduced data in the NDF
called galaxy. Thus if cosmos is two-dimensional, this command would result in a
twelve-fold reduction in the array components. Also, if there is a variance array present it
is used to form weighted means of the data array. The title of the output NDF is "COSMOS
compressed".

compave in=arp244 compress=[1,1,3] out=arp244cs

Suppose arp244 is a huge NDF storing a spectral-line data cube, with the third
dimension being the spectral axis. This command compresses arp244 in the spectral
dimension, averaging every three pixels to form the NDF called arp244cs.

Notes:

• The axis centres and variances are averaged, whilst the widths are summed and
always normalised for bad values.

Related Applications :

KAPPA: BLOCK, COMPADD, COMPICK, PIXDUPE, SQORST, REGRID; FIGARO: ISTRETCH.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTRETCH

SUN/95.45 —Specifications of KAPPA applications 252 COMPAVE

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF and propagates all extensions.
QUALITY is not processed since it is a series of flags, not numerical values.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

253 COMPICK SUN/95.45 —Specifications of KAPPA applications

COMPICK
Reduces the size of an NDF by picking equally spaced pixels

Description:
This application takes an NDF data structure and reduces it in size by integer factors
along each dimension. The input NDF is sampled at these constant compression factors or
intervals along each dimension, starting from a defined origin, to form an output NDF
structure. The compression factors may be different in each dimension.

Usage:
compick in out compress [origin]

Parameters:

COMPRESS() = _INTEGER (Read)
Linear compression factors to be used to create the output NDF. There should be
one for each dimension of the NDF. If fewer are supplied the last value in the list
of compression factors is given to the remaining dimensions. Thus if a uniform
compression is required in all dimensions, just one value need be entered. All values
are constrained to be in the range one to the size of its corresponding dimension. The
suggested default is the current value.

IN = NDF (Read)
The NDF structure to be reduced in size.

ORIGIN() = _INTEGER (Read)
The pixel indices of the first pixel to be selected. Thereafter the selected pixels
will be spaced equally by COMPRESS() pixels. The origin must lie within the
first selection intervals, therefore the ith origin must be in the range LBND(i) to
LBND(i)+COMPRESS(i)-1, where LBND(i) is the lower bound of the ith dimension.
If a null (!) value is supplied, the first array element is used. [!]

OUT = NDF (Write)
NDF structure to contain compressed version of the input NDF.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Examples:
compick cosmos galaxy 4

This compresses the NDF called cosmos selecting every fourth array element
along each dimension, starting from the first element in the NDF, and stores the reduced
data in the NDF called galaxy.

compick cosmos galaxy 4 [3,2]

This compresses the two-dimensional NDF called cosmos selecting every fourth

SUN/95.45 —Specifications of KAPPA applications 254 COMPICK

array element along each dimension, starting from the pixel index (3,2), and stores the
reduced data in the NDF called galaxy.

compick in=arp244 compress=[1,1,3] out=arp244cs

Suppose arp244 is a huge NDF storing a spectral-line data cube, with the third
dimension being the spectral axis. This command compresses arp244 in the spectral
dimension, sampling every third pixel, starting from the first wavelength at each image
position, to form the NDF called arp244cs.

Notes:

• The compression is centred on the origin of the pixel co-ordinate Frame. That is, if a
position has a value p(i) on the i’th pixel co-ordinate axis of the input NDF, then it
will have position p(i)/COMPRESS(i) on the corresponding axis of the output NDF.
The pixel index bounds of the output NDF are chosen accordingly.

Related Applications :

KAPPA: BLOCK, COMPADD, COMPAVE, PIXDUPE, SQORST, REGRID; FIGARO: ISTRETCH.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTRETCH

255 COMPLEX SUN/95.45 —Specifications of KAPPA applications

COMPLEX
Converts between representations of complex data

Description:
This application converts between various representations of complex data, including
complex NDFs . The conversion may simply unpack or pack real and imaginary parts of a
complex NDF, or it may convert between polar and Cartesian representation.

Usage:
complex in1 in2 out1 out2 [intype] [outtype]

Parameters:

IN1 = NDF (Read)
The first input NDF. See Parameter INTYPE for its description.

IN2 = NDF (Read)
The second input NDF. See Parameter INTYPE for its description. IN2 will not be
accessed when Parameter INTYPE is set to "COMPLEX". When Parameter INTYPE is
set to "MOD_ARG", supply a null (!) value.

INTYPE = LITERAL (Read)
The nature of the input NDF(s). The allowed options are listed below.

• "COMPLEX" – IN1 is a complex NDF containing real and imaginary parts. (IN2
will not be accessed.)
• "REAL_IMAG" – IN1 contains the real part and IN2 contains the imaginary parts.
• "MOD_ARG" – IN1 contains the modulus and IN2 the argument in radians.

The default is"COMPLEX" if IN1 is a complex NDF, otherwise it is "REAL_IMAG". []

OUT1 = NDF (Write)
The first output NDF. Its contents are governed by Parameter OUTTYPE.

OUT2 = NDF (Write)
The second output NDF. Its contents are governed by Parameter OUTTYPE. OUT2
will not be accessed when Parameter OUTTYPE is set to "COMPLEX". When Parameter
OUTTYPE is set to "MOD_ARG", supply a null (!) value.

OUTTYPE = LITERAL (Read)
The nature of the output NDF(s). The same options are available as for INTYPE, but
relate to NDFs OUT1 and OUT instead of IN1 and IN2.
The default is "REAL_IMAG" if IN1 is a complex NDF, otherwise it is "COMPLEX". []

TITLE1 = LITERAL (Read)
The title for the first output NDF.

TITLE2 = LITERAL (Read)
The title for the second output NDF.

Results Parameters:

SUN/95.45 —Specifications of KAPPA applications 256 COMPLEX

CALCMODE = LITERAL (Write)
Set to indicate the type of calculation that was performed: "To polar" , "From polar" or
"None".

Examples:
complex realmap imagmap cmplxmap

This example combines real and imaginary parts into a complex NDF.

complex cplxmap ! modulusmap ! OUTTYPE=MOD_ARG

This example would compute the modulus from a complex NDF.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the first input NDF and propagates all of that
NDF’s extensions. UNITS is set to "radians" for OUTTYPE = "MOD_ARG".

• The DATA component is processed in double precision. The output NDFs have type
_DOUBLE, except when OUTTYPE ="COMPLEX" where it is COMPLEX_DOUBLE.

257 CONFIGECHO SUN/95.45 —Specifications of KAPPA applications

CONFIGECHO
Displays one or more configuration parameters

Description:
This application displays the name and value of one or all configuration parameters,
specified using Parameters CONFIG or NDF. If a single parameter is displayed, its value is
also written to an output parameter. If the parameter value is not specified by the CONFIG,
NDF or DEFAULTS parameter, then the value supplied for DEFVAL is displayed.

If an input NDF is supplied then configuration parameters are read from its history (see
Parameters NDF and APPLICATION).

If values are supplied for both CONFIG and NDF, then the differences between the two
sets of configuration parameters are displayed (see Parameter NDF).

Usage:
configecho name config [defaults] [select] [defval]

Parameters:

APPLICATION = LITERAL (Read)
When reading configuration parameters from the history of an NDF, this parameter
specifies the name of the application to find in the history. There must be a history
component corresponding to the value of this parameter, and it must include a
CONFIG group. [!]

CONFIG = GROUP (Read)
Specifies values for the configuration parameters. If the string "def" (case-insensitive)
or a null (!) value is supplied, the configuration parameters are obtained
using Parameter NDF. If a null value is also supplied for NDF, a set of default
configuration parameter values will be used, as specified by Parameter DEFAULTS.
The supplied value should be either a comma-separated list of strings or
the name of a text file preceded by an up-arrow character "^", containing
one or more comma-separated lists of strings. Each string is either a "keyword=value"
setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be
read and interpreted in the same manner (any blank lines or lines beginning
with "#" are ignored). Within a text file, newlines can be used as delimiters,
as well as commas. Settings are applied in the order in which they occur
within the list, with later settings overriding any earlier settings given
for the same keyword.
Each individual setting should be of the form "<keyword>=<value>". If
a non-null value is supplied for Parameter DEFAULTS, an error will be reported
if CONFIG includes values for any parameters that are not included in DEFAULTS.

DEFAULTS = LITERAL (Read)
The path to a file containing the default value for every allowed configuration
parameter. If null (!) is supplied, no defaults will be supplied for parameters

SUN/95.45 —Specifications of KAPPA applications 258 CONFIGECHO

that are not specified by CONFIG, and no tests will be performed on the validity
of paramter names supplied by CONFIG. [!]

DEFVAL = LITERAL (Read)
The value to return if no value can be obtained for the named parameter,
or if the value is "<undef>". [<***>]

LOGFILE = LITERAL (Read)
The name of a text file in which to store the displayed configuration parameters.
[!]

NAME = LITERAL (Read)
The name of the configuration parameter to display. If it is set to null
(!), then all parameters defined in the configuration are displayed.

NDF = NDF (Read)
An NDF file containing history entries which include configuration parameters.

SELECT = GROUP (Read)
A group that specifies any alternative prefixes that can be included at the
start of any parameter name. For instance, if this group contains the two
entries "450=1" and "850=0", then either CONFIG or DEFAULTS can specify two
values for any single parameter–-one for the parameter prefixed by "450."
and another for the parameter prefixed by "850.". Thus, for instance, if
DEFAULTS defines a parameter called "filter", it could include "450.filter=300"
and "850.filter=600". The CONFIG parameter could then either set the filter
parameter for a specific prefix (as in "450.filter=234"); or it could leave
the prefix unspecified, in which case the prefix used is the first one with
a non-zero value in SELECT (450 in the case of this example–-850 has a value
zero in SELECT). Thus the names of the items in SELECT define the set of
allowed alternative prefixes, and the values indicate which one of these
alternatives is to be used (the first one with non-zero value). [!]

SORT = _LOGICAL (Read)
If TRUE then sort the listed parameters in to alphabetical order. Otherwise,
retain the order they have in the supplied configuration. Only used if a
null (!) value is supplied for Parameter NAME. [FALSE]

Results Parameters:

VALUE = LITERAL (Write)
The value of the configuration parameter, or "<***>" if the parameter has no value in
CONFIG and DEFAULTS.

Examples:
configecho m81 ^myconf

Report the value of configuration parameter "m81" defined within the file myconf. If the
file does not contain a value for "m81", then <***> is displayed.

configecho type ^myconf select="m57=0,m31=1,m103=0"

Report the value of configuration parameter "type" defined within the file myconf. If the

259 CONFIGECHO SUN/95.45 —Specifications of KAPPA applications

file does not contain a value for "type", then the value of "m31.type" will be reported
instead. If neither is present, then <***> is displayed.

configecho flt.filt_edge_largescale \
config=^/star/share/smurf/dimmconfig.lis \
defaults=/star/bin/smurf/smurf_makemap.def select="450=1,850=0"

Report the value of configuration parameter flt.filt_edge_largescale defined
within the file /star/share/smurf/dimmconfig.lis, using defaults from the file
/star/bin/smurf/smurf_makemap.def. If dimmconfig.lis does not contain a value
for flt.filt_edge_largescale then it is searched for 450.flt.filt_edge_largescale
instead. An error is reported if dimmconfig.lis contains values for any items that are not
defined in smurf_makemap.def.

configecho ndf=omc1 config=^/star/share/smurf/dimmconfig.lis \
defaults=/star/bin/smurf/smurf_makemap.def \
application=makemap name=! sort select="450=0,850=1"

Show how the configuration used to generate the 850µm map of OMC1 differs
from the basic dimmconfig.lis file.

SUN/95.45 —Specifications of KAPPA applications 260 CONTOUR

CONTOUR
Contours a two-dimensional NDF

Description:
This application produces a contour map of a two-dimensional NDF on the current
graphics device, with single-pixel resolution. Contour levels can be chosen automatically
in various ways, or specified explicitly (see Parameter MODE). In addition, this application
can also draw an outline around either the whole data array, or around the good pixels in
the data array (set MODE to "Bounds" or "Good").

The plot is produced within the current graphics database picture, and may be aligned with
an existing DATA picture if the existing picture contains suitable co-ordinate Frame infor-
mation (see Parameter CLEAR).

The appearance of each contour can be controlled in several ways. The pens used can be
rotated automatically (see Parameter PENROT). Contours below a given threshold value
can be drawn dashed (see Parameter DASHED). Alternatively, the appearance of each
contour can be set explicitly (see Parameter PENS).

Annotated axes can be produced (see Parameter AXES), and the appearance of the axes can
be controlled in detail (see Parameter STYLE). The axes show co-ordinates in the current
co-ordinate Frame of the supplied NDF.

A list of the contour levels can be displayed to the right of the contour map (see Parameter
KEY). The appearance and position of this key may be controlled using Parameters
KEYSTYLE and KEYPOS.

Usage:

contour ndf [comp] mode ncont [key] [device]

low =? high =?
percentiles =?
sigmas =?

mode

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the contour map, showing
the current co-ordinate Frame of the supplied NDF. The appearance of the axes can
be controlled using the STYLE parameter. If a null (!) value is supplied, then axes
will be drawn unless the CLEAR parameter indicates that the graphics device is not
being cleared. [!]

CLEAR = _LOGICAL (Read)
TRUE if the graphics device is to be cleared before displaying the contour map. If
you want the contour map to be drawn over the top of an existing DATA picture,
then set CLEAR to FALSE. The contour map will then be drawn in alignment with the
displayed data. If possible, alignment occurs within the current co-ordinate Frame
of the NDF. If this is not possible, (for instance if suitable WCS information was
not stored with the existing DATA picture), then alignment is attempted in PIXEL

261 CONTOUR SUN/95.45 —Specifications of KAPPA applications

co-ordinates. If this is not possible, then alignment is attempted in GRID co-ordinates.
If this is not possible, then alignment is attempted in the first suitable Frame found in
the NDF irrespective of its domain. A message is displayed indicating the domain in
which alignment occurred. If there are no suitable Frames in the NDF then an error is
reported. [TRUE]

COMP = LITERAL (Read)
The NDF component to be contoured. It may be "Data", "Quality", "Variance", or
"Error" (where "Error" is an alternative to "Variance" and causes the square root
of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DASHED = _REAL (Read)
The height below which the contours will be drawn with dashed lines (if possible). A
null value (!) results in contours being drawn with the styles specified by Parameters
PENS, PENROT, and STYLE. [!]

DEVICE = DEVICE (Read)
The plotting device. [current graphics device]

FAST = _LOGICAL (Read)
If TRUE, then a faster, but in certain cases less-accurate, method is used to draw the
contours. In fast mode, contours may be incorrectly placed on the display if the
mapping between graphics co-ordinates and the current co-ordinate Frame of the
supplied NDF has any discontinuities, or is strongly non-linear. This may be the case,
for instance, when displaying all-sky maps on top of each other. [TRUE]

FILL = _LOGICAL (Read)
The contour plot normally has square pixels, in other words a specified length along
each axis corresponds to the same number of pixels. However, for images with
markedly different dimensions this default behaviour may not be suitable or give
the clearest plot. When FILL is TRUE, the square-pixel constraint is relaxed and the
contour plot is the largest possible within the current picture. When FILL is FALSE,
the pixels are square. [FALSE]

FIRSTCNT = _REAL (Read)
Height of the first contour (Linear and Magnitude modes).

HEIGHTS() = _REAL (Read)
The required contour levels (Free mode).

KEY = _LOGICAL (Read)
TRUE if a key of the contour level versus pixel value is to be produced. The appearance
of this key can be controlled using Parameter KEYSTYLE, and its position can be
controlled using Parameter KEYPOS. [TRUE]

KEYPOS() = _REAL (Read)
Two values giving the position of the key. The first value gives the gap between the
right-hand edge of the contour map and the left-hand edge of the key (0.0 for no gap,
1.0 for the largest gap). The second value gives the vertical position of the top of the
key (1.0 for the highest position, 0.0 for the lowest). If the second value is not given,
the top of the key is placed level with the top of the contour map. Both values should
be in the range 0.0 to 1.0. If a key is produced, then the right-hand margin specified
by Parameter MARGIN is ignored. [current value]

SUN/95.45 —Specifications of KAPPA applications 262 CONTOUR

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The heading in the key can be changed by setting a value for the Title attribute (the
supplied heading is split into lines of no more than 17 characters). The appearance of
the heading is controlled by attributes Colour(Title), Font(Title), etc. The appearance
of the contour indices is controlled by attributes Colour(TextLab), Font(TextLab), etc.
(the synonym Index can be used in place of TextLab). The appearance of the contour
values is controlled by attributes Colour(NumLab), Font(NumLab), etc. (the synonym
Value can be used in place of NumLab). Contour indices are formatted using attributes
Format(1), Digits(1), etc. (the synonym Index can be used in place of value 1). Contour
values are formatted using attributes Format(2), etc. (the synonym Value can be used
in place of the value 2). [current value]

LABPOS = _REAL() (Read)
Only used if Parameter MODE is set to "Good" or "Bounds". It specifies the position
at which to place a label identifying the input NDF within the plot. The label is drawn
parallel to the first pixel axis. Two values should be supplied for LABPOS. The first
value specifies the distance in millimetres along the first pixel axis from the centre
of the bottom-left pixel to the left edge of the label. The second value specifies the
distance in millimetres along the second pixel axis from the centre of the bottom-left
pixel to the baseline of the label. If a null (!) value is given, no label is produced.
The appearance of the label can be set by using the STYLE parameter (for instance
"Size(strings)=2"). [current value]

LASTCNT = _REAL (Read)
Height of the last contour (Linear and Magnitude modes).

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the contour map for axis annotation. The
widths should be given as fractions of the corresponding dimension of the current
picture. The actual margins used may be increased to preserve the aspect ratio of
the DATA picture. Four values may be given, in the order; bottom, right, top, left. If

263 CONTOUR SUN/95.45 —Specifications of KAPPA applications

fewer than four values are given, extra values are used equal to the first supplied
value. If these margins are too narrow any axis annotation may be clipped. If a null
(!) value is supplied, the value used is 0.15 (for all edges) if annotated axes are being
produced, and zero otherwise. See also Parameter KEYPOS. [current value]

MODE = LITERAL (Read)
The method used to select the contour levels. The options are:

• "Area" — The contours enclose areas of the array for which the equivalent radius
increases by equal increments. You specify the number of levels.
• "Automatic" — The contour levels are equally spaced between the maximum

and minimum pixel values in the array. You supply the number of contour levels.
• "Bounds" — A single ‘contour’ is drawn representing the bounds of the input

array. A label may also be added (see Parameter LABPOS).
• "Equalised" — You define the number of equally spaced percentiles.
• "Free" — You specify a series of contour values explicitly.
• "Good" — A single ‘contour’ is drawn outlining the good pixel values. A label

may also be added (see Parameter LABPOS).
• "Linear" — You define the number of contours, the start contour level and linear

step between contours.
• "Magnitude" — You define the number of contours, the start contour level and

step between contours. The step size is in magnitudes so the nth contour is
dex(-0.4∗(n-1)∗step) times the start contour level.
• "Percentiles" — You specify a series of percentiles.
• "Scale" — The contour levels are equally spaced between two pixel values that

you specify. You also supply the number of contour levels, which must be at least
two.

If the contour map is aligned with an existing DATA picture (see Parameter CLEAR),
then only part of the supplied NDF may be displayed. In this case, the choice of
contour levels is based on the data within a rectangular section of the input NDF
enclosing the existing DATA picture. Data values outside this section are ignored.

NCONT = _INTEGER (Read)
The number of contours to draw (only required in certain modes). It must be between
1 and 50. If the number is large, the plot may be cluttered and take longer to produce.
The initial suggested default of 6 gives reasonable results.

NDF = NDF (Read)
NDF structure containing the two-dimensional image to be contoured.

PENROT = _LOGICAL (Read)
If TRUE, the plotting pens are cycled through the contours to aid identification of the
contour heights. Only accessed if pen definitions are not supplied using Parameter
PENS. [FALSE]

PENS = GROUP (Read)
A group of strings, separated by semicolons, each of which specifies the appearance
of a pen to be used to draw a contour. The first string in the group describes the
pen to use for the first contour, the second string describes the pen for the second
contour, etc. If there are fewer strings than contours, then the supplied pens are cycled

SUN/95.45 —Specifications of KAPPA applications 264 CONTOUR

through again, starting at the beginning. Each string should be a comma-separated
list of plotting attributes to be used when drawing the contour. For instance, the
string "width=10.0,colour=red,style=2" produces a thick, red, dashed contour.
Attributes that are unspecified in a string default to the values implied by Parameter
STYLE. If a null value (!) is given for PENS, then the pens implied by Parameters
PENROT, DASHED and STYLE are used. [!]

PERCENTILES() = _REAL (Read)
Contour levels given as percentiles. The values must lie between 0.0 and 100.0.
(Percentiles mode).

STATS = _LOGICAL (Read)
If TRUE, the LENGTH and NUMBER statistics are computed. [FALSE].

STEPCNT = _REAL (Read)
Separation between contour levels, linear for Linear mode and in magnitudes for
Magnitude mode.

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the contours and
annotated axes.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the contours is controlled by the attributes Colour(Curves), Width(Curves),
etc. (the synonym Contours may be used in place of Curves). The contour appearance
established in this way may be modified using Parameters PENS, PENROT and
DASHED. [current value]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of two strings should be supplied specifying the two axes which
are to be used when annotating and aligning the contour map. Each axis can be
specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).

265 CONTOUR SUN/95.45 —Specifications of KAPPA applications

• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two significant NDF pixel
axes are used. [!]

Results Parameters:

LENGTH() = _REAL (Write)
On exit this holds the total length in pixels of the contours at each selected height. These
values are only computed when Parameter STATS is TRUE.

NUMBER() = _INTEGER (Write)
On exit this holds the number of closed contours at each selected height. Contours are
not closed if they intersect a bad pixel or the edge of the image. These values are only
computed when Parameter STATS is TRUE.

Examples:
contour myfile

Contours the data array in the NDF called myfile on the current graphics device.
All other settings are defaulted, so for example the current mode for determining heights
is used, and a key is plotted.

contour taurus1(100:199,150:269,4)

Contours a two-dimensional section of the three-dimensional NDF called tau-
rus1 on the current graphics device. The section extends from pixel (100,150,4) to pixel
(199,269,4).

contour ngc6872 mode=au ncont=5 device=ps_l pens="style=1;style=2"

Contours the data array in the NDF called ngc6872 on the ps_l graphics device.
Five equally spaced contours between the maximum and minimum data values are
drawn, alternating between line styles 1 and 2 (solid and dashed).

contour ndf=ngc6872 mode=au ncont=5 penrot style="^mysty,grid=1"

As above except that the current graphics device is used, pens are cycled auto-
matically, and the appearance of the axes is read from text file mysty. The plotting attribute
Grid is set explicitly to 1 to ensure that a co-ordinate grid is drawn over the plot. The text
file mysty could, for instance, contain the two lines "Title=NGC6872 at 25 microns" and
"grid=0". The Title setting gives the title to display at the top of the axes. The Grid setting
would normally prevent a co-ordinate grid being drawn, but is overridden in this example
by the explicit setting for Grid which follows the file name.

SUN/95.45 —Specifications of KAPPA applications 266 CONTOUR

contour m51 mode=li firstcnt=10 stepcnt=2 ncont=4 keystyle=^keysty

Contours the data array in the NDF called m51 on the current graphics device.
Four contours at heights 10, 12, 14, and 16 are drawn. A key is plotted using the style
specified in the text file keysty. This file could, for instance, contain the two lines
"font=3" and "digits(2)=4" to cause all text in the key to be drawn using PGPLOT font 3
(an italic fount), and 4 digits to be used when formatting the contour values.

contour ss443 mode=pe percentiles=[80,90,95] stats keypos=0.02

Contours the data array in the NDF called ss443 on the current graphics device.
Contours at heights corresponding to the 80, 90 and 95 percentiles are drawn. The key is
placed closer to the contour map than usual. Contour statistics are computed.

contour skyflux mode=eq ncont=5 dashed=0 pens=’colour=red’ noclear

Contours the data array in the NDF called skyflux on the current graphics de-
vice. The contour map is automatically aligned with any existing DATA picture, if possible.
Contours at heights corresponding to the 10, 30, 50, 70 and 90 percentiles (of the data
within the picture) are drawn in red. Those contours whose values are negative will
appear as dashed lines.

contour comp=d nokey penrot style="grid=1,title=My data" \

Contours the data array in the current NDF on the current graphics device us-
ing the current method for height selection. No key is drawn. The appearance of the
contours cycles every third contour. A co-ordinate grid is drawn over the plot, and a title
of "My data" is displayed at the top.

contour comp=v mode=fr heights=[10,20,40,80] \

Contours the variance array in the current NDF on the current graphics device.
Contours at 10, 20, 40 and 80 are drawn.

Notes:

• If no Title is specified via the STYLE parameter, then the TITLE component in the
NDF is used as the default title for the annotated axes. Should the NDF not have
a TITLE component, then the default title is instead taken from current co-ordinate
Frame in the NDF, unless this attribute has not been set explicitly, whereupon the
name of the NDF is used as the default title.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, contours, and key; a KEY
picture to store the key if present; and a DATA picture containing just the contours.
Note, the FRAME picture is only created if annotated axes or a key has been drawn,

267 CONTOUR SUN/95.45 —Specifications of KAPPA applications

or if non-zero margins were specified using Parameter MARGIN. The world co-
ordinates in the DATA picture will be pixel co-ordinates. A reference to the supplied
NDF, together with a copy of the WCS information in the NDF are stored in the DATA
picture. On exit the current database picture for the chosen device reverts to the input
picture.

Related Applications :

KAPPA: WCSFRAME, PICDEF; FIGARO: ICONT, SPECCONT.

Implementation Status:

• Only real data can be processed directly. Other non-complex numeric data types will
undergo a type conversion before the contour plot is drawn.

• Bad pixels and quality masking are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECCONT

SUN/95.45 —Specifications of KAPPA applications 268 CONVOLVE

CONVOLVE
Convolves a pair of one- or two-dimensional NDFs together

Description:
This application smooths a one- or two-dimensional NDF using a Point-Spread Function
given by a second NDF. The output NDF is normalised to the same mean data value as
the input NDF (if Parameter NORM is set to TRUE), and is the same size as the input NDF.

Usage:
convolve in psf out xcentre ycentre

Parameters:

AXES(2) = _INTEGER (Read)
This parameter is only accessed if the NDF has exactly three significant pixel axes.
It should be set to the indices of the NDF pixel axes which span the plane in which
smoothing is to be applied. All pixel planes parallel to the specified plane will be
smoothed independently of each other. The dynamic default is the indices of the first
two significant axes in the NDF. []

IN = NDF (Read)
The input NDF containing the image to be smoothed.

NORM = _LOGICAL (Read)
Determines how the output NDF is normalised to take account of the total data sum
in the PSF, and of the presence of bad pixels in the input NDF. If TRUE, bad pixels are
excluded from the data sum for each output pixel, and the associated weight for the
output pixel is reduced appropriately. The supplied PSF is normalised to a total data
sum of unity so that the output NDF has the same normalisation as the input NDF. If
NORM is FALSE, bad pixels are replaced by the mean value and then included in the
convolution as normal. The normalisation of the supplied PSF is left unchanged, and
so determines the normalisation of the output NDF. [TRUE]

OUT = NDF (Write)
The output NDF which is to contain the smoothed image.

PSF = NDF (Read)
An NDF holding the Point-Spread Function (PSF) with which the input image is to
be smoothed. An error is reported if the PSF contains any bad pixels. The PSF can be
centred anywhere within the image (see Parameters XCENTRE and YCENTRE). A
constant background is removed from the PSF before use. This background level is
equal to the minimum of the absolute value in the four corner pixel values. The PSF
is assumed to be zero beyond the bounds of the supplied NDF. It should have the
same number of dimensions as the NDF being smoothed, unless the input NDF has
three significant dimensions, whereupon the PSF must be two-dimensional. It will be
normalised to a total data sum of unity if Parameter NORM is TRUE.

TITLE = LITERAL (Read)
A title for the output NDF. A null (!) value means using the title of the input NDF.
[!]

269 CONVOLVE SUN/95.45 —Specifications of KAPPA applications

WLIM = _REAL (Read)
If the input array contains bad pixels, and NORM is TRUE, then this parameter may
be used to determine the number of good pixels that must be present within the
smoothing box before a valid output pixel is generated. It can be used, for example,
to prevent output pixels from being generated in regions where there are relatively
few good pixels to contribute to the smoothed result.
By default, a null (!) value is used for WLIM, which causes the pattern of bad pixels
to be propagated from the input image to the output image unchanged. In this case,
smoothed output values are only calculated for those pixels which are not bad in the
input image.
If a numerical value is given for WLIM, then it specifies the minimum total weight
associated with the good pixels in the smoothing box required to generate a good
output pixel (weights for each pixel are defined by the normalised PSF). If this speci-
fied minimum weight is not present, then a bad output pixel will result, otherwise
a smoothed output value will be calculated. The value of this parameter should lie
between 0.0 and 1.0. A value of 0.0 will result in a good output pixel being created
even if only one good input pixel contributes to it. A value of 1.0 will result in a
good output pixel being created only if all the input pixels which contribute to it are
good. See also Parameter NORM. [!]

XCENTRE = _INTEGER (Read)
The x pixel index (column number) of the centre of the PSF within the supplied PSF
array. The suggested default is the centre of the PSF array. (This is how the PSF
command would generate the array.)

YCENTRE = _INTEGER (Read)
The y pixel index (line number) of the centre of the PSF within the supplied PSF array.
The suggested default is the centre of the PSF array. (This is how the PSF command
would generate the array.)

Examples:
convolve ccdframe iraspsf ccdlores 50 50

The image in the NDF called ccdframe is convolved using the PSF in NDF iraspsf to
create the smoothed image ccdlores. The centre of the PSF image in iraspsf is at pixel
indices (50, 50). Any bad pixels in the input image are propagated to the output.

convolve ccdframe iraspsf ccdlores 50 50 wlim=1.0

As above, but good output values are only created for pixels which have no
contributions from bad input pixels.

convolve ccdframe iraspsf ccdlores \

As in the first example except the centre of the PSF is located at the centre of the
PSF array.

Notes:

SUN/95.45 —Specifications of KAPPA applications 270 CONVOLVE

• The algorithm used is based on the multiplication of the Fourier transforms of the
input image and PSF image.

• A PSF can be created using the PSF command or MATHS if the PSF is an analytic
function.

Related Applications :

KAPPA: BLOCK, FFCLEAN, GAUSMOOTH, MATHS, MEDIAN, PSF; FIGARO: ICONV3,
ISMOOTH, IXSMOOTH, MEDFILT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
double-precision floating point.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IXSMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT

271 COPYBAD SUN/95.45 —Specifications of KAPPA applications

COPYBAD
Copies bad pixels from one NDF file to another

Description:
This application copies bad pixels from one NDF file to another. It takes in two NDFs
(Parameters IN and REF), and creates a third (Parameter OUT) which is a copy of IN,
except that any pixel which is set bad in the DATA array of REF, is also set bad in the
DATA and VARIANCE (if available) arrays in OUT.

By setting the INVERT Parameter TRUE, the opposite effect can be produced (i.e. any pixel
that is not set bad in the DATA array of REF, is set bad in OUT and the others are left
unchanged).

Usage:
copybad in ref out [title]

Parameters:

IN = NDF (Read)
NDF containing the data to be copied to OUT.

INVERT = _LOGICAL (Read)
If TRUE, then the bad and good pixels within the reference NDF specified by Parameter
REF are inverted before being used (that is, good pixels are treated as bad and bad
pixels are treated as good). [FALSE]

OUT = NDF (Write)
The output NDF.

REF = NDF (Read)
NDF containing the bad pixels to be copied to OUT.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Results Parameters:

NBAD = _INTEGER (Write)
The number of bad pixels copied to the output NDF.

NGOOD = _INTEGER (Write)
The number of pixels not made bad in the output NDF.

Examples:
copybad in=a ref=b out=c title="New image"

This creates a NDF called c, which is a copy of the NDF called a. Any bad pix-
els present in the NDF called b are copied into the corresponding positions in c (non-bad
pixels in b are ignored). The title of c is "New image".

SUN/95.45 —Specifications of KAPPA applications 272 COPYBAD

Notes:

• If the two input NDFs have different pixel-index bounds, then they will be trimmed to
match before being processed. An error will result if they have no pixels in common.

Related Applications :

KAPPA: SUBSTITUTE, NOMAGIC, FILLBAD, PASTE, GLITCH.

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, QUALITY, LABEL, TITLE,
UNITS, HISTORY, and VARIANCE components of an NDF data structure and
propagates all extensions.

• The BAD_PIXEL flag is set appropriately.

• All non-complex numeric data types can be handled.

273 CREFRAME SUN/95.45 —Specifications of KAPPA applications

CREFRAME
Generates a test two-dimensional NDF with a selection of several

forms

Description:
This application creates a two-dimensional output NDF containing artificial data of vari-
ous forms (see Parameter MODE). The output NDF can, optionally, have a VARIANCE
component describing the noise in the data array (see Parameter VARIANCE), and addi-
tionally a randomly generated pattern of bad pixels (see Parameter BADPIX). Bad columns
or rows of pixels can also be generated.

Usage:
creframe out mode [lbound] [ubound]

mean=?

background=? distrib=? max=? min=? ngauss=? seeing=?

mean=? sigma=?

high=? low=?
mode

Parameters:

BACKGROUND = _REAL (Read)
Background intensity to be used in the generated data array. Must not be negative.
(GS mode).

BADCOL = _INTEGER (Read)
The number of bad columns to include. Only accessed if Parameter BADPIX is TRUE.
The bad columns are distributed at random using a uniform distribution. [0]

BADPIX = _LOGICAL (Read)
Whether or not bad pixels are to be included. See also Parameters FRACTION,
BADCOL and BADROW. [FALSE]

BADROW = _INTEGER (Read)
The number of bad rows to include. Only accessed if Parameter BADPIX is TRUE. The
bad rows are distributed at random using a uniform distribution. [0]

DIRN = _INTEGER (Read)
Direction of the ramp. 1 means left to right, 2 is right to left, 3 is bottom to top, and 4
is top to bottom. (RA mode)

DISTRIB = LITERAL (Read)
Radial distribution of the Gaussians to be used (GS mode). Alternatives weightings
are:

• "FIX" — fixed distance, and
• "RSQ" — one over radius squared.

SUN/95.45 —Specifications of KAPPA applications 274 CREFRAME

["FIX"]

FRACTION = _REAL (Read)
Fraction of bad pixels to be included. Only accessed if BADPIX is TRUE. [0.01]

HIGH = _REAL (Read)
High value used in the generated data array (RA and RL modes).

LBOUND(2) = _INTEGER (Read)
Lower pixel bounds of the output NDF. Only accessed if Parameter LIKE is set to null
(!).

LIKE = NDF (Read)
An optional template NDF which, if specified, will be used to define the bounds for
the output NDF. If a null value (!) is given the bounds are obtained via Parameters
LBOUND and UBOUND. [!]

LOGFILE = LITERAL (Read)
Name of a log file in which to store details of the Gaussians added to the output NDF
(GS mode). If a null value is supplied no log file is created. [!]

LOW = _REAL (Read)
Low value used in the generated data array (RA and RL modes).

MAX = _REAL (Read)
Peak Gaussian intensity to be used in the generated data array (GS mode).

MEAN = _REAL (Read)
Mean value used in the generated data array (FL, RP and GN modes).

MIN = _REAL (Read)
Lowest Gaussian intensity to be used in the generated data array (GS mode).

MODE = LITERAL (Read)
The form of the data to be generated. The options are as follows.

• "RR" — Uniform noise between 0 and 1.
• "RL" — Uniform noise between specified limits.
• "BL" — A constant value of zero.
• "FL" — A specified constant value.
• "RP" — Poisson noise about a specified mean.
• "GN" — Gaussian noise about a specified mean.
• "RA" — Ramped between specified minimum and maximum values and a choice

of four directions.
• "GS" — A random distribution of two-dimensional Gaussians of defined FWHM

and range of maximum peak values on a specified background, with Poissonian
noise. There is a choice of spatial distributions for the Gaussians: fixed, or inverse
square radially from the array centre. (In essence it is equivalent to a simulated
star field.) The x-y position and peak value of each Gaussian may be stored in a
log file, a positions list catalogue, or reported on the screen. Bad pixels may be
included randomly, and/or in a column or line of the array.

NGAUSS = _INTEGER (Read)
Number of Gaussian star-like images to be generated (GS mode).

275 CREFRAME SUN/95.45 —Specifications of KAPPA applications

OUT = NDF (Write)
The output NDF.

OUTCAT = FILENAME (Write)
An output catalogue in which to store the pixel co-ordinates of the Gausians in
the output NDF (GS mode). If a null value is supplied, no output positions list is
produced. [!]

SEEING = _REAL (Read)
Seeing (FWHM) in pixels (not the same as the standard deviation) (GS mode).

SIGMA = _REAL (Read)
Standard deviation of noise to be used in the generated data array (GN mode).

TITLE = LITERAL (Read)
Title for the output NDF. ["KAPPA - Creframe"]

UBOUND(2) = _INTEGER (Read)
Upper pixel bounds of the output NDF. Only accessed if Parameter LIKE is set to null
(!).

VARIANCE = _LOGICAL (Read)
If TRUE, a VARIANCE component is added to the output NDF representing the noise
added to the field. If a null (!) value is supplied, a default is used which is TRUE for
modes which include noise, and FALSE for modes which do not include any noise.
[!]

Examples:
creframe out=file ubound=[128,128] mode=gs ngauss=5 badpix badcol=2 max=200
min=20 background=20 seeing=1.5

Produces a 128×128 pixel data array with 5 gaussians with peak values of 200
counts and a background of 20 counts. There will be two bad columns added to the
resulting data.

Notes:

• The Gaussian parameters (GS mode) are not displayed when the message filter
environment variable MSG_FILTER is set to QUIET.

Implementation Status:

• The DATA and VARIANCE components of the output NDF have a numerical type of
"_REAL" (single-precision floating point).

• This routine does not assign values to any of the following components in the output
NDF: LABEL, UNITS, QUALITY, AXIS, WCS.

SUN/95.45 —Specifications of KAPPA applications 276 CSUB

CSUB
Subtracts a scalar from an NDF data structure

Description:
The routine subtracts a scalar (i.e. constant) value from each pixel of an NDF’s data array
to produce a new NDF data structure.

Usage:
csub in scalar out

Parameters:

IN = NDF (Read)
Input NDF data structure, from which the value is to be subtracted.

OUT = NDF (Write)
Output NDF data structure.

SCALAR = _DOUBLE (Read)
The value to be subtracted from the NDF’s data array.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
csub a 10 b

This subtracts ten from the NDF called a, to make the NDF called b. NDF b
inherits its title from a.

csub title="HD123456" out=b in=a scalar=21.9

This subtracts 21.9 from the NDF called a, to make the NDF called b. NDF b
has the title "HD123456".

Related Applications :

KAPPA: ADD, CADD, CDIV, CMULT, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Huge NDFs are supported.

277 CUMULVEC SUN/95.45 —Specifications of KAPPA applications

CUMULVEC
Sums the values cumulatively in a one-dimensional NDF

Description:
This application forms the cumulative sum of the values of a one-dimensional NDF starting
from the first to the last element. thus the first output pixel will be unchanged but the
second will be the sum of the first two input pixels, third output pixel is the sum of the first
three input pixels and so on. Anomalous values may be excluded from the summation by
setting a threshold.

Usage:
cumulvec in out [thresh]

Parameters:

IN = NDF (Read)
The one-dimensional NDF containing the vector to be summed.

OUT = NDF (Write)
The NDF to contain the summed image.

THRESH = _DOUBLE (Read)
The maximum difference between adjacent elements for the summation to ocur. For
increments outside the allowed range, the increment becomes zero. If null, !, is given,
then there is no limit. [!]

TITLE = LITERAL (Read)
The title of the output NDF. A null (!) value means using the title of the input NDF.
[!]

Examples:
cumulvec gradient profile

The one-dimensional NDF called gradient is summed cumulatively to form NDF profile.

cumulvec in=gradient out=profile thresh=20

As above but only adjacent values separated by less than 20 are included in the
summation.

Related Applications :

KAPPA: HISTOGRAM.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

SUN/95.45 —Specifications of KAPPA applications 278 CUMULVEC

• Processing of bad pixels and automatic quality masking are supported. Bad pixels
are propagated and excluded from the summation.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single- or double-precision floating point as appropriate.

279 CURSOR SUN/95.45 —Specifications of KAPPA applications

CURSOR
Reports the co-ordinates of positions selected using the cursor

Description:
This application reads co-ordinates from the chosen graphics device using a cursor and
displays them on your terminal. The selected positions may be marked in various ways
on the device (see Parameter PLOT), and can be written to an output positions list so that
subsequent applications can make use of them (see Parameter OUTCAT). The format of
the displayed positions may be controlled using Parameter STYLE. The pixel data value in
any associated NDF can also be displayed (see Parameter SHOWDATA).

Positions may be reported in several different co-ordinate Frames (see Parameter FRAME).
Optionally, the corresponding pixel co-ordinates at each position may also be reported
(see Parameter SHOWPIXEL).

The picture or pictures within which positions are required can be selected in several ways
(see Parameters MODE and NAME).

Restrictions can be made on the number of positions to be given (see Parameters MAXPOS
and MINPOS), and screen output can be suppressed (see the “Notes”).

Usage:
cursor [mode] [name] [outcat] [device]

Parameters:

CATFRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be stored in
the output catalogue associated with Parameter OUTCAT. The string supplied for
CATFRAME can be one of the following:

• A domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null (!) value is supplied, the positions will be stored in the current Frame. [!]

CATEPOCH = _DOUBLE (Read)
The epoch at which the sky positions stored in the output catalogue were determined.
It will only be accessed if an epoch value is needed to qualify the co-ordinate Frame
specified by COLFRAME. If required, it should be given as a decimal years value,
with or without decimal places ("1996.8" for example). Such values are interpreted
as a Besselian epoch if less than 1984.0 and as a Julian epoch otherwise.

CLOSE = _LOGICAL (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Poly". If
TRUE, polygons will be closed by joining the first position to the last position. [current
value]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 280 CURSOR

COMP = LITERAL (Read)
The NDF component to be displayed. It may be "Data", "Quality", "Variance", or
"Error" (where "Error" is an alternative to "Variance" and causes the square root
of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which subsequent positions
will be reported is produced each time a position is reported within a new picture.
[current value]

DEVICE = DEVICE (Read)
The graphics workstation. This device must support cursor interaction. [current
graphics device]

EPOCH = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAME) for
a celestial co-ordinate system, then an epoch value is needed to qualify it. This is the
epoch at which the supplied sky positions were determined. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

FRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be reported.
When a data array is displayed by an application such as DISPLAY, CONTOUR
the WCS information describing the co-ordinate systems known to the data array
are stored with the DATA picture in the graphics database. This application can
report positions in any of the co-ordinate Frames stored with each picture. The string
supplied for FRAME can be one of the following:

• A domain name such as SKY, AXIS, PIXEL. The special domains AGI_WORLD
and AGI_DATA are used to refer to the world and data co-ordinate system stored
in the AGI graphics database. They can be useful if no WCS information was
store with the picture when it was created.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null value (!) is supplied, positions are reported in the co-ordinate Frame which
was current when the picture was created. [!]

GEODESIC = _LOGICAL (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Poly".
It specifies whether the curves drawn between positions should be straight lines,
or should be geodesic curves. In many co-ordinate Frames geodesic curves will
be simple straight lines. However, in others (such as the majority of celestial co-
ordinates Frames) geodesic curves will be more complex curves tracing the shortest
path between two positions in a non-linear projection. [FALSE]

INFO = _LOGICAL (Read)
If TRUE, then messages are displayed describing the use of the mouse prior to ob-

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

281 CURSOR SUN/95.45 —Specifications of KAPPA applications

taining the first position. Note, these informational messages are not suppressed by
setting MSG_FILTER environment variable to QUIET. [TRUE]

JUST = LITERAL (Read)
A string specifying the justification to be used when displaying text strings at the
supplied cursor positions. This parameter is only accessed if Parameter PLOT is set
to "Text". The supplied string should contain two characters; the first should be "B",
"C" or "T", meaning bottom, centre or top. The second should be "L", "C" or "R",
meaning left, centre or right. The text is displayed so that the supplied position is at
the specified point within the displayed text string. ["CC"]

LOGFILE = FILENAME (Write)
The name of the text file in which the formatted co-ordinates of positions selected with
the cursor may be stored. This is intended primarily for recording the screen output,
and not for communicating positions to subsequent applications (use Parameter
OUTCAT for this purpose). A null string (!) means that no file is created. [!]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Mark". It
specifies the symbol with which each position should be marked, and should be
given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2
gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or
equal to −31. [current value]

MAXPOS = _INTEGER (Read)
The maximum number of positions which may be supplied before the application
terminates. The number must be in the range 1 to 200. [200]

MINPOS = _INTEGER (Read)
The minimum number of positions which may be supplied. The user is asked to
supply more if necessary. The number must be in the range 0 to the value of Parameter
MAXPOS. [0]

MODE = LITERAL (Read)
The method used to select the pictures in which cursor positions are to be reported.
There are three options.

• "Current" — reports positions within the current picture in the AGI database.
If a position does not lie within the current picture, an extrapolated position is
reported, if possible.
• "Dynamic" — reports positions within the top-most picture under the cursor in

the AGI database. Thus the second and subsequent cursor hits may result in the
selection of a new picture.
• "Anchor" — lets the first cursor hit select the picture in which all positions are to

be reported. If a subsequent cursor hit falls outside this picture, an extrapolated
position is reported if possible.

["Dynamic"]

NAME = LITERAL (Read)
Only pictures of this name are to be selected. For instance, if you want positions in
a DATA picture which is covered by a transparent FRAME picture, then you could
specify NAME="DATA". A null (!) or blank string means that pictures of all names
may be selected. NAME is ignored when MODE="Current". [!]

SUN/95.45 —Specifications of KAPPA applications 282 CURSOR

OUTCAT = FILENAME (Write)
An output catalogue in which to store the valid selected positions. The catalogue has
the form of a positions list such as created by application LISTMAKE. Only positions
in the first selected picture are recorded. This application uses the conventions of the
CURSA package for determining the format of the catalogue. If a file type of .fit
is given, then the catalogue is stored as a FITS binary table. If a file type of .txt is
given, then the catalogue is stored in a text file in "Small Text List" (STL) format.
If no file type is given, then .fit is assumed. If a null value is supplied, no output
positions list is produced. See also Parameter CATFRAME. [!]

PLOT = LITERAL (Read)
The type of graphics to be used to mark the selected positions which have valid
co-ordinates. The appearance of these graphics (colour, size, etc.) is controlled by the
STYLE parameter. PLOT can take any of the following values:

• "None" — No graphics are produced.
• "Mark"— Each position is marked by the symbol specified by Parameter MARKER.
• "Poly" — Causes each position to be joined by a line to the previous posi-

tion. These lines may be simple straight lines or geodesic curves (see Parameter
GEODESIC). The polygons may optionally be closed by joining the last position
to the first (see Parameter CLOSE).
• "Chain" — This is a combination of "Mark" and "Poly". Each position is marked

by a symbol and joined by a line to the previous position. Parameters MARKER,
GEODESIC and CLOSE are used to specify the symbols and lines to use.
• "Box" — A rectangular box with edges parallel to the edges of the graphics device

is drawn with the specified position at one corner, and the previously specified
position at the diagonally opposite corner.
• "Vline" — A vertial line is drawn through each specified position, extending the

entire height of the selected picture.
• "Hline" — A horizontal line is drawn through each specified position, extending

the entire width of the selected picture.
• "Cross" — A combination of "Vline" and "Hline".
• "Text" — A text string is used to mark each position. The string is drawn

horizontally with the justification specified by Parameter JUST. The strings to use
for each position are specified using Parameter STRINGS.

[current value]

SHOWDATA = _LOGICAL (Read)
If TRUE, the pixel value within the displayed NDF is reported for each selected position.
This is only possible if the picture within which position are being selected contains a
reference to an existing NDF. The NDF array component to be displayed is selected
via Parameter COMP. [FALSE]

SHOWPIXEL = _LOGICAL (Read)
If TRUE, the pixel co-ordinates of each selected position are shown on a separate line,
following the co-ordinates requested using Parameter FRAME. If pixel co-ordinates
are being displayed anyway (see Parameter FRAME) then a value of FALSE is used
for. SHOWPIXEL. [current value]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_

283 CURSOR SUN/95.45 —Specifications of KAPPA applications

STRINGS = LITERAL (Read)
A group of text strings which are used to mark the supplied positions if Parameter
PLOT is set to "TEXT". The first string in the group is used to mark the first position,
the second string is used to mark the second position, etc. If more positions are given
than there are strings in the group, then the extra positions will be marked with an
integer value indicating the index within the list of supplied positions. If a null value
(!) is given for the parameter, then all positions will be marked with integer indices,
starting at 1.
A comma-separated list should be given in which each element is either a marker
string, or the name of a text file preceded by an up-arrow character "^". Such text
files should contain further comma-separated lists which will be read and interpreted
in the same manner. Note, strings within text files can be separated by new lines as
well as commas.

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
graphics specified by Parameter PLOT. The format of the positions reported on the
screen may also be controlled.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
In addition to the attributes which control the appearance of the graphics (Colour,
Font, etc.), the following attributes may be set in order to control the appearance of the
formatted axis values reported on the screen: Format, Digits, Symbol, Unit. These may
be suffixed with an axis number (e.g. "Digits(2)") to refer to the values displayed
for a specific axis. [current value]

Results Parameters:

LASTDIM = _INTEGER (Write)
The number of axis values written to Parameter LASTPOS.

LASTPOS() = _DOUBLE (Write)
The unformatted co-ordinates of the last valid position selected with the cursor, in the
co-ordinate Frame which was used to report the position. The number of axis values is
written to output Parameter LASTDIM.

SUN/95.45 —Specifications of KAPPA applications 284 CURSOR

NUMBER = _INTEGER (Write)
The number of positions selected with the cursor (excluding invalid positions).

Examples:
cursor frame=pixel

This obtains co-ordinates within any visible picture for the current graphics de-
vice by use of the cursor. Positions are reported in pixel co-ordinates if available, and in
the current co-ordinate Frame of the picture otherwise.

cursor frame=pixel outcat=a catframe=gal

Like the previous example, except that, in addition to being displayed on the
screen, the positions are transformed into galactic co-ordinates and stored in FITS binary
table called a.FIT, together with any associated WCS information.

cursor frame=equat(J2010)

This obtains co-ordinates within any visible picture for the current graphics de-
vice by use of the cursor. Positions are reported in equatorial RA/DEC co-ordinates
(referenced to the J2010 equinox) if available, and in the current co-ordinate Frame of the
picture otherwise.

cursor describe plot=mark marker=3 style="colour=red,size=2"

As above except, positions are always reported in the current co-ordinate Frame
of each picture. The details of these co-ordinate Frames are described as they are used.
Each selected point is marked with PGPLOT marker 3 (an asterisk). The markers are red
and are twice the default size.

cursor current maxpos=2 minpos=2 plot=poly outcat=slice

Exactly two positions are obtained within the current picture, and are joined
with a straight line. The positions are written to a FITS binary catalogue called slice.FIT.
The catalogue may be used to communicate the positions to later applications (LISTSHOW,
PROFILE, etc.).

cursor name=data style="^mystyle,digits(1)=5,digits(2)=7"

This obtains co-ordinates within any visible DATA picture on the current graph-
ics device. The style to use is read from text file mystyle, but is then modified so that five
digits are used to format axis-1 values, and seven to format axis-2 values.

cursor plot=box style="width=3,colour=red" maxpos=2 minpos=2

Exactly two positions must be given using the cursor, and a red box is drawn
joining the two positions. The lines making up the box are three times the default width.

285 CURSOR SUN/95.45 —Specifications of KAPPA applications

cursor plot=text style="size=2,textbackcolour=clear"

Positions are marked using integer values, starting at 1 for the first position.
The text drawn is twice as large as normal, and the background is not cleared before
drawing the text.

Notes:

• The unformatted values stored in the output Parameter LASTPOS, may not be in the
same units as the formatted values shown on the screen and logged to the log file.
For instance, unformatted celestial co-ordinate values are stored in radians.

• The current picture is unchanged by this application.

• In DYNAMIC and ANCHOR modes, if the cursor is situated at a position where
there are no pictures of the selected name, the co-ordinates in the BASE picture are
reported.

• Pixel co-ordinates are formatted with 1 decimal place unless a format has already
been specified by setting the Format attributes for the axes of the PIXEL co-ordinate
Frame (e.g. using application WCSATTRIB).

• Positions can be removed (the instructions state how), starting from the most-recent
one. Such positions are excluded from the output positions list and log file (if
applicable). If graphics are being used to mark the positions, then removed positions
will be highlighted by drawing a marker of type 8 (a circle containing a cross) over
the removed positions in a different colour.

• The positions are not displayed on the screen when the message filter environment
variable MSG_FILTER is set to QUIET. The creation of output parameters and files is
unaffected by MSG_FILTER. The display of informational messages describing the
use of the cursor is controlled by the Parameter INFO.

Related Applications :

KAPPA: LISTSHOW, LISTMAKE, PICCUR; FIGARO: ICUR, IGCUR.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICUR
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IGCUR

SUN/95.45 —Specifications of KAPPA applications 286 DISPLAY

DISPLAY
Displays a one- or two-dimensional NDF

Description:
This application displays a one- or two-dimensional NDF as an image on the current
graphics device. The minimum and maximum data values to be displayed can be selected
in several ways (see Parameter MODE). Data values outside these limits are displayed
with the colour of the nearest limit. A key showing the relationship between colour and
data value can be displayed (see Parameter KEY).

Annotated axes or a simple border can be drawn around the image (see Parameters AXES
and BORDER). The appearance of these may be controlled in detail (see Parameters STYLE
and BORSTYLE).

A specified colour lookup table may optionally be loaded prior to displaying the image
(see Parameter LUT). For devices which reset the colour table when opened (such as
PostScript files), this may be the only way of controlling the colour table.

The image is produced within the current graphics database picture. The co-ordinates at
the centre of the image, and the scale of the image can be controlled using Parameters
CENTRE, XMAGN and YMAGN. Only the parts of the image that lie within the current
picture are visible; the rest is clipped. The image is padded with bad pixels if necessary.

Usage:
display in [comp] clear [device] mode [centre] [xmagn] [ymagn] [out]

low=? high=?

percentiles=?

sigmas=?
mode

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the image. These display
co-ordinates in the current co-ordinate Frame of the supplied NDF, and may be
changed using application WCSFRAME (see also Parameter USEAXIS). The width
of the margins left for the annotation may be controlled using Parameter MARGIN.
The appearance of the axes (colours, founts, etc.) can be controlled using the STYLE
Parameter. [current value]

BADCOL = LITERAL (Read)
The colour with which to mark any bad (i.e. missing) pixels in the display. There are
a number of options described below.

• "MAX" — The maximum colour index used for the display of the image.
• "MIN" — The minimum colour index used for the display of the image.

287 DISPLAY SUN/95.45 —Specifications of KAPPA applications

• An integer — The actual colour index. It is constrained between 0 and the
maximum colour index available on the device.
• A named colour — Uses the named colour from the palette, and if it is not present,

the nearest colour from the palette is selected.
• An HTML colour code such as #ff002d.

If the colour is to remain unaltered as the lookup table is manipulated choose an
integer between 0 and 15, or a named colour. The suggested default is the current
value. [current value]

BORDER = _LOGICAL (Read)
TRUE if a border is to be drawn around the regions of the displayed image containing
valid co-ordinates in the current co-ordinate Frame of the NDF. For instance, if the
NDF contains an Aitoff all-sky map, then an elliptical border will be drawn if the
current co-ordinate Frame is galactic longitude and latitude. This is because pixels
outside this ellipse have undefined positions in galactic co-ordinates. If, instead, the
current co-ordinate Frame had been pixel co-ordinates, then a simple box would have
been drawn containing the whole image. This is because every pixel has a defined
position in pixel co-ordinates. The appearance of the border (colour, width, etc.) can
be controlled using Parameter BORSTYLE. [current value]

BORSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the border (see
Parameter BORDER).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

CENTRE = LITERAL (Read)
The co-ordinates of the data pixel to be placed at the centre of the image, in the
current co-ordinate Frame of the NDF (supplying a colon ":" will display details of
the current co-ordinate Frame). The position should be supplied as a list of formatted
axis values separated by spaces or commas. See also Parameter USEAXIS. A null (!)
value causes the centre of the image to be used. [!]

CLEAR = _LOGICAL (Read)
TRUE if the current picture is to be cleared before the image is displayed. [current
value]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 288 DISPLAY

COMP = LITERAL (Read)
The NDF array component to be displayed. It may be "Data", "Quality", "Variance",
or "Error" (where "Error" is an alternative to "Variance" and causes the square
root of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DEVICE = DEVICE (Read)
The name of the graphics device used to display the image. The device must have at
least 24 colour indices or grey-scale intensities. [current graphics device]

FILL = _LOGICAL (Read)
If FILL is set to TRUE, then the image will be ‘stretched’ to fill the current picture in
both directions. This can be useful when displaying images with markedly different
dimensions, such as two-dimensional spectra. The dynamic default is TRUE if the
array being displayed is one-dimensional, and FALSE otherwise. []

HIGH = _DOUBLE (Read)
The data value corresponding to the highest pen in the colour table. All larger data
values are set to the highest colour index when HIGH is greater than LOW, otherwise
all data values greater than HIGH are set to the lowest colour index. The dynamic
default is the maximum data value. There is an efficiency gain when both LOW
and HIGH are given on the command line, because the extreme values need not be
computed. (Scale mode)

IN = NDF (Read)
The input NDF structure containing the data to be displayed.

KEY = _LOGICAL (Read)
TRUE if a key to the colour table is to be produced to the right of the display. This
can take the form of a colour ramp, a coloured histogram of pen indices, or graphs
of RGB intensities, all annotated with data value. The form and appearance of this
key can be controlled using Parameter KEYSTYLE, and its horizontal position can be
controlled using Parameter KEYPOS. If the key is required in a different location, set
KEY=NO and use application LUTVIEW after displaying the image. [TRUE]

KEYPOS(2) = _REAL (Read)
The first element gives the gap between the right-hand edge of the display and the
left-hand edge of the key, as a fraction of the width of the current picture. If a key is
produced, then the right-hand margin specified by Parameter MARGIN is ignored,
and the value supplied for KEYPOS is used instead.
The second element gives the vertical position of the key as a fractional value in the
range zero to one: zero puts the key as low as possible, one puts it as high as possible.
A negative value (no lower than -1) causes the key to match the height of the display
image. This may mean any text, like a label, for the horizontal axis may not appear,
though if AXES is TRUE there is usually room. [current value]

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which

289 DISPLAY SUN/95.45 —Specifications of KAPPA applications

they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
Axis 1 is always the data value axis. So for instance, to set the label for the data-value
axis, assign a value to "Label(1)" in the supplied style.
To get a ramp key (the default), specify "form=ramp". To get a histogram key (a
coloured histogram of pen indices), specify "form=histogram". To get a graph key
(three curves of RGB intensities), specify "form=graph". If a histogram key is pro-
duced, the population axis can be either logarithmic or linear. To get a logarith-
mic population axis, specify "logpop=1". To get a linear population axis, specify
"logpop=0" (the default). To annotate the long axis with pen numbers instead of pixel
value, specify "pennums=1" (the default, "pennums=0", shows pixel values). [current
value]

LOW = _DOUBLE (Read)
The data value corresponding to the lowest pen in the colour table. All smaller data
values are set to the lowest colour index when LOW is less than HIGH, otherwise
all data values smaller than LOW are set to the highest colour index. The dynamic
default is the minimum data value. There is an efficiency gain when both LOW
and HIGH are given on the command line, because the extreme values need not be
computed. (Scale mode)

LUT = NDF (Read)
Name of the NDF containing a colour lookup table in its Data array; the lookup table
is written to the graphics device’s colour table. The purpose of this parameter is to
provide a means of controlling the appearance of the image on certain devices, such
as colour printers, that do not have a dynamic colour table (i.e. the colour table is
reset when the device is opened). If used with dynamic devices (such as X-windows),
the new colour table remains after this application has completed. A null value (!)
causes the existing colour table to be used.
The LUT must be two-dimensional, the dimension of the first axis being 3, and the
second being arbitrary. The method used to compress or expand the colour table if
the second dimension is different from the number of unreserved colour indices is
controlled by Parameter NN. Also the LUT’s values must lie in the range 0.0–1.0. [!]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the image for axis annotations, given as
fractions of the corresponding dimension of the current picture. The actual margins
used may be increased to preserve the aspect ratio of the data. Four values may be

SUN/95.45 —Specifications of KAPPA applications 290 DISPLAY

given, in the order: bottom, right, top, left. If fewer than four values are given, extra
values are used equal to the first supplied value. If these margins are too narrow any
axis annotation may be clipped. If a null (!) value is supplied, the value used is (for
all edges); 0.15 if annotated axes are being produced; 0.04, if a simple border is being
produced; and 0.0 if neither border nor axes are being produced. [current value]

MODE = LITERAL (Read)
The method by which the maximum and minimum data values to be displayed are
chosen. The options are as follows.

• "Current" — The image is scaled between the upper and lower limits that were
used by the previous invocation of DISPLAY. If the previous scaling limits cannot
be determined, the MODE value reverts to "Scale".
• "Faint" — The image is scaled between the mean data value minus one standard

deviation and the mean data value plus seven standard deviations. The scaling
values are reported so that the faster Scale mode may be utilised later.
• "Flash" — The image is flashed on to the screen without any scaling at all. This

is the fastest option.
• "Percentiles" — The image is scaled between the data values corresponding

to two percentiles. The scaling values are reported so that the faster Scale mode
may be used later.
• "Range" — The image is scaled between the minimum and maximum data

values.
• "Scale" — You define the upper and lower limits between which the image is to

be scaled. The application reports the maximum and the minimum data values
for reference and makes these the suggested defaults.
• "Sigmas" — The image is scaled between two standard-deviation limits. The

scaling values used are reported so that the faster Scale mode may be utilised
later.

NN = _LOGICAL (Read)
If TRUE the input lookup table is mapped to the colour table by using the nearest-
neighbour method. This preserves sharp edges and is better for lookup tables with
blocks of colour. If NN is FALSE, linear interpolation is used, and this is suitable for
smoothly varying colour tables. NN is ignored unless LUT is not null. [FALSE]

NUMBIN = _INTEGER (Read)
The number of histogram bins used to compute percentiles for scaling. (Percentiles
mode) [2048]

OUT = NDF (Write)
A scaled copy of the displayed section of the image. Values in this output image are
integer colour indices shifted to exclude the indices reserved for the palette (i.e. the
value zero refers to the first colour index following the palette). The output NDF is
intended to be used as the input data in conjunction with SCALE=FALSE. If a null
value (!) is supplied, no output NDF will be created. This parameter is not accessed
when SCALE=FALSE. [!]

PENRANGE(2) = _REAL (Read)
The range of colour indices (“pens”) to use. The supplied values are fractional values
where zero corresponds to the lowest available colour index and 1.0 corresponds to

291 DISPLAY SUN/95.45 —Specifications of KAPPA applications

the highest available colour index. The default value of [0.0,1.0] thus causes the
full range of colour indices to be used. Note, if Parameter LUT is null (!) or Parameter
SCALE is FALSE then this parameter is ignored and the fill range of pens is used.
[0.0,1.0]

PERCENTILES(2) = _REAL (Read)
The percentiles that define the scaling limits. For example, [25,75] would scale
between the quartile values. (Percentile mode)

SCALE = _LOGICAL (Read)
If TRUE the input data are to be scaled according to the value of Parameter MODE.
If it is FALSE, MODE is ignored, and the input data are displayed as is (i.e. the data
values are simply converted to integer type and used as indices into the colour table).
A value of zero refers to the first pen following the palette. A FALSE value is intended
to be used with data previously scaled by this or similar applications which have
already performed the required scaling (see Parameter OUT). It provides the quickest
method of image display within this application. [TRUE]

SIGMAS(2) = _REAL (Read)
The standard-deviation bounds that define the scaling limits. To obtain values either
side of the mean both a negative and a positive value are required. Thus [-2,3] would
scale between the mean minus two and the mean plus three standard deviations.
[3,-2] would give the negative of that.

SQRPIX = _LOGICAL (Read)
If TRUE, then the default value for YMAGN equals the value supplied for XMAGN,
resulting in all pixels being displayed as squares on the display surface. If a FALSE
value is supplied for SQRPIX, then the default value for YMAGN is chosen to retain
the pixels original aspect ratio at the centre of the image. [current value]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the annotated
axes (see Parameter AXES).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

SUN/95.45 —Specifications of KAPPA applications 292 DISPLAY

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of two strings should be supplied specifying the two axes which
are to be used when annotating the image, and when supplying a value for Parameter
CENTRE. Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are used. [!]

XMAGN = _REAL (Read)
The horizontal magnification for the image. The default value of 1.0 corresponds to
’normal’ magnification in which the the image fills the available space in at least one
dimension. A value larger than 1.0 makes each data pixel wider. If this results in the
image being wider than the available space then the image will be clipped to display
fewer pixels. See also Parameters YMAGN, CENTRE, SQRPIX, and FILL. [1.0]

YMAGN = _REAL (Read)
The vertical magnification for the image. A value of 1.0 corresponds to ’normal’
magnification in which the image fills the available space in at least one dimension.
A value larger than 1.0 makes each data pixel taller. If this results in the image being
taller than the available space then the image will be clipped to display fewer pixels.
See also Parameters XMAGN, CENTRE, and FILL. If a null ((!) value is supplied, the
default value used depends on Parameter SQRPIX. If SQRPIX is TRUE, the default
YMAGN value used is the value supplied for XMAGN. This will result in each pixel
occupying a square area on the screen. If SQRPIX is FALSE, then the default value
for YMAGN is chosen so that each pixel occupies a rectangular area on the screen
matching the pixel aspect ratio at the centre of the image, determined within the
current WCS Frame. [!]

Results Parameters:

SCAHIGH = _DOUBLE (Write)
On exit, this holds the data value which corresponds to the maximum colour index in the
displayed image. In Flash mode or when there is no scaling the highest colour index is
returned.

SCALOW = _DOUBLE (Write)
The data value scaled to the minimum colour index for display. In Flash mode or when
there is no scaling the lowest colour index is used. The current display linear-scaling
minimum is set to this value.

Examples:
display ngc6872 mode=p percentiles=[10,90] noaxes

293 DISPLAY SUN/95.45 —Specifications of KAPPA applications

Displays the NDF called ngc6872 on the current graphics device device. The
scaling is between the 10 and 90 per cent percentiles of the image. No annotated axes are
produced.

display vv256 mode=flash noaxes border borstyle="colour=blue,style=2"

Displays the NDF called vv256 on the current graphics device device. There is
no scaling of the data; instead the modulus of each pixel with respect to the number of
colour-table indices is shown. No annotated axes are drawn, but a blue border is drawn
around the image using PGPLOT line style number 2 (i.e. dashed lines).

display mode=fa axes style="^sty,grid=1" margin=0.2 clear out=video \

Displays the current NDF DATA component with annotated axes after clearing
the current picture on the current graphics device device. The appearance of the axes is
specified in the text file sty, but this is modified by setting the Grid attribute to 1 so that a
co-ordinate grid is drawn across the plot. The margins around the image containing the
axes are made slightly wider than normal. The scaling is between the −1 and +7 standard
deviations of the image around its mean. The scaled data are stored in an NDF called
video.

display kn26 axes key keypos=[0.0,-1.0] keystyle=^key.sty \

Displays the NDF called kn26 using the current scaling, surrounded by axes. It
adds a colour-table key to the right that abuts the data picture and is aligned vertically
with the image. The plot attributes set in the text file key.sty controls the appearance of
the key.

display video noscale \

Displays the DATA component of the NDF called video (created in the previous
example) without scaling within the current picture on the current graphics device.

display in=cgs4a comp=v mode=sc low=1 high=5.2 device=xwindows

Displays the VARIANCE component of NDF cgs4a on the xwindows device,
scaling between 1 and 5.2.

display mydata centre="12:23:34 -22:12:23" xmagn=2 badcol="red" \

Displays the NDF called mydata centred on the position RA=12:23:34, DEC=-
22:12:23. This assumes that the current co-ordinate Frame in the NDF is an equatorial
(RA/DEC) Frame. The image is displayed with a magnification of 2 so that each data pixel
appears twice as large (on each axis) as normal. Fewer data pixels may be displayed to
ensure the image fits within the available space in the current picture. The current scaling
is used, and bad pixels are shown in red.

SUN/95.45 —Specifications of KAPPA applications 294 DISPLAY

display ngc6872 mode=ra device=lj250 lut=pizza

Displays the NDF called ngc6872 on the LJ250 device. The lookup table in the
NDF called pizza is mapped on the LJ250’s colour table. The scaling is between the
minimum and maximum of the image.

Notes:

• For large images the resolution of the graphics device may allow only a fraction of
the detail in the data to be plotted. Therefore, large images will be compressed by
block averaging when this can be done without loss of resolution in the displayed
image. This saves time scaling the data and transmitting them to the graphics device.
Note that the default values for Parameters LOW and HIGH are the minimum and
maximum values in the compressed floating-point data.

• If no Title is specified via the STYLE parameter, then the TITLE component in the
NDF is used as the default title for the annotated axes. Should the NDF not have
a TITLE component, then the default title is instead taken from current co-ordinate
Frame in the NDF, unless this attribute has not been set explicitly, whereupon the
name of the NDF is used as the default title.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, the image area, and the
border; if there is a key, a KEY picture encompassing the key and its annotations;
and a DATA picture containing just the image area. Note, the FRAME picture is only
created if annotated axes or a border have been drawn, or if non-zero margins were
specified using Parameter MARGIN. The world co-ordinates in the DATA picture
will be pixel co-ordinates. A reference to the supplied NDF, together with a copy of
the WCS information in the NDF are stored in the DATA picture. On exit the current
database picture for the chosen device reverts to the input picture.

• The data type of the output NDF depends on the number of colour indices: _UBYTE
for no more than 256, _UWORD for 257 to 65535, and _INTEGER otherwise. The
output NDF will not contain any extensions, UNITS, QUALITY, and VARIANCE; but
LABEL, TITLE, WCS and AXIS information are propagated from the input NDF. The
output NDF does not become the new current data array. It is a Simple NDF (because
the bad-pixel flag is set to false in order to access the maximum colour index, and to
handle sections), therefore only NDF-compliant applications can process it.

Related Applications :

KAPPA: WCSFRAME, PICDEF, LUTVIEW; FIGARO: IGREY, IMAGE, MOVIE.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, WCS, and UNITS components of the input NDF.

• Processing of bad pixels and automatic quality masking are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IGREY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IMAGE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MOVIE

295 DISPLAY SUN/95.45 —Specifications of KAPPA applications

• This application will handle data in all numeric types, though type conversion to
integer will occur for unsigned byte and word images. However, when there is no
scaling only integer data will not be type converted, but this is not expensive for the
expected byte-type data.

SUN/95.45 —Specifications of KAPPA applications 296 DIV

DIV
Divides one NDF data structure by another

Description:
The routine divides one NDF data structure by another pixel-by-pixel to produce a new
NDF.

Usage:
div in1 in2 out

Parameters:

IN1 = NDF (Read)
First NDF, to be divided by the second NDF.

IN2 = NDF (Read)
Second NDF, to be divided into the first NDF.

OUT = NDF (Write)
Output NDF to contain the ratio of the two input NDFs.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN1 to be used instead. [!]

Examples:
div a b c

This divides the NDF called a by the NDF called b, to make the NDF called c.
NDF c inherits its title from a.

div out=c in1=a in2=b title="Normalised data"

This divides the NDF called a by the NDF called b, to make the NDF called c.
NDF c has the title "Normalised data".

Notes:

If the two input NDFs have different pixel-index bounds, then they will be trimmed to
match before being divided. An error will result if they have no pixels in common.

Related Applications :

KAPPA: ADD, CADD, CDIV, CMULT, CSUB, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

297 DIV SUN/95.45 —Specifications of KAPPA applications

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Calculations will be performed
using either real or double precision arithmetic, whichever is more appropriate. If
the input NDF structures contain values with other data types, then conversion will
be performed as necessary.

• Huge NDFs are supported.

SUN/95.45 —Specifications of KAPPA applications 298 DRAWNORTH

DRAWNORTH
Draws arrows parallel to the axes

Description:
This application draws a pair of arrows on top of a previously displayed DATA pic-
ture which indicate the directions of the labelled axes in the underlying picture, at the
position specified by Parameter ORIGIN. For instance, if the underlying picture has axes
labelled with celestial co-ordinates, then the arrows will by default indicate the directions
of north and east. The appearance of the arrows, including the labels attached to each
arrow, may be controlled using the STYLE parameter. The picture area behind the arrows
may optionally be cleared before drawing the arrows (see Parameter BLANK).

Usage:
drawnorth [device] [length] [origin]

Parameters:

ARROW = _REAL (Read)
The size of the arrow heads are specified by this parameter. Simple lines can be drawn
by setting the arrow head size to zero. The value should be expressed as a fraction of
the largest dimension of the underlying DATA picture. [current value]

BLANK = _LOGICAL (Read)
If TRUE, then the area behind the arrows is blanked before the arrows are drawn.
This is done by drawing a rectangle filled with the current background colour of
the selected graphics device. The size of the blanked area can be controlled using
Parameter BLANKSIZE. [FALSE]

BLANKSIZE = _REAL (Read)
Specifies the size of the blanked area (see Parameter BLANK). A value of 1.0 results
in the blanked area being just large enough to contain the drawn arrows and labels.
Values larger than 1.0 introduce a blank margin around the drawn arrows and labels.
This parameter also specifies the size of the picture stored in the graphics database.
[1.05]

DEVICE = DEVICE (Read)
The plotting device. [Current graphics device]

EPOCH = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAME) for
a celestial co-ordinate system, then an epoch value is needed to qualify it. This is the
epoch at which the supplied sky positions were determined. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

FRAME = LITERAL (Read)
Specifies the co-ordinate Frame to which the drawn arrows refer. If a null (!) value is
supplied, the arrows are drawn parallel to the two axes which were used to annotate
the previously displayed picture. If the arrows are required to be parallel to the axes

299 DRAWNORTH SUN/95.45 —Specifications of KAPPA applications

of some other Frame, the required Frame should be specified using this parameter.
The string supplied for FRAME can be one of the following options.

• A domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).
An error will be reported if a co-ordinate Frame is requested which is not available in
the previously displayed picture. If the selected Frame has more than two axes, the
Parameter USEAXIS will determine the two axes which are to be used. [!]

LENGTH(2) = _REAL (Read)
The lengths of the arrows, expressed as fractions of the largest dimension of the
underlying DATA picture. If only one value is supplied, both arrows will be drawn
with the given length. One of the supplied values can be set to zero if only a single
arrow is required. [current value]

OFRAME = LITERAL (Read)
Specifies the co-ordinate Frame in which the position of the arrows will be supplied
(see Parameter ORIGIN). The following Frames will always be available.

• "GRAPHICS" — gives positions in millimetres from the bottom-left corner of the
plotting surface.
• "BASEPIC" — gives positions in a normalised system in which the bottom-left

corner of the plotting surface is (0, 0) and the shortest dimension of the plotting
surface has length 1.0. The scales on the two axes are equal.
• "CURPIC" — gives positions in a normalised system in which the bottom-left

corner of the underlying DATA picture is (0, 0) and the shortest dimension of the
picture has length 1.0. The scales on the two axes are equal.
• "NDC" — gives positions in a normalised system in which the bottom-left corner

of the plotting surface is (0, 0) and the top-right corner is (1, 1).
• "CURNDC" — gives positions in a normalised system in which the bottom-left

corner of the underlying DATA picture is (0, 0) and the top-right corner is (1, 1).
Additional Frames will be available, describing the co-ordinates systems known to
the data displayed within the underlying picture. These could include PIXEL, AXIS,
SKY, for instance, but the exact list will depend on the displayed data. If a null value
is supplied, the ORIGIN position should be supplied in the Frame used to annotate
the underlying picture (supplying a colon ":" will display details of this co-ordinate
Frame). ["CURNDC"]

ORIGIN = LITERAL (Read)
The co-ordinates at which to place the origin of the arrows, in the Frame specified
by Parameter OFRAME. If a null (!) value is supplied, OFRAME is ignored and the
arrows are situated at a default position near one of the corners, or at the centre. The
supplied position can be anywhere within the current picture. An error is reported if
the arrows and labels cannot be drawn at any of these positions. [!]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the vectors and
annotated axes.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 300 DRAWNORTH

A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the arrows is controlled by the attributes Colour(Axes), Width(Axes),
etc. (the synonym Arrows may be used in place of Axes).
The text of the label to draw against each arrow is specified by the Symbol(1) and
Symbol(2) attributes. These default to the corresponding attributes of the underly-
ing picture. The appearance of these labels can be controlled using the attributes
Font(TextLab), Size(TextLab), etc. The gap between the end of the arrow and the
corresponding label can be controlled using attribute TextLabGap. The drawing of
labels can be suppressed using attribute TextLab. [current value]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the co-ordinate Frame selected using Parameter FRAME
has more than two axes. A group of two strings should be supplied specifying the
two axes to which the two drawn arrows should refer. Each axis can be specified
using one of the following options.

• An integer index of an axis within the current Frame of the input NDF (in the
range 1 to the number of axes in the current Frame).
• An axis Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the first two axes of the Frame are used. [!]

Examples:
drawnorth

Draws a pair of arrows indicating the directions of the axes of the previously
displayed image, contour map, etc. The arrows are drawn at the top left of the picture.
The current values for all other parameters are used.

301 DRAWNORTH SUN/95.45 —Specifications of KAPPA applications

drawnorth blank origin="0.5,0.5" style=’TextBackColour=clear’

As above, but blanks out the picture area behind the arrows, and positions them
in the middle of the underlying DATA picture. In addition, the text labels are drawn with
a clear background so that the underlying image can seen around the text.

drawnorth blank blanksize=1.2 oframe=pixel origin="150,250"

As above, but positions the arrows at pixel co-ordinates (150,250), and blanks
out a larger area around the arrows.

drawnorth blank oframe=! origin="10:12:34,-12:23:37"

As above, but positions the arrows at RA=10:12:34 and DEC=-12:23:37 (this as-
sumes the underlying picture was annotated with RA and DEC axes).

drawnorth length=[0.1,0] style=’colour(arrows)=red’

Draws the axis-1 arrow with length equal to 0.1 of the longest dimension of the
underlying picture, but does not draw the axis-2 arrow. Both arrows are drawn red.

drawnorth style=’textlab=0’

Draws both arrows but does not draw any text labels.

drawnorth style="’Size(TextLab1)=2,Symbol(1)=A,Symbol(2)=B’"

Draws arrows with labels "A" and "B", using characters of twice the default size
for the label for the first axis.

Notes:

• An error is reported if there is no existing DATA picture within the current picture on
the selected graphics device.

• The application stores a picture in the graphics database with name KEY which
contains the two arrows. On exit the current database picture for the chosen device
reverts to the input picture.

SUN/95.45 —Specifications of KAPPA applications 302 DRAWSIG

DRAWSIG
Draws ±n standard-deviation lines on a line plot

Description:
This routine draws straight lines on an existing plot stored in the graphics database, such
as produced by LINPLOT or HISTOGRAM. The lines are located at arbitrary multiples of
the standard deviation (NSIGMA) either side of the mean of a given dataset. The default
dataset is the one used to draw the existing plot. You can plot the lines horizontally or
vertically as appropriate. The lines extend the full width or height of the plot’s data area.
Up to five different multiples of the standard deviation may be presented in this fashion.
Each line can be drawn with a different style (see Parameter STYLE).

The application also computes statistics for those array values that lie between each pair
of plotted lines. In other words it finds the statistics between clipping limits defined by
each 2∗NSIGMA range centred on the unclipped mean.

The task tabulates NSIGMA, the mean, the standard deviation, and the error in the mean
after the application of each pair of clipping limits. For comparison purposes the first
line of the table presents these values without clipping. The table is written at the normal
reporting level.

Usage:
drawsig ndf nsigma [axis] [comp]

Parameters:

AXIS = LITERAL (Read)
The orientation of the lines, or put another way, the axis which represents data value.
Thus the allowed values are "Horizontal", "Vertical", "X", or "Y". "Horizontal"
is equivalent to "Y" and "Vertical" is a synonym for "X". On LINPLOT output
AXIS would be "Y", but on a plot from HISTOGRAM it would be "X". The suggested
default is the current value. ["Y"]

COMP = LITERAL (Read)
The name of the NDF array component from which to derive the mean and standard
deviation used to draw the lines: "Data", "Error", "Quality" or "Variance" (where
"Error" is the alternative to "Variance" and causes the square root of the variance
values to be taken before computing the statistics). If "Quality" is specified, then the
quality values are treated as numerical values (in the range 0 to 255). ["Data"]

DEVICE = DEVICE (Read)
The graphics device to draw the sigma lines on. [Current graphics device]

NDF = NDF (Read)
The NDF structure containing the data array whose error limits are to be plotted.
Usually this parameter is not defined thereby causing the statistics to be derived from
the dataset used to draw the plot. If, however, you had plotted a section of a dataset
but wanted to plot the statistics from the whole dataset, you would specify the full
dataset with Parameter NDF. [The dataset used to create the existing plot]

303 DRAWSIG SUN/95.45 —Specifications of KAPPA applications

NSIGMA() = _REAL (Read)
Number of standard deviations about the mean at which the lines should be drawn.
The null value or 0.0 causes a line to be drawn at the mean value.

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the lines.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The attributes Colour(Curves), Width(Curves), etc., can be used to specify the style for
the lines (Lines is recognised as a synonym for Curves). These values apply to all lines
unless subsequent attributes override them. Attributes for individual clipping levels
can be given by replacing Curves above by a string of the form "Nsig<i>" where
"<i>" is an integer index into the list of clipping levels supplied for Parameter
NSIGMA. Thus, "Colour(Nsig1)" will set the colour for the lines associated with the
first clipping level, etc. The attribute settings can be restricted to one of the two lines
by appending either a "+" or a "-" to the "Nsig<i>" string. Thus, "Width(Nsig2-)"
sets the line width for the lower of the two lines associated with the second clipping
level, and "Width(Nsig2+)" sets the width for the upper of the two lines. [current
value]

SUN/95.45 —Specifications of KAPPA applications 304 DRAWSIG

Examples:
drawsig nsigma=3 style=’style=1’

This draws solid horizontal lines on the last DATA picture on the current graph-
ics device located at plus and minus 3 standard deviations about the mean. The statistics
come from the data array used to draw the DATA picture.

drawsig phot 2.5

This draws horizontal plus and minus 2.5 standard-deviation lines about the
mean for the data in the NDF called phot on the default graphics device.

drawsig phot 2.5 style=’"colour(nsig1-)=red,colour(nsig1+)=green"’

As above, but the lower line is drawn in red and the upper line is drawn in
green.

drawsig cluster [2,3] X Error

This draws vertical lines at plus and minus 2 and 3 standard deviations about
the mean for the error data in the NDF called cluster on the default graphics device.

drawsig device=xwindows phot(20:119) 3 style="’colour=red,style=4’"

This draws red dotted horizontal lines on the xwindows device at ±3 standard
deviations using the 100 pixels in NDF phot(20:119).

Notes:

There must be an existing DATA picture stored within the graphics database for the chosen
device. Lines will only be plotted within this picture.

Related Applications :

KAPPA: HISTOGRAM, LINPLOT, MLINPLOT, STATS.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, and QUALITY, components
of the NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. The statistics are calculated
using double-precision floating point.

• Any number of NDF dimensions is supported.

305 ELPROF SUN/95.45 —Specifications of KAPPA applications

ELPROF
Creates a radial or azimuthal profile of a two-dimensional image

Description:
This application will bin the input image into elliptical annuli, or into a ‘fan’ of adjacent
sectors, centred on a specified position. The typical data values in each bin are found (see
Parameter ESTIMATOR), and stored in a one-dimensional NDF which can be examined
using LINPLOT, LOOK, etc. A two-dimensional mask image can optionally be produced
indicating which bin each input pixel was placed in.

The area of the input image which is to be binned is the annulus enclosed between the
two concentric ellipses defined by Parameters RATIO, ANGMAJ, RMIN, and RMAX. The
binned area can be restricted to an azimuthal section of this annulus using Parameter
ANGLIM. Input data outside the area selected by these parameters is ignored. The selected
area can be binned in two ways, specified by Parameter RADIAL.

• If radial binning is selected (the default), then each bin is an elliptical annulus con-
centric with the ellipses bounding the binned area. The number of bins is specified
by Parameter NBIN and the radial thickness of each bin is specified by WIDTH.

• If azimuthal binning is selected, then each bin is a sector (i.e. a wedge-shape), with its
vertex given by Parameters XC and YC, and its opening angle given by Parameter
WIDTH. The number of bins is specified by NBIN.

Usage:
elprof in out nbin xc yc

Parameters:

ANGLIM(2) = _REAL (Read)
Defines the wedge-shaped sector within which binning is to be performed. The first
value should be the azimuthal angle of the clockwise boundary of the sector, and the
second should be the azimuthal angle of the anti-clockwise boundary. The angles
are measured in degrees from the x-axis, and rotation from the x-axis to the y-axis
is positive. If only a single value is supplied, or if both values are equal, the sector
starts at the given angle and extends for 360 degrees. [0.0]

ANGMAJ = _REAL (Read)
The angle between the x-axis and the major axis of the ellipse, in degrees. Rotation
from the x-axis to the y-axis is positive. [0.0]

ESTIMATOR = LITERAL (Read)
The method to use for estimating the output pixel values. It can be either "Mean"
or "Weighted Mean". If the weighted mean option is selected but no variances are
available in the input data, the unweighted mean will be used instead. ["Mean"]

IN = NDF (Read)
The input NDF containing the two-dimensional image from which a profile is to be
generated.

SUN/95.45 —Specifications of KAPPA applications 306 ELPROF

MASK = NDF (Write)
An output NDF of the same shape and size as the input NDF indicating the bin into
which each input pixel was placed. For radial profiles, the bins are identified by a
mask value equal to the radius (in pixels) measured on the major axis, at the centre of
the annular bin. For azimuthal profiles, the bins are identified by a mask value equal
to the angle from the x-axis to the centre of the sector-shaped bin (in degrees). If a
null value is supplied, then no mask NDF is produced. [!]

MTITLE = LITERAL (Read)
A title for the mask NDF. If a null value is given, the title is propagated from the input
NDF. This is only prompted for if MASK is given a non-null value. ["Mask created
by KAPPA - Elprof"]

NBIN = _INTEGER (Read)
The number of radial or azimuthal bins required.

OUT = NDF (Write)
The output one-dimensional NDF containing the required profile. For radial profiles,
it has associated axis information describing the radius, in pixels, at the centre of
each annular bin (the radius is measured on the major axis). For azimuthal profiles,
the axis information describes the azimuthal angle, in degrees, at the centre of each
sector-shaped bin. It will contain associated variance information if the input NDF
has associated variance information.

RADIAL = _LOGICAL (Read)
Specifies the sort of profile required. If RADIAL is TRUE, then a radial profile is
produced in which each bin is an elliptical annulus. Otherwise, an azimuthal profile
is produced in which each bin is a wedge-shaped sector. [TRUE]

RATIO = _REAL (Read)
The ratio of the length of the minor axis of the ellipse to the length of the major axis.
It must be in the range 0.0 to 1.0. [1.0]

RMAX = _REAL (Read)
The radius in pixels, measured on the major axis, at the outer edge of the elliptical
annulus to be binned. If a null value (!) is supplied the value used is the distance
from the ellipse centre (specified by XC and YC) to the furthest corner of the image.
This will cause the entire image to fall within the outer edge of the binning area. [!]

RMIN = _REAL (Read)
The radius in pixels, measured on the major axis, at the inner edge of the elliptical
region to be binned. [0.0]

TITLE = LITERAL (Read)
A title for the output profile NDF. If a null value is supplied the title is propagated
from the input NDF. ["KAPPA - Elprof"]

WIDTH = _REAL (Read)
The width of each bin. If a radial profile is being created (see Parameter RADIAL) this
is the width of each annulus in pixels (measured on the major axis). If an azimuthal
profile is being created, it is the opening angle of each sector, in degrees. If a null
(!) value is supplied, the value used is chosen so that there are no gaps between
adjacent bins. Smaller values will result in gaps appearing between adjacent bins.
The supplied value must be small enough to ensure that adjacent bins do not overlap.
The supplied value must be at least 1.0. [!]

307 ELPROF SUN/95.45 —Specifications of KAPPA applications

XC = _REAL (Read)
The x pixel co-ordinate of the centre of the ellipse, and the vertex of the sectors.

YC = _REAL (Read)
The y pixel co-ordinate of the centre of the ellipse, and the vertex of the sectors.

Examples:
elprof galaxy galprof 20 113 210 angmaj=49 rmin=10 rmax=210 ratio=0.5

This example will create a one-dimensional NDF called galprof containing a ra-
dial profile of the two-dimensional NDF called galaxy. The profile will contain 20 bins and
it will be centred on the pixel co-ordinates (113,210). Each bin will be an annulus of an
ellipse with axis ratio of 0.5 and inclination of 49 degrees to the x-axis. The image will be
binned between radii of 10 pixels, and 210 pixels (measured on the major axis), and there
will be no gaps between adjacent bins (i.e. each bin will have a width on the major axis of
about 10 pixels).

elprof galaxy galprof 10 113 210 radial=f anglim=20 rmin=50 rmax=60

This example also creates a one-dimensional NDF called galprof, this time con-
taining an azimuthal profile of the two-dimensional NDF called "galaxy", containing 10
bins. Each bin will be a wedge-shaped sector with vertex at pixel co-ordinates (113,210).
The clockwise edge of the first bin will be at an angle of 20 degrees to the x-axis, and each
bin will have a width (opening angle) of 36 degrees (so that 360 degrees are covered in
total). Only the section of each sector bounded by radii of 50 and 60 pixels is included in
the profile. In this case the default value of 1.0 is accepted for Parameter RATIO and so
the bins will form a circular annulus of width 10 pixels.

Related Applications :

ESP: ELLFOU, ELLPRO, SECTOR.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, TITLE, UNITS, WCS (in
radial mode only) and HISTORY components of the input NDF to the output profile
NDF. WCS information is also propagated to the output mask NDF.

• WCS information is currently lost by this application.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_ELLFOU
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_ELLPRO
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_SECTOR

SUN/95.45 —Specifications of KAPPA applications 308 ERASE

ERASE
Erases an HDS object

Description:
This routine erases a specified HDS object or container file. If the object is a structure, then
all the structure’s components (and sub-components, etc.) are also erased. If a slice or cell
of an array is specified, then the entire array is erased.

Usage:
erase object

Parameters:
OBJECT = UNIV (Write)

The HDS object or container file to be erased.

OK = _LOGICAL (Read)
This parameter is used to seek confirmation before an object is erased. If a TRUE value
is given, then the HDS object will be erased. If a FALSE value is given, then the object
will not be erased and a message will be issued to this effect.

REPORT = _LOGICAL (Read)
This parameter controls what happens if the named OBJECT does not exist. If TRUE,
an error is reported. Otherwise no error is reported. [TRUE]

Examples:
erase horse

This erases the HDS container file called horse.sdf.

erase fig123.axis

This erases the AXIS component of the HDS file called fig123.sdf. If AXIS is a
structure, all its components are erased too.

erase fig123.axis(1).label

This erases the LABEL component within the first element of the AXIS structure of the
HDS file called fig123.sdf.

erase $AGI_USER/agi_restar.agi_3200_1

This erases the AGIDEV_3200_1 structure of the HDS file called
$AGI_USER/agi_restar.sdf.

Related Applications :

FIGARO: CREOBJ, DELOBJ, RENOBJ.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CREOBJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_DELOBJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RENOBJ

309 ERRCLIP SUN/95.45 —Specifications of KAPPA applications

ERRCLIP
Removes pixels with large errors from an NDF

Description:
This application produces a copy of the input NDF in which pixels with errors greater
than a specified limit are set invalid in both DATA and VARIANCE components. The
error limit may be specified as the maximum acceptable standard deviation (or variance),
or the minimum acceptable signal-to-noise ratio.

Usage:
errclip in out limit [mode]

Parameters:

IN = NDF (Read)
The input NDF. An error is reported if it contains no VARIANCE component.

LIMIT = _DOUBLE (Read)
Either the maximum acceptable standard deviation or variance value, or the mini-
mum acceptable signal-to-noise ratio (depending on the value given for MODE). It
must be positive.

MODE = LITERAL (Read)
Determines how the value supplied for LIMIT is to be interpreted: "Sigma" for a
standard deviation, "Variance" for variance, or "SNR" for minimum signal-to-noise
ratio. ["Sigma"]

OUT = NDF (Write)
The output NDF.

Examples:
errclip m51 m51_good 2.0

The NDF m51_good is created holding a copy of m51 in which all pixels with
standard deviation greater than 2 are set invalid.

errclip m51 m51_good 2.0 snr

The NDF m51_good is created holding a copy of m51 in which all pixels with a
signal-to-noise ratio less than 2 are set invalid.

errclip m51 m51_good mode=v limit=100

The NDF m51_good is created holding a copy of m51 in which all pixels with a
variance greater than 100 are set invalid.

Notes:

SUN/95.45 —Specifications of KAPPA applications 310 ERRCLIP

• The limit and the number of rejected pixels are reported.

• A pair of output data and variance values are set bad when either of the input data
or variances values is bad.

• For MODE="SNR" the comparison is with respect to the absolute data value.

Related Applications :

KAPPA: FFCLEAN, PASTE, SEGMENT, SETMAGIC, THRESH.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. The output NDF has the same
numeric type as the input NDF. However, all internal calculations are performed in
double precision.

311 EXCLUDEBAD SUN/95.45 —Specifications of KAPPA applications

EXCLUDEBAD
Excludes bad rows or columns from a two-dimensional NDF

Description:
This application produces a copy of a two-dimensional NDF , but excludes any rows that
contain too many bad aata values. Rows with higher pixel indices are shuffled down to
fill the gaps left by the omission of bad rows. Thus if any bad rows are found, the output
NDF will have fewer rows than the input NDF, but the order of the remaining rows will
be unchanged. The number of good pixels required in a row for the row to be retained is
specified by Parameter WLIM.

Bad columns may be omitted instead of bad rows (see Parameter ROWS).

Usage:
excludebad in out [rows] [wlim]

Parameters:

IN = NDF (Read)
The input two-dimensional NDF.

OUT = NDF (Write)
The output NDF.

ROWS = _LOGICAL (Read)
If TRUE, bad rows are excluded from the output NDF. If FALSE, bad columns are
excluded. [TRUE]

WLIM = _REAL (Read)
The minimum fraction of the pixels which must be good in order for a row to be
retained. A value of 1.0 results in rows being excluded if they contain one or more
bad values. A value of 0.0 results in rows being excluded only if they contain no
good values. [0.0]

Examples:
excludebad ifuframe goodonly false

Columns within NDF ifuframe that contain any good data are copied to NDF
goodonly.

Notes:

• The lower pixel bounds of the output will be the same as those of the input, but the
upper pixel bounds will be different if any bad rows or columns are excluded.

Related Applications :

KAPPA: CHPIX, FILLBAD, GLITCH, NOMAGIC, ZAPLIN; FIGARO: BCLEAN, CLEAN,
ISEDIT, REMBAD, TIPPEX.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_BCLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_REMBAD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

SUN/95.45 —Specifications of KAPPA applications 312 EXCLUDEBAD

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

313 EXP10 SUN/95.45 —Specifications of KAPPA applications

EXP10
Takes the base-10 exponential of an NDF data structure

Description:
This routine takes the base-10 exponential of each pixel of a NDF to produce a new NDF
data structure.

This command is a synonym for expon base=10D0.

Usage:
exp10 in out

Parameters:

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the exponential of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
exp10 a b

This takes exponentials to base ten of the pixels in the NDF called a, to make
the NDF called b. NDF b inherits its title from a.

exp10 title="Abell 4321" out=b in=a

This takes exponentials to base ten of the pixels in the NDF called a, to make
the NDF called b. NDF b has the title "Abell 4321".

Related Applications :

KAPPA: LOG10, LOGAR, LOGE, EXPE, EXPON, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

SUN/95.45 —Specifications of KAPPA applications 314 EXPE

EXPE
Takes the natural exponential of an NDF data structure

Description:
This routine takes the natural exponential of each pixel of a NDF to produce a new NDF
data structure.

This command is a synonym for expon base=natural.

Usage:
expe in out

Parameters:

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the exponential of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
loge a b

This takes the natural exponential of the pixels in the NDF called a, to make the
NDF called b. NDF b inherits its title from a.

loge title="Cas A" out=b in=a

This takes natural exponentials of the pixels in the NDF called a, to make the
NDF called b. NDF b has the title "Cas A".

Related Applications :

KAPPA: LOG10, LOGAR, LOGE, EXP10, EXPON, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

315 EXPON SUN/95.45 —Specifications of KAPPA applications

EXPON
Takes the exponential (specified base) of an NDF data structure

Description:
This routine takes the exponential to a specified base of each pixel of a NDF to produce a
new NDF data structure.

Usage:
expon in out base

Parameters:

BASE = LITERAL (Read)
The base of the exponential to be applied. A special value "Natural" gives natural
(base-e) exponentiation.

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the exponential of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
expon a b 10

This takes exponentials to base ten of the pixels in the NDF called a, to make
the NDF called b. NDF b inherits its title from a.

expon base=8 title="HD123456" out=b in=a

This takes expoentials to base eight of the pixels in the NDF called a, to make
the NDF called b. NDF b has the title "HD123456".

Related Applications :

KAPPA: LOG10, LOGAR, LOGE, EXP10, EXPE, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

SUN/95.45 —Specifications of KAPPA applications 316 FFCLEAN

FFCLEAN
Removes defects from a substantially flat one-, or two-, or

three-dimensional NDF

Description:
This application cleans a one- or two-dimensional NDF by removing defects smaller than
a specified size. In addition, three-dimensional NDFs can be cleaned by processing each
row or plane within it using the one- or two-dimensional algorithm (see Parameter AXES).

The defects are flagged with the bad value. The defects are found by looking for pixels
that deviate from the spectrum or image’s smoothed version by more than an arbitrary
number of standard deviations from the local mean, and that lie within a specified range
of values. Therefore, the data array must be substantially flat. The data variances provide
the local noise estimate for the threshold, but if these are not available a variance for the
whole of the data array is derived from the mean squared deviations of the original and
smoothed versions. The smoothed version of the data array is obtained by block averaging
over a rectangular box. An iterative process progressively removes the outliers from the
data array.

Usage:
ffclean in out clip box [thresh] [wlim]

Parameters:

AXES(2) = _INTEGER (Read)
The indices of up to two axes that span the rows or planes that are to be cleaned. If
only one value is supplied, then the NDF is processed as a set of one-dimensional
spectra parallel to the specified pixel axis. If two values are supplied, then the NDF
is processed as a set of two-dimensional images spanned by the given axes. Thus, a
two-dimensional NDF can be processed either as a single two-dimensional image
or as a set of one-dimensional spectra. Likewise, a three-dimensional NDF can be
processed either as a set of two-dimensional images or a set of one-dimensional
spectra. By default, a two-dimensional NDF is processed as a single two-dimensional
image, and a three-dimensional NDF is processed as a set of one-dimensional spectra
(the spectral axis is chosen by examining the WCS component—pixel-axis 1 is used if
the current WCS frame does not contain a spectral axis). []

BOX(2) = _INTEGER (Read)
The x and y sizes (in pixels) of the rectangular box to be applied to smooth the image.
If only a single value is given, then it will be duplicated so that a square filter is
used except where the image is one-dimensional for which the box size along the
insignificant dimension is set to 1. The values given will be rounded up to positive
odd integers if necessary.

CLIP() = _REAL (Read)
The number of standard deviations for the rejection threshold of each iteration. Pixels
that deviate from their counterpart in the smoothed image by more than CLIP times
the noise are made bad. The number of values given specifies the number of iterations.

317 FFCLEAN SUN/95.45 —Specifications of KAPPA applications

Values should lie in the range 0.5–100. Up to one hundred values may be given. [3.0,
3.0, 3.0]

GENVAR = _LOGICAL (Read)
If TRUE, the noise level implied by the deviations from the local mean over the
supplied box size are stored in the output VARIANCE component. This noise level
has a constant value over the whole NDF (or over each section of the NDF if the NDF
is being processed in sections—see Parameter AXES). This constant noise level is also
displayed on the screen if the current message-reporting level is at least NORMAL. If
GENVAR is FALSE, then the output variances will be copied from the input variances
(if the input NDF has no variances, then the output NDF will not have any variances
either).). [FALSE]

IN = NDF (Read)
The one- or two-dimensional NDF containing the input image to be cleaned.

OUT = NDF (Write)
The NDF to contain the cleaned image.

THRESH(2) = _DOUBLE (Read)
The range between which data values must lie if cleaning is to occur. Thus it is
possible to clean the background without removing the cores of images by a judicious
choice of these thresholds. If null, !, is given, then there is no limit on the data range.
[!]

TITLE = LITERAL (Read)
The title of the output NDF. A null (!) value means using the title of the input NDF.
[!]

WLIM = _REAL (Read)
If the input image contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the smoothing box before
a valid output pixel is generated. It can be used, for example, to prevent output
pixels from being generated in regions where there are relatively few good pixels to
contribute to the smoothed result.
By default, a null (!) value is used for WLIM, which causes the pattern of bad pixels
to be propagated from the input image to the output image unchanged. In this case,
smoothed output values are only calculated for those pixels which are not bad in the
input image.
If a numerical value is given for WLIM, then it specifies the minimum fraction of good
pixels which must be present in the smoothing box in order to generate a good output
pixel. If this specified minimum fraction of good input pixels is not present, then a
bad output pixel will result, otherwise a smoothed output value will be calculated.
The value of this parameter should lie between 0.0 and 1.0 (the actual number used
will be rounded up if necessary to correspond to at least one pixel). [!]

SUN/95.45 —Specifications of KAPPA applications 318 FFCLEAN

Results Parameters:

SIGMA = _DOUBLE (Write)
The estimation of the RMS noise per pixel of the output image.

Examples:
ffclean dirty clean \

The NDF called dirty is filtered such that pixels that deviate by more than three
standard deviations from the smoothed version of dirty are rejected. Three iterations are
performed. Each pixel in the smoothed image is the average of the neighbouring nine
pixels. The filtered NDF is called clean.

ffclean out=clean in=dirty thresh=[-100,200]

As above except only those pixels whose values lie between −100 and 200 can
be cleaned.

ffclean poxy dazed [2.5,2.8] [5,5]

The two-dimensional NDF called poxy is filtered such that pixels that deviate by
more than 2.5 then 2.8 standard deviations from the smoothed version of poxy are rejected.
The smoothing is an average of a 5-by-5-pixel neighbourhood. The filtered NDF is called
dazed.

Notes:

• There are different facts reported, their verbosity depending on the current message-
reporting level set by environment variable MSG_FILTER. When the filtering level is
at least as verbose as NORMAL, the application will report the intermediate results
after each iteration during processing. In addition, it will report the section of the
input NDF currently being processed (but only if the NDF is being processed in
sections—see Parameter AXES).

Related Applications :

KAPPA: CHPIX, FILLBAD, GLITCH, MEDIAN, MSTATS, ZAPLIN; FIGARO: BCLEAN,
COSREJ, CLEAN, ISEDIT, MEDFILT, MEDSKY, TIPPEX.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single- or double-precision floating point as appropriate.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_BCLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COSREJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDSKY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

319 FILLBAD SUN/95.45 —Specifications of KAPPA applications

FILLBAD
Removes regions of bad values from an NDF

Description:
This application replaces bad values in an NDF with a smooth function which matches the
surrounding data. It can fill arbitrarily shaped regions of bad values within n-dimensional
arrays.

It forms a smooth replacement function for the regions of bad values by forming successive
approximations to a solution of Laplace’s equation, with the surrounding valid data
providing the boundary conditions.

Usage:
fillbad in out [niter] [size]

Parameters:

BLOCK = _INTEGER (Read)
The maximum number of pixels along either dimension when the array is divided
into blocks for processing. It is ignored unless MEMORY=TRUE. This must be at least
256. [512]

IN = NDF (Read)
The NDF containing the input image with bad values.

MEMORY = _LOGICAL (Read)
If this is FALSE, the whole array is processed at the same time. If it is TRUE, the array is
divided into chunks whose maximum dimension along an axis is given by Parameter
BLOCK. [FALSE]

NITER = _INTEGER (Read)
The number of iterations of the relaxation algorithm. This value cannot be fewer than
two, since this is the minimum number required to ensure that all bad values are
assigned a replacement value. The more iterations used, the finer the detail in the
replacement function and the closer it will match the surrounding good data. [2]

OUT = NDF (Write)
The NDF to contain the image free of bad values.

SIZE() = _REAL (Read)
The initial scale lengths in pixels to be used in the first iteration, along each axis. If
fewer values are supplied than pixel axes in the NDF, the last value given is repeated
for the remaining axes. The size 0 means no fitting across a dimension. For instance,
[0,0,5] would be appropriate if the spectra along the third dimension of a cube
are independent, and the replacement values are to be derived only within each
spectrum.
For maximum efficiency, a scale length should normally have a value about half
the ‘size’ of the largest invalid region to be replaced. (See “Notes” section for more
details.) [5.0]

SUN/95.45 —Specifications of KAPPA applications 320 FILLBAD

TITLE = LITERAL (Read)
The title of the output NDF. A null (!) value means using the title of the input NDF.
[!]

VARIANCE = _LOGICAL (Read)
If VARIANCE is TRUE, variance information is to be propagated; any bad values
therein are filled. Also the variance is used to weight the calculation of the replace-
ment data values. If VARIANCE is FALSE, there will be no variance processing thus
requiring two less arrays in memory. This parameter is only accessed if the input
NDF contains a VARIANCE component. [TRUE]

Results Parameters:

CNGMAX = _DOUBLE (Write)
The maximum absolute change in output values which occurred in the final iteration.

CNGRMS = _DOUBLE (Write)
The root-mean-squared change in output values which occurred in the last iteration.

Examples:
fillbad aa bb

The NDF called aa has its bad pixels replaced by good values derived from the
surrounding good pixel values using two iterations of a relaxation algorithm. The initial
scale length is 5 pixels. The resultant NDF is called bb.

fillbad aa bb 6 20 title="Cleaned image"

As above except the initial scale length is 20 pixels, 5 iterations will be performed, and
the output title is "Cleaned image" instead of the title of NDF aa.

fillbad aa bb memory novariance

As in the first example except that processing is performed with blocks up to
512 by 512 pixels to reduce the memory requirements, and no variance information will be
used or propagated.

fillbad in=speccube out=speccube_fill size=[0,0,128] iter=5

Suppose NDF speccube is a spectral imaging cube with the spectral axis third.
This example replaces the bad pixels by valid values derived from the surrounding good
pixel values within each spectrm, using an initial scale length of 128 channels, iterating
five times. The filled NDF is called speccube_fill.

fillbad in=speccube out=speccube_fill size=[5,5,128] iter=5

As the previous example, but now the relaxation occurs along the spatial axes
too, initially with a scale length of five pixels.

321 FILLBAD SUN/95.45 —Specifications of KAPPA applications

Notes:

•
The algorithm is based on the relaxation method of repeatedly replacing each bad
pixel with the mean of its two nearest neighbours along each pixel axis. Such a
method converges to the required solution, but information about the good regions
only propagates at a rate of about one pixel per iteration into the bad regions, resulting
in slow convergence if large areas are to be filled.
This application speeds convergence to an acceptable function by forming the replace-
ment mean from all the pixels in the same axis (such as row or a column), using a
weight which decreases exponentially with distance and goes to zero after the first
good pixel is encountered in any direction. If there is variance information, this is
included in the weighting so as to give more weight to surrounding values with lower
variance. The scale length of the exponential weight is initially set large, to allow
rapid propagation of an approximate ‘smooth’ solution into the bad regions—an
initially acceptable solution is thus rapidly obtained (often in the first one or two
iterations). The scale length is subsequently reduced by a factor of 2 whenever the
maximum absolute change occurring in an iteration has decreased by a factor of 4
since the current scale length was first used. In this way, later iterations introduce
progressively finer detail into the solution. Since this fine detail occurs predominantly
close to the ‘crinkly’ edges of the bad regions, the slower propagation of the solution
in the later iterations is then less important.
When there is variance processing the output variance is reassigned if either the input
variance or data value was bad. Where the input value is good but its associated
variance is bad, the calculation proceeds as if the data value were bad, except that
only the variance is substituted in the output. The new variance is approximated as
twice the inverse of the sum of the weights.

• The price of the above efficiency means that considerable workspace is required,
typically two or three times the size of the input image, but even larger for the one
and two-byte integer types. If memory is at a premium, there is an option to process
in blocks (cf. Parameter MEMORY). However, this may not give as good results as
processing the array in full, especially when the bad-pixel regions span blocks.

• The value of the Parameter SIZE is not critical and the default value will normally
prove effective. It primarily affects the efficiency of the algorithm on various size
scales. If the smoothing scale is set to a large value, large scale variations in the
replacement function are rapidly found, while smaller scale variations may require
many iterations. Conversely, a small value will rapidly produce the small scale
variations but not the larger scale ones. The aim is to select an initial value SIZE such
that during the course of a few iterations, the range of size scales in the replacement
function are all used. In practice this means that the value of SIZE should be about
half the size of the largest scale variations expected. Unless the valid pixels are very
sparse, this is usually determined by the ‘size’ of the largest invalid region to be
replaced.

• An error results if the input NDF has no bad values to replace.

• The progress of the iterations is reported at the normal reporting level. The format of
the output is slightly different if the scale lengths vary with pixel axis; an extra axis

SUN/95.45 —Specifications of KAPPA applications 322 FILLBAD

column is included.

Timing :

The time taken increases in proportion to the value of NITER. Adjusting the SIZE parameter
to correspond to the largest regions of bad values will reduce the processing time. See the
“Notes” section.

Related Applications :

KAPPA: CHPIX, GLITCH, MEDIAN, ZAPLIN; FIGARO: BCLEAN, COSREJ, CLEAN,
ISEDIT, MEDFILT, MEDSKY, REMBAD, TIPPEX.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported. The output
bad-pixel flag is set to indicate no bad values in the data and variance arrays.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single- or double-precision floating point as appropriate.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_BCLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COSREJ
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDSKY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_REMBAD
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

323 FITSDIN SUN/95.45 —Specifications of KAPPA applications

FITSDIN
Reads a FITS disc file composed of simple, group or table objects

Description:
This application reads selected disc-FITS files. The files may be Basic (simple) FITS, and/or
have TABLE extensions (Harten et al. 1988).

The programme reads a simple or a random-groups-format FITS file (Wells et al. 1981;
Greisen & Harten 1981), and writes the data into an NDF , and the headers into the NDF’s
FITS extension. Table-format files (Grosbøl et al. 1988) are read, and the application creates
two files: a text formatted table/catalogue and a FACTS description file (as used by SCAR)
based upon the FITS header cards. Composite FITS files can be processed. You may specify
a list of files, including wildcards. A record of the FITS headers, and group parameters
(for a group-format file) can be stored in a text file.

There is an option to run in automatic mode, where the names of output NDF data struc-
tures are generated automatically, and you can decide whether or not format conversion
is to be applied to all files (rather than being prompted for each). This is very useful
if there is a large number of files to be processed. Even if you want unique file names,
format-conversion prompting may be switched off globally.

Usage:
fitsdin files out [auto] fmtcnv [logfile] dscftable=? table=?

Parameters:

AUTO = _LOGICAL (Read)
It is TRUE if automatic mode is required, where the name of each output NDF structure
or table file is to be generated by the application, and therefore not prompted; and
a global format-conversion switch may be set. In manual mode the FITS header is
reported, but not in automatic.
In automatic mode the application generates a filename beginning with the input
filename, less any extension. For example, if the input file was saturn.fits the
filename of the output NDF would be saturn.sdf, and an output table would be
saturn.dat with a description file dscfsaturn.dat. If there are sub-files (more than
one FITS object in the file) a suffix _<subfile> is appended. So if saturn.fits
comprised a simple file followed by a table, the table would be called SATURN_2.DAT
and the description file DSCFSATURN_2.DAT. For group format a suffix G<groupnumber>
is appended. Thus if saturn.fits is a group format file, the first NDF created would
be called saturn.sdf, the second would be saturnG2.sdf. [FALSE]

DSCFTABLE = FILENAME (Read)
Name of the text file to contain the FACTS descriptors, which defines the table’s
format for SCAR. Since SCAR is now deprecated, this parameter has little use, except
perhaps to give a summary of the format of the file specified by Parameter TABLE.
A null value (!) means that no description file will be created, so this is now the
recommended usage. If your FITS file comprises just tables, you should consider other

http://fits.gsfc.nasa.gov/

SUN/95.45 —Specifications of KAPPA applications 324 FITSDIN

tools such as the CURSA package, which has facilities for examining and processing
ASCII and binary tables in FITS files.
A suggested filename for the description file is reported immediately prior to prompt-
ing in manual mode. It is the name of the catalogue, as written in the FITS header,
with a "dscf" prefix.

ENCODINGS = LITERAL (Read)
Determines which FITS keywords should be used to define the world co-ordinate
systems to be stored in the NDF’s WCS component. The allowed values (case-
insensitive) are as follows.

• "FITS-IRAF" — This uses keywords CRVALi CRPIXi, CDi_j, and is the system
commonly used by IRAF. It is described in the document “World Coordinate
Systems Representations Within the FITS Format” by R.J. Hanisch and D.G. Wells,
1988, available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z.
• "FITS-WCS" — This is the FITS standard WCS encoding scheme described in the

paper “Representation of celestial coordinates in FITS”
(http://www.cv.nrao.edu/fits/documents/wcs/wcs.html).

It is very similar to FITS-IRAF but supports a wider range of projections and
co-ordinate systems. Once the standard has been agreed, this encoding should be
understood by any FITS-WCS compliant software and it is likely to be adopted
widely for FITS data in future.
• "FITS-PC" — This uses keywords CRVALi, CDELTi, CRPIXi, PCiiijjj, etc, as in

a previous (now superseded) draft of the above FITS world co-ordinate system
paper by E.W. Greisen and M. Calabretta.
• "FITS-AIPS" — This uses conventions described in the document “Non-linear

Coordinate Systems in AIPS” by Eric W. Greisen (revised 9th September, 1994),
available by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z. It is
currently employed by the AIPS data analysis facility, so its use will facilitate
data exchange with AIPS. This encoding uses CROTAi and CDELTi keywords to
describe axis rotation and scaling.
• "DSS" — This is the system used by the Digital Sky Survey, and uses keywords

AMDXn, AMDYn, PLTRAH, etc.
• "Native" — This is the native system used by the AST library (see SUN/210),

and provides a loss-free method for transferring WCS information between AST-
based application. It allows more complicated WCS information to be stored and
retrieved than any of the other encodings.

A comma-separated list of up to six values may be supplied, in which case the value
actually used is in the first in the list for which corresponding keywords can be found
in the FITS header.
A FITS header may contain keywords from more than one of these encodings, in
which case it is possible for the encodings to be inconsistent with each other. This
may happen for instance if an application modifies the keyword associated with one
encoding but fails to make equivalent modifications to the others. If a null parameter
value (!) is supplied for ENCODINGS, then an attempt is made to determine the
most reliable encoding to use as follows. If both native and non-native encodings are

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.cv.nrao.edu/fits/documents/wcs/wcs.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

325 FITSDIN SUN/95.45 —Specifications of KAPPA applications

available, then the first non-native encoding to be found which is inconsistent with
the native encoding is used. If all encodings are consistent, then the native encoding
is used (if present). [!]

FILES() = LITERAL (Read)
A list of (optionally wild-carded) file specifications which identify the disc-FITS files
to be processed. Up to ten values may be given, but only a single specification such
as "*.fits" is normally required. Be careful not to include non-FITS files in this list.

FMTCNV = _LOGICAL (Read)
This specifies whether or not format conversion will occur. If FALSE, the HDS type of
the data array in the NDF will be the equivalent of the FITS data format in the file (e.g.
BITPIX=16 creates a _WORD array). If TRUE, the data array in the current file, or all
files in automatic mode, will be converted from the FITS data type in the FITS file to
_REAL in the NDF. The conversion applies the values of the FITS keywords BSCALE
and BZERO to the FITS-file data to generate the ‘true’ data values. If BSCALE and
BZERO are not given in the FITS header, they are taken to be 1.0 and 0.0 respectively.
The suggested default is TRUE.

GLOCON = _LOGICAL (Read)
If FALSE a format-conversion query occurs for each FITS file. If TRUE, the value of
Parameter FMTCNV is obtained before any file numbers and will apply to all data
arrays. It is ignored in automatic mode—in effect it becomes TRUE. [FALSE]

LOGFILE = FILENAME (Read)
The file name of the text log of the FITS header cards. For group-format data the
group parameters are evaluated and appended to the full header. The log includes
the names of the output files used to store the data array or table. A null value (!)
means that no log file is produced. [!]

OUT = NDF (Write)
Output NDF structure holding the full contents of the FITS file. If the null value (!) is
given no NDF will be created. This offers an opportunity to review the descriptors
before deciding whether or not the data are to be extracted.

TABLE = FILENAME (Read)
Name of the text file to contain the table itself, read from the file. In manual mode,
the suggested default filename is the name of description file less the "dscf" prefix,
or if there is no description file or if the description file does not have the "dscf"
prefix, the suggested name reverts to the catalogue name in the FITS header.

Examples:
fitsdin files=*.fit auto nofmtcnv

This reads all the files with extension "fit" in the default directory. If the files
were sao.fit and moimp.fit and each contained just an image array, the output NDFs
will be sao and moimp respectively. The data will not have format conversion.

fitsdin files=ccd.ifits fmtcnv logfile=jkt.log

This reads the file ccd.ifits and processes all the FITS objects within it. Integer
data arrays are converted to real using the scale and zero found in the FITS header. A
record of the headers and the names of the output files are written to the text file jkt.log.

SUN/95.45 —Specifications of KAPPA applications 326 FITSDIN

fitsdin files=[*.*fits,*.mt] glocon fmtcnv

This reads the files *.*fits and *.mt and processes all the FITS objects within
them. Integer data arrays are converted to real using the scale and zero found in the FITS
header. Any IEEE-format data will not be converted although the global conversion
switch is on.

References :Wells, D.C., Greisen, E.W. & Harten, R.H. 1981, Astron. Astrophys. Suppl. Ser. 44, 363.
Greisen, E.W. & Harten, R.H. 1981, Astron. Astrophys. Suppl. Ser. 44, 371.
Grosbøl, P., Harten, R.H., Greisen, E.W & Wells, D.C. 1988 Astron. Astrophys. Suppl. Ser. 73,

359.
Harten, R.H., Grosbøl, P., Greisen, E.W & Wells, D.C. 1988 Astron. Astrophys. Suppl. Ser. 73,

365.

Related Applications :

KAPPA: FITSHEAD, FITSIMP, FITSIN, FITSLIST; CONVERT: FITS2NDF; CURSA; FI-
GARO: RDFITS.

Implementation Status:

• The application processes FITS files blocked at other than an integer multiple of 2880
bytes up to a maximum of 28800, provided it is a multiple of the number of bytes per
data value.
• For simple or group format FITS:

– IEEE floating point is supported.
– If BUNIT is present its value will appear as the NDF’s UNITS component.
– If OBJECT is present its value will appear as the NDF’s TITLE component.
– If the BLANK item is present in the header, undefined pixels are converted from

the BLANK value to Starlink-standard bad value during data conversion.
– An AXIS component will be stored in the NDF if the CRVALn keyword is present.

(n is the number of the dimension.) If the CRPIXn keyword is absent it defaults
to 1, and likewise for the CDELTn keyword. The value of CTYPEn is made the
label of the axis structure.

• For groups format, a new NDF is created for each data array. The name of the NDF
of the second and subsequent data arrays is generated by the application as the
<filename>G<number>, where <filename> is the name of the first NDF, you supply
or generated automatically, and <number> is the number of the group.
Each group NDF contains the full header in the FITS extension, appended by the
set of group parameters. The group parameters are evaluated using their scales and
offsets, and made to look like FITS cards, whose keywords are derived from the
values of PTYPEm in the main header. (m is the number of the group parameter.) The
same format is used in the log file.
• If there is no data array in the FITS file, i.e. the FITS file comprises header cards only,

then a dummy vector data array of dimension two is created to make the output a
valid NDF. This data array is undefined.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_FITS2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RDFITS

327 FITSEDIT SUN/95.45 —Specifications of KAPPA applications

FITSEDIT
Edits the FITS extension of an NDF

Description:
This procedure allows you to use your favourite editor to modify the FITS headers stored
in an NDF’s FITS extension. There is limited validation of the FITS headers after editing.
A FITS extension is created if the NDF does not already have one.

Usage:
fitsedit ndf

Parameters:

NDF = NDF (Read)
The name of the NDF whose FITS extension is to be edited.

Examples:
fitsedit m51b

This allows editing of the FITS headers in the NDF called m51b.

Notes:

• This uses the environmental variable, EDITOR, to select the editor. If this variable is
undefined vi is assumed.

• The script lists the headers to a temporary file; allows text editing; and then replaces
the former FITS extension with the modified version, performing some validation at
this stage.

Related Applications :

KAPPA: FITSMOD, FITSEXP, FITSHEAD, FITSIMP, FITSLIST; FIGARO: FITSKEYS.

http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITSKEYS

SUN/95.45 —Specifications of KAPPA applications 328 FITSEXIST

FITSEXIST
Inquires whether or not a keyword exists in a FITS extension

Description:
This application reports whether or not a keyword exists in the FITS extension of an
NDF file.

Usage:
fitsexist ndf keyword

Parameters:
KEYWORD = LITERAL (Read)

The name of the keyword whose existence in the FITS extension is to be tested.
A name may be compound to handle hierarchical keywords, and it has the form
keyword1.keyword2.keyword3 etc. The maximum number of keywords per FITS
card is 20. Each keyword must be no longer than 8 characters, and be a valid
FITS keyword comprising only alphanumeric characters, hyphen, and underscore.
Any lowercase letters are converted to uppercase and blanks are removed before
comparison with the existing keywords.
KEYWORD may have an occurrence specified in brackets [] following the name.
This enables testing for the existence of multiple occurrences. Note that it is not
normal to have multiple occurrences of a keyword in a FITS header, unless it is blank,
COMMENT or HISTORY. Any text between the brackets other than a positive integer
is interpreted as the first occurrence.
The suggested value is the current value.

NDF = NDF (Read)
The NDF to be tested for the presence of the FITS keyword.

Results Parameters:

EXISTS = _LOGICAL (Write)
The result of the final existence test.

Examples:
fitsexist abc bscale

This reports TRUE or FALSE depending on whether or not the FITS keyword BSCALE
exists in the FITS extension of the NDF called abc.

fitsexist ndf=abc keyword=date[2]

This reports TRUE or FALSE depending on whether or not the FITS there are at
least two occurrences of the keyword DATE.

Related Applications :

KAPPA: FITSEDIT, FITSHEAD, FITSLIST, FITSMOD, FITSVAL.

http://fits.gsfc.nasa.gov/

329 FITSEXP SUN/95.45 —Specifications of KAPPA applications

FITSEXP
Exports NDF-extension information into an NDF FITS extension

Description:
This application places the values of components of an NDF extension into the FITS
extension within the same NDF. This operation is needed if auxiliary data are to appear in
the header of a FITS file converted from the NDF. The list of extension components whose
values are to be copied, their corresponding FITS keyword names, optional FITS inline
comments, and the location of the new FITS header are specified in a keyword translation
table held in a separate text file.

Usage:
fitsexp ndf table

Parameters:
NDF = NDF (Read and Write)

The NDF in which the extension data are to be exported to the FITS extension.

TABLE = FILE (Read)
The text file containing the keyword translation table. The format of this file is
described under “Table Format”.

Examples:
fitsexp datafile fitstable.txt

This writes new FITS-extension elements for the NDF called datafile, creating
the FITS extension if it does not exist. The selection of auxiliary components to export to
the FITS extension, their keyword names, locations, and comments are under the control
of a keyword translation table held in the file fitstable.txt.

Notes:

• Requests to assign values to the following reserved keywords in the FITS extension
are ignored: SIMPLE, BITPIX, NAXIS, NAXISn, EXTEND, PCOUNT, GCOUNT,
XTENSION, BLOCKED, and END.

• Only scalar or one-element vector components may be transferred to the FITS exten-
sion.

• The data type of the component selects the type of the FITS value.

• If the destination keyword exists, the existing value and comment are replaced with
the new values.

• If an error is found within a line, processing continues to the next line and the error
reported.

• To be sure that the resultant FITS extension is what you desired, you should inspect it
using the command FITSLIST before exporting the data. If there is something wrong,
you may find it convenient to use command fitsedit to make minor corrections.

http://fits.gsfc.nasa.gov/

SUN/95.45 —Specifications of KAPPA applications 330 FITSEXP

Timing :

Approximately proportional to the number of FITS keywords to be translated.

Table Format :

The keyword translation table should be held in a text file, with one extension component
specified per line. Each line should contain two or three fields, separated by spaces and/or
tabs, as follows.

• Field 1: The name of the input extension component whose value is to be copied to
the FITS extension. For example, CCDPACK.FILTER would copy the value of the compo-
nent called FILTER in the extension called CCDPACK; and
IRAS90.ASTROMETRY.EQUINOX would copy the value of component EQUINOX in
the structure ASTROMETRY in the extension IRAS90. The extension may not be
FITS.

• Field 2: The name of the FITS keyword to which the value is to be copied. Hierarchical
keywords are not permissible. The keyword name may be followed by a further
keyword name in parentheses (and no spaces). This second keyword defines the card
before which the new keyword is to be placed. If this second keyword is not present
in the FITS extension or is not supplied, the new header card is placed at the end of the
existing cards, but immediately before any END card. For example, EQUINOX(EPOCH)
would write the keyword EQUINOX immediately before the existing card with
keyword EPOCH. FITS keywords are limited to 8 characters and may only comprise
uppercase alphabetic characters, digits, underscore, and hyphen. While it is possible
to have multiple occurrences of the same keyword in a FITS header, it is regarded as
bad practice. For this and efficiency reasons, this programme only looks for the first
appearance of a keyword when substituting the values, and so only the last value
inserted appears in the final FITS extension. (See "Implementation Status".)

• Field 3: The comment to appear in the FITS header card for the chosen keyword. This
field is optional. As much of the comment will appear in the header card as the value
permits up to a maximum of 47 characters.

Comments may appear at any point in the table and should begin with an exclamation
mark. The remainder of the line will then be ignored.

References :"A User’s Guide for the Flexible Image Transport System (FITS)", NASA/Science Office of
Science and Technology (1994).

Related Applications :

KAPPA: FITSEDIT, FITSHEAD, FITSLIST, FITSMOD; CONVERT: NDF2FITS.

Implementation Status:

• The replacements are made in blocks of 32 to reduce the number of time-consuming
shuffles of the FITS extension. Thus it is possible to locate a new keyword before
another keyword, provided the latter keyword appears in an earlier block, though
reliance on this feature is discouraged; instead run the application twice.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2FITS

331 FITSEXP SUN/95.45 —Specifications of KAPPA applications

• For each block the application inserts new cards or relocates old ones, marking each
with different tokens, and then sorts the FITS extension into the requested order,
removing the relocated cards. It then inserts the new values. If there are multiple
occurrences of a keyword, this process can leave behind cards having the token value
’{undefined}’.

SUN/95.45 —Specifications of KAPPA applications 332 FITSHEAD

FITSHEAD
Lists the headers of FITS files

Description:
This procedure lists to standard output the headers of the primary header and data unit,
and any extensions present that are contained within a set of input FITS files, or a range
of specified files on a tape.

Usage:
fitshead file [block] [start] [finish]

Parameters:

BLOCK = _INTEGER (Read)
The FITS blocking factor of the tape to list. This is the tape blocksize in bytes divided
by the FITS record length of 2880 bytes. BLOCK must be a positive integer, between 1
and 12, otherwise you will be prompted for a new value. Should the first argument
not be a tape device, this argument will be treated as a file name. [1]

FILE = FILENAME (Read)
A space-separated list of FITS files whose headers are to be listed, or the name of a
single no-rewind tape device. The list of files can include wildcard characters.

FINISH = _INTEGER (Read)
The last file on the tape to list. This defaults to the end of the tape. It must be a positive
integer and at least equal to the value of start, otherwise you will be prompted for
a new value. Should the first argument not be a tape device, this argument will be
treated as a file name. []

START = _INTEGER (Read)
The first file on the tape to list. This defaults to 1, i.e. the start of the tape. It must be a
positive integer, otherwise you will be prompted for a new value. Should the first
argument not be a tape device, this argument will be treated as a file name. [1]

Examples:
fitshead /dev/nrmt1

This lists the FITS headers for all the files of the tape mounted on device /dev/nrmt1.
The tape block size is 2880 bytes.

fitshead /dev/nrmt1 10 > tape.lis

This lists to file tape.lis the FITS headers for all the files of the tape mounted
on device /dev/nrmt1. The tape blocking factor is 10, the tape’s blocksize is 28800 bytes.

fitshead /dev/rmt/0n 2 3 5 >> tape.lis

This appends the FITS headers for files 3 to 5 of the tape mounted on device

http://fits.gsfc.nasa.gov/

333 FITSHEAD SUN/95.45 —Specifications of KAPPA applications

/dev/rmt/0n to the file tape.lis. The tape blocking factor is 2, i.e. the tape’s blocksize is
5760 bytes.

fitshead /dev/nrst2 prompt

This lists the FITS headers for files of the tape mounted on device /dev/nrst2.
The command prompts you for the file limits and tape blocking factor.

fitshead ∼/fits/∗.fit ∼/data/p?.fi∗ | lpr

This prints the FITS headers in the files ∼/fits/∗.fit and ∼/data/p?.fi∗.

Notes:

• Prompting is directed to the standard error, so that the listings may be redirected to a
file.

• If the blocking factor is unknown it is possible to obtain only a part of the headers and
some of the FITS data. Unless the FITS file is small, it is usually safe to set Parameter
BLOCK higher than its true value.

Related Applications :

KAPPA: FITSEDIT, FITSEXP, FITSIMP, FITSLIST; FIGARO: FITSKEYS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITSKEYS

SUN/95.45 —Specifications of KAPPA applications 334 FITSIMP

FITSIMP
Imports FITS information into an NDF extension

Description:
This application extracts the values of FITS keywords from a FITS extension in an
NDF and uses them to construct another NDF extension. The list of new extension
components required, their data types and the names of the FITS keywords from which to
derive their values are specified in a keyword translation table held in a separate text file.

Usage:
fitsimp ndf table xname xtype

Parameters:

NDF = NDF (Read and Write)
The NDF in which the new extension is to be created.

TABLE = FILENAME (Read)
The text file containing the keyword translation table. The format of this file is
described under “Table Format”.

XNAME = LITERAL (Read)
The name of the NDF extension which is to receive the values read from the FITS
extension . If this extension does not already exist, then it will be created. Otherwise,
it should be a scalar structure extension within which new components may be
created (existing components of the same name will be over-written). Extension
names may contain up to 15 alpha-numeric characters, beginning with an alphabetic
character.

XTYPE = LITERAL (Read)
The HDS data type of the output extension. This value will only be required if the
extension does not initially exist and must be created. New extensions will be created
as scalar structures.

Examples:
fitsimp datafile fitstable ccdinfo ccd_ext

Creates a new extension called CCDINFO (with a data type of CCD_EXT) in the
NDF structure called datafile. Keyword values are read from the NDF’s FITS extension
and written into the new extension as separate components under control of a keyword
translation table held in the file fitstable.

fitsimp ndf=n1429 table=std_table xname=std_extn

FITS keyword values are read from the FITS extension in the NDF structure
n1429 and written into the pre-existing extension STD_EXTN under control of the
translation table std_table. Components which already exist within the extension may
be over-written by this process.

http://fits.gsfc.nasa.gov/

335 FITSIMP SUN/95.45 —Specifications of KAPPA applications

Timing :

Approximately proportional to the number of FITS keywords to be translated.

Table Format :

The keyword translation table should be held in a text file, with one extension component
specified per line. Each line should contain 3 fields, separated by spaces and/or tabs, as
follows.

• Field 1: The name of the component in the output extension for which a value is to
be obtained.

• Field 2: The data type of the output component, to which the keyword value will be
converted (one of _INTEGER, _REAL, _DOUBLE, _LOGICAL or _CHAR).

• Field 3: The name of the FITS keyword from which the value is to be obtained.
Hierarchical keywords are permissible; the format is concatenated keywords joined
with full stops and no spaces, e.g. HIERARCH.ESO.NTT.HUMIDITY, ING.DETHEAD.

Comments may appear at any point in the table and should begin with an exclamation
mark. The remainder of the line will then be ignored.

Related Applications :

KAPPA: FITSHEAD, FITSLIST, FITSDIN, FITSIN; CONVERT: FITS2NDF; FIGARO: RD-
FITS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_FITS2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RDFITS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RDFITS

SUN/95.45 —Specifications of KAPPA applications 336 FITSIN

FITSIN
Reads a FITS tape composed of simple, group or table files

Description:
This application reads selected files from a FITS tape. The files may be Basic (simple) FITS,
and/or have TABLE extensions (Harten et al. 1988).

The programme reads a simple or a random-groups-format FITS file (Wells et al. 1981;
Greisen & Harten 1981), and writes the data into an NDF , and the headers into the NDF’s
FITS extension. Table-format files (Grosbøl et al. 1988) are read, and the application creates
two files: a text formatted table/catalogue and a FACTS description file (as used by SCAR)
based upon the FITS header cards. Composite FITS files can be processed. You may specify
a list of files, including wildcards. A record of the FITS headers, and group parameters
(for a group-format file) can be stored in a text file.

There is an option to run in automatic mode, where the names of output NDF data struc-
tures are generated automatically, and you can decide whether or not format conversion
is to be applied to all files (rather than being prompted for each). This is very useful
if there is a large number of files to be processed. Even if you want unique file names,
format-conversion prompting may be switched off globally.

Usage:
fitsin mt files out [auto] fmtcnv [logfile] more=? dscftable=? table=?

Parameters:

AUTO = _LOGICAL (Read)
It is TRUE if automatic mode is required, where the name of each output NDF structure
or table file is to be generated by the application, and therefore not prompted; and
a global format-conversion switch may be set. In manual mode the FITS header is
reported, but not in automatic.
For simple or group format FITS objects in automatic mode the application generates
a filename beginning with a defined prefix followed by the number of the file on
tape. For example, if the prefix was "XRAY" and the 25th file of the tape was being
processed, the filename of the NDF would be XRAY25.
For table-format FITS objects in the automatic mode the application generates a
filename beginning with a defined prefix followed by the number of the file on tape.
For example, if the prefix was "cat" and the 9th file of the tape was being processed,
the filename of the table and its associated FACTS description file would be cat9.dat
and dscfcat9.dat respectively. [FALSE]

DSCFTABLE = FILENAME (Read)
Name of the text file to contain the FACTS descriptors, which defines the table’s
format for SCAR. Since SCAR is now deprecated, this parameter has little use, except
perhaps to give a summary of the format of the file specified by Parameter TABLE.
A null value (!) means that no description file will be created, so this is now the
recommended usage. If your FITS file comprises just tables, you should consider other

http://fits.gsfc.nasa.gov/

337 FITSIN SUN/95.45 —Specifications of KAPPA applications

tools such as the CURSA package, which has facilities for examining and processing
ASCII and binary tables in FITS files.
A suggested filename for the description file is reported immediately prior to prompt-
ing in manual mode. It is the name of the catalogue, as written in the FITS header,
with a "dscf" prefix.

ENCODINGS = LITERAL (Read)
Determines which FITS keywords should be used to define the world co-ordinate
systems to be stored in the NDF’s WCS component. The allowed values (case-
insensitive) are as follows.

• "FITS-IRAF" — This uses keywords CRVALi CRPIXi, CDi_j, and is the system
commonly used by IRAF. It is described in the document “World Coordinate
Systems Representations Within the FITS Format” by R.J. Hanisch and D.G. Wells,
1988, available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z.
• "FITS-WCS" — This is the FITS standard WCS encoding scheme described in the

paper “Representation of celestial coordinates in FITS”
(http://www.cv.nrao.edu/fits/documents/wcs/wcs.html).

It is very similar to FITS-IRAF but supports a wider range of projections and
co-ordinate systems.
• "FITS-PC" — This uses keywords CRVALi, CDELTi, CRPIXi, PCiiijjj, etc, as in

a previous (now superceded) draft of the above FITS world co-ordinate system
paper by E.W. Greisen and M. Calabretta.
• "FITS-AIPS" — This uses conventions described in the document “Non-linear

Coordinate Systems in AIPS” by Eric W. Greisen (revised 9th September, 1994),
available by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z. It is
currently employed by the AIPS data analysis facility, so its use will facilitate
data exchange with AIPS. This encoding uses CROTAi and CDELTi keywords to
describe axis rotation and scaling.
• "DSS" — This is the system used by the Digital Sky Survey, and uses keywords

AMDXn, AMDYn, PLTRAH, etc.
• "Native" — This is the native system used by the AST library (see SUN/210),

and provides a loss-free method for transferring WCS information between AST-
based application. It allows more complicated WCS information to be stored and
retrieved than any of the other encodings.

A comma-separated list of up to six values may be supplied, in which case the value
actually used is in the first in the list for which corresponding keywords can be found
in the FITS header.
A FITS header may contain keywords from more than one of these encodings, in
which case it is possible for the encodings to be inconsistent with each other. This
may happen for instance if an application modifies the keyword associated with one
encoding but fails to make equivalent modifications to the others. If a null parameter
value (!) is supplied for ENCODINGS, then an attempt is made to determine the
most reliable encoding to use as follows. If both native and non-native encodings are
available, then the first non-native encoding to be found which is inconsistent with
the native encoding is used. If all encodings are consistent, then the native encoding
is used (if present). [!]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.cv.nrao.edu/fits/documents/wcs/wcs.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/95.45 —Specifications of KAPPA applications 338 FITSIN

FILES() = _CHAR (Read)
The list of the file numbers to be processed. Files are numbered consecutively from 1
from the start of the tape. Single files or a set of adjacent files may be specified, e.g.
typing [4,6-9,12,14-16] will read files 4,6,7,8,9,12,14,15,16. (Note that the brackets
are required to distinguish this array of characters from a single string including
commas. The brackets are unnecessary when there only one item.) For efficiency
reasons it is sensible to give the file numbers in ascending order.
If you wish to extract all the files enter the wildcard ∗. 5-∗ will read from 5 to the last
file. The processing will continue until the end of the tape is reached; no error will
result from this.

FMTCNV = _LOGICAL (Read)
This specifies whether or not format conversion will occur. If FALSE, the HDS type of
the data array in the NDF will be the equivalent of the FITS data format on tape (e.g.
BITPIX=16 creates a _WORD array). If TRUE, the data array in the current file, or all
files in automatic mode, will be converted from the FITS data type on tape to _REAL
in the NDF. The conversion applies the values of the FITS keywords BSCALE and
BZERO to the tape data to generate the ‘true’ data values. If BSCALE and BZERO
are not given in the FITS header, they are taken to be 1.0 and 0.0 respectively. The
suggested default is TRUE.

GLOCON = _LOGICAL (Read)
If FALSE, a format-conversion query occurs for each FITS file. If TRUE, the value of
FMTCNV is obtained before any file numbers and will apply to all data arrays. It is
ignored in automatic mode—in effect it becomes TRUE. [FALSE]

LABEL = _LOGICAL (Read)
It should be TRUE if the tape has labelled files. Labelled files are non-standard. If TRUE,
the application skips three file marks per file, rather that one. [FALSE]

LOGFILE = FILENAME (Read)
The file name of the text log of the FITS header cards. For group-format data the
group parameters are evaluated and appended to the full header. The log includes
the names of the output files used to store the data array or table. A null value (!)
means that no log file is produced. [!]

MORE = _LOGICAL (Read)
A prompt asking if any more files are to be processed once the current list has been
exhausted.

MT = DEVICE (Read)
Tape deck containing the data, usually an explicit device, though it can be a pre-
assigned environment variable.

OUT = NDF (Write)
Output NDF structure holding the full contents of the FITS file. If the null value (!) is
given no NDF will be created. This offers an opportunity to review the descriptors
before deciding whether or not the data are to be extracted.

PREFIX = LITERAL (Read)
The prefix of the NDF’s or table’s file name. It is only used in the automatic mode.

REWIND = _LOGICAL (Read)
If it is TRUE, the tape drive is rewound before the reading of the FITS files com-
mences. If it is FALSE, the tape is not rewound, and the current tape position is read

339 FITSIN SUN/95.45 —Specifications of KAPPA applications

from file USRDEVDATASET.sdf. Note that file numbers are absolute and not relative.
REWIND=FALSE is useful if you need to read a series of files, process them, then read
some more, without having to remember the tape’s position or apply unnecessary
wear to the tape. [TRUE]

TABLE = FILENAME (Read)
Name of the text file to contain the table itself, read from the file. In manual mode,
the suggested default filename is the name of description file less the "dscf" prefix,
or if there is no description file or if the description file does not have the "dscf"
prefix, the suggested name reverts to the catalogue name in the FITS header.

Examples:
fitsin mt=/dev/rmt/1n files=[2-4,9] auto prefix=ccd nofmtcnv

This reads files 2, 3, 4, and 9 from the FITS tape on device /dev/rmt/1n. The
output NDF names will be ccd2, ccd3, ccd4, and ccd9 (assuming there are no groups). The
data will not have format conversion.

fitsin mt=$TAPE files=∗ auto prefix=ccd fmtcnv logfile=jkt.log

This reads all the files from the FITS tape on the device assigned to the environ-
ment variable TAPE. The output files begin with a prefix "ccd". Integer data arrays are
converted to real using the scale and zero found in the FITS header. A record of the
headers and the names of the output files are written to the text file jkt.log.

References :Wells, D.C., Greisen, E.W. & Harten, R.H. 1981, Astron. Astrophys. Suppl. Ser. 44, 363.
Greisen, E.W. & Harten, R.H. 1981, Astron. Astrophys. Suppl. Ser. 44, 371.
Grosbøl, P., Harten, R.H., Greisen, E.W & Wells, D.C. 1988 Astron. Astrophys. Suppl. Ser. 73,

359.
Harten, R.H., Grosbøl, P., Greisen, E.W & Wells, D.C. 1988 Astron. Astrophys. Suppl. Ser. 73,

365.

Related Applications :

KAPPA: FITSDIN, FITSHEAD, FITSIMP, FITSLIST; CONVERT: FITS2NDF; CURSA; FI-
GARO: RDFITS.

Implementation Status:

• The application processes tapes blocked at other than an integer multiple of 2880
bytes up to a maximum of 63360, provided it is a multiple of the number of bytes per
data value.

• For simple or group format FITS:

– IEEE floating point is supported.
– If BUNIT is present its value will appear as the NDF’s UNITS component.
– If OBJECT is present its value will appear as the NDF’s TITLE component.
– If the BLANK item is present in the header, undefined pixels are converted from

the BLANK value to Starlink-standard bad value during data conversion.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_FITS2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RDFITS

SUN/95.45 —Specifications of KAPPA applications 340 FITSIN

– An AXIS component will be stored in the NDF if the CRVALn keyword is present.
(n is the number of the dimension.) If the CRPIXn keyword is absent it defaults
to 1, and likewise for the CDELTn keyword. The value of CTYPEn is made the
label of the axis structure.

• For groups format, a new NDF is created for each data array. The name of the NDF
of the second and subsequent data arrays is generated by the application as the
<filename>G<number>, where <filename> is the name of the first NDF, supplied by
you or generated automatically, and <number> is the number of the group.
Each group NDF contains the full header in the FITS extension, appended by the
set of group parameters. The group parameters are evaluated using their scales and
offsets, and made to look like FITS cards, whose keywords are derived from the
values of PTYPEm in the main header. (m is the number of the group parameter.) The
same format is used in the log file.

• If there is no data array on tape, i.e. the FITS file comprises header cards only, then
a dummy vector data array of dimension two is created to make the output a valid
NDF. This data array is undefined.

341 FITSLIST SUN/95.45 —Specifications of KAPPA applications

FITSLIST
Lists the FITS extension of an NDF

Description:
This application lists the FITS header stored in an NDF FITS extension. The list may
either be reported directly to you, or written to a text file. The displayed list of headers
can be augmented, if required, by the inclusion of FITS headers representing the current
World Co-ordinate System defined by the WCS component in the NDF (see Parameter
ENCODING).

Usage:
fitslist in [logfile]

Parameters:

ENCODING = LITERAL (Read)
If a non-null value is supplied, the NDF WCS component is used to generate a set of
FITS headers describing the WCS, and these headers are added into the displayed list
of headers (any WCS headers inherited from the FITS extension are first removed).
The value supplied for ENCODING controls the FITS keywords that will be used to
represent the WCS. The value supplied should be one of the encodings listed in the
“World Co-ordinate Systems” section below. An error is reported if the WCS cannot
be represented using the supplied encoding. A trailing minus sign appended to the
end of the encoding indicates that only the WCS headers should be displayed (that
is, the contents of the FITS extension are not displayed if the encoding ends with a
minus sign). Also see the FULLWCS parameter. [!]

FULLWCS = _LOGICAL (Read)
Only accessed if ENCODING is non-null. If TRUE then all co-ordinate frames in the
WCS component are written out. Otherwise, only the current Frame is written out.
[FALSE]

IN = NDF (Read)
The NDF whose FITS extension is to be listed.

LOGFILE = FILENAME (Read)
The name of the text file to store a list of the FITS extension. If it is null (!) the list of
the FITS extension is reported directly to you. [!]

Examples:
fitslist saturn

The contents of the FITS extension in NDF saturn are reported to you.

fitslist saturn fullwcs encoding=fits-wcs

As above but it also lists the standard FITS world-co-ordinate headers derived
from saturn’s WCS component, provided such information exists.

http://fits.gsfc.nasa.gov/

SUN/95.45 —Specifications of KAPPA applications 342 FITSLIST

fitslist saturn fullwcs encoding=fits-wcs-

As the previous example except that it only lists the standard FITS world-co-
ordinate headers derived from saturn’s WCS component. The headers in the FITS
extension are not listed.

fitslist ngc205 logfile=ngcfits.lis

The contents of the FITS extension in NDF ngc205 are written to the text file
ngcfits.lis.

Notes:

• If the NDF does not have a FITS extension the application will exit.

World Co-ordinate Systems :

The ENCODING parameter can take any of the following values.

• "FITS-IRAF" — This uses keywords CRVALi CRPIXi, CDi_j, and is the system com-
monly used by IRAF. It is described in the document “World Coordinate Systems
Representations Within the FITS Format” by R.J. Hanisch and D.G. Wells, 1988,
available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z.

• "FITS-WCS" — This is the FITS standard WCS encoding scheme described in the
paper “Representation of celestial coordinates in FITS”
(http://www.cv.nrao.edu/fits/documents/wcs/wcs.html).
It is very similar to "FITS-IRAF" but supports a wider range of projections and
co-ordinate systems.

• "FITS-WCS(CD)" — This is the same as "FITS-WCS" except that the scaling and rota-
tion of the data array is described by CD matrix instead of a PC matrix with associated
CDELT values.

• "FITS-PC" — This uses keywords CRVALi, CDELTi, CRPIXi, PCiiijjj, etc, as in a
previous (now superseded) draft of the above FITS world co-ordinate system paper
by E.W. Greisen and M. Calabretta.

• "FITS-AIPS" — This uses conventions described in the document “Non-linear Coor-
dinate Systems in AIPS” by Eric W. Greisen (revised 9th September, 1994), available
by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z. It is currently em-
ployed by the AIPS data analysis facility, so its use will facilitate data exchange with
AIPS. This encoding uses CROTAi and CDELTi keywords to describe axis rotation
and scaling.

• "FITS-AIPS++" — This is an extension to "FITS-AIPS" that allows the use of a wider
range of celestial projections, and is used by the AIPS++ project.

• "FITS-CLASS" — This uses the conventions of the CLASS project. CLASS is a software
package for reducing single-dish radio and sub-mm spectroscopic data. It supports
double-sideband spectra.

http://www.cv.nrao.edu/fits/documents/wcs/wcs.html

343 FITSLIST SUN/95.45 —Specifications of KAPPA applications

See http://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/class.html.

• "DSS" — This is the system used by the Digital Sky Survey, and uses keywords
AMDXn, AMDYn, PLTRAH, etc.

• "Native" — This is the native system used by the AST library (see SUN/210), and
provides a loss-free method for transferring WCS information between AST-based
application. It allows more complicated WCS information to be stored and retrieved
than any of the other encodings.

Related Applications :

KAPPA: FITSEDIT, FITSHEAD; FIGARO: FITSKEYS.

http://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/class.html
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITSKEYS

SUN/95.45 —Specifications of KAPPA applications 344 FITSMOD

FITSMOD
Edits an NDF FITS extension via a text file or parameters

Description:
This application edits the FITS extension of an NDF file in a variety of ways. It permits
insersion of new keywords, including comment lines; revision of existing keyword, values,
and inline comments; relocation of keywords; deletion of keywords; printing of keyword
values; and it can test whether or not a keyword exists. The occurrence of keywords may
be defined, when there are more than one cards of the same name. The location of each
insertion or move is immediately before some occurrence of a corresponding keyword.

Control of the editing can be through parameters, or from a text file whose format is
described in topic "File Format".

Usage:

fitsmod ndf

 keyword edit value comment position

table=?
mode

Parameters:

COMMENT = LITERAL (Read)
The comments to be written to the KEYWORD keyword for the "Update", "Write",
and "Amend"editing commands. A null value (!) gives a blank comment. The special
value "$C" means use the current comment. In addition "$C(keyword)" requests
that the comment of the keyword given between the parentheses be assigned to
the keyword being edited. If this positional keyword does not exist, the comment
is unchanged for "Update", and is blank for a "Write" edit. The same applies to
the "Amend" edit, the choice depending on whether or not the KEYWORD keyword
exists.

EDIT = LITERAL (Read)
The editing command to apply to the keyword. The allowed options are listed below.

"Amend" — acts as option "Update" if the keyword exists, but as the "Write" option
should the keyword be absent.

"Delete" — removes a named keyword.
"Exist" — reports TRUE to standard output if the named keyword exists in the

header, and FALSE if the keyword is not present.
"Move" — relocates a named keyword to be immediately before a second keyword

(see Parameter POSITION). When this positional keyword is not supplied, it
defaults to the END card, and if the END card is absent, the new location is at
the end of the headers.

"Null" nullifies the value of the named keyword. Spaces substitute the keyword’s
value.

"Print" — causes the value of a named keyword to be displayed to standard output.
This will be a blank for a comment card.

345 FITSMOD SUN/95.45 —Specifications of KAPPA applications

"Rename" — renames a keyword, using Parameter NEWKEY to obtain the new
keyword.

"Update" — revises the value and/or the comment. If a secondary keyword is
defined explicitly (Parameter POSITION), the card may be relocated at the same
time. If the secondary keyword does not exist, the card being edited is not moved.
"Update" requires that the keyword being edited exists.

"Write" — creates a new card given a value and an optional comment. Its location
uses the same rules as for the "Move" command. The FITS extension is created
first should it not exist.

KEYWORD = LITERAL (Read)
The name of the keyword to be edited in the FITS extension. A name may be com-
pound to handle hierarchical keywords, and it has the form keyword1.keyword2.keyword3
etc. The maximum number of keywords per FITS card is twenty. Each keyword must
be no longer than eight characters, and be a valid FITS keyword comprising only
alphanumeric characters, hyphen, and underscore. Any lowercase letters are con-
verted to uppercase and blanks are removed before insertion, or comparison with the
existing keywords.
The keywords " ", "COMMENT", and "HISTORY" are comment cards and do not have a
value.
The keyword must exist except for the "Amend", "Write", and "Exist" commands.
Both KEYWORD and POSITION keywords may have an occurrence specified in
brackets [] following the name. This enables editing of a keyword that is not the first
occurrence of that keyword, or locate a edited keyword not at the first occurrence
of the positional keyword. Note that it is not normal to have multiple occurrences
of a keyword in a FITS header, unless it is blank, COMMENT or HISTORY. Any
text between the brackets other than a positive integer is interpreted as the first
occurrence.

MODE = LITERAL (Read)
The mode by which the editing instructions are supplied. The alternatives are "File",
which uses a text file; and "Interface" which uses parameters. ["Interface"]

NDF = NDF (Read and Write)
The NDF in which the FITS extension is to be edited.

NEWKEY = LITERAL (Read)
The name of the keyword to replace the KEYWORD keyword. It is only accessed
when EDIT="Rename". A name may be compound to handle hierarchical keywords,
and it has the form keyword1.keyword2.keyword3 etc. The maximum number of
keywords per FITS card is twenty. Each keyword must be no longer than eight
characters, and be a valid FITS keyword comprising only alphanumeric characters,
hyphen, and underscore.

POSITION = LITERAL (Read)
The position keyword name. A position name may be compound to handle hierarchi-
cal keywords, and it has the form keyword1.keyword2.keyword3 etc. The maximum
number of keywords per FITS card is twenty. Each keyword must be no longer than
eight characters. When locating the position card, comparisons are made in upper-
case and with the blanks removed. An occurrence may be specified (see Parameter
KEYWORD for details).

SUN/95.45 —Specifications of KAPPA applications 346 FITSMOD

The new keywords are inserted immediately before each corresponding position
keyword. If any name in it does not exist in FITS array, or the null value (!) is
supplied the consequences will be as follows. For a "Write", "Amend" (new keyword),
or "Move" edit, the KEYWORD keyword will be inserted just before the END card
or appended to FITS array when the END card does not exist; for an "Update" or
"Amend" (new keyword) edit, the edit keyword is not relocated.
A positional keyword is only accessed by the "Move", "Amend", "Write", and "Update"
editing commands.

READONLY = _LOGICAL (Read)
Determines if read or write access is requested for the NDF. If a TRUE value is supplied
for READONLY, the NDF is opened for reading only. An error will then be reported
if any of the requested editing operations would change the contents of the NDF. If
a FALSE value is supplied for READONLY, the NDF is opened for both reading and
writing, but an error will be reported if the NDF file is write-protected on disk. If
the MODE parameter is set to "File", the dynamic default value for READONLY is
FALSE. If MODE is set to "Interface", the dynamic default value for READONLY
depends on the value of the EDIT parameter: TRUE for "Print" and "Exist", and
FALSE for all other editing commands. []

STRING = _LOGICAL (Read)
When STRING is FALSE, inferred data typing is used for the "Write", "Update", and
"Amend" editing commands. So for instance, if Parameter VALUE = "Y", it would
appears as logical TRUE rather than the string ’Y ’ in the FITS header. See
topic "Value Data Type". When STRING is TRUE, the value will be treated as a string
for the purpose of writing the FITS header. [FALSE]

TABLE = FILENAME (Read)
The text file containing the keyword translation table. The format of this file is de-
scribed under "File Format". For illustrations, see under "Examples of the File
Format".

VALUE = LITERAL (Read)
The new value of the KEYWORD keyword for the "Update", "Write", and "Amend"
editing commands. The special value "$V" means use the current value of the
KEYWORD keyword. This makes it possible to modify a comment, leaving the
value unaltered. In addition "$V(keyword)" requests that the value of the reference
keyword given between the parentheses be assigned to the keyword being edited.
This reference keyword must exist and have a value for a "Write" or "Amend" (new
keyword) edit; whereas the FITS-header value is unchanged for "Update" or "Amend"
(keyword exists) if there are problems with this reference keyword.

Results Parameters:

EXISTS = _LOGICAL (Write)
The result of the final "Exist" operation (see Parameter EDIT).

Examples:
fitsmod dro42 bscale exist

This reports TRUE or FALSE depending on whether or not the FITS keyword BSCALE
exists in the FITS extension of the NDF called dro42.

347 FITSMOD SUN/95.45 —Specifications of KAPPA applications

fitsmod dro42 bscale p

This reports the value of the keyword BSCALE stored in the FITS extension of
the NDF called dro42. An error message will appear if BSCALE does not exist.

fitsmod abc edit=move keyword=bscale position=bzero

This moves the keyword BSCALE to lie immediately before keyword BZERO in
the FITS extension of the NDF called abc. An error will result if either BSCALE or BZERO
does not exist.

fitsmod dro42 airmass dele

This deletes the keyword AIRMASS, if it exists, in the FITS extension of the NDF called
dro42.

fitsmod ndf=dro42 edit=d keyword=airmass[2]

This deletes the second occurrence of keyword AIRMASS, if it exists, in the FITS
extension of the NDF called dro42.

fitsmod @100 airmass w 1.456 "Airmass at mid-observation"

This creates the keyword AIRMASS in the FITS extension of the NDF called 100, assigning
the keyword the real value 1.456 and comment "Airmass at mid-observation". The
header is located just before the end. The FITS extension is created if it does not exist.

fitsmod @100 airmass w 1.456 "Airmass at mid-observation" phase

As the previous example except that the new keyword is written immediately
before keyword PHASE.

fitsmod obe observer u value="O’Leary" comment=$C

This updates the keyword OBSERVER with value "O’Leary", retaining its old
comment. The modified FITS extension lies within the NDF called obe.

fitsmod test filter w position=end value=27 comment=! string

This creates the keyword FILTER in the FITS extension of the NDF called test,
assigning the keyword the string value "27". There is no comment. The keyword is
located at the end of the headers, but before any END card. The FITS extension is created
if it does not exist.

fitsmod test edit=w keyword=detector comment=" Detector name"

SUN/95.45 —Specifications of KAPPA applications 348 FITSMOD

value=$V(ing.dethead) accept

This creates the keyword DETECTOR in the FITS extension of the NDF called
test, assigning the keyword the value of the existing hierarchical keyword ING.DETHEAD.
The comment is " Detector name", the leading spaces are significant. The keyword
is located at the current position keyword. The FITS extension is created if it does not exist.

fitsmod datafile mode=file table=fitstable.txt

This edits the FITS-extension of the NDF called datafile, creating the FITS exten-
sion if it does not exist. The editing instructions are stored in the text file called
fitstable.txt.

Notes:

• Requests to move, assign values or comments, the following reserved keywords in the
FITS extension are ignored: SIMPLE, BITPIX, NAXIS, NAXISn, EXTEND, PCOUNT,
GCOUNT, XTENSION, BLOCKED, and END.

• When an error occurs during editing, warning messages are sent at the normal
reporting level, and processing continues to the next editing command.

• The FITS fixed format is used for writing or updating headers, except for double-
precision values requiring more space. The comment is delineated from the value by
the string " / ".

• The comments in comment cards begin one space following the keyword or from
column 10 whichever is greater.

• To be sure that the resultant FITS extension is what you desired, you should inspect it
using the command FITSLIST before exporting the data. If there is something wrong,
you may find it convenient to use command FITSEDIT to make minor corrections.

Parameter Defaults :

All the parameters have a suggested default of their current value, except NDF, which
uses the global current dataset.

Timing :

Approximately proportional to the number of FITS keywords to be edited. "Update" and
"Write" edits require the most time.

File Format :

The file consists of a series of lines, one per editing instruction, although blank lines and
lines beginning with a ! or # are treated as comments. Note that the order does matter, as
the edits are performed in the order given.

The format is summarised below:

command keyword{[occurrence]}{(keyword{[occurrence]})} {value {comment}}

where braces indicate optional values, and occur is the occurrence of the keyword. In
effect there are four fields delineated by spaces that define the edit operation, keyword,
value and comment.

349 FITSMOD SUN/95.45 —Specifications of KAPPA applications

• Field 1: This specifies the editing operation. Allowed values are Amend, Delete, Exist,
Move, Null, Print, Rename, Write, and Update, and can be abbreviated to the initial
upper-case letter. It is not case insensitive to afford some protection against typing
errors.

– Delete removes a named keyword.
– Read causes the value of a named keyword to be displayed to standard output.
– Exist reports TRUE to standard output if the named keyword exists in the header,

and FALSE if the keyword is not present.
– Move relocates a named keyword to be immediately before a second keyword.

When this positional keyword is not supplied, it defaults to the END card, and if
the END card is absent, the new location is at the end of the headers.

– Write creates a new card given a value and an optional comment. Its location
uses the same rules as for the Move command.

– Update revises the value and/or the comment. If a secondary keyword is defined
explicitly, the card may be relocated at the same time. Update requires that the
keyword exists.

– Amend acts like Update if the keyword supplied in "Field 2" exists, and like
Write otherwise.

– Null replaces the value of a named keyword with blanks.

• Field 2: This specifies the keyword to edit, and optionally the position of that keyword
in the header after the edit (for Move, Write, Update, and Amend edits). The new
position in the header is immediately before a positional keyword, whose name is
given in parentheses concatenated to the edit keyword. See "Field 1" for defaulting
when the position parameter is not defined or is null.
Both the editing keyword and position keyword may be compound to handle hier-
archical keywords. In this case the form is keyword1.keyword2.keyword3 etc. All
keywords must be valid FITS keywords. This means they must be no more than
eight characters long, and the only permitted characters are uppercase alphabetic,
numbers, hyphen, and underscore. Invalid keywords will be rejected.
Both the edit and position keyword may have an occurrence specified in brackets [].
This enables editing of a keyword that is not the first occurrence of that keyword, or
locate a edited keyword not at the first occurrence of the positional keyword. Note
that it is not normal to have multiple occurrences of a keyword in a FITS header,
unless it is blank, COMMENT or HISTORY. Any text between the brackets other than
a positive integer is interpreted as the first occurrence.
Use a null value (’ ’ or " ") if you want the card to be a comment with keyword
other than COMMENT or HISTORY. As blank keywords are used for hierarchical
keywords, to write a comment in a blank keyword you must give a null edit keyword.
These have no keyword appearing before the left parenthesis or bracket, such as (),
[], [2], or (EPOCH).

• Field 3: This specifies the value to assign to the edited keyword in the Write, Update,
and Amend operations, or the name of the new keyword in the Rename modification. If
the keyword exists, the existing value or keyword is replaced, as appropriate. The

SUN/95.45 —Specifications of KAPPA applications 350 FITSMOD

data type used to store the value is inferred from the value itself. See topic "Value
Data Type".
For the Update, Write, and Amend modifications there is a special value, $V, which
means use the current value of the edited keyword, provided that keyword exists.
This makes it possible to modify a comment, leaving the value unaltered. In addition
$V(keyword) requests that the value of the keyword given between the parentheses
be assigned to the keyword being edited.
The value field is ignored when the keyword is COMMENT, HISTORY or blank, and
the modification is to Update, Write, or Amend.

• Field 4: This specifies the comment to assign to the edited keyword for the Write,
Update, and Amend operations. A leading "/" should not be supplied.
There is a special value, $C, which means use the current comment of the edited
keyword, provided that keyword exists. This makes it possible to modify a value,
leaving the comment unaltered. In addition $C(keyword) requests that the comment
of the keyword given between the parentheses be assigned to the edited keyword.
To obtain leading spaces before some commentary, use a quote (’) or double quote
(") as the first character of the comment. There is no need to terminate the comment
with a trailing and matching quotation character. Also do not double quotes should
one form part of the comment.

Value Data Type :

The data type of a value is determined as follows:

• For the text-file, values enclosed in quotes (’) or doubled quotes (") are strings. Note
that numeric or logical string values must be quoted to prevent them being converted
to a numeric or logical value in the FITS extension.

• For prompting the value is a string when Parameter STRING is TRUE.

• Otherwise type conversions of the first word after the keywords are made to integer,
double precision, and logical types in turn. If a conversion is successful, that becomes
the data type. In the case of double precision, the type is set to real when the number
of significant digits only warrants single precision. If all the conversions failed the
value is deemed to be a string.

Examples of the File Format :

The best way to illustrate the options is by listing some example lines.

P AIRMASS This reports the value of keyword AIRMASS to standard output.

E FILTER This determines whether keyword FILTER exists and reports TRUE or FALSE to
standard output.

D OFFSET This deletes the keyword OFFSET.

Delete OFFSET[2] This deletes any second occurrence of keyword OFFSET.

Rename OFFSET1[2] OFFSET2 This renames the second occurrence of keyword OFFSET1
to have keyword OFFSET2.

W AIRMASS 1.379 This writes a real value to new keyword AIRMASS, which will be
located at the end of the FITS extension.

351 FITSMOD SUN/95.45 —Specifications of KAPPA applications

A AIRMASS 1.379 This writes a real value to keyword AIRMASS if it exists, otherwise it
writes a real value to new keyword AIRMASS located at the end of the FITS extension.

N AIRMASS This blanks the value of the AIRMASS keyword, if it exists.

W FILTER(AIRMASS) Y This writes a logical true value to new keyword FILTER, which
will be located just before the AIRMASS keyword, if it exists.

Write FILTER(AIRMASS) ’Y’ As the preceding example except that this writes a charac-
ter value "Y".

W COMMENT(AIRMASS) . Following values apply to mid-observation This writes a
COMMENT card immediately before the AIRMASS card, the comment being
"Following values apply to mid-observation". Note the full stop.

W DROCOM(AIRMASS) ” Following values apply to mid-observation As the preced-
ing example but this writes to a non-standard comment keyword called DROCOM.
Note the need to supply a null value.

W (AIRMASS) ” Following values apply to mid-observation As the preceding ex-
ample but this writes to a blank-keyword comment.

U OBSERVER "Dr. Peter O’Leary" Name of principal observer This updates the
OBSERVER keyword with the string value "Dr. Peter O’Leary", and comment
"Name of principal observer". Note that had the value been enclosed in single
quotes (’), the apostrophe would need to be doubled.

M OFFSET This moves the keyword OFFSET to just before the END card.

Move OFFSET(SCALE) This moves the keyword OFFSET to just before the SCALE card.

Move OFFSET[2](COMMENT[3]) This moves the second occurrence of keyword OFFSET
to just before the third COMMENT card.

References :"A User’s Guide for the Flexible Image Transport System (FITS)", NASA/Science Office of
Science and Technology (1994).

Related Applications :

KAPPA: FITSEDIT, FITSEXIST, FITSEXP, FITSHEAD, FITSIMP, FITSLIST, FITSVAL,
FITSWRITE.

SUN/95.45 —Specifications of KAPPA applications 352 FITSTEXT

FITSTEXT
Creates an NDF FITS extension from a text file

Description:
This application takes a version of a FITS header stored in a text file, and inserts it into the
FITS extension of an NDF . The header is not copied verbatim as some validation of the
headers as legal FITS occurs. An existing FITS extension is removed.

Usage:
fitstext ndf file

Parameters:
NDF = NDF (Read and Write)

The name of the NDF to store the FITS header information.
FILE = FILENAME (Read)

The text file containing the FITS headers. Each record should be the standard 80-
character ‘card image’. If the file has been edited care is needed to ensure that none
of the cards are wrapped on to a second line.

Examples:
fitstext hh73 headers.lis

This places the FITS headers stored in the text file called headers.lis in the
FITS extension of the NDF called hh73.

Notes:

• The validation process performs the following checks on each header ‘card’:
a) the length of the header is no more than 80 characters, otherwise it is truncated;
b) the keyword only contains uppercase Latin alphabetic characters, numbers, under-
score, and hyphen (the header will not be copied to the extension except when the
invalid characters are lowercase letters);
c) value cards have an equals sign in column 9 and a space in column 10;
d) quotes enclose character values;
e) single quotes inside string values are doubled;
f) character values are left justified to column 11 (retaining leading blanks) and con-
tain at least 8 characters (padding with spaces if necessary);
g) non-character values are right justified to column 30, except for non-mandatory
keywords which have a double-precision value requiring more than 20 digits;
h) the comment delimiter is in column 32 or two characters following the value,
whichever is greater;
i) an equals sign in column 9 of a commentary card is replaced by a space; and
j) comments begin at least two columns after the end of the comment delimiter.
• The validation issues warning messages at the normal reporting level for violations

a), b), c), d), and i).

http://fits.gsfc.nasa.gov/

353 FITSTEXT SUN/95.45 —Specifications of KAPPA applications

• The validation can only go so far. If any of your header lines are ambiguous, the
resulting entry in the FITS extension may not be what you intended. Therefore, you
should inspect the resulting FITS extension using the command FITSLIST before
exporting the data. If there is something wrong, you may find it convenient to use
command FITSEDIT to make minor corrections.

Related Applications :

KAPPA: FITSEDIT, FITSEXP, FITSLIST; CONVERT: NDF2FITS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2FITS

SUN/95.45 —Specifications of KAPPA applications 354 FITSURFACE

FITSURFACE
Fits a polynomial surface to two-dimensional data array

Description:
This task fits a surface to a two-dimensional data array stored array within an NDF data
structure. At present it only permits a fit with a polynomial, and the coefficients of that
surface are stored in a POLYNOMIAL structure (SGP/38) as an extension to that NDF.

Unlike SURFIT, neither does it bin the data nor does it reject outliers.

Usage:

fitsurface ndf [fittype]

 nxpar nypar

[knots]
fittype

Parameters:

COSYS = LITERAL (Read)
The co-ordinate system to be used. This can be either "World" or "Data". If COSYS="World"
the co-ordinates used to fits the surface are pixel co-ordinates. If COSYS="Data" the
data co-ordinates used are used in the fit, provided there are axis centres present in
the NDF. COSYS="World" is recommended. [Current co-ordinate system]

FITTYPE = LITERAL (Read)
The type of fit. It must be either "Polynomial" for a polynomial or "Spline" for a
bi-cubic spline. ["Polynomial"]

KNOTS(2) = _INTEGER (Read)
The number of interior knots used for the bi-cubic-spline fit along the x and y axes.
These knots are equally spaced within the image. Both values must be in the range 0
to 11. If you supply a single value, it applies to both axes. Thus 1 creates one interior
knot, [5,4] gives five along the x axis and four along the y direction. Increasing
this parameter values increases the flexibility of the surface. Normally, 4 is a rea-
sonable value. The upper limit of acceptable values will be reduced along each axis
when its binned array dimension is fewer than 29. KNOTS is only accessed when
FITTYPE="Spline". The default is the current value, which is 4 initially. []

NDF = NDF (Update)
The NDF containing the two-dimensional data array to be fitted.

NXPAR = _INTEGER (Read)
The number of fitting parameters to be used in the x direction. It must be in the range
1 to 15 for a polynomial fit. Thus 1 gives a constant, 2 a linear fit, 3 a quadratic etc.
Increasing this parameter increases the flexibility of the surface in the x direction. The
upper limit of acceptable values will be reduced for arrays with an x dimension fewer
than 29. NXPAR is only accessed when FITTYPE="Polynomial".

NYPAR = _INTEGER (Read)
The number of fitting parameters to be used in the y direction. It must be in the range
1 to 15 for a polynomial fit. Thus 1 gives a constant, 2 a linear fit, 3 a quadratic etc.

http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_

355 FITSURFACE SUN/95.45 —Specifications of KAPPA applications

Increasing this parameter increases the flexibility of the surface in the y direction. The
upper limit of acceptable values will be reduced for arrays with a y dimension fewer
than 29. NYPAR is only accessed when FITTYPE="Polynomial".

OVERWRITE = _LOGICAL (Read)
OVERWRITE=TRUE, allows an NDF extension containing an existing surface fit to
be overwritten. OVERWRITE=FALSE protects an existing surface-fit extension, and
should one exist, an error condition will result and the task terminated. [TRUE]

VARIANCE = _LOGICAL (Read)
A flag indicating whether any variance array present in the NDF is used to define the
weights for the fit. If VARIANCE is TRUE and the NDF contains a variance array this
will be used to define the weights, otherwise all the weights will be set equal. [TRUE]

XMAX = _DOUBLE (Read)
The maximum x value to be used in the fit. This must be greater than or equal to the
x co-ordinate of the right-hand pixel in the data array. Normally this parameter is
automatically set to the maximum x co-ordinate found in the data, but this mechanism
can be overridden by specifying XMAX on the command line. The parameter is
provided to allow the fit limits to be fine tuned for special purposes. It should not
normally be altered. If a null (!) value is supplied, the value used is the maximum x
co-ordinate of the fitted data. [!]

XMIN = _DOUBLE (Read)
The minimum x value to be used in the fit. This must be smaller than or equal to
the x co-ordinate of the left-hand pixel in the data array. Normally this parameter is
automatically set to the minimum x co-ordinate found in the data, but this mechanism
can be overridden by specifying XMIN on the command line. The parameter is
provided to allow the fit limits to be fine tuned for special purposes. It should not
normally be altered. If a null (!) value is supplied, the value used is the minimum x
co-ordinate of the fitted data. [!]

YMAX = _DOUBLE (Read)
The maximum y value to be used in the fit. This must be greater than or equal to the y
co-ordinate of the top pixel in the data array. Normally this parameter is automatically
set to the maximum y co-ordinate found in the data, but this mechanism can be
overridden by specifying YMAX on the command line. The parameter is provided to
allow the fit limits to be fine tuned for special purposes. It should not normally be
altered. If a null (!) value is supplied, the value used is the maximum y co-ordinate
of the fitted data. [!]

YMIN = _DOUBLE (Read)
The minimum y value to be used in the fit. This must be smaller than or equal to
the y co-ordinate of the bottom pixel in the data array. Normally this parameter is
automatically set to the minimum y co-ordinate found in the data, but this mechanism
can be overridden by specifying YMIN on the command line. The parameter is
provided to allow the fit limits to be fine tuned for special purposes. It should not
normally be altered. If a null (!) value is supplied, the value used is the minimum y
co-ordinate of the fitted data. [!]

Examples:
fitsurface virgo nxpar=4 nypar=4 novariance

SUN/95.45 —Specifications of KAPPA applications 356 FITSURFACE

This fits a bi-cubic polynomial surface to the data array in the NDF called virgo.
All the data values are given equal weight. The coefficients of the fitted surface are stored
in an extension of virgo.

fitsurface virgo nxpar=4 nypar=4

As the first example except the data variance, if present, is used to weight the
data values.

fitsurface virgo fittype=spl

As the previous example except a B-spline fit is made using four interior knots
along both axes.

fitsurface virgo fittype=spl knots=[10,7]

As the previous example except now there are ten interior knots along the x axis
and seven along the y axis.

fitsurface mkn231 nxpar=6 nypar=2 cosys=d xmin=-10.0 xmax=8.5

This fits a polynomial surface to the data array in the NDF called mkn231. A
fifth order is used along the x direction, but only a linear fit along the y direction. The fit is
made between x data co-ordinates −10.0 to 8.5. The variance weights the data values. The
coefficients of the fitted surface are stored in an extension of mkn231.

Notes:

A polynomial surface fit is stored in a SURFACEFIT extension, component FIT of type
POLYNOMIAL, variant CHEBYSHEV or BSPLINE. This is read by MAKESURFACE to
create a NDF of the fitted surface.

For further details of the CHEBYSHEV variant see SGP/38. The CHEBYSHEV variant
includes the fitting variance for each coefficient.

The BSPLINE variant structure is provisional. It contain the spline coefficients in the two-
dimensional DATA_ARRAY component, the knots in XKNOTS and YKNOTS arrays, and
a scaling factor to restore the original values after spline evaluation recorded in component
SCALE. All of these components have type _REAL.

Also stored in the SURFACEFIT extension are the r.m.s. deviation to the fit (compo-
nent RMS), the maximum absolute deviation (component RSMAX), and the co-ordinate
system (component COSYS) translated to AST Domain names AXIS (for Parameter
COSYS="Data") and PIXEL ("World").

Related Applications :

KAPPA: MAKESURFACE, SURFIT.

Implementation Status:

http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_

357 FITSURFACE SUN/95.45 —Specifications of KAPPA applications

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, and HIS-
TORY components of an NDF data structure.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
double-precision floating point.

SUN/95.45 —Specifications of KAPPA applications 358 FITSVAL

FITSVAL
Reports the value of a keyword in the FITS extension.

Description:
This application reports the value of a keyword in the FITS extension (‘airlock’) of an
NDF file. The keyword’s value and comment are also stored in output parameters.

Usage:
fitsval ndf keyword

Parameters:

KEYWORD = LITERAL (Read)
The name of an existing keyword in the FITS extension whose value is to be reported.
A name may be compound to handle hierarchical keywords, and it has the form
keyword1.keyword2.keyword3 etc. The maximum number of keywords per FITS
card is 20. Each keyword must be no longer than 8 characters, and be a valid
FITS keyword comprising only alphanumeric characters, hyphen, and underscore.
Any lowercase letters are converted to uppercase and blanks are removed before
comparison with the existing keywords.
KEYWORD may have an occurrence specified in brackets [] following the name.
This enables the values to be obtained for keywords that appear more than once.
Note that it is not normal to have multiple occurrences of a keyword in a FITS header,
unless it is blank, COMMENT or HISTORY. Any text between the brackets other than
a positive integer is interpreted as the first occurrence.
The suggested value is the current value.

NDF = NDF (Read)
The NDF containing the FITS keyword.

Results Parameters:

COMMENT = LITERAL (Write)
The comment of the keyword.

VALUE = LITERAL (Write)
The value of the keyword.

Examples:
fitsval abc bscale

This reports the value of the FITS keyword BSCALE, which is located within the
FITS extension of the NDF called abc.

fitsval ndf=abc keyword=date[2]

This reports the value of the second occurrence FITS keyword DATE, which is
located within the FITS extension of the NDF called abc.

http://fits.gsfc.nasa.gov/

359 FITSVAL SUN/95.45 —Specifications of KAPPA applications

Related Applications :

KAPPA: FITSEDIT, FITSEXIST, FITSHEAD, FITSLIST, FITSMOD.

SUN/95.45 —Specifications of KAPPA applications 360 FITSWRITE

FITSWRITE
Writes a new keyword to the FITS extension

Description:
This application writes a new keyword in an NDF’s FITS extension given a value and an
optional inline comment. It allows the location of the new keyword to be specified. The
FITS extension is created if it does not exist.

It is a synonym for fitsmod edit=write mode=interface position=!.

Usage:
fitswrite ndf keyword value=? comment=?

Parameters:
COMMENT = LITERAL (Read)

The comments to be written to the KEYWORD keyword. A null value (!) gives
a blank comment. The special value "$C" means use the current comment. In
addition "$C(keyword)" requests that the comment of the keyword given between
the parentheses be assigned to the keyword being edited. If this positional keyword
does not exist, the comment is is blank.

KEYWORD = LITERAL (Read)
The name of the new keyword in the FITS extension. A name may be compound to
handle hierarchical keywords, and it has the form keyword1.keyword2.keyword3 etc.
The maximum number of keywords per FITS card is 20. Each keyword must be no
longer than 8 characters, and be a valid FITS keyword comprising only alphanumeric
characters, hyphen, and underscore. Any lowercase letters are converted to uppercase
and blanks are removed before comparison with the existing keywords.
Note that it is not normal to have multiple occurrences of a keyword in a FITS header,
unless it is blank, COMMENT or HISTORY.
The suggested value is the current value.

NDF = NDF (Read and Write)
The NDF containing the FITS extension into which the new FITS keyword.

POSITION = LITERAL (Read)
The position keyword name. A position name may be compound to handle hierarchi-
cal keywords, and it has the form keyword1.keyword2.keyword3 etc. The maximum
number of keywords per FITS card is 20. Each keyword must be no longer than 8
characters. When locating the position card, comparisons are made in uppercase and
with the blanks removed. An occurrence may be specified (see Parameter KEYWORD
for details).
The new keywords are inserted immediately before each corresponding position
keyword. If any name in it does not exist in FITS array, or the null value (!) is
supplied, the KEYWORD keyword will be inserted just before the END card or
appended to FITS array when the END card does not exist. [!]

STRING = _LOGICAL (Read)
When STRING is FALSE, inferred data typing is used. So for instance if Parameter

361 FITSWRITE SUN/95.45 —Specifications of KAPPA applications

VALUE = "Y", it would appears as logical TRUE rather than the string ’Y ’
in the FITS header. See topic "Value Data Type". When STRING is TRUE, the value
will be treated as a string for the purpose of writing the FITS header. [FALSE]

VALUE = LITERAL (Read)
The new value of the KEYWORD keyword. The special value "$V" means use
the current value of the KEYWORD keyword. This makes it possible to modify a
comment, leaving the value unaltered. In addition "$V(keyword)" requests that the
value of the reference keyword given between the parentheses be assigned to the
keyword being written. This reference keyword must exist and have a value.

Examples:
fitswrite abc bscale value=1.234

This writes the FITS keyword BSCALE just before the end of the FITS extension,
which is located within the NDF called abc. It assigns BSCALE a value of 1.234. There is
no inline comment.

fitswrite @100 airmass value=1.456 comment="Airmass at mid-observation"

This creates the keyword AIRMASS in the FITS extension of the NDF called 100, assigning
the keyword the real value 1.456 and comment "Airmass at mid-observation". The
header is located just before the end.

fitswrite @100 airmass value=1.456 "Airmass at mid-observation"
position=phase

As the previous example except that the new keyword is written immediately
before keyword PHASE.

fitswrite afcyg observer value="O’Leary" comment=$C(prininv)

This writes the keyword OBSERVER with value "O’Leary", and its comment is
copied from keyword PRININV. The modified FITS extension lies within the NDF called
afcyg.

fitswrite test filter position=end value=27 comment=! string

This creates the keyword FILTER in the FITS extension of the NDF called test,
assigning the keyword the string value "27". There is no comment. The keyword is
located at the end of the headers, but before any END card.

fitswrite ndf=test keyword=detector comment=" Detector name"
value=$V(ing.dethead) accept

This creates the keyword DETECTOR in the FITS extension of the NDF called
test, assigning the keyword the value of the existing hierarchical keyword ING.DETHEAD.

SUN/95.45 —Specifications of KAPPA applications 362 FITSWRITE

The comment is " Detector name", the leading spaces are significant. The keyword
is located at the current position keyword.

Value Data Type :

The data type of a value is determined as follows:

• For the text-file, values enclosed in quotes (’) or doubled quotes (") are strings. Note
that numeric or logical string values must be quoted to prevent them being converted
to a numeric or logical value in the FITS extension.

• For prompting the value is a string when Parameter STRING is TRUE.

• Otherwise type conversions of the first word after the keywords are made to integer,
double precision, and logical types in turn. If a conversion is successful, that becomes
the data type. In the case of double precision, the type is set to real when the number
of significant digits only warrants single precision. If all the conversions failed the
value is deemed to be a string.

Related Applications :

KAPPA: FITSEDIT, FITSEXP, FITSMOD.

363 FLIP SUN/95.45 —Specifications of KAPPA applications

FLIP
Reverses an NDF’s pixels along a specified dimension

Description:
This application reverses the order of an NDF’s pixels along a specified dimension, leaving
all other aspects of the data structure unchanged.

Usage:
flip in out dim

Parameters:

AXIS = _LOGICAL (Read)
If a TRUE value is given for this parameter (the default), then any axis values associated
with the NDF dimension being reversed will also be reversed in the same way. If a
FALSE value is given, then all axis values will be left unchanged. [TRUE]

DIM = _INTEGER (Read)
The number of the dimension along which the NDF’s pixels should be reversed. The
value should lie between 1 and the total number of NDF dimensions. If the NDF has
only a single dimension, then this parameter is not used, a value of 1 being assumed.

IN = NDF (Read)
The input NDF data structure whose pixel order is to be reversed.

OUT = NDF (Write)
The output NDF data structure.

TITLE = LITERAL (Read)
A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
flip a b 2

Reverses the pixels in the NDF called a along its second dimension to create the
new NDF called b.

flip specin specout

If specin is a one-dimensional spectrum, then this example reverses the order of
its pixels to create a new spectrum specout. Note that no value for the DIM parameter
need be supplied in this case.

flip in=cube out=newcube dim=2 noaxis

Reverses the order of the pixels along dimension 2 of the NDF called cube to
give newcube, but leaves the associated axis values in their original order.

SUN/95.45 —Specifications of KAPPA applications 364 FLIP

Notes:

The pixel-index bounds of the NDF are unchanged by this routine.

Related Applications :

KAPPA: ROTATE, REGRID; FIGARO: IREVX, IREVY, IROT90.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. The data type of the input
pixels is preserved in the output NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IROT90

365 FOURIER SUN/95.45 —Specifications of KAPPA applications

FOURIER
Performs forward and inverse Fourier transforms of one- or

two-dimensional NDFs

Description:
This application performs forward or reverse Fast Fourier Transforms (FFTs) of one- or
two-dimensional NDFs . The output in the forward transformation (from the space domain
to the Fourier) can be produced in Hermitian form in a single NDF, or as two NDFs giving
the real and imaginary parts of the complex transform, or as two NDFs giving the power
and phase of the complex transform. Any combination of these may also be produced.
The inverse procedure accepts any of these NDFs and produces a purely real output NDF.

Any bad pixels in the input NDF may be replaced by a constant value. Input NDFs need
neither be square, nor be a power of 2 in size in either dimension; their shape is arbitrary.

The Hermitian transform is a single image in which each quadrant consisting of a linear
combination of the real and imaginary parts of the transform. This form is useful if you
just want to multiply the Fourier transform by some known purely real mask and then
invert it to get a filtered image. However, if you want to multiply the Fourier transform by
a complex mask (e.g. the Fourier transform of another NDF), or do any other operation
involving combining complex values, then the Hermitian NDF must be untangled into
separate real and imaginary parts.

There is an option to swap the quadrants of the input NDF around before performing a
forward FFT. This is useful if you want to perform convolutions with the FFTs, since the
point-spread function (PSF) image can be created with the PSF centre at the array centre,
rather than at pixel (1, 1) as is usually required.

Usage:
fourier in hermout

Parameters:

FILLVAL = LITERAL (Read)
A value to replace bad pixels before performing the transform. The input image is
also padded with this value if necessary to form an image of acceptable size. A value
of "Mean" will cause the mean value in the array to be used. [0.0]

HERMIN = NDF (Read)
Hermitian frequency-domain input NDF containing the complex transform. If null
is entered no Hermitian NDF is read and then the application should be supplied
either separate real and imaginary NDFs, or the power and phase NDFs. Prompting
will not occur if one of the other (inverse) input NDFs has been given on the com-
mand line, but not HERMIN as well. This parameter is only relevant for an inverse
transformation.

HERMOUT = NDF (Write)
Hermitian output NDF from a forward transform. If a null value is given then this
NDF is not produced.

SUN/95.45 —Specifications of KAPPA applications 366 FOURIER

HM_TITLE = LITERAL (Read)
Title for the Hermitian Fourier-transform output NDF. A null (!) value means using
the title of the input NDF. ["KAPPA - Fourier - Hermitian"]

IM_TITLE = LITERAL (Read)
Title for the frequency-domain imaginary output NDF. A null (!) value means using
the title of the input NDF. ["KAPPA - Fourier - Imaginary"]

IMAGIN = NDF (Read)
Input frequency-domain NDF containing the imaginary part of the complex trans-
form. If a null is given then an image of zeros is assumed unless a null is also given
for REALIN, in which case the input is requested in power and phase form. This
parameter is only available if HERMIN is not used. One way to achieve that is to
supply IMAGIN, but not HERMIN, on the command line. This parameter is only
relevant for an inverse transformation.

IMAGOUT = NDF (Write)
Frequency-domain output NDF containing the imaginary part of the complex Fourier
transform. If a null value is given then this NDF is not produced. [!]

IN = NDF (Read)
Real (space-domain) input NDF for a forward transformation. There are no restric-
tions on the size or shape of the input NDF, although the it may have to be padded
or trimmed before being transformed. This parameter is only used if a forward
transformation was requested.

INVERSE = _LOGICAL (Read)
If TRUE, then the inverse transform—frequency domain to space domain—is required,
otherwise a transform from the space to the frequency domain is undertaken. [FALSE]

OUT = NDF (Write)
Real space-domain output NDF. This parameter is only used if an inverse transfor-
mation is requested.

PH_TITLE = LITERAL (Read)
Title for the frequency-domain phase output NDF. A null (!) value means using the
title of the input NDF. ["KAPPA - Fourier - Phase"]

PHASEIN = NDF (Read)
Input frequency-domain NDF containing the phase of the complex transform. If
a null is given then an image of zeros is assumed unless a null is also given for
PHASEIN, in which case the application quits. This parameter is only available if
HERMIN, REALIN, and IMAGIN are all not used. One way to achieve that is to
supply PHASEIN, but none of the aforementioned parameters, on the command line.
This parameter is only relevant for an inverse transformation.

PHASEOUT = NDF (Write)
Frequency-domain output NDF containing the phase of the complex Fourier trans-
form. If a null value is given then this NDF is not produced. [!]

POWERIN = NDF (Read)
Input frequency-domain NDF containing the modulus of the complex transform.
Note, this should be the square root of the power rather than the power itself. If
a null is given then an image of zeros is assumed unless a null is also given for
PHASEIN, in which case the application quits. This parameter is only available if

367 FOURIER SUN/95.45 —Specifications of KAPPA applications

HERMIN, REALIN, and IMAGIN are all not used. One way to achieve that is to
supply POWERIN, but none of the aforementioned parameters, on the command
line. This parameter is only relevant for an inverse transformation.

POWEROUT = NDF (Write)
Frequency-domain output NDF containing the modulus of the complex Fourier
transform. Note, this is the square root of the power rather than the power itself. If a
null value is given then this NDF is not produced. [!]

PW_TITLE = LITERAL (Read)
Title for the frequency-domain power output NDF. A null (!) value means using the
title of the input NDF. ["KAPPA - Fourier - Power"]

REALIN = NDF (Read)
Input frequency-domain NDF containing the real part of the complex transform. If a
null is given then an image of zeros is assumed unless a null is also given for IMAGIN,
in which case the input is requested in power and phase form. This parameter is only
available if HERMIN is not used. One way to achieve that is to supply REALIN, but
not HERMIN, on the command line. This parameter is only relevant for an inverse
transformation.

REALOUT = NDF (Write)
Frequency-domain output NDF containing the real part of the complex Fourier
transform. If a null value is given then this NDF is not produced. [!]

RL_TITLE = LITERAL (Read)
Title for the frequency-domain real output NDF. A null (!) value means using the
title of the input NDF. ["KAPPA - Fourier - Real"]

SHIFT = _LOGICAL (Read)
If TRUE, the transform origin is to be located at the array’s centre. This is implemented
by swapping bottom-left and top-right, and bottom-right and top-left array quadrants,
before doing the transform. This results in the transformation effectively being done
about pixel x = INT(NAXIS1/2)+1 and y = INT(NAXIS2/2)+1, where NAXISn are
the padded or trimmed dimensions of the NDF. [FALSE]

TRIM = _LOGICAL (Read)
If TRUE, when the input array dimension cannot be processed by the transform, the
output arrays will be trimmed rather than padded with the fill value. [FALSE]

TITLE = LITERAL (Read)
Title for the real space-domain output NDF. A null (!) value means using the title of
the input NDF. ["KAPPA - Fourier"]

Examples:
fourier galaxy ft_gal

Makes an Hermitian Fourier transform stored in an NDF called ft_gal from the
two-dimensional NDF called galaxy.

fourier hermin=ft_gal out=galaxy inverse

Takes an Hermitian Fourier transform stored in an NDF called ft_gal and per-
forms the inverse transformation to yield a normal (spatial domain) image in NDF
galaxy.

SUN/95.45 —Specifications of KAPPA applications 368 FOURIER

fourier in=galaxy powerout=galpow hermout=ft_gal fillval=mean

Makes an Hermitian Fourier transform stored in an NDF called ft_gal from the
two-dimensional NDF called galaxy. Any bad values in galaxy are replaced by the mean
data value of galaxy. In addition the power of the transform is written to an NDF called
galpow.

fourier realin=real_gal out=galaxy inverse

Takes the real component of a Fourier transform stored in an NDF called real_gal and
performs the inverse transformation to yield a normal image in NDF galaxy.

Notes:

• See the NAG documentation, Chapter C06, and/or KAPLIBS routine kpg1_hmltx.gen
for more details of Hermitian Fourier transforms.

Related Applications :

KAPPA: CONVOLVE, LUCY, MEM2D, WIENER; FIGARO: BFFT, CMPLX*, COSBELL,
FFT, *2CMPLX.

Implementation Status:

• AXIS, VARIANCE and QUALITY are not propagated from the input to output NDFs,
but the LABEL, TITLE, HISTORY components and all extensions are. Arithmetic
is performed using single- or double-precision floating point, as appropriate for the
type of the data array.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_BFFT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COSBELL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FFT

369 GAUSMOOTH SUN/95.45 —Specifications of KAPPA applications

GAUSMOOTH
Smooths a one- or two-dimensional image using a Gaussian filter

Description:
This application smooths an NDF using a one- or two-dimensional symmetrical Gaussian
point spread function (PSF) of specified width, or widths and orientation. Each output
pixel is the PSF-weighted mean of the input pixels within the filter box.

The NDF may have up to three dimensions. If it has three dimensions, then the filter is
applied in turn to each plane in the cube and the result written to the corresponding plane
in the output cube. The orientation of the smoothing plane can be specified using the
AXES parameter.

Usage:
gausmooth in out fwhm

Parameters:
AXES(2) = _INTEGER (Read)

This parameter is only accessed if the NDF has exactly three significant pixel axes.
It should be set to the indices of the NDF pixel axes which span the plane in which
smoothing is to be applied. All pixel planes parallel to the specified plane will be
smoothed independently of each other. The dynamic default is the indices of the first
two significant axes in the NDF. []

BOX() = _INTEGER (Read)
The x and y sizes (in pixels) of the rectangular region over which the Gaussian PSF
should be applied at each point. The smoothing PSF will be set to zero outside this
rectangle, which should therefore be sufficiently large not to truncate the PSF too early.
A square region is defined should only one size be given. For a one-dimensional or
circular Gaussian a second size is ignored. Two values are expected when an elliptical
PSF is requested (see the description of Parameter FWHM).
The values given will be rounded up to positive odd integers if necessary. If a null
(!) value is supplied, the value used is just sufficient to accommodate the Gaussian
PSF out to a radius of 3 standard deviations. Note that the time taken to perform
the smoothing increases in approximate proportion to the value of this parameter
for a circular Gaussian, and in proportion to the product of the two box sizes for an
elliptical Gaussian. [!]

FWHM() = _REAL (Read)
This specifies whether a circular or elliptical Gaussian point-spread function is used
in smoothing a two-dimensional image. If one value is given it is the full-width at
half-maximum of a one-dimensional or circular Gaussian PSF. (Indeed only one value
is permitted for a one-dimensional array.) If two values are supplied, this parameter
becomes the full-width at half-maximum of the major and minor axes of an elliptical
Gaussian PSF. Values between 0.1 and 10000.0 pixels should be given. Note that
unless a non-default value is specified for the BOX parameter, the time taken to
perform the smoothing will increase in approximate proportion to the value(s) of
FWHM. The suggested default is the current value.

SUN/95.45 —Specifications of KAPPA applications 370 GAUSMOOTH

IN = NDF (Read)
The input NDF containing the one-, two-, or three-dimensional image to which
Gaussian smoothing is to be applied.

ORIENT = _REAL (Read)
The orientation of the major axis of the elliptical Gaussian PSF, measured in degrees
in an anti-clockwise direction from the x axis of the NDF. ORIENT is not obtained if
FWHM has one value, i.e. a circular Gaussian PSF will be used to smooth the image,
or the input NDF is one-dimensional. The suggested default is the current value.

OUT = NDF (Write)
The output NDF which is to contain the smoothed image.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the input NDF to be
used. [!]

WLIM = _DOUBLE (Read)
If the input image contains bad pixels, then this parameter may be used to determine
the number of good pixels which must be present within the PSF area before a valid
output pixel is generated. It can be used, for example, to prevent output pixels from
being generated in regions where good pixels are only present in the wings of the
PSF.
By default, a null (!) value is used for WLIM, which causes the pattern of bad pixels
to be propagated from the input image to the output image unchanged. In this case,
smoothed output values are only calculated for those pixels which are not bad in the
input image.
If a numerical value is given for WLIM, then it specifies the minimum PSF-weighted
fraction of good pixels which must be present in the PSF area (i.e. box) in order to
generate a good output pixel. The maximum value, in the absence of bad pixels, is
unity. If the specified minimum fraction of good input pixels is not present, then a
bad output pixel will result, otherwise a smoothed output value will be calculated.
The value of this parameter should lie between 1E-6 and 1.0. [!]

Examples:
gausmooth image1 image2 5.0

Smooths the two-dimensional image held in the NDF structure image1 using a
symmetrical Gaussian PSF with a full-width at half-maximum of 5 pixels. The smoothed
image is written to image2. If any pixels in the input image are bad, then the corresponding
pixels in the output image will also be bad.

gausmooth spectrum1 spectrum2 5.0 box=9

Smooths the one-dimensional image held in the NDF structure spectrum1 using
a symmetrical Gaussian PSF with a full-width at half-maximum of 5, and is evaluated
over a length of 9 pixels. The smoothed image is written to spectrum2. If any pixels in the
input image are bad, then the corresponding pixels in the output image will also be bad.

gausmooth in=a out=b fwhm=3.5 box=31

371 GAUSMOOTH SUN/95.45 —Specifications of KAPPA applications

Smooths the two-dimensional image held in the NDF structure a, writing the re-
sult into the structure b. The Gaussian smoothing PSF has a full-width at half-maximum
of 3.5 pixels and is evaluated over a large square of size 31x31 pixels.

gausmooth in=a out=b fwhm=[4,3] orient=52.7 box=[29,33]

Smooths the two-dimensional image held in the NDF structure a, writing the re-
sult into the structure b. The elliptical Gaussian smoothing PSF has full-width at
half-maximum of 4 pixels along its major axis and three pixels along its minor axis, and is
evaluated over a large rectangle of size 29x33 pixels. The major axis of the PSF is oriented
52.7 degrees anti-clockwise from the x axis of the data array.

gausmooth ngc1097 ngc1097s fwhm=7.2 wlim=0.1

Smooths the specified image data using a Gaussian PSF with a full-width at
half-maximum of 7.2. An output value is calculated for any pixel for which the
PSF-weighted fraction of good input pixels is at least 0.1. This will cause the smoothing
operation to fill in moderately sized regions of bad pixels.

Timing :

For a circular PSF, the execution time is approximately proportional to the number of
pixels in the image to be smoothed and to the value given for the BOX parameter. By
default, this latter value is proportional to the value given for FWHM. For an elliptical PSF,
the execution time is approximately proportional to the number of pixels in the image to be
smoothed and to the product of the values given for the BOX parameter. By default, these
latter values are approximately proportional to the values given for FWHM. Execution
time will be approximately doubled if a variance array is present in the input NDF.

Related Applications :

KAPPA: BLOCK, CONVOLVE, FFCLEAN, MATHS, MEDIAN, PSF; FIGARO: ICONV3,
ISMOOTH, IXSMOOTH, MEDFILT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported. The bad-pixel
flag is also written for the data and variance arrays.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point, or double precision, if appropriate.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IXSMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT

SUN/95.45 —Specifications of KAPPA applications 372 GDCLEAR

GDCLEAR
Clears a graphics device and purges its database entries

Description:
This application software resets a graphics device. In effect the device is cleared. It purges
the graphics-database entries for the device. Optionally, only the current picture is cleared
and the database unchanged. (Note the clearing of the current picture may not work on
some graphics devices.)

Usage:
gdclear [device] [current]

Parameters:

CURRENT = _LOGICAL (Read)
If TRUE then only the current picture is cleared. [FALSE]

DEVICE = DEVICE (Read)
The graphics device to be cleared. [Current graphics device]

Examples:
gdclear

Clears the current graphics device and purges its graphics-database entries.

gdclear current

Clears the current picture on the current graphics device.

gdclear xw

Clears the xw device and purges its graphics-database entries.

Related Applications :

KAPPA: GDSET, GDSTATE.

373 GDNAMES SUN/95.45 —Specifications of KAPPA applications

GDNAMES
Shows which graphics devices are available

Description:
The routine displays a list of the graphics devices available and the names (both traditional
Starlink GNS names and the equivalent PGPLOT names) which identify them. Each name
is accompanied by a brief descriptive comment.

Usage:
gdnames

SUN/95.45 —Specifications of KAPPA applications 374 GDSET

GDSET
Selects a current graphics device

Description:
This application selects a current graphics device. This device will be used for all applica-
tions requiring an graphics device until changed explicitly.

Usage:
gdset device

Parameters:

DEVICE = DEVICE (Read)
The graphics device to become the current graphics device.

Examples:
gdset xwindows

Makes the xwindows device the current graphics device.

375 GDSTATE SUN/95.45 —Specifications of KAPPA applications

GDSTATE
Shows the current status of a graphics device

Description:
This application displays information about the current graphics database picture on a
graphics device, including the extreme axis values in any requested co-ordinate Frame (see
Parameter FRAME). Information is written to various output parameters for use by other
applications, and is also written to the screen by default (see Parameter REPORT). An
outline may be drawn around the current picture if required (see Parameter OUTLINE).

A list of the colours in the current palette is also produced.

Usage:
gdstate [device] [frame]

Parameters:

COMMENT = LITERAL (Write)
The comment of the current picture. Up to 132 characters will be written.

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description is displayed of the co-ordinate Frame in which the
picture bounds are reported (see Parameter FRAME). [current value]

DEVICE = DEVICE (Read)
Name of the graphics device about which information is required. [Current graphics
device]

EPOCH = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAME) for
a celestial co-ordinate system, then an epoch value is needed to qualify it. This is the
epoch at which the displayed sky co-ordinates were determined. It should be given
as a decimal years value, with or without decimal places ("1996.8" for example).
Such values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian
epoch otherwise.

FRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which the bounds of the current picture
are to be reported. When a picture is created by an application such as PICDEF,
DISPLAY, the WCS information describing the available co-ordinate systems are
stored with the picture in the graphics database. This application can report bounds
in any of the co-ordinate Frames stored with the current picture. The string supplied
for FRAME can be one of the following:

• A domain name such as SKY, AXIS, PIXEL, NDC, BASEPIC, CURPIC. The
special domain AGI_WORLD is used to refer to the world co-ordinate system
stored in the AGI graphics database. This can be useful if no WCS information
was store with the picture when it was created.
• An integer value giving the index of the required Frame.

SUN/95.45 —Specifications of KAPPA applications 376 GDSTATE

• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see
SUN/163).

If a null value (!) is supplied, bounds are reported in the co-ordinate Frame which
was current when the picture was created. [!]

OUTLINE = _LOGICAL (Read)
If OUTLINE is TRUE, then an outline will be drawn around the current picture to
indicate its position. [FALSE]

REPORT = _LOGICAL (Read)
If this is FALSE, the state of the graphics device is not reported, merely the results are
written to the output parameters. It is intended for use within procedures. [TRUE]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
outline (see Parameter OUTLINE). The format of the axis values reported on the
screen may also be controlled.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the outline is controlled by the attributes Colour(Border),
Width(Border), etc. (the synonym Outline may be used in place of Border). In addition,
the following attributes may be set in order to control the appearance of the formatted
axis values reported on the screen: Format, Digits, Symbol, Unit. These may be suffixed
with an axis number (e.g. Digits(2)) to refer to the values displayed for a specific axis.
[current value]

Results Parameters:

DOMAIN = LITERAL (Write)
The Domain name of the current co-ordinate Frame for the current picture.

LABEL = LITERAL (Write)
The label of the current picture. It is blank if there is no label.

NAME = LITERAL (Write)
The name of the current picture.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

377 GDSTATE SUN/95.45 —Specifications of KAPPA applications

REFNAM = LITERAL (Write)
The reference object associated with the current picture. It is blank if there is no reference
object. Up to 132 characters will be written.

X1 = LITERAL (Write)
The lowest value found within the current picture for Axis 1 of the requested co-ordinate
Frame (see Parameter FRAME).

X2 = LITERAL (Write)
The highest value found within the current picture for Axis 1 of the requested co-ordinate
Frame (see Parameter FRAME).

Y1 = LITERAL (Write)
The lowest value found within the current picture for Axis 2 of the requested co-ordinate
Frame (see Parameter FRAME).

Y2 = LITERAL (Write)
The highest value found within the current picture for Axis 2 of the requested co-ordinate
Frame (see Parameter FRAME).

Examples:
gdstate

Shows the status of the current graphics device. The bounds of the picture are
displayed in the current co-ordinate Frame of the picture.

gdstate ps_l basepic

Shows the status of the ps_l device. The bounds of the picture are displayed in
the BASEPIC Frame (normalised device co-ordinates in which the short of the two
dimensions of the display surface has length 1.0).

gdstate outline frame=pixel style="’colour=red,width=3’"

Shows the status of the current graphics device and draws a thick, red outline
around the current database picture. The bounds of the picture are displayed in the PIXEL
co-ordinate Frame (if available).

gdstate refnam=(ndfname)

Shows the status of the current graphics device. If there is a reference data ob-
ject, its name is written to the ICL variable NDFNAME.

gdstate x1=(x1) x2=(x2) y1=(y1) y2=(y2) frame=basepic

Shows the status of the current graphics device. The bounds of the current pic-
ture in normalised device co-ordinates are written to the ICL variables: X1, X2, Y1,
Y2.

SUN/95.45 —Specifications of KAPPA applications 378 GDSTATE

Notes:

• The displayed bounds are the extreme axis values found anywhere within the current
picture. In some situations these extreme values may not occur on the edges of the
picture. For instance, if the current picture represents a region including the north
celestial pole, then displaying the picture bounds in celestial co-ordinates will give
a declination upper limit of +90 degrees, whilst the RA limits will be 0 hours and
(close to) 24 hours.

• Previous versions of this application reported bounds in ‘Normalised Device Co-
ordinates’ (see Section 11.3). Similar functionality is now provided by setting Param-
eter FRAME to "BASEPIC". Be aware though, that Normalised Device Co-ordinates
were normalised so that the longer of the two axes had a length of 1.0, but BASEPIC
co-ordinates are normalised so that the shorter of the two axes has length 1.0.

• The ‘NDC’ Frame is now a normalized co-ordinate system in which each axis of the
graphics device has unit length.

Related Applications :

KAPPA: GDSET, GDCLEAR.

379 GLITCH SUN/95.45 —Specifications of KAPPA applications

GLITCH
Replaces bad pixels in a two-dimensional NDF with the local median

Description:
This routine removes bad pixels from a two-dimensional NDF , replacing them with the
median of the eight (or less at the edges) neighbouring pixels. At least three of these eight
neighbouring pixels must have good values (that is, they must not set to the bad value)
otherwise the resultant pixel becomes bad.

The positions of the pixels to be removed can be supplied in four ways (see Parameter
MODE):

• In response to parameter prompts. A single bad pixel position is supplied at each
prompt, and the user is re-prompted until a null value is supplied.

• Within a positions list such as produced by applications CURSOR, LISTMAKE.

• Within a simple text file. Each line contains the position of a pixel to be replaced.

• Alternatively, each bad pixel in the input NDF can be used (subject to the above
requirement that at least three out of the eight neighbouring pixels are not bad).

Usage:

glitch in out [title]

incat=?

infile=?

pixpos=?
mode

Parameters:

IN = NDF (Read)
The input image.

INCAT = FILENAME (Read)
A catalogue containing a positions list giving the pixels to be replaced, such as
produced by applications CURSOR, LISTMAKE. Only accessed if Parameter MODE
is given the value "Catalogue".

INFILE = FILENAME (Read)
The name of a text file containing the positions of the pixels to be replaced. The
positions should be given in the current co-ordinate Frame of the input NDF, one per
line. Spaces or commas can be used as delimiters between axis values. The file may
contain comment lines with the first character # or !. This parameter is only used if
Parameter MODE is set to "File".

MODE = LITERAL (Read)
The method used to obtain the positions of the pixels to be replaced. The supplied
string can be one of the following options.

SUN/95.45 —Specifications of KAPPA applications 380 GLITCH

• "Bad" — The bad pixels in the input NDF are used.
• "Catalogue" — Positions are obtained from a positions list using Parameter

INCAT.
• "File" — The pixel positions are read from a text file specified by Parameter

INFILE.
• "Interface" — The position of each pixel is obtained using Parameter PIXPOS.

The number of positions supplied must not exceed 200.
[current value]

OUT = NDF (Write)
The output image.

PIXPOS = LITERAL (Read)
The position of a pixel to be replaced, in the current co-ordinate Frame of the input
NDF. Axis values should be separated by spaces or commas. This parameter is
only used if Parameter MODE is set to "Interface". If a value is supplied on the
command line, then the application exits after processing the single specified pixel.
Otherwise, the application loops to obtain multiple pixels to replace, until a null (!)
value is supplied. Entering a colon (":") will result in a description of the required
co-ordinate Frame being displayed, followed by a prompt for a new value.

TITLE = LITERAL (Read)
Title for the output image. A null value (!) propagates the title from the input image
to the output image. [!]

Examples:
glitch m51 cleaned mode=cat incat=badpix.FIT

Reads pixel positions from the positions list stored in the FITS file badpix.FIT,
and replaces the corresponding pixels in the two-dimensional NDF m51 by the median of
the surrounding neighbouring pixels. The cleaned image is written to cleaned.sdf.

Notes:

• If the current co-ordinate Frame of the input NDF is not PIXEL, then the supplied
positions are first mapped into the PIXEL Frame before being used.

Related Applications :

KAPPA: ARDMASK, CHPIX, FILLBAD, ZAPLIN, NOMAGIC, REGIONMASK, SEG-
MENT, SETMAGIC; FIGARO: CSET, ICSET, NCSET, TIPPEX.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.
• Processing of bad pixels and automatic quality masking are supported.
• Only single- and double-precision floating-point data can be processed directly. All

integer data will be converted to floating point before being processed.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_NCSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

381 GLOBALS SUN/95.45 —Specifications of KAPPA applications

GLOBALS
Displays the values of the KAPPA global parameters

Description:
This procedure lists the meanings and values of the KAPPA global parameters. If a global
parameter does not have a value, the string "<undefined>" is substituted where the value
would have been written.

Usage:
globals

SUN/95.45 —Specifications of KAPPA applications 382 HISCOM

HISCOM
Adds commentary to the history of an NDF

Description:
This task allows application-independent commentary to be added to the history records
of an NDF . The text may be read from a text file or obtained through a parameter.

Usage:

hiscom ndf [mode]

 file=?

comment=?
mode

Parameters:

APPNAME = LITERAL (Read)
The application name to be recorded in the new history record. If a null value (!)
is supplied, a default of "HISCOM" is used and the new history record describes
the parameter values supplied when HISCOM was invoked. If a non-null value is
supplied, the new history record refers to the specified application name instead of
"HISCOM" and does not describe the HISCOM parameter values. [!]

COMMENT = LITERAL (Read)
A line of commentary limited to 72 characters. If the value is supplied on the com-
mand line only that line of commentary will be written into the history. Otherwise
repeated prompting enables a series of commentary lines to be supplied. A null
value (!) terminates the loop. Blank lines delimit paragraphs. Paragraph wrapping is
enabled by Parameter WRAP. There is no suggested default to allow more room for
entering the value.

DATE = LITERAL (Read)
The date and time to associated with the new history record. Normally, a null (!)
value should be supplied, in which case the current UTC date and time will be used.
If a value is supplied, it should be in one of the following forms.

• Gregorian Calendar Date — With the month expressed either as an integer or
a three-character abbreviation, and with optional decimal places to represent a
fraction of a day ("1996-10-2" or "1996-Oct-2.6" for example). If no fractional
part of a day is given, the time refers to the start of the day (zero hours).
• Gregorian Date and Time — Any calendar date (as above) but with a fraction of

a day expressed as hours, minutes and seconds ("1996-Oct-2 12:13:56.985"
for example). The date and time can be separated by a space or by a "T" (as used
by ISO 8601 format).
• Modified Julian Date — With or without decimal places ("MJD 54321.4" for

example).
• Julian Date — With or without decimal places ("JD 2454321.9" for example).

[!]

383 HISCOM SUN/95.45 —Specifications of KAPPA applications

FILE = FILENAME (Read)
Name of the text file containing the commentary. It is only accessed if MODE="File".

MODE = LITERAL (Read)
The interaction mode. The allowed values are described below.
"File" — The commentary is to be read from a text file. The formatting and layout
of the text is preserved in the history unless WRAP=TRUE and there are lines longer
than the width of the history records.
"Interface" — The commentary is to be supplied through a parameter. See Parame-
ter COMMENT.
["Interface"]

NDF = (Read and Write)
The NDF for which commentary is to be added to the history.

WRAP = _LOGICAL (Read)
WRAP=TRUE requests that the paragraphs of comments are wrapped to make as
much text fit on to each line of the history record as possible. WRAP=FALSE means
that the commentary text beyond the width of the history records (72 characters) is
lost. If a null (!) value is supplied, the value used is TRUE when MODE="Interface"
and FALSE if MODE="File". [!]

Examples:
hiscom frame256 comment="This image has a non-uniform background"

This adds the comment "This image has a non-uniform background" to the his-
tory records of the NDF called frame256.

hiscom ndf=eso146-g14 comment="This galaxy is retarded" mode=i

This adds the comment "This galaxy is retarded" to the history records of the
NDF called eso146-g14.

hiscom hh14_k file file=ircam_info.lis

This reads the file ircam_info.lis and places the text contained therein into the
history records of the NDF called hh14_k. Any lines longer than 72 characters are
truncated to that length.

hiscom hh14_k file file=ircam_info.lis wrap

As the previous example except the text in each paragraph is wrapped to a width of 72
characters within the history records.

Notes:

• A HISTORY component is created if it does not exist within the NDF. The width of
the history record is 72 characters.

SUN/95.45 —Specifications of KAPPA applications 384 HISCOM

• An error will result if the current history update mode of the NDF is "Disabled", and
no commentary is written. Otherwise the commentary is written at the priority equal
to the current history update mode.

• A warning messages (at the normal reporting level) is issued if lines in the text file
are too long for the history record and WRAP=FALSE, though the first 72 characters
are stored.

• The maximum line length in the file is 200 characters.

• Paragraphs should have fewer than 33 lines. Longer ones will be divided.

385 HISLIST SUN/95.45 —Specifications of KAPPA applications

HISLIST
Lists NDF history records

Description:
This lists all the history records in an NDF . The reported information comprises the date,
time, and application name, and optionally the history text.

Usage:
hislist ndf

Parameters:

BRIEF = _LOGICAL (Read)
This controls whether a summary or the full history information is reported.
BRIEF=TRUE requests that only the date and application name in each history record
is listed. BRIEF=FALSE causes the task to report the history text in addition. [FALSE]

NDF = NDF (Read)
The NDF whose history information is to be reported.

Examples:
hislist vcc953

This lists the full history information for the NDF called vcc935. The informa-
tion comprises the names of the applications and the times they were used, and the
associated history text.

hislist vcc953 brief

This gives a summary of the history information for the NDF called vcc935. It
comprises the names of the applications and the times they were used.

Related Applications :

KAPPA: HISCOM, HISSET, NDFTRACE.

SUN/95.45 —Specifications of KAPPA applications 386 HISSET

HISSET
Sets the NDF history update mode

Description:
This task controls the level of history recording in an NDF , and can also erase the history
information.

The level is called the history update mode and it is a permanent attribute of the HISTORY
component of the NDF, and remains with the NDF and any NDF created therefrom until
the history is erased or the update mode is modified (say by this task).

Usage:
hisset ndf [mode] ok=?

Parameters:

MODE = LITERAL (Read)
The history update mode. It can take one of the following values.

"Disabled" — No history recording is to take place.
"Erase" — Erases the history of the NDF.
"Normal" — Normal history recording is required.
"Quiet" — Only brief history information is to be recorded.
"Verbose" — The fullest-possible history information is to be recorded.

The suggested default is "Normal". ["Normal"]

NDF = (Read and Write)
The NDF whose history update mode to be modified or history information erased.

OK = _LOGICAL (Read)
This is used to confirm whether or not the history should be erased. OK=TRUE lets
the history records be erased; if OK=FALSE the history is retained and a message will
be issued to this effect.

Examples:
hisset final

This sets the history-recording level to be normal for the NDF called final.

hisset final erase ok

This erases the history information from the NDF called final.

hisset mode=disabled ndf=spectrum

This disables history recording in the NDF called spectrum.

387 HISSET SUN/95.45 —Specifications of KAPPA applications

hisset test42 v

This sets the history-recording level to be verbose for the NDF called test42 so
that the fullest-possible history is included.

hisset ndf=test42 mode=q

This sets the history-recording level to be quiet for the NDF called test42, so
that only brief information is recorded.

Notes:

• A HISTORY component is created if it does not exist within the NDF, except for
MODE="Erase".

• The task records the new history update mode within the history records, even if
MODE="Disabled" provided the mode has changed. Thus the history information
will show where there may be gaps in the recording.

Related Applications :

KAPPA: HISCOM, HISLIST, NDFTRACE.

SUN/95.45 —Specifications of KAPPA applications 388 HISTAT

HISTAT
Computes ordered statistics for an NDF’s pixels using an histogram

Description:
This application computes and displays simple ordered statistics for the pixels in an
NDF’s data, quality, error, or variance array. The statistics available are:

• the pixel sum,

• the pixel mean,

• the pixel median,

• the pixel mode,

• the pixel value at selected percentiles,

• the value and position of the minimum- and maximum-valued pixels,

• the total number of pixels in the NDF,

• the number of pixels used in the statistics, and

• the number of pixels omitted.
The mode may be obtained in different ways (see Parameter METHOD).

Usage:
histat ndf [comp] [percentiles] [logfile]

Parameters:

COMP = LITERAL (Read)
The name of the NDF array component for which statistics are required. The op-
tions are limited to the arrays within the supplied NDF. In general the value may
"Data", "Error", "Quality" or "Variance" (note that "Error" is the alternative to
"Variance" and causes the square root of the variance values to be taken before
computing the statistics). If "Quality" is specified, then the quality values are treated
as numerical values (in the range 0 to 255). ["Data"]

LOGFILE = FILENAME (Write)
A text file into which the results should be logged. If a null value is supplied (the
default), then no logging of results will take place. [!]

METHOD = LITERAL (Read)
The method used to evaluate the mode. The choices are as follows.

• "Histogram" — This finds the peak of an optimally binned histogram, the mode
being the central value of that bin. The number of bins may be altered given
through Parameter NUMBIN, however it is recommended to use the optimal
binsize derived from the prescription of Freedman & Diatonis.

389 HISTAT SUN/95.45 —Specifications of KAPPA applications

• "Moments" — As "Histogram" but the mode is the weighted centroid from the
moments of the peak bin and its neighbours. The neighbours are those bins
either side of the peak in a continuous sequence whose membership exceeds the
peak value less three times the Poisson error of the peak bin. Thus it gives an
interpolated mode and does reduce the effect of noise.
• "Pearson" — This uses the 3 * median - 2 * mean formula devised by Pearson. See

the first two References. This assumes that the median is bracketed by the mode
and mean and only a mildly skew unimodal distribution. This often applies to
an image of the sky.

["Pearson"]
NDF = NDF (Read)

The NDF data structure to be analysed.
NUMBIN = _INTEGER (Read)

The number of histogram bins to be used for the coarse histogram to evaluate the
mode. It is only accessed when METHOD="Histogram" or "Moments". This must lie
in the range 10 to 10000. The suggested default is calculated dynamically depending
on the data spread and number of values (using the prescription of Freedman &
Diaconis). For integer data it is advisble to use the dynamic default or an integer
multiple thereof to avoid creating non-integer wide bins. []

PERCENTILES(100) = _REAL (Read)
A list of percentiles to be found. None are computed if this parameter is null (!). The
percentiles must be in the range 0.0 to 100.0 [!]

Results Parameters:

MAXCOORD() = _DOUBLE (Write)
A one-dimensional array of values giving the WCS co-ordinates of the centre of the (first)
maximum-valued pixel found in the NDF array. The number of co-ordinates is equal to
the number of NDF dimensions.

MAXIMUM = _DOUBLE (Write)
The maximum pixel value found in the NDF array.

MAXPOS() = _INTEGER (Write)
A one-dimensional array of pixel indices identifying the (first) maximum-valued pixel
found in the NDF array. The number of indices is equal to the number of NDF dimensions.

MAXWCS = LITERAL (Write)
The formatted WCS co-ordinates at the maximum pixel value. The individual axis values
are comma separated.

MEAN = _DOUBLE (Write)
The mean value of all the valid pixels in the NDF array.

MEDIAN = _DOUBLE (Write)
The median value of all the valid pixels in the NDF array.

MINCOORD() = _DOUBLE (Write)
A one-dimensional array of values giving the user co-ordinates of the centre of the (first)
minimum-valued pixel found in the NDF array. The number of co-ordinates is equal to
the number of NDF dimensions.

SUN/95.45 —Specifications of KAPPA applications 390 HISTAT

MINIMUM = _DOUBLE (Write)
The minimum pixel value found in the NDF array.

MINPOS() = _INTEGER (Write)
A one-dimensional array of pixel indices identifying the (first) minimum-valued pixel
found in the NDF array. The number of indices is equal to the number of NDF dimensions.

MINWCS = LITERAL (Write)
The formatted WCS co-ordinates at the minimum pixel value. The individual axis values
are comma separated.

MODE = _DOUBLE (Write)
The modal value of all the valid pixels in the NDF array. The method used to obtain the
mode is governed by Parameter METHOD.

NUMBAD = _INTEGER (Write)
The number of pixels which were either not valid or were rejected from the statistics
during iterative κ-sigma clipping.

NUMGOOD = _INTEGER (Write)
The number of NDF pixels which actually contributed to the computed statistics.

NUMPIX = _INTEGER (Write)
The total number of pixels in the NDF (both good and bad).

PERVAL() = _DOUBLE (Write)
The values of the percentiles of the good pixels in the NDF array. This parameter is only
written when one or more percentiles have been requested.

TOTAL = _DOUBLE (Write)
The sum of the pixel values in the NDF array.

Examples:
histat image

Computes and displays simple ordered statistics for the data array in the NDF
called image.

histat image method=his

As above but the mode is the centre of peak bin in the optimally distributed
histogram rather than sub-bin interpolated using neighbouring bins.

histat ndf=spectrum variance

Computes and displays simple ordered statistics for the variance array in the
NDF called spectrum.

histat spectrum error

391 HISTAT SUN/95.45 —Specifications of KAPPA applications

Computes and displays ordered statistics for the variance array in the NDF called
spectrum, but takes the square root of the variance values before doing so.

histat halley logfile=stats.dat method=pearson

Computes ordered statistics for the data array in the NDF called halley, and
writes the results to a logfile called stats.dat. The mode is derived using the Pearson
formula.

histat ngc1333 percentiles=[0.25,0.75]

Computes ordered statistics for the data array in the NDF called ngc1333, including the
quartile values.

Notes:

• Where the histogram contains a few extreme outliers, the histogram limits are ad-
justed to reduce greatly the bias upon the statistics, even if a chosen percentile
corresponds to an extreme outlier. The outliers are still accounted in the median and
percentiles. The histogram normally uses 10000 bins. For small arrays the number of
bins is at most a half of the number of array elements. Integer arrays have a minimum
bin width of one; this can also reduce the number of bins. The goal is to avoid most
histogram bins being empty artificially, since the sparseness of the histogram is the
main criterion for detecting outliers. Outliers can also be removed (flagged) via
application THRESH prior to using this application.
• There is quantisation bias in the statistics, but for non-pathological distributions this

should be insignificant. Accuracy to better than 0.01 of a percentile is normal. Linear
interpolation within a bin is used, so the largest errors arise near the median.

References :Moroney, M.J., 1957, Facts from Figures (Pelican)
Goad, L.E. 1980, Statistical Filtering of Cosmic-Ray Events from Astronomical CCD Images in

Applications of Digital Image Processing to Astronomy, SPIE 264, 136.
Freedman, D. & Diaconis, P. 1981, On the histogram as a density estimator: L2 theory,

Zeitschrift f"ur Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453.

Related Applications :

KAPPA: HISTOGRAM, MSTATS, NDFTRACE, NUMB, STATS; ESP: HISTPEAK; FIGARO:
ISTAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, TITLE, and
HISTORY components of the NDF.
• Processing of bad pixels and automatic quality masking are supported.
• All non-complex numeric data types can be handled. Arithmetic is performed using

single- or double-precision floating point, as appropriate.
• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_HISTPEAK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTAT

SUN/95.45 —Specifications of KAPPA applications 392 HISTEQ

HISTEQ
Performs an histogram equalisation on an NDF

Description:
This application transforms an NDF via histogram equalisation. Histogram equalisation
is an image-processing technique in which the distribution (between limits) of data values
in the input array is adjusted so that in the output array there are approximately equal
numbers of elements in each histogram bin. To achieve this the histogram bin size is
no longer a constant. This technique is commonly known as histogram equalisation.
It is useful for displaying features across a wide dynamic range, sometimes called a
maximum-information picture. The transformed array is output to a new NDF.

Usage:
histeq in out [numbin]

Parameters:

IN = NDF (Read)
The NDF structure to be transformed.

NUMBIN = _INTEGER (Read)
The number of histogram bins to be used. This should be a large number, say 2000, to
reduce quantisation errors. It must be in the range 100 to 10000. [2048]

OUT = NDF (Write)
The NDF structure to contain the transformed data array.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Examples:
histeq halley maxinf

The data array in the NDF called halley is remapped via histogram equalisation
to form the new NDF called maxinf.

histeq halley maxinf 10000 title="Maximum information of Halley"

The data array in the NDF called halley is remapped via histogram equalisation
to form the new NDF called maxinf. Ten thousand bins in the histogram are required
rather than the default of 2048. The title of NDF maxinf is "Maximum information of
Halley".

Notes:

If there are a few outliers in the data and most of the points concentrated about a value it
may be wise to truncate the data array via THRESH, or have a large number of histogram
bins.

393 HISTEQ SUN/95.45 —Specifications of KAPPA applications

Related Applications :

KAPPA: LAPLACE, LUTABLE, LUTEDIT, SHADOW, THRESH; FIGARO: HOPT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, WCS,
and HISTORY components of an NDF data structure and propagates all extensions.
UNITS and VARIANCE become undefined by the transformation, and so are not
propagated.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_HOPT

SUN/95.45 —Specifications of KAPPA applications 394 HISTOGRAM

HISTOGRAM
Computes an histogram of an NDF’s values

Description:
This application derives histogram information for an NDF array between specified limits,
using either a set number of bins (Parameter NUMBIN) or a chosen bin width (Parameter
WIDTH). The histogram is reported, and may optionally be written to a text log file,
and/or plotted graphically.

By default, each data value contributes a value of one to the corresponding histogram bin,
but alternative weights may be supplied via Parameter WEIGHTS.

Usage:
histogram in numbin range [comp] [logfile]

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. The width of
the margins left for the annotation may be controlled using Parameter MARGIN. The
appearance of the axes (colours, founts, etc.) can be controlled using the Parameter
STYLE. The dynamic default is TRUE if CLEAR is TRUE, and FALSE otherwise. []

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also an attempt is made to align the new picture
with the existing picture. Thus you can generate a composite plot within a single
set of axes, say using different colours or modes to distinguish data from different
datasets. [TRUE]

COMP = LITERAL (Read)
The name of the NDF array component to have its histogram computed: "Data",
"Error", "Quality" or "Variance" (where "Error" is the alternative to "Variance"
and causes the square root of the variance values to be taken before computing the
statistics). If "Quality" is specified, then the quality values are treated as numerical
values (in the range 0 to 255). ["Data"]

CUMUL = _LOGICAL (Read)
If TRUE then a cumulative histogram is reported. [FALSE]

DEVICE = DEVICE (Read)
The graphics workstation on which to produce the plot. If it is null (!), no plot will
be made. [Current graphics device]

IN = NDF (Read)
The NDF data structure to be analysed.

LOGFILE = FILENAME (Write)
A text file into which the results should be logged. If a null value is supplied (the
default), then no logging of results will take place. [!]

395 HISTOGRAM SUN/95.45 —Specifications of KAPPA applications

MARGIN(4) = _REAL (Read)
The widths of the margins to leave for axis annotation, given as fractions of the
corresponding dimension of the current picture. Four values may be given, in the
order bottom, right, top, left. If fewer than four values are given, extra values are used
equal to the first supplied value. If these margins are too narrow any axis annotation
may be clipped. If a null (!) value is supplied, the value used is 0.15 (for all edges) if
either annotated axes or a key are produced, and zero otherwise. [current value]

NUMBIN = _INTEGER (Read)
The number of histogram bins to be used. This must lie in the range 2 to 10000. The
suggested default is the current value. It is ignored if WIDTH is not null.

OUT = NDF (Read)
Name of the NDF structure to save the histogram in its data array. If null (!) is
entered the histogram NDF is not created. [!]

RANGE = LITERAL (Read)
RANGE specifies the range of values for which the histogram is to be computed. The
supplied string should consist of up to three sub-strings, separated by commas. For
all but the option where you give explicit numerical limits, the first sub-string must
specify the method to use. If supplied, the other two sub-strings should be numerical
values as described below (default values will be used if these sub-strings are not
provided). The following options are available.

• lower,upper — You can supply explicit lower and upper limiting values. For
example, "10,200" would set the histogram lower limit to 10 and its upper limit
to 200. No method name prefixes the two values. If only one value is supplied,
the "Range" method is adopted. The limits must be within the dynamic range
for the data type of the NDF array component.
• "Percentiles" — The default values for the histogram data range are set to

the specified percentiles of the data. For instance, if the value "Per,10,99" is
supplied, then the lowest 10% and highest 1% of the data values are excluded
from the histogram. If only one value, p1, is supplied, the second value, p2,
defaults to (100 - p1). If no values are supplied, the values default to "5,95".
Values must be in the range 0 to 100.
• "Range" — The minimum and maximum array values are used. No other sub-

strings are needed by this option. Null (!) is a synonym for the "Range" method.
• "Sigmas" — The histogram limiting values are set to the specified numbers of

standard deviations below and above the mean of the data. For instance, if the
supplied value is "sig,1.5,3.0", then the histogram extends from the mean of
the data minus 1.5 standard deviations to the mean plus 3 standard deviations.
If only one value is supplied, the second value defaults to the supplied value. If
no values are supplied, both default to "3.0".

The "Percentiles" and "Sigmas" methods are useful to generate a first pass at the
histogram. They reduce the likelihood that all but a small number of values lie within
a few histogram bins.
The extreme values are reported unless Parameter RANGE is specified on the com-
mand line. In this case extreme values are only calculated where necessary for the
chosen method.

SUN/95.45 —Specifications of KAPPA applications 396 HISTOGRAM

The method name can be abbreviated to a single character, and is case insensitive.
The initial value is "Range". The suggested defaults are the current values, or ! if
these do not exist. [current value]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes and data values.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the histogram curve is controlled by the attributes Colour(Curves),
Width(Curves), etc. (The synonym Line may be used in place of Curves.) [current
value]

TITLE = LITERAL (Read)
Title for the histogram NDF. ["KAPPA - Histogram"]

WEIGHTS = NDF (Read)
An optional NDF holding weights associated with each input pixel value (supplied
via Parameter IN). Together with Parameter WEIGHTSTEP, these determine the count
added to the corresponding histogram bin for each input pixel value. For instance,
weights could be related to the variance of the data values, or to the position of
the data values within the input NDF. If a null value (!) is supplied for WEIGHTS,
all input values contribute a count of one to the corresponding histogram bin. If
an NDF is supplied, the histogram count for a particular input pixel is formed by
dividing its weight value (supplied in the WEIGHTS NDF) by the value of Parameter
WEIGHTSTEP, and then taking the nearest integer. Input pixels with bad or zero
weights are excluded from the histogram. [!]

WEIGHTSTEP = _DOUBLE (Read)
Only accessed if a value is supplied for Parameter WEIGHTS. WEIGHTSTEP is the
increment in weight value that corresponds to a unit increment in histogram count.

WIDTH = _DOUBLE (Read)
The bin width. This is the alternative to setting the number of bins. The bins of the
chosen width start from the minimum value and do not exceed the maximum value.
Values are constrained to give between 2 and 10000 bins. If this parameter is set to

397 HISTOGRAM SUN/95.45 —Specifications of KAPPA applications

null (!), the data range and Parameter NUMBIN are used to specify the bin width.
[!]

XLEFT = _DOUBLE (Read)
The axis value to place at the left hand end of the horizontal axis of the plot. If a null
(!) value is supplied, the minimum data value in the histogram is used. The value
supplied may be greater than or less than the value supplied for XRIGHT. [!]

XLOG = _LOGICAL (Read)
TRUE if the plot x axis is to be logarithmic. Any histogram bins which have negative
or zero central data values are omitted from the plot. [FALSE]

XRIGHT = _DOUBLE (Read)
The axis value to place at the right hand end of the horizontal axis of the plot. If a
null (!) value is supplied, the maximum data value in the histogram is used. The
value supplied may be greater than or less than the value supplied for XLEFT. [!]

YBOT = _DOUBLE (Read)
The axis value to place at the bottom end of the vertical axis of the plot. If a null (!)
value is supplied, the lowest count the histogram is used. The value supplied may be
greater than or less than the value supplied for YTOP. [!]

YLOG = _LOGICAL (Read)
TRUE if the plot y axis is to be logarithmic. Empty bins are removed from the plot if
the y axis is logarithmic. [FALSE]

YTOP = _DOUBLE (Read)
The axis value to place at the top end of the vertical axis of the plot. If a null (!) value
is supplied, the largest count in the histogram is used. The value supplied may be
greater than or less than the value supplied for YBOT. [!]

Examples:
histogram image 100 ! device=!

Computes and reports the histogram for the data array in the NDF called image.
The histogram has 100 bins and spans the full range of data values.

histogram ndf=spectrum comp=variance range="100,200" numbin=20

Computes and reports the histogram for the variance array in the NDF called
spectrum. The histogram has 20 bins and spans the values between 100 and 200. A plot is
made to the current graphics device.

histogram ndf=spectrum comp=variance range="100,204" width=5

This behaves the same as the previous example, even though it specifies a larger
maximum, as the same number of width=5 bins are used.

histogram cube(3,4,) 10 si out=c3_4_hist device=!

Computes and reports the histogram for the z-vector at (x,y) element (3,4) of the
data array in the three-dimensional NDF called cube. The histogram has 10 bins and

SUN/95.45 —Specifications of KAPPA applications 398 HISTOGRAM

spans a range three standard deviations either side of the mean of the data values. The
histogram is written to a one-dimensional NDF called c3_4_hist.

histogram cube numbin=32 ! device=xwindows style="title=cube"

Computes and reports the histogram for the data array in the NDF called cube.
The histogram has 32 bins and spans the full range of data values. A plot of the histogram
is made to the XWINDOWS device, and is titled "cube".

histogram cube numbin=32 ! device=xwindows ylog style=^style.dat

As in the previous example except the logarithm of the number in each histogram bin is
plotted, and the contents of the text file style.dat control the style of the resulting graph.
The plotting style specified in file style.dat becomes the default plotting style for future
invocations of HISTOGRAM.

histogram cube numbin=32 ! device=xwindows ylog tempstyle=^style.dat

This is the same as the previous example, except that the style specified in file
style.dat does not become the default style for future invocations of HISTOGRAM.

histogram halley(∼200,∼300) "pe,10,90" logfile=hist.dat \

Computes the histogram for the central 200 by 300 elements of the data array in
the NDF called halley, and writes the results to a logfile called hist.dat. The histogram
uses the current number of bins, and includes data values between the 10 and 90
percentiles. A plot appears on the current graphics device.

Related Applications :

KAPPA: HISTAT, MSTATS, NUMB, STATS; FIGARO: HIST, ISTAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, LABEL,
TITLE, UNITS, and HISTORY components of the input NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_HIST
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTAT

399 INTERLEAVE SUN/95.45 —Specifications of KAPPA applications

INTERLEAVE
Forms a higher-resolution NDF by interleaving a set of NDFs

Description:
This routine performs interleaving, also known as interlacing, in order to restore resolution
where the pixel dimension undersamples data. Resolution may be improved by integer
factors along one or more dimensions. For an N-fold increase in resolution along a
dimension, INTERLEAVE demands N NDF structures that are displaced from each other
by i/N pixels, where i is an integer from 1 to N − 1. It creates an NDF whose dimensions
are enlarged by N along that dimension.

The supplied NDFs should have the same dimensionality.

Usage:
interleave in out expand

Parameters:
EXPAND() = _INTEGER (Read)

Linear expansion factors to be used to create the new data array. The number of
factors should equal the number of dimensions in the input NDF. If fewer are supplied
the last value in the list of expansion factors is given to the remaining dimensions.
Thus if a uniform expansion is required in all dimensions, just one value need be
entered. If the net expansion is one, an error results. The suggested default is the
current value.

FILL = LITERAL (Read)
Specifies the value to use where the interleaving does not fill the array, say because
the shapes of the input NDFs are not the same, or have additional shifts of origin.
Allowed values are "Bad" or "Zero". ["Bad"]

IN = NDF (Read)
A group of input NDFs to be interweaved. They may have different shapes, but must
all have the same number of dimensions. This should be given as a comma-separated
list, in which each list element can be:

• an NDF name, optionally containing wild-cards and/or regular expressions ("∗",
"?", "[a-z]" etc.).
• the name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc.), or another file specification
(preceded by a caret). Comments can be included in the file by commencing lines
with a hash character "#".

If the value supplied for this parameter ends with a hyphen "-", then you are re-
prompted for further input until a value is given which does not end with a hyphen.
All the datasets given in this way are concatenated into a single group.

OUT = NDF (Write)
Output NDF structure.

SUN/95.45 —Specifications of KAPPA applications 400 INTERLEAVE

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TRIM = _LOGICAL (Read)
This parameter controls the shape of the output NDF before the application of the
expansion. If TRIM=TRUE, then the output NDF reflects the shape of the intersection
of all the input NDFs, i.e. only pixels which appear in all the input arrays will be
represented in the output. If TRIM=FALSE, the output reflects shape of the union of
the inputs, i.e. every pixel which appears in the input arrays will be represented in
the output. [TRUE]

Examples:
interleave "vector1,vector2" weave 2

This interleaves the one-dimensional NDFs called vector1 and vector2 and stores the
result in NDF weave. Only the intersection of the two input NDFs is used.

interleave ’image∗’ weave [3,2] title="Interlaced image"

This interleaves the two-dimensional NDFs with names beginning with "image"
into an NDF called weave. The interleaving has three datasets along the first dimension
and two along the second. Therefore there should be six input NDFs. The output NDF has
title "Interlaced image".

interleave in=’image∗’ out=weave expand=[3,2] notrim

As above except the title is not set and the union of the bounds of the input
NDFs is expanded to form the shape of the weave NDF.

interleave ^frames.lis finer 2

This interleaves the NDFs listed in the text file frames.lis to form an enlarged
NDF called finer. The interleaving is twofold along each axis of those NDFs.

Related Applications :

KAPPA: PIXDUPE; CCDPACK: DRIZZLE.

Implementation Status:

• This routine processes the AXIS, DATA, QUALITY, and VARIANCE from the all
input NDF data structures. It also processes the WCS, LABEL, TITLE, UNITS, and
HISTORY components of the primary NDF data structure, and propagates all of its
extensions.

• The AXIS centre values along each axis are formed by interleaving the corresponding
centres from the first NDF, and linearly interpolating between those to complete the
array.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_DRIZZLE

401 INTERLEAVE SUN/95.45 —Specifications of KAPPA applications

• The AXIS width and variance values in the output are formed by interleaving the
corresponding input AXIS values. Each array element is assigned from the first
applicable NDF. For example, for a two-dimensional array with expansion factors of 2
and 3 respectively, the first two NDFs would be used to define the array elements for
the first axis. The second axis’s elements come from the first, third, and fifth NDFs.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

SUN/95.45 —Specifications of KAPPA applications 402 KAPHELP

KAPHELP
Gives help about KAPPA

Description:
Displays help about KAPPA. The help information has classified and alphabetical lists of
commands, general information about KAPPA and related material; it describes individual
commands in detail.

Here are some of the main options.

kaphelp
No parameter is given so the introduction and the top-level help index is displayed.

kaphelp application/topic
This gives help about the specified application or topic.

kaphelp application/topic subtopic
This lists help about a subtopic of the specified application or topic. The hierarchy of
topics has a maximum of four levels.

kaphelp Hints
This gives hints for new and intermediate users.

kaphelp summary
This shows a one-line summary of each application.

kaphelp classified classification
This lists a one-line summary of each application in the given functionality classifica-
tion.

See the Section "Navigating the Help Library" for details how to move around the help
information, and to select the topics you want to view.

Usage:
kaphelp [topic] [subtopic] [subsubtopic] [subsubsubtopic]

Parameters:

TOPIC = LITERAL (Read)
Topic for which help is to be given. [" "]

SUBTOPIC = LITERAL (Read)
Subtopic for which help is to be given. [" "]

SUBSUBTOPIC = LITERAL (Read)
Subsubtopic for which help is to be given. [" "]

SUBSUBSUBTOPIC = LITERAL (Read)
Subsubsubtopic for which help is to be given. [" "]

Navigating the Help Library :

The help information is arranged hierarchically. You can move around the help information
whenever KAPHELP prompts. This occurs when it has either presented a screen’s worth of

403 KAPHELP SUN/95.45 —Specifications of KAPPA applications

text or has completed displaying the previously requested help. The information displayed
by KAPHELP on a particular topic includes a description of the topic and a list of subtopics
that further describe the topic.

At a prompt you may enter:

• a topic and/or subtopic name(s) to display the help for that topic or subtopic, so for ex-
ample, block parameters box gives help on BOX, which is a subtopic of Parameters,
which in turn is a subtopic of BLOCK;

• a <CR> to see more text at a Press RETURN to continue ... request;

• a <CR> at topic and subtopic prompts to move up one level in the hierarchy, and if
you are at the top level it will terminate the help session;

• a CTRL/D (pressing the CTRL and D keys simultaneously) in response to any prompt
will terminate the help session;

• a question mark ? to redisplay the text for the current topic, including the list of topic
or subtopic names; or

• an ellipsis ... to display all the text below the current point in the hierarchy. For
example, BLOCK... displays information on the BLOCK topic as well as information
on all the subtopics under BLOCK.

You can abbreviate any topic or subtopic using the following rules.

• Just give the first few characters, e.g. PARA for Parameters.

• Some topics are composed of several words separated by underscores. Each word of
the keyword may be abbreviated, e.g. Colour_Set can be shortened to C_S.

• The characters % and * act as wildcards, where the percent sign matches any sin-
gle character, and asterisk matches any sequence of characters. Thus to display
information on all available topics, type an asterisk in reply to a prompt.

• If a word contains, but does end with an asterisk wildcard, it must not be truncated.

• The entered string must not contain leading or embedded spaces.

Ambiguous abbreviations result in all matches being displayed.

Implementation Status:

• Uses the portable help system.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun124.htx/sun124.html?xref_

SUN/95.45 —Specifications of KAPPA applications 404 KAPVERSION

KAPVERSION
Checks the package version number

Description:
This application will display the installed package version number, or compare the version
number of the installed package against a specified version number, reporting whether
the installed package is older, or younger, or equal to the specified version.

Usage:
kapversion [compare]

Parameters:

COMPARE = LITERAL (Read)
A string specifying the version number to be compared to the version of the installed
package. If a null (!) value is supplied, the version string of the installed package is
displayed, but no comparison takes place. If a non-null value is supplied, the version
of the installed package is not displayed.
The supplied string should be in the "V<ddd>.<ddd>-<ddd>", where "<ddd>"
represents a set of digits. The leading "V" can be omitted, as can any number of
trailing fields (missing trailing fields default to zero). [!]

Results Parameters:

RESULT = _INTEGER (Write)
If a value is given for the COMPARE parameter, then RESULT is set to one of the following
values:

• 1 — The installed package is older than the version number specified by the COM-
PARE parameter.

• 0 — The version of the installed package is equal to the version specified by the
COMPARE parameter.

• -1 — The installed package is younger than the version number specified by the
COMPARE parameter.

The same value is also written to standard output.

Examples:
kapversion

Displays the version number of the installed package.

kapversion compare="V0.14-1"

Compares the version of the installed package with the version "V0.14-1", and
sets the RESULT parameter appropriately. For instance, if the installed package was

405 KAPVERSION SUN/95.45 —Specifications of KAPPA applications

"V0.13-6" then RESULT would be set to −1. If the installed package was "V0.14-1",
RESULT would be set to 0. If the installed package was "V0.14-5" RESULT would be set
to +1.

Notes:

• The package version number is obtained from the version file in the directory con-
taining the package’s installed executable files. This file is created when the package
is installed using the "mk install" command. An error will be reported if this file
cannot be found.

SUN/95.45 —Specifications of KAPPA applications 406 KSTEST

KSTEST
Compares data sets using the Kolmogorov-Smirnov test

Description:
This routine reads in a data array and performs a two sided Kolmogorov-Smirnov test on
the vectorised data. It does this in two ways:

(1) If only one dataset is to be tested the data array is divided into subsamples. First it
compares subsample 1 with subsample 2, if they are thought to be from the same sam-
ple they are concatenated. This enlarged sample is then compared with subsample 3
etc., concatenating if consistent, until no more subsamples remain.

(2) If more than one dataset is specified, the datasets are compared to the reference
dataset in turn. If the probability the two are from the same sample is greater than
the specified confidence level, the datasets are concatenated, and the next sample is
tested against this enlarged reference dataset.

The probability and maximum separation of the cumulative distribution function is written
for each comparison (at the normal reporting level). The mean value of the consistent
data and its error are also reported. In all cases the consistent data can be output to a new
dataset. The statistics and probabilities are written to results parameters.

Usage:
kstest in out [limit]

Parameters:

COMP = LITERAL (Read)
The name of the NDF array component to be tested for consistency: "Data", "Error",
"Quality" or "Variance" (where "Error" is the alternative to "Variance" and causes
the square root of the variance values to be taken before performing the comparisons).
If "Quality" is specified, then the quality values are treated as numerical values (in
the range 0 to 255). ["Data"]

LIMIT = _REAL (Read)
Confidence level at which samples are thought to be consistent. This must lie in the
range 0 to 1. [0.05]

IN = LITERAL (Read)
The names of the NDFs to be tested. If just one dataset is supplied, it is divided into
subsamples, which are compared (see Parameter NSAMPLE). When more than one
dataset is provided, the first becomes the reference dataset to which all the remainder
are compared.
It may be a list of NDF names or direction specifications separated by commas. If a
list is supplied on the command line, the list must be enclosed in double quotes. NDF
names may include the regular expressions ("∗", "?", "[a-z]" etc.). Indirection may
occur through text files (nested up to seven deep). The indirection character is "^". If
extra prompt lines are required, append the continuation character "-" to the end of
the line. Comments in the indirection file begin with the character "#".

407 KSTEST SUN/95.45 —Specifications of KAPPA applications

NSAMPLE = _INTEGER (Read)
The number of the subsamples into which to divide the reference dataset. This
parameter is only requested when a single NDF is to be analysed, i.e. when only one
dataset name is supplied via Parameter IN. The allowed range is 2 to 20. [3]

OUT = NDF (Write)
Output one-dimensional NDF to which the consistent data are written. A null value
(!)—the suggested default—prevents creation of this output dataset.

Results Parameters:

DIST() = _REAL (Write)
Maximum separation found in the cumulative distributions for each comparison subsam-
ple. Note that it excludes the reference dataset.

ERRMEAN = _DOUBLE (Write)
Error in the mean value of the consistent data.

FILES() = LITERAL (Write)
The names of the datasets intercompared. The first is the reference dataset.

MEAN = _DOUBLE (Write)
Mean value of the consistent data.

NKEPT = _INTEGER (Write)
Number of consistent data.

PROB() = _REAL (Write)
Probability that each comparison subsample is drawn from the same sample. Note that
this excludes the reference sample.

SIGMA = _DOUBLE (Write)
Standard deviation of the consistent data.

Examples:
kstest arlac accept

This tests the NDF called arlac for self-consistency at the 95% confidence level
using three subsamples. No output dataset is created.
The following applies to all the examples. If the reference dataset and a comparison
subsample are consistent, the two merge to form an expanded reference dataset, which is
then used for the next comparison. Details of the comparisons are presented.

kstest arlac arlac_filt 0.10 nsample=10

As above except data are retained if they exceed the 90% probability level, the
comparisons are made with ten subsamples, and the consistent data are written to the
one-dimensional NDF called arlac_filt.

kstest in="ref,obs∗" comp=v out=master

SUN/95.45 —Specifications of KAPPA applications 408 KSTEST

This compares the variance in the NDF called ref with that in a series of other
NDFs whose names begin "obs". The variance consistent with the reference dataset are
written to the data array in the NDF called master. To be consistent, they must be the same
at 95% probability.

kstest "ref,^96lc.lis,obs∗" master comp=v

As the previous example, except the comparison files include those listed in the
text file 96lc.lis.

Notes:

• The COMP array MUST exist in each NDF to be compared. The COMP array becomes
the data array in the output dataset. When COMP="Data", the variance values
corresponding to consistent data are propagated to the output dataset.

• Pixel bounds are ignored for the comparisons.

• The internal comparison of a single dataset follows the method outlined in Hughes
D., 1993, JCMT-UKIRT Newsletter, #4, p32.

• The maximum number of files is 20.

Implementation Status:

• This routine correctly processes DATA, VARIANCE, HISTORY, LABEL, TITLE, and
UNITS components, and propagates all extensions. AXIS information is lost. Propa-
gation is from the reference dataset.

• Processing of bad pixels and automatic quality masking are supported.

• All numeric data types are supported, however, processing uses the _REAL data type,
and the output dataset has this type.

409 LAPLACE SUN/95.45 —Specifications of KAPPA applications

LAPLACE
Performs a Laplacian convolution as an edge detector in a

two-dimensional NDF

Description:
This routine calculates the Laplacian of the supplied two-dimensional NDF , and subtracts
it from the original array to create the output NDF. The subtractions can be done a specified
integer number of times. This operation can be approximated by a convolution with the
kernel:

N −N −N

N +8N −N

N −N −N

where N is the integer number of times the Laplacian is subtracted. This convolution is
used as a uni-directional edge detector. Areas where the input data array is flat become
zero in the output data array.

Usage:
laplace in [number] out [title]

Parameters:
IN = NDF (Read)

Input NDF.
NUMBER = _INTEGER (Read)

Number of Laplacians to remove. [1]
OUT = NDF (Write)

Output NDF.
TITLE = LITERAL (Read)

The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
laplace a 10 b

This subtracts ten Laplacians from the NDF called a, to make the NDF called b.
NDF b inherits its title from a.

Related Applications :

KAPPA: SHADOW, MEDIAN; FIGARO: ICONV3.

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, and VARIANCE components
of an NDF data structure. QUALITY is propagated.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3

SUN/95.45 —Specifications of KAPPA applications 410 LAPLACE

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

411 LINPLOT SUN/95.45 —Specifications of KAPPA applications

LINPLOT
Draws a line plot of the data values in a one-dimensional NDF

Description:
This application creates a plot of array value against position for a one-dimensional NDF .
The vertical axis of the plot represents array value, and the horizontal axis represents
position. These can be mapped in various ways on to the graphics surface (e.g. linearly,
logarithmically); see Parameters XMAP and YMAP.

The plot may take several different forms such as a "join-the-dots" plot, a "staircase"
plot, a "chain" plot (see Parameter MODE). Errors on both the data values and the data
positions may be represented in several different ways (see Parameters ERRBAR and
SHAPE). The plotting style (colour, founts, text size, etc.) may be specified in detail using
Parameter STYLE.

The bounds of the plot on both axes can be specified using Parameters XLEFT, XRIGHT,
YBOT, and YTOP. If not specified they take default values which encompass the entire
supplied data set. The current picture is usually cleared before plotting the new picture,
but Parameter CLEAR can be used to prevent this, allowing several plots to be ‘stacked’
together. If a new plot is drawn over an existing plot, then there is an option to allow the
new plot to be aligned with the existing plot (see Parameter ALIGN).

The input NDF may, for instance, contain a spectrum of data values against wavelength,
or it may contain data values along a one-dimensional profile through an NDF of higher
dimensionality. In the latter case, the current co-ordinate Frame of the NDF may have more
than one axis. Any of the axes in the current co-ordinate Frame of the input NDF may be
used to annotate the horizontal axis of the plot produced by this application. Alternatively,
the horizontal axis may be annotated with offset from the first array element measured
within the current co-ordinate Frame of the NDF. For instance, a one-dimensional slice
through a two-dimensional image calibrated in RA/DEC could be annotated with RA, or
DEC, or offset from the first element (in arcminutes, degrees, etc). This offset is measured
along the path of the profile. The choice of annotation for the horizontal axis is controlled
by Parameter USEAXIS.

Usage:
linplot ndf [comp] [mode] [xleft] [xright] [ybot] [ytop] [device]

Parameters:

ALIGN = _LOGICAL (Read)
Controls whether or not the new data plot should be aligned with an existing data
plot. If ALIGN is TRUE, the x axis values of the new plot will be mapped into the
co-ordinate system of the x axis in the existing plot before being used (if this is not
possible an error is reported). In this case, the XLEFT, XRIGHT, YBOT and YTOP
parameters are ignored and the bounds of the existing plot are used instead. If ALIGN
is FALSE, the new x axis values are used without change. The bounds of the new plot
are specified using Parameters XLEFT, XRIGHT, YBOT, and YTOP as usual, and these
bounds are mapped to the edges of the existing picture. The ALIGN parameter is

SUN/95.45 —Specifications of KAPPA applications 412 LINPLOT

only accessed if Parameter CLEAR is FALSE, and if there is another line plot within
the current picture. If a null (!) value is supplied, a value of TRUE will be used if and
only if a mapping can be found between the existing and the new plots. A value of
FALSE will be used otherwise. [!]

ALIGNSYS = LITERAL (Read)
This is only used if a TRUE value is supplied for Parameter ALIGN. It specifies the
co-ordinate system in which the new plot and the existing plot are aligned (for further
details see the description of the AlignSystem attribute in SUN/210.). The supplied
name should be a valid co-ordinate system name for the horizontal axis (see the
description of the System attribute in SUN/210 for a list of these names). It may
also take the special value "Data", in which case alignment occurs in the co-ordinate
system represented by the current WCS Frame in the supplied NDF. If a null (!) value
is supplied. The alignment system is determined by the current value of AlignSystem
attribute in the supplied NDF. ["Data"]

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. If a null (!)
value is supplied, the value used is FALSE if the plot is being aligned with an existing
plot (see Parameter ALIGN), and TRUE otherwise. Parameter USEAXIS determines
the quantity used to annotated the horizontal axis. The width of the margins left for
the annotation may be controlled using Parameter MARGIN. The appearance of the
axes (colours, founts, etc.) can be controlled using the Parameter STYLE. [!]

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also the previous plot can be used to specify
the axis limits (see Parameter ALIGN). Thus you can generate a composite plot
within a single set of axes, say using different colours or modes to distinguish data
from different datasets. Note, alignment between the two plots is controlled by the
AlignSystem attribute of the data being displayed. For instance, if you have an existing
plot showing a spectrum plotted against radio velocity and you overlay another
spectrum, also in radio velocity but with a different rest frequency, the appearance
of the final plot will depend on the value of the AlignSystem attribute of the second
spectrum. If AlignSystem is "Wavelen" (this is the default) then the two spectra will
be aligned in wavelength, but if AlignSystem is "vrad" they will be aligned in radio
velocity. There will be no difference in effect between these two forms of alignment
unless the rest frequency is different in the two spectra. Likewise, the AlignStdOfRest
attribute of the second spectrum controls the standard of rest in which alignment
occurs. These attributes (like all other attributes) may be examined and modified
using WCSATTRIB.

COMP = LITERAL (Read)
The NDF component to be plotted. It may be "Data", "Quality", "Variance", or
"Error" (where "Error" is an alternative to "Variance" and causes the square root
of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DEVICE = DEVICE (Read)
The plotting device. [Current graphics device]

ERRBAR = _LOGICAL (Read)
TRUE if error bars are to be drawn. The error bars can comprise either or both of the

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AlignSystem
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_System

413 LINPLOT SUN/95.45 —Specifications of KAPPA applications

data and axis-centre errors, depending on what is available in the supplied dataset.
The Parameter SHAPE controls the appearance of the error bars, and XSIGMA
and YSIGMA control their lengths. The ERRBAR parameter is ignored unless the
Parameter COMP is set to "Data". [FALSE]

FREQ = _INTEGER (Read)
The frequency at which error bars are to be plotted. For instance, a value of 2 would
mean that alternate points have error bars plotted. This lets some plots be less
cluttered. FREQ must lie in the range 1 to half of the number of points to be plotted.
FREQ is only accessed when Parameter ERRBAR is TRUE. [1]

KEY = _LOGICAL (Read)
TRUE if a key is to be plotted below the horizontal axis giving the positions at the start
and end of the plot, within the current co-ordinate Frame of the NDF. If Parameter
USEAXIS is zero (i.e. if the horizontal axis is annotated with offset from the first
array element), then the positions refer to the centres of the first and last elements in
the supplied NDF, whether or not these elements are actually visible in the plot. If
USEAXIS is not zero (i.e. if the horizontal axis is annotated with the value on one of the
axes of the NDF’s current co-ordinate Frame), then the displayed positions correspond
to the two ends of the visible section of the horizontal axis. The appearance of the key
can be controlled using Parameter KEYSTYLE. If a null (!) value is supplied, a key is
produced if the current co-ordinate Frame of the supplied NDF has two or more axes,
but no key is produced if it only has one axis. [!]

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). [current value]

LMODE = LITERAL (Read)
LMODE specifies how the defaults for Parameters YBOT and YTOP (the lower and
upper limit of the vertical axis of the plot) should be found. The supplied string
should consist of up to three sub-strings, separated by commas. The first sub-string
must specify the method to use. If supplied, the other two sub-strings should be

SUN/95.45 —Specifications of KAPPA applications 414 LINPLOT

numerical values as described below (default values will be used if these sub-strings
are not provided). The following methods are available.

• "Range" — The minimum and maximum data values (including any error bars)
are used as the defaults for YBOT and YTOP. No other sub-strings are needed by
this option.
• "Extended" — The minimum and maximum data values (including error bars)

are extended by percentages of the data range, specified by the second and third
sub-strings. For instance, if the value "Ex,10,5" is supplied, then the default for
YBOT is set to the minimum data value minus 10% of the data range, and the
default for YTOP is set to the maximum data value plus 5% of the data range. If
only one value is supplied, the second value defaults to the supplied value. If
no values are supplied, both values default to "2.5". Care should be taken with
this mode if YMAP is set to "Log" since the extension to the data range caused
by this mode may result in the axis encompassing the value zero.
• "Percentile" — The default values for YBOT and YTOP are set to the spec-

ified percentiles of the data (excluding error bars). For instance, if the value
"Per,10,99" is supplied, then the default for YBOT is set so that the lowest 10%
of the plotted points are off the bottom of the plot, and the default for YTOP is
set so that the highest 1% of the points are off the top of the plot. If only one
value, p1, is supplied, the second value, p2, defaults to (100− p1). If no values
are supplied, the values default to "5,95".
• "Sigma" — The default values for YBOT and YTOP are set to the specified

numbers of standard deviations below and above the mean of the data. For
instance, if the value "sig,1.5,3.0" is supplied, then the default for YBOT is
set to the mean of the data minus 1.5 standard deviations, and the default for
YTOP is set to the mean plus 3 standard deviations. If only one value is supplied,
the second value defaults to the supplied value. If no values are provided, both
default to "3.0".

The method name can be abbreviated to a single character, and is case insensitive.
The initial value is "Extended". [current value]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave for axis annotation, given as fractions of the
corresponding dimension of the current picture. Four values may be given, in the
order: bottom, right, top, left. If fewer than four values are given, extra values are
used equal to the first supplied value. If these margins are too narrow any axis
annotation may be clipped. If a null (!) value is supplied, the value used is 0.15
(for all edges) if either annotated axes or a key are produced, and zero otherwise.
[current value]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter MODE is set to "Chain" or "Mark". It
specifies the symbol with which each position should be marked, and should be
given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2
gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or
equal to −31. [current value]

MODE = LITERAL (Read)
Specifies the way in which data values are represented. MODE can take the following

415 LINPLOT SUN/95.45 —Specifications of KAPPA applications

values.

• "Histogram" — An histogram of the points is plotted in the style of a ‘staircase’
(with vertical lines only joining the y-axis values and not extending to the base of
the plot). The vertical lines are placed midway between adjacent x-axis positions.
Bad values are flanked by vertical lines to the lower edge of the plot.
• "GapHistogram" — The same as the "Histogram" option except bad values are

not flanked by vertical lines to the lower edge of the plot, leaving a gap.
• "Line" — The points are joined by straight lines.
• "Point" — A dot is plotted at each point.
• "Mark" — Each point is marker with a symbol specified by Parameter MARKER.
• "Chain" — A combination of "Line" and "Mark".
• "Step" — Each point is displayed as a horizontal line, whose length is specified

by the axis width of the pixel.

The initial default is "Line". [current value]

NDF = NDF (Read)
NDF structure containing the array to be plotted.

SHAPE = LITERAL (Read)
Specifies the way in which errors are represented. SHAPE can take the following
values.

• "Bars" — Bars with serifs (i.e. cross pieces at each end) are drawn joining the
x-error limits and the y-error limits. The plotting attribute Size(ErrBars) (see
Parameter STYLE) can be used to control the size of these serifs (the attribute
value should be a magnification factor; 1.0 gives default serifs).
• "Cross" — San-serif bars are drawn joining the x-error limits and the y-error

limits.
• "Diamond" — Adjacent error limits are joined to form an error diamond.

The length of the error bars can be controlled using Parameters XSIGMA and YSIGMA.
The colour, line width and line style used to draw them can be controlled using the
plotting attributes Colour(ErrBars), Width(ErrBars) and Style(ErrBars) (see Parameter
STYLE). SHAPE is only accessed when Parameter ERRBAR is TRUE. [current value]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes, data values, and error markers.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.

SUN/95.45 —Specifications of KAPPA applications 416 LINPLOT

All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the data values is controlled by the attributes Colour(Curves),
Width(Curves), etc. (the synonym Lines may be used in place of Curves). The appearance
of markers used if Parameter MODE is set to "Point", "Mark" or "Chain" is controlled
by Colour(Markers), Width(Markers), etc. (the synonym Symbols may be used in place
of Markers). The appearance of the error symbols is controlled using Colour(ErrBars),
Width(ErrBars), etc, (see Parameter SHAPE). [current value]

USEAXIS = LITERAL (Read)
Specifies the quantity to be used to annotate the horizontal axis of the plot using one
of the following options.

• An integer index of an axis within the current Frame of the input NDF (in the
range 1 to the number of axes in the current Frame).
• An axis Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.
• The special value 0 (zero), asks for the distance along the profile from the centre

of the first element in the supplied NDF to be used to annotate the axis. This will
be measured in the current co-ordinate Frame of the NDF.

The quantity used to annotate the horizontal axis must have a defined value at all
points in the array, and must increase or decrease monotonically along the array. For
instance, if RA is used to annotate the horizontal axis, then an error will be reported
if the profile passes through RA=0 because it will introduce a non-monotonic jump in
axis value (from 0h to 24h, or 24h to 0h). If a null (!) value is supplied, the value used
is 1 if the current co-ordinate Frame in the NDF is one-dimensional and 0 otherwise.
[!]

XLEFT = LITERAL (Read)
The axis value to place at the left hand end of the horizontal axis. If a null (!) value is
supplied, the value used is the value for the first element in the supplied NDF (with
a margin to include any horizontal error bar). The value supplied may be greater
than or less than the value supplied for XRIGHT. A formatted value for the quantity
specified by Parameter USEAXIS should be supplied. See also Parameter ALIGN.
[!]

XMAP = LITERAL (Read)
Specifies how the quantity represented by the x axis is mapped on to the plot. The
options are as follows.

• "Pixel" — The mapping is such that pixel index within the input NDF increases
linearly across the plot.

417 LINPLOT SUN/95.45 —Specifications of KAPPA applications

• "Distance" — The mapping is such that distance along the curve within the
current WCS Frame of the input NDF increases linearly across the plot.
• "Log" — The mapping is such that the logarithm (base 10) of the value used to

annotate the axis increases linearly across the plot. An error will be reported if
the dynamic range of the axis is less than 100, or if the range specified by XLEFT
and XRIGHT encompasses the value zero.
• "Linear" — The mapping is such that the value used to annotate the axis in-

creases linearly across the plot. Note the corresponding pixel indices always
increase left to right in this mode so the annotated values may possibly increase
right to left depending on the nature of the WCS mapping.
• "LRLinear" — Like "Linear" except that the pixel indices are reversed if neces-

sary to ensure that the annotated values always increases left to right.
• "Default" — One of "Linear" or "log" is chosen automatically, depending on

which one produces a more-even spread of values on the plot.

["Default"]

XRIGHT = LITERAL (Read)
The axis value to place at the right hand end of the horizontal axis. If a null (!) value
is supplied, the value used is the value for the last element in the supplied NDF (with
a margin to include any horizontal error bar). The value supplied may be greater
than or less than the value supplied for XLEFT. A formatted value for the quantity
specified by Parameter USEAXIS should be supplied. See also Parameter ALIGN.
[!]

XSIGMA = LITERAL (Read)
If horizontal error bars are produced (see Parameter ERRBAR), then XSIGMA gives
the number of standard deviations that the error bars are to represent. [current
value]

YBOT = LITERAL (Read)
The axis value to place at the bottom end of the vertical axis. If a null (!) value is
supplied, the value used is determined by Parameter LMODE. The value of YBOT
may be greater than or less than the value supplied for YTOP. If Parameter YMAP is
set to "ValueLog", then the supplied value should be the logarithm (base 10) of the
bottom data value. See also Parameter ALIGN. [!]

YMAP = LITERAL (Read)
Specifies how the quantity represented by the y axis is mapped on to the screen. The
options are as follows.

• "Linear" — The data values are mapped linearly on to the screen.
• "Log" — The data values are logged logarithmically on to the screen. An error

will be reported if the dynamic range of the axis is less than 100, or if the range
specified by YTOP and YBOT encompasses the value zero. For this reason, care
should be taken over the choice of value for Parameter LMODE, since some
choices could result in the y range being extended so far that it encompasses zero.
• "ValueLog" — This is similar to "Log" except that, instead of mapping the data

values logarithmically on to the screen, this option maps the log (base 10) of the
data values linearly on to the screen. If this option is selected, the values supplied

SUN/95.45 —Specifications of KAPPA applications 418 LINPLOT

for Parameters YTOP and YBOT should be values for the logarithm of the data
value, not the data value itself.

["Linear"]

YSIGMA = LITERAL (Read)
If vertical error bars are produced (see Parameter ERRBAR), then YSIGMA gives the
number of standard deviations that the error bars are to represent. [current value]

YTOP = LITERAL (Read)
The axis value to place at the top end of the vertical axis. If a null (!) value is supplied,
the value used is determined by Parameter LMODE. The value of LTOP may be
greater than or less than the value supplied for YBOT. If Parameter YMAP is set to
"ValueLog", then the supplied value should be the logarithm (base 10) of the bottom
data value. See also Parameter ALIGN. [!]

Examples:
linplot spectrum

Plots data values versus position for the whole of the one-dimensional NDF
called spectrum on the current graphics device. If the current co-ordinate Frame of the
NDF is also one-dimensional, then the horizontal axis will be labelled with values on Axis
1 of the current co-ordinate Frame. Otherwise, it will be labelled with offset from the first
element.

linplot map(,100)

Plots data values versus position for row 100 in the two-dimensional NDF called map on
the current graphics device.

linplot spectrum(1:500) device=ps_l

Plots data values versus position for the first 500 elements of the one-dimensional NDF
called spectrum. The output goes to a text file which can be printed on a PostScript printer.

linplot ironarc v style="title=Fe Arc variance"

Plots variance values versus position for the whole of the one-dimensional NDF
called ironarc on the current graphics device. The plot has a title of "Fe Arc variance".

linplot prof useaxis=dec xleft="23:30:22" xright="23:30:45"

This plots data values versus declination for those elements of the one-dimensional NDF
called prof with declination value between 23d 30m 22s, and 23d 30m 45s. This assumes
that the current co-ordinate Frame in the NDF has an axis with symbol "dec".

linplot prof useaxis=2 ybot=10 ytop=1000.0 ymap=log xmap=log

This plots the data values in the entire one-dimensional NDF called prof, against the

419 LINPLOT SUN/95.45 —Specifications of KAPPA applications

value described by the second axis in the current co-ordinate Frame of the NDF. The
values represented by both axes are mapped logarithmically on to the screen. The bottom
of the vertical axis corresponds to a data value of 10.0 and the top corresponds to a data
value of 1000.0.

linplot xspec mode=p errbar xsigma=3 ysigma=3 shape=d style=^my_sty

This plots the data values versus position for the dataset called xspec. Each
pixel is plotted as a point surrounded by diamond-shaped error bars. The error bars
are 3-sigma error bars. The plotting style is read from text file my_sty. This could, for
instance, contain strings such as: colour(err)=pink, colour(sym)=red, tickall=0,
edge(2)=right. These cause the error bars to be drawn in pink, the points to be drawn in
red, tick marks to be restricted to the labelled edges of the plot, and the vertical axis (Axis
2) to be annotated on the right-hand edge of the plot. The plotting style specified in file
my_sty becomes the default plotting style for future invocations of LINPLOT.

linplot xspec mode=p errbar xsigma=3 ysigma=3 shape=d style=+^my_sty

This is the same as the previous example, except that the style specified in file
my_sty does not become the default style for future invocations of LINPLOT.

linplot ndf=spectrum noclear align

Plots data values versus pixel co-ordinate for the whole of the one-dimensional
NDF called spectrum on the current graphics device. The plot is drawn over any existing
plot and inherits the bounds of the previous plot on both axes. A warning will be reported
if the labels for the horizontal axes of the two plots are different.

linplot spectrum system="’system(1)=freq,unit(1)=GHz’"

This example assumes that the current co-ordinate Frame of NDF "spectrum" is
a SpecFrame. The horizontal axis ("Axis 1") is labelled with frequency values, in units
of GHz. If the SpecFrame represents some other system (such as wavelength, velocity,
energy) or has some other units, then the conversion is done automatically. Note, a
SpecFrame is a specialised class of Frame which knows how to do these conversions;
the above command will fail if the current co-ordinate Frame in the NDF is a simple
Frame (such as the AXIS Frame). A SpecFrame can be created from an AXIS Frame using
application WCSADD.

Notes:

• If no Title is specified via the STYLE parameter, then the TITLE component in the
NDF is used as the default title for the annotated axes. Should the NDF not have
a TITLE component, then the default title is instead taken from current co-ordinate
Frame in the NDF, unless this attribute has not been set explicitly, whereupon the
name of the NDF is used as the default title.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

SUN/95.45 —Specifications of KAPPA applications 420 LINPLOT

• Default axis errors and widths are used, if none are present in the NDF. The defaults
are the constants 0 and 1 respectively.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, data plot, and optional key; a
KEY picture to store the key if present; and a DATA picture containing just the data
plot. Note, the FRAME picture is only created if annotated axes or a key has been
drawn, or if non-zero margins were specified using Parameter MARGIN. The world
co-ordinates in the DATA picture will correspond to offset along the profile on the
horizontal axis, and data value (or logarithm of data value) on the vertical axis. On
exit the current database picture for the chosen device reverts to the input picture.

Related Applications :

KAPPA: PROFILE, CLINPLOT; MLINPLOT; FIGARO: ESPLOT, IPLOTS, MSPLOT, SPEC-
GRID; SPLOT, SPLAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, LABEL,
TITLE, WCS, and UNITS components of the NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Only double-precision floating-
point data can be processed directly. Other non-complex data types will undergo a
type conversion before the plot is drawn.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ESPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPLOTS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MSPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun243.htx/sun243.html?xref_

421 LISTMAKE SUN/95.45 —Specifications of KAPPA applications

LISTMAKE
Creates a catalogue holding a positions list

Description:
This application creates a catalogue containing a list of positions supplied by the user,
together with information describing the co-ordinate Frames in which the positions are
defined. Integer position identifiers which allow positions to be distinguished are also
stored in the catalogue. The catalogue may be manipulated using the CURSA package,
and is stored in either FITS binary format or the Small Text List (STL) format defined by
CURSA.

If an NDF is specified using Parameter NDF, then the positions should be given in the
current co-ordinate Frame of the NDF. Information describing the co-ordinate Frames avail-
able within the NDF will be copied to the output positions list. Subsequent applications
can use this information in order to align the positions with other data sets.

If no NDF is specified, then the user must indicate the co-ordinate Frame in which the
positions will be supplied using Parameter FRAME. A description of this Frame will be
written to the output positions list for use by subsequent applications.

The positions themselves may be supplied within a text file, or may be given in response
to repeated prompts for a parameter. Alternatively, pixel centres in the NDF supplied for
Parameter NDF can be used (see Parameter MODE).

The output can be initialised by copying positions from an existing positions list. Any
positions supplied directly by the user are then appended to the end of this initial list (see
Parameter INCAT).

Usage:

listmake outcat [ndf] [mode]

 file=?

position=?
mode

Parameters:

CATFRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be stored in
the output catalogue associated with Parameter OUTCAT. The string supplied for
CATFRAME can be one of the following options.

• A domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null (!) value is supplied, the positions will be stored in the current Frame. [!]

CATEPOCH = _DOUBLE (Read)
The epoch at which the sky positions stored in the output catalogue were determined.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_STLREF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 422 LISTMAKE

It will only be accessed if an epoch value is needed to qualify the co-ordinate Frame
specified by COLFRAME. If required, it should be given as a decimal years value,
with or without decimal places ("1996.8" for example). Such values are interpreted
as a Besselian epoch if less than 1984.0 and as a Julian epoch otherwise.

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which positions are required
will be displayed before the positions are obtained using either Parameter POSITION
or FILE. [current value]

DIM = _INTEGER (Read)
The number of axes for each position. It is only accessed if a null value is supplied
for Parameter NDF.

EPOCH = _DOUBLE (Read)
If an IRAS90 Sky Co-ordinate System specification is supplied (using Parameter
DOMAIN) for a celestial co-ordinate system, then an epoch value is needed to qualify
it. This is the epoch at which the supplied sky positions were determined. It should
be given as a decimal years value, with or without decimal places ("1996.8" for
example). Such values are interpreted as a Besselian epoch if less than 1984.0 and as
a Julian epoch otherwise.

FILE = FILENAME (Read)
A text file containing the positions to be stored in the output positions list. Each line
should contain the formatted axis values for a single position, separated by white
space. It is only accessed if Parameter MODE is given the value "File".

FRAME = LITERAL (Read)
Specifies the co-ordinate Frame of the positions supplied through Parameters POSI-
TION or FILE. There is a cascade of allowed interpretations of this parameter value;
the search for the co-ordinate Frame ends once there is a successful interpretation,
otherwise the search moves on to the next possible meaning in the following order.

(1) An HDS path containing a WCS FrameSet, whose current Frame defines the
co-ordinate Frame.

(2) The name of an NDF, whose current WCS co-ordinate Frame is used.
(3) If the parameter value ends with .FIT, an attempt is made to interpret the

parameter value as the name of a FITS file. If successful, the primary WCS
co-ordinate system from the primary HDU headers is used.

(4) A text file containing either an AST Frame dump (such as produced by commands
in the ATOOLS package), or a set of FITS WCS headers.

(5) An IRAS90 Sky Co-ordinate System (SCS) string such as "EQUAT(J2000)" (see
SUN/163), whereupon the positions are assumed to be two-dimensional celestial
co-ordinates in the specified system.

(6) Domain name without any interpretation. Any Domain name may be supplied,
but normally one of the standard Domain names, such as GRID, PIXEL, GRAPH-
ICS should be given. Parameter DIM is used to determine the number of axes in
the Frame.

This parameter is only accessed if the parameter NDF is given a null value.

INCAT = FILENAME (Read)
A catalogue containing an existing positions list which is to be included at the start

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

423 LISTMAKE SUN/95.45 —Specifications of KAPPA applications

of the output positions list. These positions are mapped into the current co-ordinate
Frame of the supplied NDF, or into the Frame specified by Parameter FRAME if no
NDF was supplied. A message is displayed indicating the Frame in which alignment
occurred. They are then stored in the output list before any further positions are
added. A null value may be supplied if there is no input positions list. [!]

MODE = LITERAL (Read)
The mode by which the positions are to be obtained. The options are as follows.

• "Interface" — The positions are obtained using Parameter POSITION.
• "File" — The positions are to be read from a text file specified using Parameter

FILE.
• "Good" — The positions used are the pixel centres in the data file specified by

Parameter NDF. Only the pixels that have good values in the Data array of the
NDF are used.
• "Pixel" — The positions used are the pixel centres in the data file specified by

Parameter NDF. All pixel are used, whether the pixel values are good or not.

["Interface"]

NDF = NDF (READ)
The NDF which defines the available co-ordinate Frames in the output positions list.
If an NDF is supplied, the positions obtained using Parameter POSITION or FILE are
assumed to be in the current co-ordinate Frame of the NDF, and the WCS component
of the NDF is copied to the output positions list. If a null value is supplied, the single
co-ordinate Frame defined by Parameter FRAME is stored in the output positions list,
and supplied positions are assumed to be in the same Frame. [!]

OUTCAT = FILENAME (Write)
The catalogue holding the output positions list.

POSITION = LITERAL (Read)
The co-ordinates of a single position to be stored in the output positions list. Supply-
ing ":" will display details of the co-ordinate Frame in which the position is required.
The position should be given as a list of formatted axis values separated by white
space. You are prompted for new values for this parameter until a null value is
entered. It is only accessed if Parameter MODE is given the value "Interface".

TITLE = LITERAL (Read)
A title for the output positions list. If a null (!) value is supplied, the value used is
obtained from the input positions list if one is supplied. Otherwise, it is obtained
from the NDF if one is supplied. Otherwise, it is "Output from LISTMAKE". [!]

Examples:
listmake newlist frame=pixel dim=2

This creates a FITS binary catalogue called newlist.FIT containing a list of posi-
tions, together with a description of a single two-dimensional pixel co-ordinate Frame.
The positions are supplied as a set of space-separated pixel co-ordinates in response to
repeated prompts for the Parameter POSITION.

listmake stars.txt frame=equat(B1950) epoch=1962.3

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 424 LISTMAKE

This creates a catalogue called stars.txt containing a list of positions, together
with a description of a single FK4 equatorial RA/DEC co-ordinate Frame (referenced to
the B1950 equinox). The catalogue is stored in a text file using the CAT Small Text List
format ("STL"—see SUN/190). The positions were determined at epoch B1962.3. The
epoch of observation is required since the underlying model on which the FK4 system is
based is non-inertial and rotates slowly with time, introducing fictitious proper motions.
The positions are supplied hours and degrees values in reponse to repeated prompts for
Parameter POSITIONS.

listmake outlist ndf=allsky mode=file file=stars

This creates a FITS binary catalogue called outlist.FIT containing a list of posi-
tions, together with descriptions of all the co-ordinate Frames contained in the NDF allsky.
The positions are supplied as co-ordinates within the current co-ordinate Frame of the
NDF. Application WCSFRAME can be used to find out what this Frame is. The positions
are supplied in a text file called stars.

listmake out.txt incat=old.fit frame=gal

This creates an STL format catalogue stored in a text file called out.txt contain-
ing a list of positions, together with a description of a single galactic co-ordinate Frame.
The positions contained in the existing binary FITS catalogue old.fit are mapped
into galactic co-ordinates (if possible) and stored in the output positions list. Further
galactic co-ordinate positions are then obtained by repeated prompting for the Parameter
POSITION. These positions are appended to the positions obtained from file old.fit.

listmake out.txt incat=old.fit ndf=cobe

As above but the output positions list contains copies of all the Frames in the
NDF cobe. The positions in old.fit are mapped into the current co-ordinate Frame of the
NDF (if possible) before being stored in the output positions list. The new positions must
also be supplied in the same Frame (using Parameter POSITION).

listmake profpos.fit ndf=prof1 mode=pixel

This creates a positions list called profpos.fit containing the positions of all the
pixel centres in the one-dimensional NDF called prof. This could for instance be used as
input to application PROFILE in order to produce another profile in which the samples
are at the same positions as those in NDF prof.

Notes:

• This application uses the conventions of the CURSA package for determining the
formats of input and output catalogues. If a file type of .fit is given, then the catalogue
is assumed to be a FITS binary table. If a file type of .txt is given, then the catalogue is

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_

425 LISTMAKE SUN/95.45 —Specifications of KAPPA applications

assumed to be stored in a text file in STL format. If no file type is given, then ".fit"
is assumed.

• There is a limit of 200 on the number of positions which can be given using Parameter
POSITION. There is no limit on the number of positions which can be given using
Parameter FILE.

• Position identifiers are asigned to the supplied positions in the order in which they
are supplied. If no input positions list is given using Parameter INCAT, then the first
supplied position will be assigned the identifier "1". If an input positions list is given,
then the first supplied position is assigned an identifier one greater than the largest
identifier in the input positions list.

Related Applications :

KAPPA: CURSOR, LISTSHOW; CURSA: XCATVIEW, CATSELECT.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_XVIEW
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_CATSELECT

SUN/95.45 —Specifications of KAPPA applications 426 LISTSHOW

LISTSHOW
Reports the positions stored in a positions list

Description:
This application reports positions contained in a catalogue. The catalogue should have the
form of a positions list as produced, for instance, by applications LISTMAKE and CURSOR.
By default all positions in the catalogue are reported, but a subset may be reported by
specifying a range of position identifiers (see Parameters FIRST, LAST, and STEP).

An NDF may be supplied (see Parameter NDF) in which case the NDF pixel values at
the positions listed in the catalogue are reported, using the interpolation method specified
by Parameter METHOD. The pixel values are also written to an output parameter (see
Parameter PIXVALS).

Positions may be reported in a range of co-ordinate Frames dependent on the information
stored in the supplied positions list (see Parameter FRAME). The selected positions are
written to an output parameter (Parameter POSNS), and may also be written to an output
positions list (see Parameter OUTCAT). The formatted screen output can be saved in
a logfile (see Parameter LOGFILE). The formats used to report the axis values can be
controlled using Parameter STYLE.

Graphics may also be drawn marking the selected positions (see Parameters PLOT and
LABEL). The supplied positions are aligned with the picture specified by Parameter NAME.
If possible, this alignment occurs within the co-ordinate Frame specified using Parameter
FRAME. If this is not possible, alignment may occur in some other suitable Frame. A
message is displayed indicating the Frame in which alignment occurred. If the supplied
positions are aligned successfully with a picture, then the range of Frames in which the
positions may be reported on the screen is extended to include all those associated with
the picture.

Usage:
listshow incat [frame] [first] [last] [plot] [device]

Parameters:

CATFRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be stored in the
output catalogue associated with Parameter OUTCAT. See Parameter FRAME for a
description of the allowed values for this parameter. If a null (!) value is supplied,
the positions will be stored the Frame used to specify positions within the input
catalogue. [!]

CATEPOCH = _DOUBLE (Read)
The epoch at which the sky positions stored in the output catalogue were determined.
It will only be accessed if an epoch value is needed to qualify the co-ordinate Frame
specified by COLFRAME. If required, it should be given as a decimal-years value,
with or without decimal places ("1996.8", for example). Such values are interpreted
as a Besselian epoch if less than 1984.0 and as a Julian epoch otherwise.

427 LISTSHOW SUN/95.45 —Specifications of KAPPA applications

CLOSE = _LOGICAL (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Poly". If
TRUE, polgons will be closed by joining the first position to the last position. [current
value]

COMP = LITERAL (Read)
The NDF array component to be displayed if a non-null value is supplied for Parame-
ter NDF. It may be "Data", "Variance", "Error", or "Quality". ["Data"]

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which the positions will be
reported is displayed before the positions. [current value]

DEVICE = DEVICE (Read)
The graphics workstation. Only accessed if Parameter PLOT indicates that graphics
are required. [current graphics device]

EPOCH = _DOUBLE (Read)
If an IRAS90 Sky Co-ordinate System specification is supplied (using Parameter
FRAME) for a celestial co-ordinate system, then an epoch value is needed to qualify
it. This is the epoch at which the supplied sky positions were determined. It should
be given as a decimal years value, with or without decimal places ("1996.8" for
example). Such values are interpreted as a Besselian epoch if less than 1984.0 and as
a Julian epoch otherwise.

FIRST = _INTEGER (Read)
The identifier for the first position to be displayed. Positions are only displayed
which have identifiers in the range given by Parameters FIRST and LAST. If a null (!)
value is supplied, the value used is the lowest identifier value in the positions list.
[!]

FRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be reported.
This application can report positions in any of the co-ordinate Frames stored with the
positions list. The string supplied for FRAME can be one of the following.

• A domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null value (!) is supplied, positions are reported in the co-ordinate Frame
which was current when the positions list was created. The user is re-prompted if
the specified Frame is not available within the positions list. The range of Frames
available will include all those read from the supplied positions list. In addition, if a
graphics device is opened (i.e. if Parameter PLOT is set to anything other than "None"),
then all the Frames associated with the picture specified by Parameter NAME will
also be available. [!]

GEODESIC = _LOGICAL (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Poly". It
specifies whether the curves drawn between positions should be stright lines, or
should be geodesic curves. In many co-ordinate Frames geodesic curves will be

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 428 LISTSHOW

simple straight lines. However, in others (such as the majority of celestial co-ordinate
Frames) geodesic curves will be more complex curves tracing the shortest path
between two positions in a non-linear projection. [FALSE]

INCAT = FILENAME (Read)
A catalogue containing a positions list such as produced by applications LISTMAKE
and CURSOR.

JUST = LITERAL (Read)
A string specifying the justification to be used when displaying text strings at the
supplied positions. This parameter is only accessed if Parameter PLOT is set to
"Text". The supplied string should contain two characters; the first should be "B",
"C", or "T", meaning bottom, centre, or top respectively. The second should be "L",
"C", or "R", meaning left, centre, or right respectively. The text is displayed so that
the supplied position is at the specified point within the displayed text string. [CC]

LABEL = _LOGICAL (Read)
If TRUE the positions are labelled on the graphics device specified by Parameter
DEVICE. The offset of the centre of each label from the corresponding position is
controlled using the NumLabGap(1) and NumLabGap(2) plotting attributes, and the
appearance of the labels is controlled using attributes Colour(NumLab), Size(NumLab),
etc. These attributes may be specified using Parameter STYLE. The content of the
label is determined by Parameter LABTYPE. [FALSE]

LABTYPE = LITERAL (Read)
Determines what sort of labels are drawn if the LABEL parameter is set TRUE. It can
be either of the following.

• "ID" — causes the integer identifier associated with each row to be used as the
label for the row.
• "LABEL" — causes the textual label associated with each row to be used as the

label for the row. These strings are read from the "LABEL" column of the supplied
catalogue.

If a null (!) value is supplied, a default of "LABEL" will be used if the input catalogue
contains a "LABEL" column. Otherwise, a default of "ID" will be used. [!]

LAST = _INTEGER (Read)
The identifier for the last position to be displayed. Positions are only displayed which
have identifiers in the range given by Parameters FIRST and LAST. If a null (!) value
is supplied, the value used is the highest identifier value in the positions list. [!]

LOGFILE = FILENAME (Write)
The name of the text file in which the formatted co-ordinates of the selected positions
may be stored. This is intended primarily for recording the screen output, and not
for communicating positions to subsequent applications. A null string (!) means that
no file is created. [!]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Mark". It
specifies the type of marker with which each position should be marked, and should
be given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot,
2 gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than
or equal to −31. [current value]

429 LISTSHOW SUN/95.45 —Specifications of KAPPA applications

METHOD = LITERAL (Read)
The method to use when sampling the input NDF (if any) specified by Parameter
NDF at each of the positions in the catalogue. For details on these schemes, see the
description of routine AST_RESAMPLEx in SUN/210. Note, "Nearest" is always
used if Parameter COMP is "Quality" . METHOD can take the following values.

• "Bilinear" — The displayed pixel values are calculated by bi-linear interpolation
among the four nearest pixels values in the input NDF. This produces smoother
output NDFs than the nearest-neighbour scheme, but is marginally slower.
• "Nearest" — Each displayed pixel value is the value of the nearest input pixel.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the interpo-

lation point, and sinc(z) = sin(z)/z. Use of this scheme is not recommended.
• "SincSinc" — Uses the sinc(πx)sinc(kπx) A valuable general-purpose scheme,

intermediate in its visual effect on NDFs between the bi-linear and nearest-
neighbour schemes.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. Gives similar results to the
"SincSinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where x is the pixel offset from the inter-

polation point, and somb(z) = 2 ∗ J1(z)/z. J1 is the first-order Bessel function of
the first kind. This scheme is similar to the "Sinc" scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "Gauss" — Uses the e−kx2

kernel. The FWHM of the Gaussian is given by Param-
eter PARAMS(2), and the point at which to truncate the Gaussian to zero is given
by Parameter PARAMS(1).

The initial default is " Nearest" . [current value]

NAME = LITERAL (Read)
Determines the graphics database picture with which the supplied positions are to
be aligned. Only accessed if Parameter PLOT indicates that some graphics are to be
produced. A search is made for the most recent picture with the specified name (e.g.
DATA, FRAME or KEY) within the current picture. If no such picture can be found,
or if a null value is supplied, the current picture itself is used. The name BASE can
also be supplied as a special case, which causes the BASE picture to be used even
though it will not in general fall within the current picture. ["DATA"]

NDF = NDF (Read)
If an NDF is supplied, the values within the NDF at the positions specified in the input
catalogue are displayed on the screen and written to Output Parameter PIXVALS.
The displayed values are calculated by interpolating between the NDF pixel values
using the interpolation method specified by Parameter METHOD. The NDF array
component to be displayed is specified by Parameter COMP. [!]

OUTCAT = FILENAME (Write)
The output catalogue in which to store the selected positions. If a null value is
supplied, no output catalogue is produced. See Parameter COLFRAME. [!]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/95.45 —Specifications of KAPPA applications 430 LISTSHOW

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods (see Parameter
METHOD).
PARAMS(1) is required by all the above schemes. It is used to specify how many
pixels are to contribute to the interpolated result on either side of the interpolation
or binning point in each dimension. Typically, a value of 2 is appropriate and the
minimum allowed value is 1 (i.e. one pixel on each side). A value of zero or fewer
indicates that a suitable number of pixels should be calculated automatically. [0]
PARAMS(2) is required only by the Gauss, SombCos, SincSinc, SincCos, and Sinc-
Gauss schemes. For the SombCos, SincSinc, and SincCos schemes, it specifies the
number of pixels at which the envelope of the function goes to zero. The minimum
value is 1.0, and the run-time default value is 2.0. For the Gauss and SincGauss
schemes, it specifies the full-width at half-maximum (FWHM) of the Gaussian en-
velope measured in output pixels. The minimum value is 0.1, and the run-time
default is 1.0. On astronomical NDFs and spectra, good results are often obtained by
approximately matching the FWHM of the envelope function, given by PARAMS(2),
to the point-spread function of the input data. []

PLOT = LITERAL (Read)
The type of graphics to be used to mark the positions on the graphics device speci-
fied by Parameter DEVICE. The appearance of these graphics (colour, size, etc.) is
controlled by the STYLE parameter. PLOT can take any of the following values.

• "None" — No graphics are produced.
• "Mark" — Each position is marked with a marker of type specified by Parameter

MARKER.
• "Poly" — Causes each position to be joined by a line to the previous posi-

tion. These lines may be simple straight lines or geodesic curves (see Parameter
GEODESIC). The polygons may optionally be closed by joining the last position
to the first (see Parameter CLOSE).
• "Chain" — This is a combination of "Mark" and "Poly". Each position is marked

by a marker and joined by a line to the previous position. Parameters MARKER,
GEODESIC, and CLOSE are used to specify the markers and lines to use.
• "Box" — A rectangular box with edges parallel to the edges of the graphics device

is drawn between each pair of positions.
• "Vline" — A vertical line is drawn through each position, extending the entire

height of the selected picture.
• "Hline" — A horizontal line is drawn through each position, extending the entire

width of the selected picture.
• "Cross" — A combination of "Vline" and "Hline".
• "STCS"— Indicates that each position should be marked using the two-dimensional

STC-S shape read from the catalogue column specified by Parameter STCSCOL.
• "Text" — A text string is used to mark each position. The string is drawn

horizontally with the justification specified by Parameter JUST. The strings to use
for each position are specified using Parameter STRINGS.

431 LISTSHOW SUN/95.45 —Specifications of KAPPA applications

• "Blank" — The graphics device is opened and the picture specified by Parameter
NAME is found, but no actual graphics are drawn to mark the positions. This
can be useful if you just want to transform the supplied positions into one of the
co-ordinate Frames associated with the picture, without drawing anything (see
Parameter FRAME).

Each position may also be separately labelled with its integer identifier value by
giving a TRUE value for Parameter LABEL. ["None"]

POSNS() = _DOUBLE (Write)
The unformatted co-ordinates of the positions selected by Parameters FIRST and
LAST, in the co-ordinate Frame selected by FRAME. The axis values are stored as a
one-dimensional vector. All the Axis-1 values for the selected positions are stored
first, followed by the Axis-2 values, etc. The number of positions in the vector is
written to the output Parameter NUMBER, and the number of axes per position is
written to the output Parameter DIM. The axis values may not be in the same units
as the formatted values shown on the screen. For instance, unformatted celestial
co-ordinate values are stored in units of radians.

STEP = _INTEGER (Read)
The increment between position identifiers to be displayed. Specifying a value larger
than 1 causes a subset of the position identifiers between FIRST and LAST to be
displayed. [1]

STCSCOL = LITERAL (Read)
The name of a catalogue column containing an STC-S description of a two-dimensional
spatial shape associated with each position. The STC-S format is an IVOA proposal
for describing regions of space, time and spectral position. For further details, see
the STC-S document on the IVOA web site (http://www.ivoa.net/Documents/). An
STC-S description of a shape includes the co-ordinate system in which the shape is
defined. This application assumes that all the STC-S shapes read from the specified
column will be defined within the same co-ordinate system. The transformation from
the STC-S co-ordinate system to the co-ordinate system of the displayed image is
determined once from the first shape plotted, and then re-used for all later shapes.
["Shape"]

STRINGS = LITERAL (Read)
A group of text strings which are used to mark the supplied positions if Parameter
PLOT is set to "Text". The first string in the group is used to mark the first position,
the second string is used to mark the second position, etc. If more positions are given
than there are strings in the group, then the extra positions will be marked with an
integer value indicating the index within the list of supplied positions. (Note, these
integers may be different from the identifiers in the supplied positions list). If a null
value (!) is given for the parameter, then all positions will be marked with the integer
indices, starting at 1.
A comma-separated list should be given in which each element is either a marker
string, or the name of a text file preceded by an up-arrow character "^". Such text
files should contain further comma-separated lists which will be read and interpreted
in the same manner. Note, strings within text files can be separated by new lines as
well as commas.

STYLE = GROUP (Read)
A group of attribute settings describing the style to use when formatting the co-

http://www.ivoa.net/Documents/

SUN/95.45 —Specifications of KAPPA applications 432 LISTSHOW

ordinate values displayed on the screen, and when drawing the graphics specified by
Parameter PLOT.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
In addition to the attributes which control the appearance of the graphics (Colour,
Font, etc.), the following attributes may be set in order to control the appearance of
the formatted axis values reported on the screen: Format, Digits, Symbol, Unit. These
may be suffixed with an axis number (e.g. Digits(2)) to refer to the values displayed
for a specific axis. [current value]

Results Parameters:

DIM = _INTEGER (Write)
The number of axes for each position written to output Parameter POSNS.

NUMBER = _INTEGER (Write)
The number of positions selected.

PIXVALS() = _DOUBLE (Write)
The pixel values at the listed positions. Only used if a non-null value is supplied for
Parameter NDF.

Examples:
listshow stars pixel

This displays the pixel co-ordinates of all the positions stored in the FITS binary
catalogue stars.fit. They are all written to the output Parameter POSNS.

listshow star outcat=star-gal catframe=gal

This copies a position list from catalogue star to a new catalogue called star-gal. The
positions are stored in galactic co-ordinates in the output catalogue.

listshow stars.fit equat(J2010) first=3 last=3

433 LISTSHOW SUN/95.45 —Specifications of KAPPA applications

This extracts Position 3 from the catalogue stars.fit transforming it into FK5
equatorial RA/DEC co-ordinates (referenced to the J2010 equinox), if possible. The
RA/DEC values (in radians) are written to the output Parameter POSNS.

listshow stars_2.txt style="digits(1)=5,digits(2)=7"

This lists the positions in the STL format catalogue contained in text file stars_2.txt
in their original co-ordinate Frame. By default, five digits are used to format Axis-1
values, and seven to format Axis-2 values. These defaults are overridden if the attributes
Format(1) and/or Format(2) are assigned values in the description of the current Frame
stored in the positions list.

listshow s.txt plot=marker marker=3 style="colour(marker)=red,size=2"

This marks the positions in s.txt on the currently selected graphics device us-
ing PGPLOT Marker 3 (an asterisk). The positions are aligned with the most recent DATA
picture in the current picture. The markers are red and are twice the default size. The
positions are likely not to be reported on the screen.

Notes:

• This application uses the conventions of the CURSA package for determining the
formats of input and output catalogues. If a file type of .fits is given, then the catalogue
is assumed to be a FITS binary table. If a file type of .txt is given, then the catalogue
is assumed to be stored in a text file in Small Text List (STL) format. If no file type is
given, then .fit is assumed.

• The positions are not displayed on the screen when either the message filter envi-
ronment variable MSG_FILTER is set to NORMAL and any graphics or labels are being
plotted (see Parameters PLOT and LABEL); or when MSG_FILTER is set to QUIET and
no graphics are produced. The creation of output parameters and files is unaffected
by MSG_FILTER.

Related Applications :

KAPPA: CURSOR, LISTMAKE; CURSA: XCATVIEW, CATSELECT.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_XVIEW
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_CATSELECT

SUN/95.45 —Specifications of KAPPA applications 434 LOG10

LOG10
Takes the base-10 logarithm of an NDF data structure

Description:
This routine takes the base-10 logarithm of each pixel of a NDF to produce a new NDF
data structure.

This command is a synonym for logar base=10D0.

Usage:
log10 in out

Parameters:

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the logarithm of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
log10 a b

This takes logarithms to base ten of the pixels in the NDF called a, to make the
NDF called b. NDF b inherits its title from a.

log10 title="Abell 4321" out=b in=a

This takes logarithms to base ten of the pixels in the NDF called a, to make the
NDF called b. NDF b has the title "Abell 4321".

Related Applications :

KAPPA: LOGAR, LOGE, EXP10, EXPE, EXPON, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

435 LOGAR SUN/95.45 —Specifications of KAPPA applications

LOGAR
Takes the logarithm (specified base) of an NDF data structure

Description:
This routine takes the logarithm to a specified base of each pixel of a NDF to produce a
new NDF data structure.

Usage:
logar in out base

Parameters:

BASE = LITERAL (Read)
The base of the logarithm to be applied. A special value "Natural" gives natural
(base-e) logarithms.

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the logarithm of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
logar a b 10

This takes logarithms to base ten of the pixels in the NDF called a, to make the
NDF called b. NDF b inherits its title from a.

logar base=8 title="HD123456" out=b in=a

This takes logarithms to base eight of the pixels in the NDF called a, to make
the NDF called b. NDF b has the title "HD123456".

Related Applications :

KAPPA: LOG10, LOGE, EXP10, EXPE, EXPON, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

SUN/95.45 —Specifications of KAPPA applications 436 LOGE

LOGE
Takes the natural logarithm of an NDF data structure

Description:
This routine takes the natural logarithm of each pixel of a NDF to produce a new NDF
data structure.

This command is a synonym for logar base=natural.

Usage:
loge in out

Parameters:

IN = NDF (Read)
Input NDF data structure.

OUT = NDF (Write)
Output NDF data structure being the logarithm of the input NDF.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
loge a b

This takes the natural logarithm of the pixels in the NDF called a, to make the
NDF called b. NDF b inherits its title from a.

loge title="Cas A" out=b in=a

This takes natural logarithms of the pixels in the NDF called a, to make the
NDF called b. NDF b has the title "Cas A".

Related Applications :

KAPPA: LOG10, LOGAR, EXP10, EXPE, EXPON, POW; FIGARO: IALOG, ILOG, IPOWER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IALOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ILOG
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPOWER

437 LOOK SUN/95.45 —Specifications of KAPPA applications

LOOK
List pixel values in a two-dimensional NDF

Description:
This application lists pixel values within a region of a two-dimensional NDF . The listing
may be displayed on the screen and logged in a text file (see Parameter LOGFILE). The
region to be listed can be specified either by giving its centre and size or its corners, or by
giving an ‘ARD Description’ for the region (see Parameter MODE). The top-right pixel
value is also written to an output parameter (VALUE). The listing may be produced in
several different formats (see Parameter FORMAT), and the format of each individual
displayed data value can be controlled using Parameter STYLE.

Usage:
look ndf centre [size] [logfile] [format] [comp] [mode]

arddesc=?

ardfile=?

lbound=? ubound=?

centre=?
mode

Parameters:

AGAIN = _LOGICAL (Read)
If TRUE, the user is prompted for further regions to list until a FALSE value is obtained.
[FALSE]

ARDDESC = LITERAL (Read)
An ‘ARD Description’ for the parts of the image to be listed. Multiple lines can
be supplied by ending each line with a hyphen, in which case further prompts for
ARDDESC are made until a value is supplied which does not end with a hyphen.
All the supplied values are then concatenated together (after removal of the trailing
hyphens). ARCDESC is only acessed if MODE is "ARD". Positions in the ARD
description are assumed to be in the current co-ordinate Frame of the NDF unless
there are COFRAME or WCS statements which indicate a different system. See
“Notes” below.

ARDFILE = FILENAME (Read)
The name of an existing text file containing an ‘ARD Description’ for the parts of the
image to be listed. ARDFILE is only accessed if MODE is "ARDFile". Positions in the
ARD description are assumed to be in pixel co-ordinates unless there are COFRAME
or WCS statements that indicate a different system. See “Notes” below.

CENTRE = LITERAL (Read)
The co-ordinates of the data pixel at the centre of the area to be displayed, in the
current co-ordinate Frame of the NDF (supplying a colon ":" will display details of
the current co-ordinate Frame). The position should be supplied as a list of formatted

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 438 LOOK

axis values separated by spaces or commas. See also Parameter USEAXIS. Only
acessed if MODE is "Centre".

COMP = LITERAL (Read)
The NDF array component to be displayed. It may be "Data", "Quality", "Variance",
or "Error" (where "Error" is an alternative to "Variance" and causes the square
root of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

FORMAT = LITERAL (Read)
Specifies the format for the listing from the following options.

• "strips" — The area being displayed is divided up into vertical strips of limited
width. Each strip is displayed in turn, with y pixel index at the left of each row,
and x pixel index at the top of each column. The highest row is listed first in
each strip. This format is intended for human readers — the others are primarily
intended for being read by other software.
• "clist" — Each row of textual output consists of an x pixel index, followed by

a y pixel index, followed by the pixel data value. No headers or blank lines are
included. The pixels are listed in ‘Fortran order’—the lower-left pixel first, and
the upper-right pixel last.
• "cglist" — Like "clist" except that bad pixel are omitted from the list.
• "vlist" — Each row of textual output consists of just the pixel data value. No

headers or blank lines are included. The pixels are listed in ‘Fortran order’—the
lower-left pixel first, and the upper-right pixel last.
• "wlist" — Each row of textual output consists of the WCS co-ordinate values,

followed by the pixel data value. No headers or blank lines are included. The
pixels are listed in ‘Fortran order’—the lower-left pixel first, and the upper-right
pixel last.
• "wglist" — Like "wlist" except that bad pixel are omitted from the list.
• "region" — The pixel data values are listed as a two-dimensional region. Each

row of textual output contains a whole row of data values. The textual output
may be truncated if it is too wide. The lowest row is listed first.

In all cases, adjacent values are separated by spaces, and bad pixel values are repre-
sented by the string "BAD". ["strips"]

LBOUND = LITERAL (Read)
The co-ordinates of the data pixel at the bottom-left of the area to be displayed, in the
current co-ordinate Frame of the NDF (supplying a colon ":" will display details of
the current co-ordinate Frame). The position should be supplied as a list of formatted
axis values separated by spaces or commas. See also Parameter USEAXIS. A null (!)
value causes the bottom-left corner of the supplied NDF to be used. LBOUND is only
accessed if MODE is "Bounds".

LOGFILE = FILENAME (Write)
The name of the text file in which the textual output may be stored. See MAXLEN. A
null string (!) means that no file is created. [!]

MAXLEN = _INTEGER (Read)
The maximum number of characters in a line of textual output. The line is truncated
after the last complete value if it would extend beyond this value. [80]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

439 LOOK SUN/95.45 —Specifications of KAPPA applications

MODE = LITERAL (Read)
Indicates how the region to be listed will be specified:

• "All" — The entire NDF is used.
• "Centre" — The centre and size of the region are specified using Parameters

CENTRE and SIZE.
• "Bounds" — The bounds of the region are specified using Parameters LBOUND

and UBOUND.
• "ARDFile" — The region is given by an ‘ARD Description’ supplied within a

text file specified using Parameter ARDFILE. Pixels outside the ARD region are
represented by the string "OUT".
• "ARD" — The region is given using an ARD description supplied directly using

Parameter ARDDESC. Pixels outside the ARD region are represented by the
string "OUT".

["Centre"]

NDF = NDF (Read)
The input NDF structure containing the data to be displayed.

SIZE(2) = _INTEGER (Read)
The dimensions of the rectangular area to be displayed, in pixels. If a single value
is given, it is used for both axes. The area is centred on the position specified by
Parameter CENTRE. It is only accessed if MODE is "Centre". [7]

STYLE = GROUP (Read)
A group of attribute settings describing the format to use for individual data values.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
Data values are formatted using attributes Format(1) and Digits(1). [current value]

UBOUND = LITERAL (Read)
The co-ordinates of the data pixel at the top-right corner of the area to be displayed,
in the current co-ordinate Frame of the NDF (supplying a colon ":" will display
details of the current co-ordinate Frame). The position should be supplied as a list of

SUN/95.45 —Specifications of KAPPA applications 440 LOOK

formatted axis values separated by spaces or commas. See also Parameter USEAXIS.
A null (!) value causes the top-right corner of the supplied NDF to be used. Only
acessed if MODE is "Bounds".

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of two strings should be supplied specifying the two axes which
are to be used when supplying positions for Parameters CENTRE, LBOUND, and
UBOUND. Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to
the number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if you supply an illegal value. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are selected. [!]

Results Parameters:

VALUE = _DOUBLE (Write)
The data value at the top-right pixel in the displayed rectangle.

Examples:
look ngc6872 "1:27:23 -22:41:12" logfile=log

Lists a 7×7 block of pixel values centred on RA/DEC 1:27:23, −22:41:12 (this as-
sumes that the current co-ordinate Frame in the NDF is an RA/DEC Frame). The listing is
written to the text file log.

look m57 mode=bo lbound="18 20" ubound="203 241"

Lists the pixel values in an NDF called m57, within a rectangular region from
pixel (18,20) to (203,241) (this assumes that the current co-ordinate Frame in the NDF is
pixel co-ordinates). The listing is displayed on the screen only.

look ngc6872 "10 11" 1

Stores the value of pixel (10, 11) in output Parameter VALUE, but does not store
it in a log file. This assumes that the current co-ordinate Frame in the NDF is pixel
co-ordinates.

look ngc6872 mode=ard arddesc="circle(1:27:23,-22:41:12,0:0:10)"

Lists the pixel values within a circle of radius 10 ard-seconds, centred on RA=1:27:23
DEC=−22:41:12. This assumes that the current co-ordinate Frame in the NDF is an
RA/DEC Frame.

441 LOOK SUN/95.45 —Specifications of KAPPA applications

look ngc6872 mode=ardfile ardfile=central.ard

Lists the pixel values specified by the ARD description stored in the text file
central.ard.

Notes:

• ARD files may be created by ARDGEN or written manually. In the latter case consult
SUN/183 for full details of the ARD descriptors and syntax; however, much may
be learnt from looking at the ARD files created by ARDGEN and the ARDGEN
documentation. There is also a in Section 15.1.1.

• The co-ordinate system in which positions are given within ARD descriptions can be
indicated by including suitable COFRAME or WCS statements within the description
(see SUN/183). For instance, starting the description with the text "COFRAME(PIXEL)"
will indicate that positions are specified in pixel co-ordinates. The statement
"COFRAME(SKY,System=FK5)" would indicate that positions are specified in RA/DEC
(FK5,J2000). If no such statements are included, then a default co-ordinate system is
used as specified in the parameter description above.

• Output messages are not displayed on the screen when the message filter environment
variable MSG_FILTER is set to QUIET. The creation of output parameters and the log
file is unaffected by MSG_FILTER.

Related Applications :

KAPPA: ARDGEN, ARDMASK, ARDPLOT, TRANDAT.

Implementation Status:

• This routine correctly processes the DATA, QUALITY and VARIANCE components
of the input NDF.

• Processing of bad pixels and automatic quality masking are supported.

SUN/95.45 —Specifications of KAPPA applications 442 LUCY

LUCY
Performs a Richardson-Lucy deconvolution of a one- or

two-dimensional array

Description:
This application deconvolves the supplied one- or two-dimensional array using the
Richardson-Lucy (R-L) algorithm. It takes an array holding observed data and another
holding a Point-Spread Function (PSF) as input and produces an output array with higher
resolution. The algorithm is iterative, each iteration producing a new estimate of the re-
stored array which (usually) fits the observed data more closely than the previous estimate
(in the sense that simulated data generated from the restored array is closer to the observed
data). The closeness of the fit is indicated after each iteration by a normalised χ2 value (i.e.
the χ2 per pixel). The algorithm terminates when the normalised χ2 given by Parameter
AIM is reached, or the maximum number of iterations given by Parameter NITER have
been performed. The current estimate of the restored array is then written to the output
NDF .

Before the first iteration, the restored array is initialised either to the array given by
Parameter START, or, if no array is given, to the difference between the mean value in the
input data array and the mean value in the background (specified by Parameters BACK
and BACKVAL). Simulated data are then created from this trial array by smoothing it
with the supplied PSF, and then adding the background on. The χ2 value describing the
deviation of this simulated data from the observed data are then found and displayed. If
the required χ2 is not reached by this simulated data, the first iteration commences, which
consists of creating a new version of the restored array and then creating new simulated
data from this new restored array (the corresponding χ2 value is displayed). Repeated
iterations are performed until the required χ2 is reached, or the iteration limit is reached.
The new version of the restored array is created as follows.

(1) A correction factor is found for each data value. This is the ratio of the observed data
value to the simulated data value. An option exists to use the Snyder modification
as used by the LUCY program in the STSDAS package within IRAF. With this option
selected, the variance of the observed data value is added to both the numerator and
the denominator when finding the correction factors.

(2) These correction factors are mapped into an array by smoothing the array of correction
factors with the transposed PSF.

(3) The current version of the restored array is multiplied by this correction factor array
to produce the new version of the restored array.

For further background to the algorithm, see L.B. Lucy, Astron.J. 1974, Vol 79, No. 6.

Usage:
lucy in psf out [aim]

Parameters:

443 LUCY SUN/95.45 —Specifications of KAPPA applications

AIM = _REAL (Read)
The χ2 value at which the algorithm should terminate. Smaller values of AIM will
result in higher apparent resolution in the output array but will also cause noise
in the observed data to be interpreted as real structure. Small values will require
larger number of iterations, so NITER may need to be given a larger value. Very-
small values may be completely un-achievable, indicated by χ2 not decreasing (or
sometimes increasing) between iterations. Larger values will result in smoother
output arrays with less noise. [1.0]

BACK = NDF (Read)
An NDF holding the background value for each observed data value. If a null value
is supplied, a constant background value given by Parameter BACKVAL is used. [!]

BACKVAL = _REAL (Read)
The constant background value to use if BACK is given a null value. [0.0]

CHIFAC = _REAL (Read)
The normalised χ2 value which is used to determine if the algorithm should terminate
is defined as follows:

χ2 = 1
N . ∑ (d−s)2

(CHIFAC.s−σ2)

where the sum is taken over the entire input array (excluding the margins used to
pad the input array), n is the number of values summed, d is the observed data value,
s is the simulated data value based on the current version of the restored array, σ2 is
the variance of the error associated with d, and CHIFAC is the value of Parameter
CHIFAC. Using 0 for CHIFAC results in the standard expression for χ2. However,
the algorithm sometimes has difficulty fitting bright features and so may not reach
the required normalised χ2 value. Setting CHIFAC to 1 (as is done by the LUCY
program in the STSDAS package within IRAF) causes larger data values to be given
less weight in the χ2 calculation, and so encourages lower χ2 values. [1.0]

IN= NDF (Read)
The input NDF containing the observed data.

NITER = _INTEGER (Read)
The maximum number of iterations to perform. [50]

OUT = NDF (Write)
The restored output array. The background specified by Parameters BACK and
BACKVAL will have been removed from this array. The output is the same size as the
input. There is no VARIANCE component in the output, but any QUALITY values
are propagated from the input to the output.

PSF = NDF (Read)
An NDF holding an estimate of the Point-Spread Function (PSF) of the input array.
This could, for instance, be produced using the KAPPA application PSF. There should
be no bad pixels in the PSF otherwise an error will be reported. The PSF can be
centred anywhere within the array, but the location of the centre must be specified
using Parameters XCENTRE and YCENTRE. The PSF is assumed to have the value
zero outside the supplied NDF.

SUN/95.45 —Specifications of KAPPA applications 444 LUCY

SIGMA = _REAL (Read)
The standard deviation of the noise in the observed data. This is only used if Param-
eter VARIANCE is given the value FALSE. If a null (!) value is supplied, the value
used is an estimate of the noise based on the difference between adjacent pixel values
in the observed data. [!]

START = NDF (Read)
An NDF containing an initial guess at the restored array. This could, for instance, be
the output from a previous run of LUCY, in which case the deconvolution would
continue from the point it had previously reached. If a null value is given, then the
restored array is initialised to a constant value equal to the difference between the
mean observed data value and the mean background value. [!]

SNYDER = _LOGICAL (Read)
If TRUE then the variance of the observed data sample is added to both the numerator
and denominator when evaluating the correction factor for each data sample. This is
the modified form of the R-L algorithm used by the LUCY program in the STSDAS
package within IRAF. [TRUE]

THRESH = _REAL (Read)
The fraction of the PSF peak amplitude at which the extents of the PSF are determined.
These extents are used to determine the size of the margins used to pad the supplied
input array. Lower values of THRESH will result in larger margins being used.
THRESH must be positive and less than 0.5. [0.0625]

TITLE = LITERAL (Read)
A title for the output NDF. A null (!) value means using the title of the input NDF.
[!]

VARIANCE = _LOGICAL (Read)
If TRUE, then the variance of each input data sample will be obtained from the VARI-
ANCE component of the input NDF. An error is reported if this option is selected
and the NDF has no VARIANCE component. If FALSE, then a constant variance equal
to the square of the value given for Parameter SIGMA is used for all data samples. If
a null (!) value is supplied, the value used is TRUE if the input NDF has a VARIANCE
component, and FALSE otherwise. [!]

WLIM = _REAL (Read)
If the input array contains bad pixels, then this parameter may be used to determine
the number of good data values which must contribute to an output pixel before a
valid value is stored in the restored array. It can be used, for example, to prevent
output pixels from being generated in regions where there are relatively few good
data values to contribute to the restored result. It can also be used to ‘fill in’ small
areas (i.e. smaller than the PSF) of bad pixels.
The numerical value given for WLIM specifies the minimum total weight associated
with the good pixels in a smoothing box required to generate a good output pixel
(weights for each pixel are defined by the normalised PSF). If this specified minimum
weight is not present, then a bad output pixel will result, otherwise a smoothed
output value will be calculated. The value of this parameter should lie between 0.0
and 1.0. WLIM=0 causes a good output value to be created even if there is only one
good input value, whereas WLIM=1 causes a good output value to be created only if
all input values are good. Values less than 0.5 will tend to reduce the number of bad
pixels, whereas values larger than 0.5 will tend to increase the number of bad pixels.

445 LUCY SUN/95.45 —Specifications of KAPPA applications

This threshold is applied each time a smoothing operation is performed. Many
smoothing operations are typically performed in a run of LUCY, and if WLIM is
larger than 0.5 the effects of bad pixels will propagate further through the array at
each iteration. After several iterations this could result in there being no good data
left. An error is reported if this happens. [0.001]

XCENTRE = _INTEGER (Read)
The x pixel index of the centre of the PSF within the supplied PSF array. If a null (!)
value is supplied, the value used is the middle pixel (rounded down if there are an
even number of pixels per line). [!]

YCENTRE = _INTEGER (Read)
The y pixel index of the centre of the PSF within the supplied PSF array. If a null (!)
value is supplied, the value used is the middle line (rounded down if there are an
even number of lines). [!]

Examples:
lucy m51 star m51_hires

This example deconvolves the array in the NDF called m51, putting the result-
ing array in the NDF called m51_hires. The PSF is defined by the array in NDF star (the
centre of the PSF is assumed to be at the central pixel). The deconvolution terminates
when a normalised chi-squared value of 1.0 is reached.

lucy m51 star m51_hires 0.5 niter=60

This example performs the same function as the previous example, except that
the deconvolution terminates when a normalised chi-squared value of 0.5 is reached,
giving higher apparent resolution at the expense of extra spurious noise-based structure.
The maximum number of iterations is increased to 60 to give the algorithm greater
opportunity to reach the reduced chi-squared value.

lucy m51 star m51_hires2 0.1 start=m51_hires

This example continues the deconvolution started by the previous example in
order to achieve a normalised chi-squared of 0.1. The output array from the previous
example is used to initialise the restored array.

Notes:

• The convolutions required by the R-L algorithm are performed by the multiplication
of Fourier transforms. The supplied input array is extended by a margin along each
edge to avoid problems of wrap-around between opposite edges of the array. The
width of this margin is about equal to the width of the significant part of the PSF
(as determined by Parameter THRESH). The application displays the width of these
margins. The margins are filled by replicating the edge pixels from the supplied input
NDFs.

• The R-L algorithm works best for arrays which have zero background. Non-zero
backgrounds cause dark rings to appear around bright, compact sources. To avoid

SUN/95.45 —Specifications of KAPPA applications 446 LUCY

this a background array should be created before running LUCY and assigned to the
Parameter BACK. The SEGMENT and SURFIT applications within KAPPA can be
used to create such a background array.

Related Applications :

KAPPA: FOURIER, MEM2D, WIENER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point.

447 LUTABLE SUN/95.45 —Specifications of KAPPA applications

LUTABLE
Manipulates an graphics device colour table

Description:
This application allows manipulation of the colour table of an graphics device provided
some data are, according to the graphics database, already displayed upon the device.
A two-dimensional data array, stored in the input NDF structure, may be nominated to
assist in defining the colour table via an histogram equalisation. There are two stages to
the running of this application.

(1) The way in which the lookup table (LUT) is to distributed amongst the pens (colour
indices) of the colour table is required. Some pens are reserved by KAPPA as a palette,
particularly for annotation. This application only modifies the unreserved portion of
the colour table.

(2) The lookup table is now chosen from a programmed selection or read from an NDF.

The two stages may be repeated cyclically if desired. To exit the loop give the null response,
!, to a prompt. Looping will not occur if the lookup table and the distribution method are
supplied on the command line.

Usage:
lutable mapping coltab lut [device] ndf percentiles shade

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device to be used. [Current graphics device]

COLTAB = LITERAL (Read)
The lookup table required. The options are listed below.

"Negative" — This is negative grey scale with black assigned to the highest pen,
and white assigned to the lowest available pen.

"Colour" — This consists of eighteen standard colour blocks.
"Grey" — This a standard grey scale.
"External" — Obtain a lookup table stored in an NDF’s data array. If the table

cannot be found in the specified NDF or if it is not a LUT then a grey scale is
used.

FULL = _LOGICAL (Read)
If TRUE the whole colour-table for the device is stored including the reserved pens.
This is necessary to save a colour table written by another package that does not
reserve colour indices. For colour tables produced by KAPPA this should be FALSE.
[FALSE]

LUT = NDF (Read)
Name of the NDF containing the lookup table as its data array. The LUT must be
two-dimensional, the first dimension being 3, and the second being arbitrary. The
method used to compress or expand the colour table if the second dimension is

SUN/95.45 —Specifications of KAPPA applications 448 LUTABLE

different from the number of unreserved colour indices is controlled by Parameter
NN. Also the LUT’s values must lie in the range 0.0–1.0.

MAPPING = LITERAL (Read)
The way in which the colours are to be distributed among the pens. If NINTS is the
number of unreserved colour indices the mapping options are described below.
"Histogram" — The colours are fitted to the pens using histogram equalisation of

an NDF, given by Parameter IN, so that the colours approximately have an even
distribution. In other words each pen is used approximately an equal number
of times to display the two-dimensional NDF array. There must be an existing
graphics deviceed. This is determined by looking for a DATA picture in the
database. This is not foolproof as this may be a line plot rather an image.

"Linear" — The colours are fitted directly to the pens.
"Logarithmic" — The colours are fitted logarithmically to the pens, with colour 1

given to the first available pen and colour NINTS given to the last pen.
NDF = NDF (Read)

The input NDF structure containing the two-dimensional data array to be used for
the histogram-equalisation mapping of the pens. The the data object referenced by
the last DATA picture in the graphics database is reported. This assumes that the
displayed data picture was derived from the nominated NDF data array.

NN = _LOGICAL (Read)
If TRUE the input lookup table is mapped to the colour table by using the nearest-
neighbour method. This preserves sharp edges and is better for lookup tables with
blocks of colour. If NN is FALSE linear interpolation is used, and this is suitable for
smoothly varying colour tables. [FALSE]

PERCENTILES(2) = _REAL (Read)
The percentiles that define the range of the histogram to be equalised. For example,
[25,75] would scale between the quartile values. It is advisable not to choose the
limits less than 3 per cent and greater than 97. The percentiles are only required
for histogram mapping. All values in the NDF’s data array less than the value
corresponding to the lower percentile will have the colour of the first unreserved pen.
All values greater than the value corresponding to the upper percentile will have the
colour of the last unreserved pen.

SHADE = _REAL (Read)
The type of shading. This only required for the histogram mapping. A value of −1
emphasises low values; +1 emphasises high values; 0 is neutral, all values have equal
weight. The shade must lie in the range −1 to +1.

Examples:
lutable lo co

Changes the colour table on the current graphics device to a series of coloured
blocks whose size increase logarithmically with the table index number.

lutable li ex rococo

This maps the lookup table stored in the NDF called rococo linearly to the colour table on
the current graphics device device.

449 LUTABLE SUN/95.45 —Specifications of KAPPA applications

lutable li ex rococo full

This maps the lookup table stored in the NDF called rococo linearly to the full
colour table on the current graphics device device, i.e. ignoring the reserved pens.

lutable hi gr ndf=nebula shade=0 percentiles=[5,90]

This maps the grey-scale lookup table via histogram equalisation between the 5
and 90 percentiles of an NDF called nebula to the colour table on the current graphics
device device. There is no bias or shading to white or black.

Notes:

• The effects of this command will only be immediately apparent when run on X
windows which have 256 colours (or other similar pseudocolour devices). On other
devices (for instance, X windows with more than 256 colours) the effects will only
become apparent when subsequent graphics applications are run.

Related Applications :

KAPPA: LUTEDIT, LUTREAD, LUTSAVE, LUTVIEW; FIGARO: COLOUR.

Implementation Status:

• Processing of bad pixels and automatic quality masking are supported for the image
NDF

• All non-complex numeric data types can be handled. Processing is performed using
single- or double-precision floating point, as appropriate.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COLOUR

SUN/95.45 —Specifications of KAPPA applications 450 LUTBGYRW

LUTBGYRW
Loads the BGYRW lookup table

Description:
This procedure loads the BGYRW lookup table with linear scaling into the current graphics
device. It is a continuous LUT starting with blue, followed by green, yellow, red and a
splash of white.

Usage:
lutbgyrw

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

451 LUTCOL SUN/95.45 —Specifications of KAPPA applications

LUTCOL
Loads the standard colour lookup table

Description:
Procedure for loading the standard colour lookup table into the current graphics de-
vice with linear scaling.

Usage:
lutcol

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 452 LUTCOLD

LUTCOLD
Loads the cold lookup table

Description:
This procedure loads the cold lookup table with linear scaling into the current graphics
device. It is a continuous LUT going from black to white, passing through cold shades of
pale blue and grey.

Usage:
lutcold

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

453 LUTCONT SUN/95.45 —Specifications of KAPPA applications

LUTCONT
Loads a lookup table to give the display the appearance of a contour

plot

Description:
This procedure loads a lookup table that gives a contour-plot appearance into the current
graphics device. The lookup table is mainly black with a set of white stripes and it is
loaded with linear scaling.

Usage:
lutcont

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 454 LUTEDIT

LUTEDIT
Creates or edits an graphics device colour lookup table

Description:
This application allows a lookup table to be created or edited interactively. The process is
controlled through a graphical user interface which presents curves of intensity against
pen number, and allows the user to change them in various ways. A specified image is
displayed as part of the interface in order to see the effects of the changes. A histogram of
pen values is also included. The colour of each pen can be displayed either as red, green
and blue intensity, or as hue, saturation and value. More information on the use of the
GUI is available through the Help menu within the GUI.

Usage:
lutedit lut image device

Parameters:

DEVICE = DEVICE (Read)
The name of an graphics device. If a null (!) value is supplied for Parameter LUT,
then the current LUT associated with the specified device will be loaded into the
editor initially. On exit, the final contents of the editor (if saved) are established as
the current LUT for the specified device. [Current graphics device]

LUT = NDF (Read)
Name of an exiting colour table to be edited. This should be an NDF containing an
array of red, green and blue intensities. The NDF must be two-dimensional, the first
dimension being 3, and the second being arbitrary. The method used to compress
or expand the colour table if the second dimension is different from the number of
unreserved colour indices is controlled by the "Interpolation" option in the GUI. If
LUT is null (!) the current KAPPA colour table for the xwindows graphics display is
used. [!]

IMAGE = NDF (Read)
Input NDF data structure containing the image to be displayed to show the effect of
the created colour table. If a null value is supplied a default image is used.

Related Applications :

KAPPA: LUTABLE, LUTREAD, LUTSAVE, LUTVIEW, PALREAD, PALSAVE; FIGARO:
COLOUR.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COLOUR

455 LUTFC SUN/95.45 —Specifications of KAPPA applications

LUTFC
Loads the standard false-colour lookup table

Description:
This procedure loads the standard false-colour lookup table with linear scaling into the
current graphics device.

Usage:
lutfc

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 456 LUTGREY

LUTGREY
Loads the standard grey-scale lookup table

Description:
Procedure for loading the standard grey-scale lookup table into the current graphics
device with linear scaling.

Usage:
lutgrey

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

457 LUTHEAT SUN/95.45 —Specifications of KAPPA applications

LUTHEAT
Loads the heat lookup table

Description:
This procedure loads the heat lookup table with linear scaling into the current graphics
device.

Usage:
lutheat

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 458 LUTIKON

LUTIKON
Loads the default Ikon lookup table

Description:
This procedure loads the default Ikon lookup table with linear scaling into the current
graphics device.

Usage:
lutikon

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

• This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified
on the command line. You will only be prompted for the DEVICE parameter if the
current graphics device is not suitable or not available.

• The device need not be an Ikon.

459 LUTNEG SUN/95.45 —Specifications of KAPPA applications

LUTNEG
Loads the standard negative grey-scale lookup table

Description:
Procedure for loading the standard grey-scale lookup table into the current graphics
device with negative linear scaling.

Usage:
lutneg

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 460 LUTRAMPS

LUTRAMPS
Loads the coloured-ramps lookup table

Description:
This procedure loads the coloured-ramps lookup table with linear scaling into the current
graphics device.

Usage:
lutramps

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

461 LUTREAD SUN/95.45 —Specifications of KAPPA applications

LUTREAD
Loads an graphics device lookup table from an NDF

Description:
This application reads a lookup table stored in an NDF with the standard format, and
loads it into the current graphics device. device.

Usage:
lutread lut

Arguments:

LUT = LITERAL (Read)
The file containing the lookup table. It is passed to the Parameter LUT but not validated.

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

LUT = NDF (Read)
Name of the NDF containing the lookup table as its data array. The LUT must be
two-dimensional, the first dimension being 3, and the second being arbitrary. Linear
interpolation is used to compress or expand the colour table if the second dimension
is different from the number of unreserved colour indices. Also the LUT’s values
must lie in the range 0.0–1.0.

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameters cannot be specified
on the command line. You will only be prompted for the parameters if the device is not
suitable or not available, and/or the lookup table file could not be accessed.

SUN/95.45 —Specifications of KAPPA applications 462 LUTSAVE

LUTSAVE
Saves the current colour table of an graphics device in an NDF

Description:
This routine saves the colour table of a nominated graphics device to an NDF LUT file
and/or a text file.

Usage:
lutsave lut [device]

Parameters:
DEVICE = DEVICE (Read)

The name of the graphics device whose colour table is to be saved. [Current graphics
device]

FULL = _LOGICAL (Read)
If TRUE the whole colour-table for the device is stored including the reserved pens.
This is necessary to save a colour table written by another package that does not
reserve colour indices. For colour tables produced by KAPPA this should be FALSE.
[FALSE]

LOGFILE = FILENAME (Write)
The name of a text file to receive the formatted values in the colour table. Each line
i the file contains the red, green and blue intensities for a single pen, separated by
spaces. A null string (!) means that no file is created. [!]

LUT = NDF (Write)
The output NDF into which the colour table is to be stored. Its second dimension
equals the number of colour-table entries that are stored. This will be fewer than the
total number of colour indices on the device if FULL is FALSE. No NDF is created if a
null (!) value is given.

TITLE = LITERAL (Read)
The title for the output NDF. ["KAPPA - Lutsave"]

Examples:
lutsave pizza

This saves the current colour table on the current graphics device to an NDF
called pizza.

lutsave redshift full

This saves in full the current colour table on the current graphics device to an
NDF called redshift.

Related Applications :

KAPPA: LUTEDIT, LUTABLE, LUTREAD.

463 LUTSPEC SUN/95.45 —Specifications of KAPPA applications

LUTSPEC
Loads a spectrum-like lookup table

Description:
This procedure loads an optical-spectrum-like lookup table with linear scaling into the
current graphics device.

Usage:
lutspec

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 464 LUTVIEW

LUTVIEW
Draws a colour-table key

Description:
This application displays a key to the current colour table on the specified graphics device
using the whole of the current colour table (excluding the low 16 pens which are reserved
for axis annotation, etc.). The key can either be a simple rectangular block of colour which
ramps through the colour table, a histogram-style key in which the width of the block
reflects the number of pixels allocated to each colour index, or a set of RGB intensity curves.
The choice is made using the STYLE parameter.

By default, numerical data values are displayed along the long edge of the key. The values
corresponding to the maximum and minimum colour index are supplied using Parameters
HIGH and LOW. Intermediate colour indices are labelled with values which are linearly
interpolated between these two extreme values.

The rectangular area in which the key (plus annotations) is drawn may be specified either
using a graphics cursor, or by specifying the co-ordinates of two corners using Parameters
LBOUND and UBOUND. Additionally, there is an option to make the key fill the current
picture. See Parameter MODE. The key may be constrained to the current picture using
Parameter CURPIC.

The appearance of the annotation my be controlled in detail using the STYLE parameter.

Usage:
lutview [mode] [low] [high] [curpic] [device] lbound=? ubound=?

Parameters:

COMP = LITERAL (Read)
The component (within the NDF given by Parameter NDF) which is currently dis-
played. It may be "Data", "Quality", "Variance", or "Error" (where "Error" is an
alternative to "Variance" and causes the square root of the variance values to be
used). If "Quality" is specified, then the quality values are treated as numerical
values (in the range 0 to 255). The dynamic default is obtained from global Parameter
COMP which is set by applications such as DISPLAY. []

CURPIC = _LOGICAL (Read)
If CURPIC is TRUE, the colour table key is to lie within the current picture, otherwise
the new picture can lie anywhere within the BASE picture. This parameter ignored if
the current-picture mode is selected. [FALSE]

DEVICE = DEVICE (Read)
The graphics device on which the colour table is to be drawn. [Current graphics
device]

FRAME = LITERAL (Read)
Specifies the co-ordinate Frame of the positions supplied using Parameters LBOUND
and UBOUND. The following Frames will always be available.

465 LUTVIEW SUN/95.45 —Specifications of KAPPA applications

• "GRAPHICS" — gives positions in millimetres from the bottom-left corner of the
plotting surface.
• "BASEPIC" — gives positions in a normalised system in which the bottom-left

corner of the plotting surface is (0, 0) and the shortest dimension of the plotting
surface has length 1.0. The scales on the two axes are equal.
• "CURPIC" — gives positions in a normalised system in which the bottom-left

corner of the underlying DATA picture is (0, 0) and the shortest dimension of the
picture has length 1.0. The scales on the two axes are equal.
• "NDC" — gives positions in a normalised system in which the bottom-left corner

of the plotting surface is (0, 0) and the top-right corner is (1, 1).
• "CURNDC" — gives positions in a normalised system in which the bottom-left

corner of the current picture is (0, 0) and the top-right corner is (1, 1).

There may be additional Frames available, describing previously displayed data. If a
null value is supplied, the current Frame associated with the displayed data (if any) is
used. This parameter is only accessed if Parameter MODE is set to "XY". ["BASEPIC"]

HIGH = _REAL (Read)
The value corresponding to the maximum colour index. It is used to calculate the
annotation scale for the key. If it is null (!) the maximum colour index is used, and
histogram style keys are not available. [Current display linear-scaling maximum]

LBOUND = LITERAL (Read)
Co-ordinates of the lower-left corner of the rectangular region containing the colour
ramp and annotation, in the co-ordinate Frame specified by Parameter FRAME
(supplying a colon ":" will display details of the selected co-ordinate Frame). The
position should be supplied as a list of formatted axis values separated by spaces or
commas. A null (!) value causes the lower-left corner of the BASE or (if CURPIC is
TRUE) current picture to be used.

LOW = _REAL (Read)
The value corresponding to the minimum colour index. It is used to calculate the
annotation scale for the key. If it is null (!) the minimum colour index is used, and
histogram style keys are not available. [Current display linear-scaling minimum]

LUT = NDF (Read)
Name of the NDF containing a lookup table as its data array; the lookup table is
written to the graphics device’s colour table. The purpose of this parameter is to
provide a means of controlling the appearance of the image on certain devices, such
as colour printers, that do not have a dynamic colour table, i.e. the colour table is
reset when the device is opened. If used with dynamic devices, such as windows or
Ikons, the new colour table remains after this application has completed. A null, !,
means that the existing colour table will be used.
The LUT must be two-dimensional, the first dimension being 3, and the second being
arbitrary. The method used to compress or expand the colour table if the second
dimension is different from the number of unreserved colour indices is controlled by
Parameter NN. Also the LUT’s values must lie in the range 0.0–1.0. [!]

MODE = LITERAL (Read)
Method for defining the position, size and shape of the rectangular region containing
the colour ramp and annotation. The options are:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 466 LUTVIEW

• "Cursor" — The graphics cursor is used to supply two diametrically opposite
corners or the region.
• "XY" — The Parameters LBOUND and UBOUND are used to get the limits.
• "Picture" — The whole of the current picture is used. Additional positioning

options are available by using other KAPPA applications to create new pictures
and then specifying the picture mode.

["Cursor"]

NDF = NDF (Read)
The NDF defining the image values to be used if a histogram-style key is requested.
This should normally be the NDF currently displayed in the most recently created
DATA picture. If a value is supplied on the command line for this parameter it will
be used. Otherwise, the NDF to used is found by interrogating the graphics database
(which contains references to displayed images). If no reference NDF can be obtained
from the graphics database, the user will be prompted for a value.

NN = _LOGICAL (Read)
If NN is TRUE, the input lookup table is mapped to the colour table by using the
nearest-neighbour method. This preserves sharp edges and is better for lookup tables
with blocks of colour. If NN is FALSE, linear interpolation is used, and this is suitable
for smoothly varying colour tables. NN is ignored unless LUT is not null. [FALSE]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the annotation.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
Axis 1 is always the data value axis, whether it is displayed horizontally or vertically.
So for instance, to set the label for the data value axis, assign a value to Label(1) in the
supplied style.
To get a ramp key (the default), specify "form=ramp". To get a histogram key (a
coloured histogram of pen indices), specify "form=histogram". To get a graph key
(three curves of RGB intensities), specify "form=graph". If a histogram key is pro-
duced, the population axis can be either logarithmic or linear. To get a logarith-
mic population axis, specify "logpop=1". To get a linear population axis, specify

467 LUTVIEW SUN/95.45 —Specifications of KAPPA applications

"logpop=0" (the default). To annotate the long axis with pen numbers instead of pixel
value, specify "pennums=1" (the default, "pennums=0", shows pixel values). [current
value]

UBOUND = LITERAL (Read)
Co-ordinates of the upper-right corner of the rectangular region containing the colour
ramp and annotation, in the co-ordinate Frame specified by Parameter FRAME
(supplying a colon ":" will display details of the selected co-ordinate Frame). The
position should be supplied as a list of formatted axis values separated by spaces or
commas. A null (!) value causes the lower-left corner of the BASE or (if CURPIC is
TRUE) the current picture to be used.

Examples:
lutview

Draws an annotated colour table at a position selected via the cursor on the cur-
rent graphics device.

lutview style="form=hist,logpop=1"

As above, but the key has the form of a coloured histogram of the pen numbers
in the most recently displayed image. The second axis displays the logarithm (base 10) of
the bin population.

lutview style="form=graph,pennums=1"

The key is drawn as a set of three (or one if a monochrome colour table is in
use) curves indicating the red, green and blue intensity for each pen. The first axis is
annotated with pen numbers instead of data values.

lutview style="edge(1)=right,label(1)=Data value in m31"

As above, but the data values are labelled on the right edge of the box, and the
values are labelled with the string "Data value in m31".

lutview style="textlab(1)=0,width(border)=3,colour(border)=white"

No textual label is drawn for the data values, and a thicker than usual white
box is drawn around the colour ramp.

lutview style="textlab(1)=0,numlab(1)=0,majticklen(1)=0"

Only the border is drawn around the colour ramp.

lutview style="textlab(1)=0,numlab(1)=0,majticklen(1)=0,border=0"

No annotation at all is drawn.

SUN/95.45 —Specifications of KAPPA applications 468 LUTVIEW

lutview p

Draws a colour table that fills the current picture on the current graphics device.

lutview curpic

Draws a colour table within the current picture positioned via the cursor.

lutview xy lut=my_lut device=ps_p lbound="0.92,0.2" ubound="0.98,0.8"

Draws the colour table in the NDF called my_lut with an outline within the
BASE picture on the device ps_p, defined by the x-y bounds (0.92, 0.2) and (0.98, 0.8). In
other words the plot is to the right-hand side with increasing colour index with increasing
y position.

Related Applications :

KAPPA: DISPLAY, LUTABLE, LUTEDIT ; FIGARO: COLOUR.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_COLOUR

469 LUTWARM SUN/95.45 —Specifications of KAPPA applications

LUTWARM
Loads the warm lookup table

Description:
This procedure loads the warm lookup table with linear scaling into the current graphics
device. It is a continuous LUT going from black to white, passing through warm shades of
yellow and brown.

Usage:
lutwarm

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

SUN/95.45 —Specifications of KAPPA applications 470 LUTZEBRA

LUTZEBRA
Loads a pseudo-contour lookup table

Description:
This procedure loads a pseudo-contour lookup table with linear scaling into the current
graphics device. The lookup table is mainly black with a set of white stripes.

Usage:
lutzebra

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device whose colour table is to be changed. [Current graphics
device]

Notes:

This is a procedure that calls LUTABLE. Therefore, the parameter cannot be specified on
the command line. You will only be prompted for the DEVICE parameter if the current
graphics device is not suitable or not available.

471 MAKESNR SUN/95.45 —Specifications of KAPPA applications

MAKESNR
Creates a signal-to-noise array from an NDF with defined variances

Description:
This application creates a new NDF from an existing NDF by dividing the DATA compo-
nent of the input NDF by the square root of its VARIANCE component. The DATA array
in the output NDF thus measures the signal to noise ratio in the input NDF.

Anomalously small variance values in the input can cause very large spurious values in
the output signal to noise array. To avoid this, pixels that have a variance value below a
given threshold are set bad in the output NDF.

Usage:
makesnr in out [minvar]

Parameters:

IN = NDF (Read)
The input NDF. An error is reported if this NDF does not have a VARIANCE compo-
nent.

MINVAR = _REAL (Read)
The minimum variance value to be used. Input pixels that have variance values
smaller than this value will be set bad in the output. The suggested default is
determined by first forming a histogram of the logarithm of the input variance values.
The highest peak is then found in this histogram. The algorithm then moves down
from this peak towards lower variance values until the histogram has dropped to
a value equal to the square root of the peak value, or a significant minimum is
encountered in the histogram. The corresponding variance value is used as the
suggested default. []

OUT = NDF (Write)
The output signal to noise NDF. The VARIANCE component of this NDF will be
filled with the value 1.0 (except that bad DATA values will also have bad VARIANCE
values).

Examples:
makesnr m51 m51_snr

This example divides the DATA component of the NDF called m51, by the square root of
its own VARIANCE component, rejecting pixels below the default MINVAR value, and
writes the resulting signal-to-noise values to an NDF called m51_hires.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, HIS-
TORY, WCS, and VARIANCE components of an NDF data structure and propagates
all extensions.

SUN/95.45 —Specifications of KAPPA applications 472 MAKESNR

• The DATA values in the output NDF represent dimensionless ratios, and therefore
the UNITS component is not propagated.

473 MAKESURFACE SUN/95.45 —Specifications of KAPPA applications

MAKESURFACE
Creates a two-dimensional NDF from the coefficients of a polynomial

surface

Description:
The coefficients describing a two-dimensional polynomial surface are read from a SUR-
FACEFIT extension in an NDF (written by FITSURFACE), and are used to create a
two-dimensional surface of specified size and extent. The surface is written to a new NDF.

The size and extent of the surface may be obtained from a template NDF or given explicitly.

Elements in the new NDF outside the defined range of the polynomial or spline will be set
to bad values.

Usage:
makesurface in out [like] type=? lbound=? ubound=? xlimit=? ylimit=?

Parameters:
IN = NDF (Read)

The NDF containing the SURFACEFIT extension.
LBOUND(2) = _INTEGER (Read)

Lower bounds of new NDF (if LIKE=!). The suggested defaults are the lower bounds
of the IN NDF.

LIKE = NDF (Read)
An optional template NDF which, if specified, will be used to define the labels, size,
shape, data type and axis range of the new NDF. If a null response (!) is given, the
label, units, axis labels, and axis units are taken from the IN NDF. The task prompts
for the data type and bounds, using those of the IN NDF as defaults, and the axis
ranges. [!]

OUT = NDF (Write)
The new NDF to contain the surface fit.

TITLE = LITERAL (Read)
A title for the new NDF. If a null response (!) is given, the title will be propagated
either from LIKE, or from IN if LIKE=!. [!]

TYPE = LITERAL (Read)
Data type for the new NDF (if LIKE=!). It must be one of the following: "_DOUBLE",
"_REAL", "_INTEGER", "_WORD", "_BYTE", "_UBYTE". The suggested default is the data
type of the data array in the IN NDF.

UBOUND(2) = _INTEGER (Read)
Upper bounds of new NDF (if LIKE=!). The suggested defaults are the upper bounds
of the IN NDF.

VARIANCE = _LOGICAL (Read)
If TRUE, a uniform variance array equated to the mean squared residual of the fit is
created in the output NDF, provided the SURFACEFIT structure contains the RMS
component. [FALSE]

SUN/95.45 —Specifications of KAPPA applications 474 MAKESURFACE

XLIMIT(2) = _DOUBLE (Read)
Co-ordinates of the left then right edges of the x axis (if LIKE=!). The suggested
defaults are respectively the minimum and maximum x co-ordinates of the IN NDF.

YLIMIT(2) = _DOUBLE (Read)
Co-ordinates of the bottom then top edges of the y axis (if LIKE=!). The suggested
defaults are respectively the minimum and maximum y co-ordinates of the IN NDF.

Examples:
makesurface flatin flatout \

This generates a two-dimensional image in the NDF called flatout using the sur-
face fit stored in the two-dimensional NDF flatin. The created image has the same data
type, bounds, and co-ordinate limits as the data array of flatin.

makesurface flatin flatout type=_wo lbound=[1,1] ubound=[320,512]

As the previous example, except that the data array in flatout has data type
_WORD, and the bounds of flatout are 1:320, 1:512.

makesurface flatin flatout like=flatin

This has the same effect as the first example, except it has an advantage. If the
current co-ordinate system is "Data" and either or both of the axes are inverted (values
decrease with increasing pixel index), the output image will be correctly oriented.

makesurface flatin flatout like=template title="Surface fit"

This generates a two-dimensional image in the NDF called flatout using the sur-
face fit stored in the two-dimensional NDF flatin. The created image inherits the attributes
of the NDF called template. The title of flatout is "Surface fit".

Notes:

• The polynomial surface fit is stored in SURFACEFIT extension, component FIT of
type POLYNOMIAL, variant CHEBYSHEV or BSPLINE. This extension is created by
FITSURFACE. Also read from the SURFACEFIT extension is the co-ordinate system
(component COSYS), and the fit RMS (component RMS).

• When LIKE=!, COSYS="Data" or "Axis" and the original NDF had an axis that
decreased with increasing pixel index, you may want to flip the co-ordinate limits
(via Parameters XLIMIT or YLIMIT) to match the original sense of the axis, otherwise
the created surface will be flipped with respect to the image from which it was fitted.

Related Applications :

KAPPA: FITSURFACE, SURFIT.

Implementation Status:

475 MAKESURFACE SUN/95.45 —Specifications of KAPPA applications

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions. However, neither QUALITY nor a SURFACEFIT extension
is propagated when LIKE is not null.

• All non-complex numeric data types can be handled. Processing is performed in
single- or double-precision floating point, as appropriate.

SUN/95.45 —Specifications of KAPPA applications 476 MANIC

MANIC
Change the dimensionality of all or part of an NDF

Description:
This application manipulates the dimensionality of an NDF . The input NDF can be
projected on to any n-dimensional surface (line, plane, etc.) by averaging or taking
the median the pixels in perpendicular directions, or grown into new dimensions by
duplicating an existing n-dimensional surface. The order of the axes can also be changed
at the same time. Any combination of these operations is also possible.

The shape of the output NDF is specified using Parameter AXES. This is a list of integers,
each element of which identifies the source of the corresponding axis of the output—either
the index of one of the pixel axes of the input, or a zero indicating that the input should
be expanded with copies of itself along that axis. If any axis of the input NDF is not
referenced in the AXES list, the missing dimensions will be collapsed to form the resulting
data. Dimensions are collapsed by averaging all the non-bad pixels along the relevant
pixel axis (or axes).

Usage:
manic in out axes

Parameters:
AXES() = _INTEGER (Read)

An array of integers which define the pixel axes of the output NDF. The array should
contain one value for each pixel axis in the output NDF. Each value can be either a
positive integer or zero. If positive, it is taken to be the index of a pixel axis within
the input NDF which is to be used as the output axis. If zero, the output axis will
be formed by replicating the entire output NDF a specified number of times (see
Parameters LBOUND and UBOUND). At least one non-zero value must appear in
the list, and no input axis may be used more than once.

ESTIMATOR = LITERAL (Read)
The method by which data values in collapsed axes are combined. The permittted
options are "Mean" to form the average, or "Median" to use the median. ["Mean"]

IN = NDF (Read)
The input NDF.

LBOUND() = _INTEGER (Read)
An array holding the lower pixel bounds of any new axes in the output NDF (that
is, output axes which have a zero value in the corresponding element of the AXES
parameter). One element must be given for each zero-valued element within AXES, in
order of appearance within AXES. The dynamic default is to use 1 for every element.
[]

OUT = NDF (Write)
The output NDF.

TITLE = LITERAL (Read)
Title for the output NDF. A null (!) means use the title from the input NDF. [!]

477 MANIC SUN/95.45 —Specifications of KAPPA applications

UBOUND() = _INTEGER (Read)
An array holding the upper pixel bounds of any new axes in the output NDF (that
is, output axes which have a zero value in the corresponding element of the AXES
parameter). One element must be given for each zero-valued element within AXES, in
order of appearance within AXES. The dynamic default is to use 1 for every element.
[]

Examples:
manic image transim [2,1]

This transposes the two-dimensional NDF image so that its x pixel co-ordinates
are in the y direction and vice versa. The ordering of the axes within the current WCS
Frame will only be changed if the Domain of the current Frame is PIXEL or AXES.
For instance, if the current Frame has Domain "SKY", with Axis 1 being RA and Axis 2
being DEC, then these will be unchanged in the output NDF. However, the Mapping
which is used to relate (RA,DEC) positions to pixel positions will be modified to take the
permutation of the pixel axes into account.

manic cube summ 3

This creates a one dimensional output NDF called summ, in which the single
pixel axis corresponds to the z (third) axis in an input NDF called (cube). Each element in
the output is equal to the average data value in the corresponding xy plane of the input.

manic in=cube out=summ axis=3 estimator=median

The same as the previous example, except each output value is equal to the me-
dian data value in the corresponding xy plane of the input cube.

manic line plane [0,1] lbound=1 ubound=25

This takes a one-dimensional NDF called line and expands it into a two-dimensional
NDF called plane. The second pixel axis of the output NDF corresponds to the first (and
only) pixel axis in the input NDF. The first pixel axes of the output is formed by replicating
the the input NDF 25 times.

manic line plane [1,0] lbound=1 ubound=25

This does the same as the last example except that the output NDF is transposed. That is,
the input NDF is copied into the output NDF so that it is parallel to pixel Axis 1 (x) in the
output NDF, instead of pixel Axis 2 (y) as before.

manic cube hyper [1,0,0,0,0,0,3] ubound=[2,4,2,2,1] accept

This manic example projects the second dimension of an input three-dimensional NDF
on to the plane formed by its first and third dimensions by averaging, and grows the
resulting plane up through five new dimensions with a variety of extents.

SUN/95.45 —Specifications of KAPPA applications 478 MANIC

Notes:

• This application permutes the NDF pixel axes, and any associated AXIS structures. It
does not change the axes of the current WCS co-ordinate Frame, either by permuting,
adding or deleting, unless that frame has Domain "PIXEL" or "AXES". See the first
example in the "Examples" section.

Related Applications :

KAPPA: COLLAPSE, PERMAXES.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF and propagates all extensions.
QUALITY is also propagated if possible (i.e. if no input axes are collapsed).

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported, up to a maximum of 7.

479 MATHS SUN/95.45 —Specifications of KAPPA applications

MATHS
Evaluates mathematical expressions applied to NDF data structures

Description:
This application allows arithmetic and mathematical functions to be applied pixel-by-pixel
to a number of NDF data structures and constants so as to produce a new NDF. The
operations to be performed are specified using a Fortran-like mathematical expression.
Up to 26 each input NDF data and variance arrays, 26 parameterised ‘constants’, and pixel
and data co-ordinates along up to 7 dimensions may be combined in wide variety of ways
using this application. The task can also calculate variance estimates for the result when
there is at least one input NDF array.

Usage:
maths exp out ia-iz=? va-vz=? fa-fz=? pa-pz=? lbound=? ubound=?

Parameters:

EXP = LITERAL (Read)
The mathematical expression to be evaluated for each NDF pixel, e.g. "(IA-IB+2)∗PX".
In this expression, input NDFs are denoted by the variables IA, IB, . . . IZ, while con-
stants may either be given literally or represented by the variables PA, PB, . . . PZ.
Values for those NDFs and constants which appear in the expression will be requested
via the application’s parameter of the same name.
Fortran-77 syntax is used for specifying the expression, which may contain the usual
intrinsic functions, plus a few extra ones. An appendix in SUN/61 gives a full
description of the syntax used and an up to date list of the functions available. The
expression may be up to 132 characters long and is case insensitive.

FA-FZ = LITERAL (Read)
These parameters supply the values of ‘sub-expressions’ used in the expression
EXP. Any of the 26 (FA, FB, . . . FZ) may appear; there is no restriction on order.
These parameters should be used when repeated expressions are present in complex
expressions, or to shorten the value of EXP to fit within the 132-character limit. Sub-
expressions may contain references to other sub-expressions and constants (PA-PZ).
An example of using sub-expressions is:

EXP > PA∗ASIND(FA/PA)∗XA/FA
FA > SQRT(XA∗XA+XB∗XB)
PA > 10.1

where the parameter name is to the left of > and its value is to the right of the >.

IA-IZ = NDF (Read)
The set of 26 parameters named IA, IB, . . . IZ is used to obtain the input NDF data
structure(s) to which the mathematical expression is to be applied. Only those
parameters which actually appear in the expression are used, and their values are
obtained in alphabetical order. For instance, if the expression were "SQRT(IB+IA)",
then the Parameters IA and IB would be used (in this order) to obtain the two input
NDF data structures.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun61.htx/sun61.html?xref_

SUN/95.45 —Specifications of KAPPA applications 480 MATHS

LBOUND() = _INTEGER (Read)
Lower bounds of new NDF, if LIKE=! and there is no input NDF referenced in the
expression. The number of values required is the number of pixel co-ordinate axes in
the expression.

LIKE = NDF (Read)
An optional template NDF which, if specified, will be used to define bounds and data
type of the new NDF, when the expression does not contain a reference to an NDF. If
a null response (!) is given the bounds are obtained via Parameters LBOUND and
UBOUND, and the data type through Parameter TYPE. [!]

OUT = NDF (Write)
Output NDF to contain the result of evaluating the expression at each pixel.

PA-PZ = _DOUBLE (Read)
The set of 26 parameters named PA, PB, . . . PZ is used to obtain the numerical val-
ues of any parameterised ‘constants’ which appear in the expression being evalu-
ated. Only those parameters which actually appear in the expression are used, and
their values are obtained in alphabetical order. For instance, if the expression were
"PT∗SIN(IA/PS)", then the Parameters PS and PT (in this order) would be used to
obtain numerical values for substitution into the expression at the appropriate points.
These parameters are particularly useful for supplying the values of constants when
writing procedures, where the constant may be determined by a command-language
variable, or when the constant is stored in a data structure such as a global parameter.
In other cases, constants should normally be given literally as part of the expression,
as in "IZ∗∗2.77".

QUICK = _LOGICAL (Read)
Specifies the method by which values for the variance component of the output NDF
are calculated. The algorithm used to determine these values involves perturbing
each of the input NDF data arrays in turn by an appropriate amount, and then
combining the resulting output perturbations. If QUICK is set to TRUE, then each
input data array will be perturbed once, in the positive direction only. If QUICK is set
to FALSE, then each will be perturbed twice, in the positive and negative directions,
and the maximum resultant output perturbation will be used to calculate the output
variance. The former approach (the normal default) executes more quickly, but the
latter is likely to be more accurate in cases where the function being evaluated is
highly non-linear, and/or the errors on the data are large. This parameter is ignored
if the expression does not contain a token to at least one input NDF structure. [TRUE]

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the (alphabetically)
first input NDF to be used instead. [!]

TYPE = LITERAL (Read)
Data type for the new NDF, if LIKE=! and no input NDFs are referenced in the
expression. It must be one either "_DOUBLE" or "_REAL".

UBOUND() = _INTEGER (Read)
Upper bounds of new NDF, if LIKE=! and there is no input NDF referenced in the
expression. These must not be smaller than the corresponding LBOUND. The number
of values required is the number of pixel co-ordinate axes in the expression.

481 MATHS SUN/95.45 —Specifications of KAPPA applications

UNITS = _LOGICAL (Read)
Specifies whether the UNITS component of the (alphabetically) first input NDF or
the template NDF will be propagated to the output NDF. By default this component
is not propagated since, in most cases, the units of the output data will differ from
those of any of the input data structures. In simple cases, however, the units may be
unchanged, and this parameter then allows the UNITS component to be preserved.
This parameter is ignored if the expression does not contain a token to at least one
input NDF structure and LIKE=!. [FALSE]

VA-VZ = NDF (Read)
The set of 26 parameters named VA, VB, . . . VZ is used to obtain the input NDF
variance array(s) to which the mathematical expression is to be applied. The vari-
ance VA corresponds to the data array specified by Parameter IA, and so on. Only
those parameters which actually appear in the expression, and do not have their
corresponding data-array Parameter IA-IZ present, have their values obtained in
alphabetical order. For instance, if the expression were "IB+SQRT(VB+VA)", then the
Parameters VA and IB would be used (in this order) to obtain the two input NDF
data structures. The first would use just the variance array, whilst the second would
read both data and variance arrays.

VARIANCE = _LOGICAL (Read)
Specifies whether values for the VARIANCE component of the output NDF should be
calculated. If this parameter is set to TRUE (the normal default), then output variance
values will be calculated if any of the input NDFs contain variance information.
Any which do not are regarded as having zero variance. Variance calculations will
normally be omitted only if none of the input NDFs contain variance information.
However, if VARIANCE is set to FALSE, then calculation of output variance values
will be disabled under all circumstances, with a consequent saving in execution time.
This parameter is ignored if the expression does not contain at least one token to an
input NDF structure. [TRUE]

Examples:
maths "ia-1" dat2 ia=dat1

The expression "ia-1" is evaluated to subtract 1 from each pixel of the input
NDF referred to as IA, whose values reside in the data structure dat1. The result is written
to the NDF structure dat2.

maths "(ia-ib)/ic" ia=data ib=back ic=flat out=result units

The expression "(ia-ib)/ic" is evaluated to remove a background from an im-
age and to divide it by a flat-field. All the images are held in NDF data structures, the
input image being obtained from the data structure data, the background image from back
and the flat-field from flat. The result is written to the NDF structure result. The data units
are unchanged and are therefore propagated to the output NDF.

maths "-2.5∗log10(ii)+25.7" ii=file1 out=file2

The expression "-2.5∗log10(ii)+25.7" is evaluated to convert intensity mea-
surements into magnitudes, including a zero point. Token II represents the input

SUN/95.45 —Specifications of KAPPA applications 482 MATHS

measurements held in the NDF structure file1. The result is written to the NDF structure
file2. If file1 contains variance values, then corresponding variance values will also be
calculated for file2.

maths exp="pa∗exp(ia+pb)" out=outfile pb=13.7 novariance

The expression "pa∗exp(ia+pb)" is evaluated with a value of 13.7 for the con-
stant PB, and output is written to the NDF structure outfile. The input NDF structure to be
used for token IA and the value of the other numerical constant PA will be prompted for.
NOVARIANCE has been specified so that output variance values will not be calculated.

maths exp="mod(XA,32)+mod(XB,64)" out=outfile like=comwest

The expression "mod(XA,32)+mod(XB,64)" is evaluated, and output is written to
the NDF structure outfile. The output NDF inherits the shape, bounds, and other
properties (except the variance) of the NDF called comwest. The data type of outfile is
_REAL unless comwest has type _DOUBLE. XA and XB represent the pixel co-ordinates
along the x and y axes respectively.

maths "xf∗xf+0∗xa" ord2 lbound=[-20,10] ubound=[20,50]

The expression "xf∗xf+0∗xa" is evaluated, and output is written to the NDF
structure ord2. The output NDF has data type _REAL, is two-dimensional with bounds
−20:20, 10:50. The XA is needed to indicate that XF represents pixel co-ordinates along the
y axis.

maths "xa/max(1,xb)+sqrt(va)" ord2 va=fuzz title="Fuzz correction"

The expression "xa/max(1,xb)+sqrt(va)" is evaluated, and output is written to
the NDF structure ord2. Token VA represents the input variance array held in the NDF
structure fuzz. The output NDF inherits the shape, bounds, and other properties of fuzz.
The title of ord2 is "Fuzz correction". The data type of ord2 is _REAL unless fuzz
has type _DOUBLE. XA and XB represent the pixel co-ordinates along the x and y axes
respectively.

Notes:

• The alphabetically first input NDF is regarded as the primary input dataset. NDF
components whose values are not changed by this application will be propagated
from this NDF to the output. The same propagation rules apply to the LIKE template
NDF, except that the output NDF does have inherit any variance information.

• There are additional tokens which can appear in the expression.
The set of seven tokens named CA, CB, . . . CG is used to obtain the data co-ordinates
from the primary input NDF data structure. Any of the seven parameters may
appear in the expression. The order defines which axis is which, so for example,

483 MATHS SUN/95.45 —Specifications of KAPPA applications

"2∗CF+CB∗CB" means the first-axis data co-ordinates squared, plus twice the co-
ordinates along the second axis. There must be at least one input NDF in the expres-
sion to use the CA-CG tokens, and it must have dimensionality of at least the number
of CA-CG tokens given.
The set of seven tokens named XA, XB, . . . XG is used to obtain the pixel co-ordinates
from the primary input NDF data structure. Any of the seven parameters may
appear in the expression. The order defines which axis is which, so for example,
"SQRT(XE)+XC" means the first-axis pixel co-ordinates plus the square root of the
co-ordinates along the second axis. Here no input NDF need be supplied. In this case
the dimensionality of the output NDF is equal to the number of XA-XG tokens in
the expression. However, if there is at least one NDF in the expression, there should
not be more XA-XG tokens than the dimensionality of the output NDF (given as the
intersection of the bounds of the input NDFs).

• If illegal arithmetic operations (e.g. division by zero, or square root of a negative
number) are attempted, then a bad pixel will be generated as a result. (However, the
infrastructure software that detects this currently does not work on OSF/1 systems,
and therefore MATHS will crash in this circumstance.)

• All arithmetic performed by this application is floating point. Single-precision will
normally be used, but double-precision will be employed if any of the input NDF
arrays has a numeric type of _DOUBLE.

Calculating Variance :

The algorithm used to calculate output variance values is general-purpose and will give
correct results for any reasonably well-behaved mathematical expression. However, this
application as a whole, and the variance calculations in particular, are likely to be less
efficient than a more specialised application written knowing the form of the mathematical
expression in advance. For simple operations (addition, subtraction, etc.) the use of
other applications (ADD, SUB, etc.) is therefore recommended, particularly if variance
calculations are required.

The main value of the variance-estimation algorithm used here arises when the expression
to be evaluated is too complicated, or too infrequently used, to justify the work of deriving
a direct formula for the variance. It is also of value when the data errors are especially
large, so that the linear approximation normally used in error analysis breaks down.

There is no variance processing when there are no tokens for input NDF structures.

Timing :

If variance calculations are not being performed, then the time taken is approximately
proportional to the number of NDF pixels being processed. The execution time also
increases with the complexity of the expression being evaluated, depending in the usual
way on the nature of any arithmetic operations and intrinsic functions used. If certain
parts of the expression will often give rise to illegal operations (resulting in bad pixels),
then execution time may be minimised by placing these operations near the beginning of
the expression, so that later parts may not need to be evaluated.

If output variance values are being calculated and the QUICK parameter is set to TRUE,
then the execution time will be multiplied by an approximate factor (N+1), where n is the
number of input NDFs which contain a VARIANCE component. If QUICK is set to FALSE,
then the execution time will be multiplied by an approximate factor (2N+1).

SUN/95.45 —Specifications of KAPPA applications 484 MATHS

Related Applications :

KAPPA: CREFRAME, SETAXIS, and numerous arithmetic tasks; FIGARO: numerous
arithmetic tasks.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDFs. HISTORY and
extensions are propagated from both the primary NDF and template NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• NDFs with any number of dimensions can be processed. The NDFs supplied as input
need not all be the same shape.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_

485 MEDIAN SUN/95.45 —Specifications of KAPPA applications

MEDIAN
Smooths a two-dimensional data array using a weighted median filter

Description:
This task filters the two-dimensional data array in the input NDF structure with a Weighted
Median Filter (WMF) in a 3-by-3-pixel kernel to create a new NDF. There are a number of
predefined weighting functions and parameters that permit other symmetric weighting
functions. See Parameter MODE and the topic “User-defined Weighting Functions”.

A threshold for replacement of a value by the median can be set. If the absolute value
of the difference between the actual value and the median is less than the threshold, the
replacement will not occur. The array boundary is dealt by either pixel replication or a
reflection about the edge pixels of the array.

The WMF can be repeated iteratively a specified number of times, or it can be left to iterate
continuously until convergence is achieved and no further changes are made to the data.
In the latter case a damping algorithm is used if the number of iterations exceeds some
critical value, which prevents the result oscillating between two solutions (which can
sometimes happen). When damping is switched on data values are replaced not by the
median value, but by a value midway between the original and the median.

Bad pixels are not included in the calculation of the median. There is a defined threshold
which specifies minimum-allowable median position as a fraction of the median position
when there are no bad pixels. For neighbourhoods with too many bad pixels, and so the
median position is too small, the resulting output pixel is bad.

Usage:
median in out [mode] [diff] [bound] [numit] [corner] [side] [centre]

Parameters:
BOUND = LITERAL (Read)

Determines the type of padding required at the array edges before the filtering starts.
The alternatives are described below.
"Replication" — The values at the edge of the data array are replicated into the

padded area. For example, with STEP=2 one corner of the original and padded
arrays would appear as follows:

corner of original
array:

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

corresponding
corner of padded
array:

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 2 2 2 2

1 1 1 2 3 3 3

1 1 1 2 3 4 4

1 1 1 2 3 4 5

SUN/95.45 —Specifications of KAPPA applications 486 MEDIAN

"Reflection" — The values near the edge of the data array are reflected about the
array’s edge pixels. For example, with STEP=2 one corner of the original and
padded arrays would appear as follows:

corner of original
array:

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

corresponding
corner of padded
array:

3 2 1 2 3 3 3

2 2 1 2 2 2 2

1 1 1 1 1 1 1

2 2 1 2 2 2 2

3 2 1 2 3 3 3

3 2 1 2 3 4 4

3 2 1 2 3 4 5

["Replication"]

CENTRE = _INTEGER (Read)
Central value for weighting function, required if MODE = −1. It must be an odd
value in the range 1 to 21. [1]

CORNER = _INTEGER (Read)
Corner value for weighting function, required if MODE = −1. It must be in the range
0 to 10. [1]

DIFF = _DOUBLE (Read)
Replacement of a value by the median occurs if the absolute difference of the value
and the median is greater than DIFF. [0.0]

IN = NDF (Read)
NDF structure containing the two-dimensional data array to be filtered.

ITERATE = LITERAL (Read)
Determines the type of iteration used. The alternatives are described below.

"Specified" — You specify the number of iterations at each step size in the Param-
eter NUMIT.

"Continuous" — The filter iterates continuously until convergence is achieved and
the array is no longer changed by the filter. A damping algorithm comes into
play after MAXIT iterations, and the filter will give up altogether after MAXIT ×
1.5 iterations (rounded up to the next highest integer).

"Continuous" mode is recommended only for images which are substantially smooth
to start with (such as a sky background frame from a measuring machine). Complex
images may take many iterations, and a great deal of time, to converge. ["Specified"]

MAXIT = _INTEGER (Read)
The maximum number of iterations of the filter before the damping algorithm comes
into play, when ITERATE = "Continuous". It must lie in the range 1 to 30. [10]

MEDTHR = _REAL (Read)
Minimum-allowable actual median position as a fraction of the median position when
there are no bad pixels, for the computation of the median at a given pixel. [0.8]

MODE = _INTEGER (Read)
Determines type of weighting used, −1 allows you to define the weighting, and 0 to 7
the predefined filters. The predefined modes have the following weighting functions:

487 MEDIAN SUN/95.45 —Specifications of KAPPA applications

0 : 1 1 1 1 : 0 1 0 2 : 1 0 1 3 : 1 1 1

1 1 1 1 1 1 0 1 0 1 3 1

1 1 1 0 1 0 1 0 1 1 1 1

4 : 0 1 0 5 : 1 0 1 6 : 1 2 1 7 : 1 3 1

1 3 1 0 3 0 2 3 2 3 3 3

0 1 0 1 0 1 1 2 1 1 3 1

[0]

NUMIT = _INTEGER (Read)
The specified number of iterations of the filter, when ITERATE="Specified". [1]

OUT = NDF (Write)
NDF structure to contain the two-dimensional data array after filtering.

SIDE = _INTEGER (Read)
Side value for weighting function, required if MODE = −1. It must be in the range 0
to 10. [1]

STEP() = _INTEGER (Read)
The spacings between the median filter elements to be used. The data may be filtered
at one particular spacing by specifying a single value, such as STEP=4, or may be
filtered at a whole series of spacings in turn by specifying a list of values, such as
STEP=[4,3,2,1]. There is a limit of 32 values. [1]

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
median a100 a100med

This applies an equally weighted median filter to the NDF called a100 and writes the
result to the NDF a100med. It uses the default settings, which are a single step size of one
pixel, and a difference threshold of 0.0. The task pads the array by replication to deals
with the edge pixels, and runs the filter once only.

median a100 a100med bound=ref

As in the previous example except that it uses reflection rather than replication
when padding the array.

median abc sabc mode=3 step=4 diff=1.0 numit=2

SUN/95.45 —Specifications of KAPPA applications 488 MEDIAN

This applies a median filter to the NDF called abc with a

1 1 1

1 3 1

1 1 1

weighting

mask (MODE=3), a step size of 4 pixels (STEP=4) and a difference threshold of 1.0
(DIFF=1.0). It runs the filter twice (NUMIT=2) and writes the result to the NDF called
sabc.

median abc sabc mode=3 step=[4,3,2,1] diff=1.0 numit=2

This applies a median filter as in the previous example, only this time run the
filter at step sizes of 4, 3, 2, and 1 pixels, in that order (STEP=[4,3,2,1]). It runs the filter
twice at each step size (NUMIT=2). Note that the filter will be run a total of eight times
(number of step sizes times the number of iterations).

median in=spotty step=[4,3,2,1] iterate=cont maxit=6 out=clean

This applies a median filter to the NDF called spotty with the default settings
for the mode and difference threshold. It runs the filter at step sizes of 4, 3, 2 and 1 pixels,
operating continuously at each step size until the result converges (ITERATE=CONT).
Damping will begin after 6 iterations (MAXIT=6), and the filtering will stop regardless
after 10 iterations (1 + INT(1.5 ∗MAXIT)). Note that the filter will run an indeterminate
number of times, up to a maximum of 40 (number of step sizes ×maximum number of
iterations), and may take a long time. The resultant data array are written to the NDF
called clean.

User-defined Weighting Functions :

Parameters CORNER, SIDE, and CENTRE allow other symmetric functions in addition to
those offered by MODE=0 to 7. A step size has to be specified too; this determines the
spacing of the elements of the weighting function. The data can be filtered at one step size
only, or using a whole series of step sizes in sequence. The weighting function has the
form:

%CORNER . %SIDE . %CORNER

. . .

%SIDE . %CENTRE . %SIDE

. . .

%CORNER . %SIDE . %CORNER

The . Indicates that the weights are separated by the stepsize-minus-one zeros.

Related Applications :

KAPPA: BLOCK, CONVOLVE, FFCLEAN, GAUSMOOTH; ESP: FASTMED; FIGARO:
ICONV3, ISMOOTH, IXSMOOTH, MEDFILT.

Implementation Status:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun180.htx/sun180.html?xref_FASTMED
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IXSMOOTH
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MEDFILT

489 MEDIAN SUN/95.45 —Specifications of KAPPA applications

• This routine correctly processes the AXIS, DATA, LABEL, TITLE, UNITS, WCS, and
HISTORY components of an NDF data structure and propagates all extensions. VARI-
ANCE is not used to weight the median filter and is not propagated. QUALITY is
also lost.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

SUN/95.45 —Specifications of KAPPA applications 490 MEM2D

MEM2D
Performs a Maximum-Entropy deconvolution of a two-dimensional

NDF

Description:
MEM2D is based on the Gull and Skilling Maximum Entropy package MEMSYS3. It takes an
image and a Point-Spread Function as input and produces an equal-sized image as output
with higher resolution. Facilities are provided to ‘analyse’ the resulting deconvolved
image, i.e. to calculate an integrated flux in some area of the deconvolved image and
also an estimate of the uncertainty in the integrated flux. This allows the significance of
structure visible in the deconvolution to be checked.

For a detailed description of the algorithm, and further references, see the MEMSYS users
manual, and SUN/117.

Usage:

mem2d in out mask=?

 fwhmpsf=?

psf=?
psftype

Parameters:

ANALYSE = _LOGICAL (Read)
ANALYSE should be given a TRUE value if an analysis of a previously generated
deconvolution is to be performed, instead of a whole new deconvolution being
started. An analysis returns the integrated flux in some area of the deconvolved
image you specify, together with the standard deviation on the integrated flux value.
The area to be integrated over is specified by an image associated with Parameter
MASK. This facility can, for instance, be used to assess the significance of structure
seen in the deconvolution. An analysis can only be performed if the input NDF (see
Parameter IN) contains a MEM2D extension (see Parameter EXTEND). If the input
does contain such an extension, and if the extension shows that the deconvolution
was completed, then ANALYSE is defaulted to TRUE, otherwise it is defaulted to
FALSE. []

DEF = _REAL (Read)
This is the value to which the output image will default in areas for which there is no
valid data in the input. The ‘zero entropy’ image is defined to be a flat surface with
value given by Parameter DEF. Any deviation of the output image away from this
image will cause its entropy to become negative. Thus a maximum-entropy criterion
causes the output image to be as similar as possible to a flat surface with value DEF
(within the constraints of the data). DEF is defaulted to the mean data value in the
input image and must always be strictly positive. []

EXTEND = _LOGICAL (Read)
If EXTEND has a TRUE value, then the output NDF will contain an extension called
MEM2D which will contain all the information required to either restart or analyse

http://www.starlink.ac.uk/cgi-bin/htxserver/sun117.htx/sun117.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sin117.htx/sin117.html?xref_

491 MEM2D SUN/95.45 —Specifications of KAPPA applications

the deconvolution. Note, including this extension makes the output file much bigger
(by about a factor of seven). [TRUE]

FWHMICF = _REAL (Read)
This is the Full Width at Half Maximum (in pixels) of a Gaussian Intrinsic Correlation
Function (ICF) to be used in the deconvolution. The ICF can be used to encode
prior knowledge of pixel-to-pixel correlations in the output image. A value of 0
for FWHMICF causes no ICF to be used, and so no correlations are expected in the
output. Larger values encourage smoothness in the output on the scale of the ICF.
If a non-zero ICF is used, the image entropy which is maximised is not the output
image, but a ‘hidden’ image. This hidden image is the deconvolution of the output
image with the ICF, and is assumed to have no pixel-to-pixel correlations. [2]

FWHMPSF = _REAL (Read)
This is the Full Width at Half Maximum (in pixels) of a Gaussian Point Spread
Function (PSF). This PSF is used to deconvolve the input only if Parameter PSFTYPE
has the value "Gaussian".

ILEVEL = _INTEGER (Read)
ILEVEL controls the amount of information displayed as MEM2D runs. If set to 0
then no information is displayed. Larger values up to a maximum of 3, give larger
amounts of information. A value of 3 gives full MEMSYS3 diagnostics after each
iteration. [1]

IN = NDF (Read)
The input NDF . This can either contain an image to be deconvolved, or the output
from a previous run of MEM2D. The NDF is considered to be an output from MEM2D
if it contains an extension called MEM2D (see Parameter EXTEND). If such an exten-
sion is found, a check is made to see if the NDF contains a completed deconvolution
or a partial deconvolution. If the deconvolution is complete, the ANALYSE param-
eter is defaulted to TRUE, and unless you override this default, an analysis of the
deconvolution contained in the input NDF is performed. If the input deconvolution
is not complete, then the deconvolution process is restarted from where it left off. If
no MEM2D extension is found, then a new deconvolution is started from scratch.

MASK = NDF (Read)
An image to use as a mask to define the areas to be integrated when performing
an analysis (see Parameter ANALYSE). The integrated-flux value calculated by the
analysis is actually the total data sum in the product of the mask and the deconvolved
image. Mask pixel values can be positive or negative (or zero) and so, for instance,
masks can be arranged which subtract off a background brightness from a source
before returning the integrated source flux.

MODEL = NDF (Read)
An image to use as the default model for the reconstruction. If a null value is given,
then a constant value given by the Parameter DEF is used to define a flat default
model. The section of the given image which matches the bounds of the input image
is used. Any bad pixels in the image cause the corresponding pixels in the input
image to be ignored. Such pixels are set bad in the output. The model image should
contain no pixels with a value of zero or less. The default model is defined to have
zero entropy. The hidden image will tend to the default model in the absence of data.
It should be noted that this model applies to the ‘hidden’ image, not the actually

SUN/95.45 —Specifications of KAPPA applications 492 MEM2D

required reconstructed image. The reconstructed image is obtained from the hidden
image by blurring the hidden image with the ICF. [!]

MODELOUT = NDF (Write)
An image which can be used for the default model in a further run of MEM2D. Each
pixel value in the created image is a linear combination of the model value at the
corresponding pixel in the current reconstruction, and the hidden image pixel value.
Pixels for which the hidden image is well away from the current model, tend towards
the value of the hidden image; pixels for which the hidden image is close to the
current model tend towards the model. Running MEM2D several times, using the
new model created on the previous run as the model for the current run, can reduce
the ‘mottling’ often seen in MEM2D reconstructions. [!]

NITER = _INTEGER (Read)
The maximum number of maximum-entropy iterations to perform. MEM2D contin-
ues the deconvolution until either MEMSYS3 indicates that the termination criterion
(Ω = 1.0) has been reached, or the maximum number of iterations is reached. If a
deconvolution requires more iterations than was allowed by NITER, then you can
choose to continue the deconvolution by giving the prematurely terminated output
from MEM2D as the input to another run of MEM2D, specifying a larger value for
NITER. [50]

NOISE = LITERAL (Read)
NOISE defines the noise statistics within the input image. It can take the value
"Gaussian" or "Poisson". If Gaussian noise is selected, the data variances are set
initially to the values stored in the VARIANCE component of the input NDF. If no
such component exists, then the data variances are set to a constant value equal to
the RMS difference between adjacent pixels in the x direction. MEMSYS3 scales these
initial noise estimates to maximise the data ‘evidence’. The evidence is displayed as
"LOG(PROB)" and the noise scaling factor as "SIGMA", if Parameter ILEVEL is set to
2 or more. If Poisson statistics are selected the uncertainty in each data value is, as
usual, of the order of the square root of the data value. When using Poisson statistics,
there is no equivalent to the noise scaling performed when using Gaussian statistics.
Any input VARIANCE component is ignored. ["Gaussian"]

OUT = NDF (Write)
The output image in a ‘primitive’ NDF. The output is the same size as the input. Any
pixels which were flagged as bad in the input will also be bad in the output. If Pa-
rameter EXTEND is TRUE, then the output NDF contains an extension called MEM2D
containing information which allows the deconvolution to be either continued or
analysed. There is no VARIANCE component in the output, but any QUALITY values
are propagated from the input to the output. If Parameter UPDATE is TRUE, then the
output NDF is created after the first iteration and is updated after each subsequent
iteration.

PSF = NDF (Read)
An NDF holding an estimate of the Point Spread Function (PSF) of the input image.
This PSF is used to deconvolve the input only if Parameter PSFTYPE has the value
"NDF". The PSF can be centred anywhere within the image, the location of the centre is
specified using Parameters XCENTRE and YCENTRE. The extent of the PSF actually
used is controlled by Parameter THRESH.

493 MEM2D SUN/95.45 —Specifications of KAPPA applications

PSFTYPE = LITERAL (Read)
PSFTYPE determines if the Point Spread Function used in the deconvolution is to be
Gaussian (if PSFTYPE="Gaussian"), or is to be defined by an image you supply (if
PSFTYPE="NDF"). ["NDF"]

RATE = _REAL (Read)
This is the value to use for the MEMSYS3 RATE parameter. It determines the rate
at which the convergence is allowed to proceed. If RATE is high, each maximum-
entropy iteration is allowed to make a big change to the current reconstruction. This
can cause numeric problems within MEMSYS3 resulting in MEM2D crashing with a
"floating overflow" error. If this happens, try reducing RATE. Useful values will
normally be of the order of unity, and must lie in the interval 0.0001 to 100. [0.5]

THRESH = _REAL (Read)
The fraction of the PSF peak amplitude at which the extents of the NDF PSF are
determined. It must be positive and less than 0.5. This parameter is only used
when PSFTYPE="NDF". An error will result if the input PSF is truncated above this
threshold. [0.0625]

TITLE = LITERAL (Read)
A title for the output NDF. A null (!) value means using the title of the input NDF.
[!]

UPDATE = _LOGICAL (Read)
If UPDATE is given a TRUE value, then the output NDF will be created after the first
iteration, and will then be updated after each subsequent iteration. This means that
the current reconstruction can be examined without aborting the application. Also, if
Parameter EXTEND is TRUE, then if the job aborts for any reason, it can be restarted
from the last completed iteration (see Parameter IN). [TRUE]

XCENTRE = _INTEGER (Read)
The x pixel index of the centre of the PSF within the supplied PSF image. This is only
required if PSFTYPE is "NDF". XCENTRE is defaulted to the middle pixel (rounded
down if there are an even number of pixels per line). []

YCENTRE = _INTEGER (Read)
The y pixel index (line number) of the centre of the PSF within the supplied PSF
image. This is only required if PSFTYPE is "NDF". YCENTRE is defaulted to the
middle line (rounded down if there are an even number of lines). []

Results Parameters:

DSUM = _REAL (Write)
The standard deviation of the integrated-flux value calculated if an analysis is performed
(see Parameter ANALYSE).

SUM = _REAL (Write)
The integrated-flux value calculated if an analysis is performed (see Parameter ANAL-
YSE).

Examples:
mem2d m51 m51_hires psftype=gaussian fwhmpsf=3

SUN/95.45 —Specifications of KAPPA applications 494 MEM2D

This example deconvolves the data array in the NDF called m51, putting the re-
sulting image in the data array of the NDF called m51_hires. A circular Gaussian
Point-Spread Function is used with a Full Width at Half Maximum of 3 pixels.

mem2d m51 m51_hires psf=star xcentre=20 ycentre=20

This example performs the same function as the previous example, but the PSF
is defined by the data array of the NDF called star, instead of being defined to be Gaussian.
This allows the PSF to be any arbitrary two-dimensional function. NDF star could be
produced for example, by the KAPPAapplication called PSF. Parameters XCENTRE and
YCENTRE give the pixel indices of the centre of the beam defined by the PSF in star. The
PSF is truncated to one sixteenth of its peak amplitude.

mem2d m51_hires m51_hires niter=70 psf=star

If the previous example failed to converge within the default 50 iterations, the
deconvolution can be started again from its current state, rather than having to start again
from scratch. Here NITER gives the upper limit on the total number of iterations which
can be performed (including those performed in the previous run of MEM2D), not just
the number performed in this single run of MEM2D. This facility can also be used if a
MEM2D run is interrupted for any reason, such as the host computer going down, or a
batch-queue CPU limit being reached. To use this facility the Parameters EXTEND and
UPDATE should have the default values of TRUE.

mem2d m51_hires mask=nucleus

Once a deconvolved image has been produced, the significance of features seen
in the deconvolution can be assessed. This example takes in the NDF m51_hires produced
by a previous run of MEM2D. If this is a completed deconvolution then the Parameter
ANALYSE will be defaulted to TRUE, and an analysis will be performed. This effectively
results in the deconvolution being multiplied by the data array of the NDF called
nucleus, and the total data sum in the resulting image being displayed, together with the
standard deviation on the total data sum. The image in m51_hires is the most probable
deconvolution, but there may be other deconvolutions only slightly less probable than
m51_hires. The standard deviation produced by an analysis takes account of the spread
between such deconvolutions. If the total data sum is not significantly greater than the
standard deviation, then the feature selected by the mask image (called nucleus in this
case) may well be spurious. The mask image itself may for instance consist of an area of
uniform value +1 covering some feature of interest, and the bad value (or equivalently
the value zero) everywhere else. The analysis would then give the integrated flux in the
feature, assuming that the background is known to be zero. If the background is not zero,
then the mask may contain a background region containing the value −1, of equal area to
the region containing the value +1. The resulting integrated flux would then be the total
flux in the source minus the flux in a background region of equal area.

Notes:

495 MEM2D SUN/95.45 —Specifications of KAPPA applications

• MEM2D requires a large quantity of memory—almost as much as the rest of KAPPA.
In order for the KAPPA monolith to load without you having to increase your memory
or datasize resources, and because MEM2D is batch oriented (see Timing) it is only
available as a separate application.

• Memory is required to store several intermediate images while the deconvolution is
in progress. If the input image is small enough, these images are stored in a statically
declared, internal array. Otherwise, they are stored in dynamically mapped external
arrays. There is no limit on the size of image which can be processed by MEM2D
(other than those imposed by limited resources on the host computer).

• It is sometimes desirable for the pixels in the output image to be smaller than those
in the input image. For instance, if the input data are critically sampled (two samples
per PSF), the output image may not be a very good deconvolution. In such cases
sub-dividing the output pixels would give better results. At the moment MEM2D
cannot do this. Be warned that sub-dividing the input pixels and then running the
current version of MEM2D will not have the same effect, since the noise in the input
image will then have pixel-to-pixel correlations, and be interpreted as real structure.

Timing :

MEM deconvolution is extremely CPU intensive. The total CPU time taken depends partly
on the size of the image, and partly on the complexity of the structure within the image.
As a typical example, a 100×100 image containing 20 Gaussians on a flat background took
about 34 minutes of elapsed time on an unloaded DEC Alpha 2000. Deconvolution jobs
should therefore always be done in batch. To perform an analysis on a deconvolution
takes about the same length of time as a single deconvolution iteration.

Related Applications :

KAPPA: FOURIER, LUCY, WIENER.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported, though only
to remove them by the DEF value.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point.

SUN/95.45 —Specifications of KAPPA applications 496 MFITTREND

MFITTREND
Fits independent trends to data lines that are parallel to an axis

Description:
This routine fits trends to all lines of data in an NDF that lie parallel to a chosen axis. The
trends are characterised by polynomials of order up to 15, or by cubic splines. The fits
can be restricted to use data that only lies within a series of co-ordinate ranges along the
selected axis.

The ranges may be determined automatically. There is a choice of tunable approaches to
mask regions to be excluded from the fitting to cater for a variety of data sets. The actual
ranges used are reported in the current co-ordinate Frame and pixels, provided they apply
to all lines being fitted.

Once the trends have been determined they can either be stored directly or subtracted
from the input data. If stored directly they can be subtracted later. The advantage of that
approach is the subtraction can be undone, but at some cost in efficiency.

Fits may be rejected if their root-mean squared (rms) residuals are more than a specified
number of standard deviations from the the mean rms residuals of the fits. Rejected fits
appear as bad pixels in the output data.

Fitting independent trends can be useful when you need to remove the continuum from
a spectral cube, where each spectrum is independent of the others (that is you need an
independent continuum determination for each position on the sky). It can also be used to
de-trend individual spectra and perform functions like debiassing a CCD which has bias
strips.

Usage:

mfittrend in axis ranges out

 order

knots=?
fittype

Parameters:
AUTO = _LOGICAL (Read)

If TRUE, the ranges that define the trends are determined automatically, and Parameter
RANGES is ignored. [FALSE]

AXIS = LITERAL (Read)
The axis of the current co-ordinate system that defines the direction of the trends.
This is specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to
the number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

497 MFITTREND SUN/95.45 —Specifications of KAPPA applications

A list of acceptable values is displayed if an illegal value is supplied. If the axes of
the current Frame are not parallel to the NDF pixel axes, then the pixel axis which is
most nearly parallel to the specified current Frame axis will be used. AXIS defaults to
the last axis. [!]

CLIP() = _REAL (Read)
Array of standard-deviation limits for progressive clipping of outlying binned (see
NUMBIN) pixel values while determining the fitting ranges automatically. It is
therefore only applicable when AUTO=TRUE. Its purpose is to exclude features that
are not part of the trends.
Pixels are rejected at the ith clipping cycle if they lie beyond plus or minus CLIP(i)
times the dispersion about the median of the remaining good pixels. Thus lower
values of CLIP will reject more pixels. The normal approach is to start low and
progressivley increase the clipping factors, as the dispersion decreases after the
exclusion of features. The source of the dispersion depends on the value the METHOD
parameter. Between one and five values may be supplied. Supplying the null value
(!), results in 2, 2.5, and 3 clipping factors. [2,2,2.5,3]

FITTYPE = LITERAL (Read)
The type of fit. It must be either "Polynomial" for a polynomial or "Spline" for a
bi-cubic B-spline. ["Polynomial"]

FOREST = _LOGICAL (Read)
Set this TRUE if the data may contain spectral data with many lines—a line forest—
when using the automatic range mode (AUTO=TRUE). A different approach using
the histogram determines the baseline mode and noise better in the presence of
multiple lines. This leads to improved masking of the spectral lines and affords a
better determination of the baseline. In a lineforest the ratio of baseline to line regions
is much reduced and hence normal sigma clipping, when FOREST=FALSE, is biased.
[FALSE]

KNOTS = _INTEGER (Read)
The number of interior knots used for the cubic-spline fit along the trend axis. In-
creasing this parameter value increases the flexibility of the surface. KNOTS is only
accessed when FITTYPE="Spline". See INTERPOL for how the knots are arranged.
The default is the current value.
For INTERPOL=TRUE, the value must be in the range 1 to 11, and 4 is a reasonable
value for flatish trends. The initial default is 4.
For INTERPOL=FALSE the allowed range is 1 to 60 with an initial default of 8. In this
mode, KNOTS is the maximum number of interior knots.
The upper limit of acceptable values for a trend axis is no more than half of the axis
dimension. []

IN = NDF (Read & Write)
The input NDF. On successful completion this may have the trends subtracted, but
only if SUBTRACT and MODIFYIN are both set TRUE.

INTERPOL = _LOGICAL (Read)
The type of spline fit to use when FITTYPE="Spline".
If set TRUE, an interpolating spline is fitted by least squares that ensures the fit is exact
at the knots. Therefore the knot locations may be set by the POSKNOT parameter.

SUN/95.45 —Specifications of KAPPA applications 498 MFITTREND

If set FALSE, a smoothing spline is fitted. A smoothing factor controls the degree of
smoothing. The factor is determined iteratively between limits, hence it is the slower
option of the two, but generally gives better fits, especially for curvy trends. The
location of of the knots is decided automatically by Dierckx’s algorithm, governed
where they are most needed. Knots are added when the weighted sum of the squared
residuals exceeds the smoothing factor. A final fit is made with the chosen smoothing,
but finding the knots afresh.
The few iterations commence from the upper limit and progress more slowly at each
iteration towards the lower limit. The iterations continue until the residuals stabilise
or the maximum number of interior knots is reached or the lower limit is reached. The
upper limit is the weighted sum of the squares of the residuals of the least-squares
cubic polynomial fit. The lower limit is the estimation of the overall noise obtained
from a clipped mean the standard deviation in short segments that diminish bias
arising from the shape of the trend. The lower limit prevents too many knots being
created and fitting to the noise or fine features.
The iteration to a smooth fit makes a smoothing spline somewhat slower. [FALSE]

MASK = NDF (Write)
The name of the NDF to contain the feature mask. It is only accessed for automatic
mode and METHOD="Single" or "Global". It has the same bounds as the input
NDF and the data array is type _BYTE. No mask NDF is created if null (!) is supplied.
[!]

METHOD = LITERAL (Given)
The method used to define the masked regions in automatic mode. Allowed values
are as follows.

• "Region" — This averages trend lines from a selected representative region given
by Parameter SECTION and bins neighbouring elements within this average
line. Then it performs a linear fit upon the binned line, and rejects the outliers,
iteratively with standard-deviation clipping (Parameter CLIP). The standard
deviation is that of the average line within the region. The ranges are the intervals
between the rejected points, rescaled to the original pixels. They are returned in
Parameter ARANGES.
This is best suited to a low dispersion along the trend axis and a single concen-
trated region containing the bulk of the signal to be excluded from the trend
fitting.
• "Single" — This is like "Region" except there is neither averaging of lines nor a

single set of ranges. Each line is masked independently. The dispersion for the
clipping of outliers within a line is the standard deviation within that line.
This is more appropriate when the features being masked vary widely across
the image, and significantly between adjacent lines. Some prior smoothing or
background tracing (CUPID: FINDBACK) will usually prove beneficial.
• "Global" — This is a variant of "Single". The only difference is that the disper-

sion used to reject features using the standard deviation of the whole data array.
This is more robust than "Single", however it does not perform rejections well
for lines with anomalous noise.

["Single"]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun255.htx/sun255.html?xref_FINDBACK

499 MFITTREND SUN/95.45 —Specifications of KAPPA applications

MODIFYIN = _LOGICAL (Read)
Whether or not to subtract the trends from the input NDF. It is only used when
SUBTRACT is TRUE. If MODIFYIN is FALSE, then an NDF name must be supplied by
the OUT parameter. [FALSE]

NUMBIN = _INTEGER (Read)
The number of bins in which to compress the trend line for the automatic range-
determination mode. A single line or even the average over a region will often be
noisy; this compression creates a better signal-to-noise ratio from which to detect
features to be excluded from the trend fitting. If NUMBIN is made too large, weaker
features will be lost or stronger features will be enlarged and background elements
excluded from the fitting. The minimum value is 16, and the maximum is such that
there will be a factor of two compression. NUMBIN is ignored when there are fewer
than 32 elements in each line to be de-trended. [32]

ORDER = _INTEGER (Read)
The order of the polynomials to be used when trend fitting. A polynomial of order 0
is a constant and 1 a line, 2 a quadratic etc. The maximum value is 15. ORDER is only
accessed when FITTYPE="Polynomial". [3]

OUT = NDF (Read)
The output NDF containing either the difference between the input NDF and the
various trends, or the values of the trends themselves. This will not be used if
SUBTRACT and MODIFYIN are TRUE (in that case the input NDF will be modified).

POSKNOT() = LITERAL (Read)
The co-ordinates of the interior knots for all trends. KNOTS values should be supplied,
or just the null (!) value to request equally spaced knots. The units of these co-
ordinates is determined by the axis of the current world co-ordinate system of the
input NDF that corresponds to the trend axis. Supplying a colon ":" will display
details of the current co-ordinate Frame. [!]

PROPBAD = _LOGICAL (Read)
Only used if SUBTRACT is FALSE. If PROPBAD is TRUE, the returned fitted values
are set bad if the corresponding input value is bad. If PROPBAD is FALSE, the fitted
values are retained. [TRUE]

RANGES() = LITERAL (Read)
Pairs of co-ordinates that define ranges along the trend axis. When given these ranges
are used to select the values that are used in the fits. The null value (!), causes all the
values along each data line to be used. The units of these ranges is determined by the
axis of the current world co-ordinate system of the input NDF that corresponds to
the trend axis. Supplying a colon ":" will display details of the current co-ordinate
Frame. Up to ten pairs of values are allowed. This parameter is not accessed when
AUTO=TRUE. [!]

RMSCLIP = _REAL (Read)
The number of standard deviations exceeding the mean of the root-mean-squared
residuals of the fits at which a fit is rejected. A null value (!) means perform no
rejections. Allowed values are between 2 and 15. [!]

SECTION = LITERAL (Read)
The region from which representative lines are averaged in automatic mode to de-
termine the regions to fit trends. It is therefore only accessed when AUTO=TRUE,

SUN/95.45 —Specifications of KAPPA applications 500 MFITTREND

METHOD= "Region", and the dimensionality of the input NDF is more than 1. The
value is defined as an NDF section, so that ranges can be defined along any axis, and
be given as pixel indices or axis (data) co-ordinates. The pixel axis corresponding to
Parameter AXIS is ignored. So for example, if the pixel axis were three in a cube, the
value "3:5,4," would average all the lines in elements in Columns 3 to 5 and Row 4.
See Section 9 for details.
A null value (!) requests that a representative region around the centre be used. [!]

SUBTRACT = _LOGICAL (Read)
Whether not to subtract the trends from the input NDF or not. If not, then the trends
will be evaluated and written to a new NDF (see also Parameter PROPBAD). [FALSE]

TITLE = LITERAL (Read)
Value for the title of the output NDF. A null value will cause the title of the NDF
supplied for Parameter IN to be used instead. [!]

VARIANCE = _LOGICAL (Read)
If TRUE and the input NDF contains variances, then the polynomial or spline fits will
be weighted by the variances.

Results Parameters:

ARANGES() = _INTEGER (Write)
This parameter is only written when AUTO=TRUE, recording the trend-axis fitting regions
determined automatically. They comprise pairs of pixel co-ordinates.

Examples:
mfittrend in=cube axis=3 ranges="1000,2000,3000,4000" order=4 out=detrend

This example fits cubic polynomials to the spectral axis of a data cube. The fits
only use the data lying within the ranges 1000 to 2000 and 3000 to 4000 Ångstroms
(assuming the spectral axis is calibrated in Ångstroms and that is the current co-ordinate
system). The fit is evaluated and written to the data cube called detrend.

mfittrend in=cube axis=3 auto clip=[2,3] order=4 out=detrend

As above except the fitting ranges are determined automatically with 2- then
3-sigma clipping.

mfittrend in=cube axis=3 auto clip=[2,3] fittype=spline out=detrend
interpol

As the previous example except that interpolation cubic-spline fits with four
equally spaced interior knots are used to characterise the trends.

mfittrend m51 3 out=m51_bsl mask=m51_msk auto fittype=spl

This example fits to trends along the third axis of NDF m51 and writes the eval-
uated fits to NDF m51_bsl. The fits use a smoothing cubic spline with the placement and
number of interior knots determined automatically. Features are determined automatically,
and a mask of excluded features is written to NDF m51_msk.

501 MFITTREND SUN/95.45 —Specifications of KAPPA applications

mfittrend cube axis=3 auto method=single order=1 subtract out=cube_dt
mask=cube_mask

This fits linear trends to the spectral axis of a data cube called cube, masking
spectral features along each line independently. The mask pixels are recorded in NDF
cube_mask. The fitted trend are subtracted and stored in NDF cube_dt.

Notes:

• This application attempts to solve the problem of fitting numerous polynomials in a
least-squares sense and that do not follow the natural ordering of the NDF data, in
the most CPU-time-efficient way possible.
To do this requires the use of additional memory (of order one fewer than the dimen-
sionality of the NDF itself, times the polynomial order squared). To minimise the use
of memory and get the fastest possible determinations you should not use weighting
and assert that the input data do not have any BAD values (use the application
SETBAD to set the appropriate flag).

• If you choose to use the automatic range determination. You may need to determine
empirically what are the best clipping limits, binning factor, and for METHOD="Region"
the region to average.

• You are advised to inspect the fits, especially the spline fits or high-order polynomials.
A given set of trends may require more than one pass through this task, if they exhibit
varied morphologies. Use masking or NDF sections to select different regions that
are fit with different parameters. The various trend maps are then integrated with
PASTE to form the final composite set of trends that you can subtract.

Related Applications :

FIGARO: FITCONT, FITPOLY; CCDPACK: DEBIAS; KAPPA: SETBAD.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Handles data of up to 7 dimensions.

• Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITCONT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITPOLY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_DEBIAS

SUN/95.45 —Specifications of KAPPA applications 502 MLINPLOT

MLINPLOT
Draws a multi-line plot of the data values in a two-dimensional NDF

Description:
This application plots a set of curves giving array value against position in a two-dimensional
NDF . All the curves are drawn within a single set of annotated axes. Each curve is dis-
placed vertically by a specified offset to minimise overlap between the curves. These
offsets may be chosen automatically or specified by the user (see Parameter SPACE).
The curves may be drawn in several different ways such as a "join-the-dots" plot, a
"staircase" plot, a "chain" plot (see Parameter MODE).

The data represented by each curve can be either a row or column (chosen using Parameter
ABSAXS) of any array component within the supplied NDF (see Parameter COMP).
Vertical error bars may be drawn if the NDF contains a VARIANCE component (see
Parameter ERRBAR). The vertical axis of the plot represents array value (or the logarithm
of the array value—see Parameter YLOG). The horizontal axis represents position, and
may be annotated using an axis selected from the Current Frame of the NDF (see Parameter
USEAXIS).

Each curve may be labelled using its pixel index or a label specified by the user (see
Parameters LINLAB and LABELS). The appearance of these labels (size, colour, fount,
horizontal position, etc.) can be controlled using Parameter STYLE. A key may be produced
to the left of the main plot listing the vertical offsets of the curves (see Parameter KEY).
The appearance of the key may be controlled using Parameter KEYSTYLE. Its position
may be controlled using Parameter KEYOFF. Markers indicating the zero point for each
curve may also be drawn within the main plot (see Parameter ZMARK).

The bounds of the plot on both axes can be specified using Parameters XLEFT, XRIGHT,
YBOT, and YTOP. If not specified they take default values which encompass the entire
supplied data set. The current picture is usually cleared before plotting the new picture,
but Parameter CLEAR can be used to prevent this, allowing several plots to be ‘stacked’
together. If a new plot is drawn over an existing plot, then the bounds of the new plot are
set automatically to the bounds of the existing plot (XLEFT, XRIGHT, YBOT, and YTOP
are then ignored).

Usage:
mlinplot ndf [comp] lnindx [mode] [xleft] [xright] [ybot] [ytop] [device]

Parameters:

ABSAXS = _INTEGER (Read)
This selects whether to plot rows or columns within the NDF. If ABSAXS is 1, each
curve will represent the array values within a single row of pixels within the NDF.
If it is 2, each curve will represent the array values within a single column of pixels
within the NDF. [1]

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. If a null (!)
value is supplied, FALSE is used if the plot is being aligned with an existing plot

503 MLINPLOT SUN/95.45 —Specifications of KAPPA applications

(see Parameter CLEAR), and TRUE is used otherwise. Parameters USEAXIS and
YLOG determine the quantities used to annotated the horizontal and vertical axes
respectively. The width of the margins left for the annotation may be controlled
using Parameter MARGIN. The appearance of the axes (colours, founts, etc.) can be
controlled using the Parameter STYLE. [!]

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also the previous plot is used to specify the axis
limits. [TRUE]

COMP = LITERAL (Read)
The NDF component to be plotted. It may be "Data", "Quality", "Variance", or
"Error" (where "Error" is an alternative to "Variance" and causes the square root
of the variance values to be displayed). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). ["Data"]

DEVICE = DEVICE (Read)
The plotting device. [current graphics device]

ERRBAR = _LOGICAL (Read)
TRUE if vertical error bars are to be drawn. This is only possible if the NDF contains
a VARIANCE component, and Parameter COMP is set to "Data". The length of
the error bars (in terms of standard deviations) is set by Parameter SIGMA. The
appearance of the error bars (width, colour, etc.) can be controlled using Parameter
STYLE. See also Parameter FREQ. [FALSE]

FREQ = _INTEGER (Read)
The frequency at which error bars are to be plotted. For instance, a value of 2 would
mean that alternate points have error bars plotted. This lets some plots be less
cluttered. FREQ must lie in the range 1 to half of the number of points to be plotted.
FREQ is only accessed when Parameter ERRBAR is TRUE. [1]

KEY = _LOGICAL (Read)
TRUE if a key giving the offset of each curve is to be produced. The appearance of this
key can be controlled using Parameter KEYSTYLE, and its position can be controlled
using Parameter KEYPOS. [TRUE]

KEYPOS() = _REAL (Read)
Two values giving the position of the key. The first value gives the gap between the
right-hand edge of the multiple-line plot and the left-hand edge of the key (0.0 for
no gap, 1.0 for the largest gap). The second value gives the vertical position of the
top of the key (1.0 for the highest position, 0.0 for the lowest). If the second value
is not given, the top of the key is placed level with the top of the multiple-line plot.
Both values should be in the range 0.0 to 1.0. If a key is produced, then the right hand
margin specified by Parameter MARGIN is ignored. [current value]

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which

SUN/95.45 —Specifications of KAPPA applications 504 MLINPLOT

they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The heading in the key can be changed by setting a value for the Title attribute (the
supplied heading is split into lines of no more than 17 characters). The appearance of
the heading is controlled by attributes Colour(Title), Font(Title), etc. The appearance
of the curve labels is controlled by attributes Colour(TextLab), Font(TextLab), etc.
(the synonym Labels can be used in place of TextLab). The appearance of the offset
values is controlled by attributes Colour(NumLab), Font(NumLab), etc. (the synonym
Offset can be used in place of NumLab). Offset values are formatted using attributes
Format(2), etc. (the synonym Offset can be used in place of the value 2). [current
value]

LABELS = LITERAL (Read)
A group of strings with which to label the plotted curves. A comma-separated list of
strings should be given, or the name of a text file preceded by an up-arrow character
"^". Such text files should contain further comma-separated lists which will be read
and interpreted in the same manner. The first string obtained is used as the label
for the first curve requested using Parameter LNINDX, the second string is used as
the label for the second curve, etc. If the number of supplied strings is less than the
number of curves requested using LNINDX, then extra default labels are used. These
are equal to the NDF pixel index of the row or column, preceded by a hash character
("#"). If a null (!) value is supplied for LABELS, then default labels are used for all
curves. [!]

LINLAB = _LOGICAL (Read)
If TRUE, the curves in the plot will be labelled using the labels specified by Parameter
LABELS. A single label is placed in-line with the curve. The horizontal position and
appearance of these labels can be controlled using Parameter STYLE. [TRUE]

LNINDX = LITERAL (Read)
Specifies the NDF pixel indices of the rows or columns to be displayed (see Parameter
ABSAXS). A maximum of 100 lines may be selected. It can take any of the following
values.

• "ALL" or "∗" — All lines (rows or columns).
• "xx,yy,zz" — A list of line indices.
• "xx:yy" — Line indices between xx and yy inclusively. When xx is omitted the

range begins from the lower bound of the line dimension; when yy is omitted the

505 MLINPLOT SUN/95.45 —Specifications of KAPPA applications

range ends with the maximum value it can take, that is the upper bound of the
line dimension or the maximum number of lines this routine can plot.
• Any reasonable combination of above values separated by commas.

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the multiple-line plot for axis annotation.
The widths should be given as fractions of the corresponding dimension of the current
picture. Four values may be given, in the order; bottom, right, top, left. If fewer
than four values are given, extra values are used equal to the first supplied value. If
these margins are too narrow any axis annotation may be clipped. See also Parameter
KEYPOS. [current value]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter MODE is set to "Chain" or "Mark". It
specifies the symbol with which each position should be marked, and should be
given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2
gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or
equal to −31. [current value]

MODE = LITERAL (Read)
Specifies the way in which each curve is drawn. MODE can take the following values.

• "Histogram" — An histogram of the points is plotted in the style of a ‘staircase’
(with vertical lines only joining the y values and not extending to the base of the
plot). The vertical lines are placed midway between adjacent x positions.
• "Line" — The points are joined by straight lines.
• "Point" — A dot is plotted at each point.
• "Mark" — Each point is marker with a symbol specified by Parameter MARKER.
• "Chain" — A combination of "Line" and "Mark".

[current value]

NDF = NDF (Read)
NDF structure containing the array to be plotted.

OFFSET() = _DOUBLE (Read)
This parameter is used to obtain the vertical offsets for the data curve when Parameter
SPACE is given the value "Free". The number of values supplied should equal the
number of curves being drawn.

PENS = GROUP (Read)
A group of strings, separated by semicolons, each of which specifies the appearance
of a pen to be used to draw a curve. The first string in the group describes the
pen to use for the first curve, the second string describes the pen for the second
curve, etc. If there are fewer strings than curves, then the supplied pens are cycled
through again, starting at the beginning. Each string should be a comma-separated
list of plotting attributes to be used when drawing the curve. For instance, the string
"width=0.02,colour=red,style=2" produces a thick, red, dashed curve. Attributes
which are unspecified in a string default to the values implied by Parameter STYLE.
I f a null value (!) is given for PENS, then the pen attributes implied by Parameter
STYLE are used. [!]

SUN/95.45 —Specifications of KAPPA applications 506 MLINPLOT

SIGMA = LITERAL (Read)
If vertical error bars are produced (see Parameter ERRBAR), then SIGMA gives the
number of standard deviations that the error bars are to represent. [current value]

SPACE = LITERAL (Read)
The value of this parameter specifies how the vertical offset for each data curve is
determined. It should be given one of the following values:

• "Average" — The offsets are chosen automatically so that the average data
values of the curves are evenly spaced between the upper and lower limits of the
plotting area. Any line- to-line striping is thus hidden and the amount of overlap
of adjacent traces is minimised.
• "Constant" — The offsets are chosen automatically so that the zero points of the

curves are evenly spaced between the upper and lower limits of the plotting area.
The width of any line- to-line strip is constant, which could result in the curves
becoming confused if the bias of a curve from its zero point is so large that it
overlaps another curve.
• "Free" — The offsets to use are obtained explicitly using Parameter OFFSET.
• "None" — No vertical offsets are used. All curves are displayed with the same

zero point.

The input can be abbreviated to an unambiguous length and is case insensitive.
["Average"]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes, data curves, error bars, zero markers, and curve labels.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the data curves is controlled by the attributes Colour(Curves),
Width(Curves), etc. (the synonym Lines may be used in place of Curves). The appearance
of markers used if Parameter MODE is set to "Point", "Mark" or "Chain" is controlled
by Colour(Markers), Width(Markers), etc. (the synonym Symbols may be used in place
of Markers). The appearance of the error bars is controlled using Colour(ErrBars),

507 MLINPLOT SUN/95.45 —Specifications of KAPPA applications

Width(ErrBars), etc. (see Parameter ERRBAR). The appearance of the zero-point
markers is controlled using Colour(ZeroMark), Size(ZeroMark), etc. The appearance
of the curve labels is controlled using Colour(Labels), Size(Labels), etc. LabPos(Left)
controls the horizontal position of the in-line curve label (see Parameter LINLAB), and
LabPos(Right) controls the horizontal position of the curve label associated with the
right-hand zero-point marker (see Parameter ZMARK). LabPos without any qualifier
is equivalent to LabPos(Left). LabPos values are floating point, with 0.0 meaning the
left edge of the plotting area, and 1.0 the right edge. Values outside the range 0 to 1
may be used. [current value]

USEAXIS = LITERAL (Read)
The quantity to be used to annotate the horizontal axis of the plot specified by using
one of the following options.

• An integer index of an axis within the current co-ordinate Frame of the input
NDF (in the range 1 to the number of axes in the current Frame).
• An axis Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

The quantity used to annotate the horizontal axis must have a defined value at all
points in the array, and must increase or decrease monotonically along the array. For
instance, if RA is used to annotate the horizontal axis, then an error will be reported
if the profile passes through RA=0 because it will introduce a non-monotonic jump in
axis value (from 0h to 24h, or 24h to 0h). If a null (!) value is supplied, the value of
Parameter ABSAXS is used. [!]

XLEFT = LITERAL (Read)
The axis value to place at the left-hand end of the horizontal axis. If a null (!) value
is supplied, the value used is the first element in the data being displayed. The
value supplied may be greater than or less than the value supplied for XRIGHT. A
formatted value for the quantity specified by Parameter USEAXIS should be supplied.
[!]

XRIGHT = LITERAL (Read)
The axis value to place at the right-hand end of the horizontal axis. If a null (!) value
is supplied, the value used is the last element in the data being displayed. The value
supplied may be greater than or less than the value supplied for XLEFT. A formatted
value for the quantity specified by Parameter USEAXIS should be supplied. [!]

YBOT = _DOUBLE (Read)
The data value to place at the bottom end of the vertical axis. If a null (!) value is
supplied, the value used is the lowest data value to be displayed, after addition of
the vertical offsets. The value supplied may be greater than or less than the value
supplied for YTOP. [!]

YLOG = _LOGICAL (Read)
TRUE if the value displayed on the vertical axis is to be the logarithm of the supplied
data values. If TRUE, then the values supplied for Parameters YTOP and YBOT should
be values for the logarithm of the data value, not the data value itself. [FALSE]

SUN/95.45 —Specifications of KAPPA applications 508 MLINPLOT

YTOP = _DOUBLE (Read)
The data value to place at the top end of the vertical axis. If a null (!) value is supplied,
the value used is the highest data value to be displayed, after addition of the vertical
offsets. The value supplied may be greater than or less than the value supplied for
YBOT. [!]

ZMARK = _LOGICAL (Read)
If TRUE, then a pair of short horizontal lines are drawn at the left and right edges of
the main plot for each curve. The vertical position of these lines corresponds to the
zero point for the corresponding curve. The right-hand marker is annotated with
the curve label (see Parameter LABELS). The appearance of these markers can be
controlled using the Parameter STYLE. [TRUE]

Examples:
mlinplot rcw3_b1 reset \

Plot the first five rows of the two-dimensional NDF file, rcw3_b1 on the current
graphics device. The lines are offset such that the averages of the rows are evenly
separated in the direction of the vertical axis.

mlinplot rcw3_b1 lnindx="1,3,5,7:10" \

Plot the rows 1, 3, 5, 7, 8, 9 and 10 of the two-dimensional NDF file, rcw3_b1,
on the current graphics device.

mlinplot rcw3_b1 lnindx=∗ \

Plot all rows of the two-dimensional NDF file, rcw3_b1, on the current graphics
device.

mlinplot rcw3_b1 lnindx=* style="colour(curve)=red+width(curve)=4"

As the previous example, but the rows are drawn in red at four times normal
thickness. The change of line coluor persists to the next invocation, but not the temporary
widening of the lines.

mlinplot rcw3_b1 lnindx=* style="+width(curve)=4"

As the previous example, but now the rows are drawn in the current line colour.

mlinplot rcw3_b1 absaxs=2 lnindx="20:25,30,31" \

Plot columns 20, 21, 22, 23, 24, 25, 30 and 31 of the two-dimensional NDF file,
rcw3_b1, on the current graphics device.

mlinplot rcw3_b1 style="Title=CRDD rcw3_b1" \

509 MLINPLOT SUN/95.45 —Specifications of KAPPA applications

Plot the currently selected rows of the two-dimensional NDF file, rcw3_b1, on
the current graphics device. The plot has a title of "CRDD rcw3_b1".

mlinplot rcw3_b1(100:500,) ybot=0.0 ytop=1.0E-3 \

Plot the currently selected rows of the two-dimensional NDF, rcw3_b1, between
column 100 and column 500. The vertical display range is from 0.0 to 1.0E-3.

mlinplot rcw3_b1 space=constant device=ps_p \

Plot the currently selected rows of the two-dimensional NDF file, rcw3_b1, on
the ps_p device. The base lines are evenly distributed over the range of the vertical axis.

mlinplot rcw3_b1 space=free offset=[0.,2.0E-4,4.0E-4,6.0E-4,0.1] \

Plot the currently selected rows of the two-dimensional NDF file, rcw3_b1. The
base lines are set at 0.0 for the first row, 2.0E-4 for the second, 4.0E-4 for the third, 6.0E-4
for the fourth, and 0.1 for the fifth.

Notes:

• If no Title is specified via the STYLE parameter, then the TITLE component in the
NDF is used as the default title for the annotated axes. Should the NDF not have
a TITLE component, then the default title is instead taken from current co-ordinate
Frame in the NDF, unless this attribute has not been set explicitly, whereupon the
name of the NDF is used as the default title.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, data plot, and optional key; a
KEY picture to store the key if present; and a DATA picture containing just the data
plot. Note, the FRAME picture is only created if annotated axes or a key has been
drawn, or if non-zero margins were specified using Parameter MARGIN.

Related Applications :

KAPPA: CLINPLOT, LINPLOT; FIGARO: ESPLOT, IPLOTS, MSPLOT, SPLOT, SPEC-
GRID; SPLAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, LABEL,
TITLE, WCS, and UNITS components of the NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Only double-precision floating-
point data can be processed directly. Other non-complex data types will undergo a
type conversion before the plot is drawn.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ESPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IPLOTS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_MSPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPLOT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_SPECGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun243.htx/sun243.html?xref_

SUN/95.45 —Specifications of KAPPA applications 510 MOCGEN

MOCGEN
Creates a Multi-Order Coverage map describing regions of an image

Description:
This application creates a Multi-Order Coverage (MOC) map describing selected regions of
the sky, using the scheme described in Version 1.1 of the MOC recommendation published
by the International Virtual Observatory Alliance (IVOA).

The regions of sky to be included in the MOC may be specified in several ways (see
Parameter MODE).

Usage:
mocgen in out mode

Parameters:

COMP = LITERAL (Read)
The NDF component to be used if Parameter MODE is "Good" or "Bad". It may be
"Data" or "Variance". ["Data"]

FORMAT = LITERAL (Read)
The format to use when generating the output MOC specified by Parameter OUT.

• "FITS" — The output MOC is stored as a binary-table extension in a FITS file,
using the conventions described in Version 1.1 of the IVOA’s MOC recommenda-
tion.
• "AST" — The output MOC is stored as a text file using native AST encoding.
• "String" — The output MOC is stored as a text file using the "string" encoding

described in Version 1.1 of the IVOA’s MOC recommendation.
• "JSON" — The output MOC is stored as a text file using the JSON encoding

described in Version 1.1 of the IVOA’s MOC recommendation.

["FITS"]

IN = NDF (Read)
The input NDF. Must be two-dimensional.

MAXRES = _REAL (Read)
The size of the smallest cells in the returned MOC, in arcseconds. The nearest of the
valid values defined in the MOC recommendation is used. The default value is the
largest legal value that results in the cells in the MOC being no larger than the size of
the pixels in the centre of the supplied NDF. [!]

MINRES = _REAL (Read)
The size of the largest feature that may be missed in the supplied NDF, in arcseconds.
It gives the resolution of the initial grid used to identify areas that are inside the
MOC. Bounded ’holes’ or ’islands’ in the NDF that are smaller than one cell of this
initial grid may be missed (i.e. such holes may be ’filled in’ and islands omitted in
the resulting MOC). The default value is 16 times Parameter MaxRes. [!]

http://ivoa.net/documents/MOC/

511 MOCGEN SUN/95.45 —Specifications of KAPPA applications

MODE = LITERAL (Read)
The mode used to specify the sky regions to include in the output MOC.

• "Good" — The output MOC contains the good pixels in the input NDF specified
by Parameter IN.
• "Bad" — The output MOC contains the bad pixels in the input NDF specified by

Parameter IN.
• "Qual" — The output MOC contains the pixels that have the quality specified by

Parameter QEXP within the input NDF specified by Parameter IN.

["Good"]

OUT = FILENAME (Write)
Name of the file in which to store the MOC description of the selected regions. The
format to use is specified by Parameter FORMAT. If Parameter FORMAT is "FITS",
".fits" is appended to the supplied file name, provided no other file type is included
in the supplied string.

QEXP = LITERAL (Read)
The quality expression. Only used if Parameter MOD is "QUAL".

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has too many
axes. A group of strings should be supplied specifying the axes which are to be used.
Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are used. [!]

Examples:
mocgen m31 m31.fits

Generates a a MOC description of the good pixels in NDF "m31", storing the
MOC as a binary table in FITS file "m31.fits".

Related Applications :

KAPPA: REGIONMASK

SUN/95.45 —Specifications of KAPPA applications 512 MSTATS

MSTATS
Calculate statistics over a group of data arrays or points

Description:
This application calculates cumulative statistics over a group of NDFs . It can either
generate the statistics of each corresponding pixel in the input array components and
output a new NDF with array components containing the result, or calculate statistics at a
single point specified in the current co-ordinate Frame of the input NDFs.

In array mode (SINGLE=FALSE), statistics are calculated for each pixel in one of the array
components (DATA, VARIANCE or QUALITY) accumulated over all the input NDFs and
written to an output NDF; each pixel of the output NDF is a result of combination of pixels
with the same Pixel co-ordinates in all the input NDFs. There is a selection of statistics
available to form the output values.

The input NDFs must all have the same number of dimensions, but need not all be the
same shape. The shape of the output NDF can be set to either the intersection or the union
of the shapes of the input NDFs using the TRIM parameter.

In single pixel mode (SINGLE=TRUE) a position in the current co-ordinate Frame of all the
NDFs is given, and the value at the pixel covering this point in each of the input NDFs
is accumulated to form the results that comprise the mean, variance, and median. These
statistics, and if environment variable MSG_FILTER is set to VERBOSE, the value of each
contributing pixel, is reported directly to you.

Usage:
mstats in out [estimator]

Parameters:

CLIP = _REAL (Read)
The number of standard deviations about the mean at which to clip outliers for the
"Mode", "Cmean" and "Csigma" statistics (see Parameter ESTIMATOR). The applica-
tion first computes statistics using all the available pixels. It then rejects all those
pixels whose values lie beyond CLIP standard deviations from the mean and will
then re-evaluate the statistics. For "Cmean" and "Csigma" there is currently only one
iteration, but up to seven for "Mode".
The value must be positive. [3.0]

COMP = LITERAL (Read)
The NDF array component to be analysed. It may be "Data", "Quality", "Variance",
or "Error" (where "Error" is an alternative to "Variance" and causes the square
root of the variance values to be used). If "Quality" is specified, then the quality
values are treated as numerical values (in the range 0 to 255). In cases other than
"Data", which is always present, a missing component will be treated as having all
pixels set to the ‘bad’ value. ["Data"]

ESTIMATOR = LITERAL (Read)
The method to use for estimating the output pixel values. It can be one of the

513 MSTATS SUN/95.45 —Specifications of KAPPA applications

following options. The first four are more for general collapsing, and the remainder
are for cube analysis.

• "Mean" — Mean value
• "WMean" — Weighted mean in which each data value is weighted by the reciprocal

of the associated variance. (2)
• "Mode" — Modal value. (4)
• "Median" — Median value. Note that this is extremely memory and CPU inten-

sive for large datasets; use with care! If strange things happen, use "Mean". (3)

• "Absdev" — Mean absolute deviation from the unweighted mean. (2)
• "Cmean" — Sigma-clipped mean. (4)
• "Csigma" — Sigma-clipped standard deviation. (4)
• "Comax" — Co-ordinate of the maximum value.
• "Comin" — Co-ordinate of the minimum value.
• "FBad" — Fraction of bad pixel values.
• "FGood" — Fraction of good pixel values.
• "Integ" — Integrated value, being the sum of the products of the value and

pixel width in world co-ordinates. Note that for sky co-ordinates the width is
measured in radians.
• "Iwc" — Intensity-weighted co-ordinate, being the sum of each value times its

co-ordinate, all divided by the integrated value (see the "Integ" option).
• "Iwd" — Intensity-weighted dispersion of the co-ordinate, normalised like "Iwc"

by the integrated value. (4)
• "Max" — Maximum value.
• "Min" — Minimum value.
• "FBad" — Fraction of bad pixel values.
• "FGood" — Fraction of good pixel values.
• "NBad" — Count of bad pixel values.
• "NGood" — Count of good pixel values.
• "Rms" — Root-mean-square value. (4)
• "Sigma" — Standard deviation about the unweighted mean. (4)
• "Sum" — The total value.

Where needed, the co-ordinates are the indices of the input NDFs in the supplied
order. Thus the calculations behave like the NDFs were stacked one upon another
to form an extra axis, and that axis had GRID co-ordinates. Care using wildcards
is necessary, to achieve a specific order, say for a time series, and hence assign the
desired co-ordinate for a each NDF. Indirection through a text file is recommended.
The selection is restricted if there are only a few input NDFs. For instance, measures
of dispersion like "Sigma" and "Iwd" are meaningless for combining only two NDFs.
The minimum number of input NDFs for each estimator is given in parentheses in
the list above. Where there is no number, there is no restriction. If you supply an
unavailable option, you will be informed, and presented with the available options.
["Mean"]

SUN/95.45 —Specifications of KAPPA applications 514 MSTATS

IN = GROUP (Read)
A group of input NDFs. They may have different shapes, but must all have the same
number of dimensions. This should be given as a comma-separated list, in which
each list element can be one of the following.

• An NDF name, optionally containing wild-cards and/or regular expressions
("∗", "?", "[a-z]" etc.);
• the name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

If the value supplied for this parameter ends with a minus sign "-", then the user is
re-prompted for further input until a value is given which does not end with a minus
sign. All the images given in this way are concatenated into a single group.

OUT = NDF (Read)
The name of an NDF to receive the results. Each pixel of the DATA (and perhaps
VARIANCE) component represents the statistics of the corresponding pixels of the
input NDFs. Only used if SINGLE=FALSE.

POS = LITERAL (Read)
In Single pixel mode (SINGLE=TRUE), this parameter gives the position in the current
co-ordinate Frame at which the statistics should be calculated (supplying a colon
":" will display details of the required co-ordinate Frame). The position should be
supplied as a list of formatted axis values separated by spaces or commas. The pixel
covering this point in each input array, if any, will be used.

SINGLE = _LOGICAL (Read)
Whether the statistics should be calculated in Single pixel mode or Array mode. If
SINGLE=TRUE, then the POS parameter will be used to get the point to which the
statistics refer, but if SINGLE=FALSE an output NDF will be generated containing the
results for all the pixels. [FALSE]

TITLE = LITERAL (Read)
Title for the output NDF. ["KAPPA - Mstats"]

TRIM = _LOGICAL (Read)
This parameter controls the shape of the output NDF. If TRIM=TRUE, then the output
NDF is the shape of the intersection of all the input NDFs, i.e. only pixels which
appear in all the input arrays will be represented in the output. If TRIM=FALSE, the
output is the shape of the union of the inputs, i.e. every pixel which appears in the
input arrays will be represented in the output. [TRUE]

VARIANCE = _LOGICAL (Read)
A flag indicating whether a variance array present in the NDF is used to weight the
array values while forming the estimator’s statistic, and to derive output variance. If
VARIANCE is TRUE and all the input NDFs contain a variance array, this array will
be used to define the weights, otherwise all the weights will be set equal. [TRUE]

WLIM = _REAL (Read)
If the input NDFs contain bad pixels, then this parameter may be used to determine

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

515 MSTATS SUN/95.45 —Specifications of KAPPA applications

at a given pixel location the number of good pixels which must be present within the
input NDFs before a valid output pixel is generated. It can be used, for example, to
prevent output pixels from being generated in regions where there are relatively few
good pixels to contribute to the result of combining the input NDFs.

Results Parameters:

MEAN = _DOUBLE (Write)
The mean pixel value, if SINGLE=TRUE.

MEDIAN = _DOUBLE (Write)
The median pixel value, if SINGLE=TRUE.

VAR = _DOUBLE (Write)
The variance of the pixel values, if SINGLE=TRUE.

Examples:
mstats idat∗ ostats

This calculates the mean of each pixel in the Data arrays of all the NDFs in the
current directory with names which start "idat", and writes the result in a new NDF
called ostats. The shape of ostats will be the intersection of the volumes of all the indat∗
NDFs.

mstats idat∗ ostats trim=false

This does the same as the previous example, except that the output NDF will be
the ‘union’ of the volumes of the input NDFs, that is a cuboid with lower bounds as low
as the lowest pixel bound of the input NDFs in each dimension and with upper bounds as
high as the highest pixel bound in each dimension.

mstats idat∗ ostats variance

This is like the first example except variance information present is used to weight the
data values.

mstats idat∗ ostats comp=variance variance

This does the same as the first example except that statistics are calculated on
the VARIANCE components of all the input NDFs. Thus the pixels of the VARIANCE
component of ostats will be the variances of the variances of the input data.

mstats m31∗ single=true pos="0:42:38,40:52:20"

This example is analysing the pixel brightness at the indicated sky position in a
number of NDFs whose name start with "m31", which all have SKY as their current
co-ordinate Frame. The mean and variance of the pixels at that position in all the NDFs
are printed to the screen. If the reporting level is verbose, the command also prints the

SUN/95.45 —Specifications of KAPPA applications 516 MSTATS

value of the sampled pixel in each of the NDFs. For those in which the pixel at the selected
position is bad or falls outside the NDF, this is also indicated.

mstats in="arr1,arr2,arr3" out=middle estimator=median wlim=1.0

This example calculates the medians of the DATA components of the three named NDFs
and writes them into a new NDF called middle. All input values must be good to form a
non-bad output value.

Notes:

• A warning is issued (at the normal reporting level) whenever any output values are
set bad because there are too few contributing data values. This reports the fraction
of flagged output data generated by the WLIM parameter’s threshold.
No warning is given when Parameter WLIM=0. Input data containing only bad
values are not counted in the flagged fraction, since no potential good output value
has been lost.

• For SINGLE=TRUE the value of the MSG_FILTER environment variable is used to
output messages. If it is QUIET, nothing is reported on the screen. If it is undefined,
NORMAL or VERBOSE, the statistics are reported. If it is VERBOSE, the individual pixel
values are also reported.

Related Applications :

CCDPACK: MAKEMOS, MAKECAL, MAKEFLAT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, LABEL, TI-
TLE, UNITS, WCS, and HISTORY components of the first input NDF, and propagates
all its extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Calculations are performed
using the most appropriate of the data types integer, real or double precision. If the
input NDFs’ structures contain values with other data types, then conversion will be
performed as necessary.

• Up to six NDF dimensions are supported.

• Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEMOS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKECAL
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEFLAT

517 MULT SUN/95.45 —Specifications of KAPPA applications

MULT
Multiplies two NDF data structures

Description:
The routine multiplies two NDF data structures pixel-by-pixel to produce a new NDF.

Usage:
mult in1 in2 out

Parameters:

IN1 = NDF (Read)
First NDF to be multiplied.

IN2 = NDF (Read)
Second NDF to be multiplied.

OUT = NDF (Write)
Output NDF to contain the product of the two input NDFs.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN1 to be used instead. [!]

Examples:
mult a b c

This multiplies the NDF called a by the NDF called b, to make the NDF called c.
NDF c inherits its title from a.

mult out=c in1=a in2=b title="Normalised spectrum"

This multiplies the NDF called a by the NDF called b, to make the NDF called c.
NDF c has the title "Normalised spectrum".

Notes:

If the two input NDFs have different pixel-index bounds, then they will be trimmed to
match before being multiplied. An error will result if they have no pixels in common.

Related Applications :

KAPPA: ADD, CADD, CDIV, CMULT, CSUB, DIV, MATHS, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

SUN/95.45 —Specifications of KAPPA applications 518 MULT

• All non-complex numeric data types can be handled. Calculations are performed
using the most appropriate of the data types integer, real or double precision. If the
input NDF structures contain values with other data types, then conversion will be
performed as necessary.

• Huge NDFs are supported.

519 NATIVE SUN/95.45 —Specifications of KAPPA applications

NATIVE
Converts an HDS object to native machine data representation

Description:
This application converts an HDS object (or structure) so that all primitive data values
within it are represented using the appropriate native data representation for the machine
in use (this includes the appropriate number format and byte ordering). This may typically
be required after moving HDS files from another machine which uses a different number
format and/or byte order, and will minimise the subsequent access time on the new
machine. Conversion is performed by modifying the data in situ. No separate output file
is produced.

This application can also be used to replace any IEEE floating-point NaN or Inf values in
an HDS object with the appropriate Starlink bad value. This conversion is performed even
if the data values within the object are already represented using the appropriate native
data representation for the machine in use.

Usage:
native object

Parameters:

OBJECT = UNIVERSAL (Read and Write)
The HDS structure to be converted; either an entire container file or a particular object
or structure within the file may be specified. If a structure is given, all components
(and sub-components, etc.) within it will also be converted.

Examples:
native myfile

Converts all the primitive data in the HDS container file myfile to be held using
the appropriate native machine representation for faster subsequent access.

native yourfile.data_array

Converts just the DATA_ARRAY component (and its contents, if a structure) in
the container file yourfile to the appropriate native machine data representation. Other file
contents remain unchanged.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

SUN/95.45 —Specifications of KAPPA applications 520 NDFCOMPARE

NDFCOMPARE
Compares a pair of NDFs for equivalence

Description:
This application compares two supplied NDFs, and sets the Parameter SIMILAR to
"FALSE" if they are significantly different in any way, and to "TRUE" if they are not signifi-
cantly different.

If they are not similar, a textual description of the differences is written to standard output,
and to any file specified by Parameter REPORT.

The two NDFS are compared in the following ways. Each test has an integer identifier,
and the list of tests to be used can be controlled by Parameters DOTESTS and SKIPTESTS.
Tests that are not included by default are indicated by the test number being in square
brackets. Some tests have parameters that control the exact nature of the test. These are
listed in parentheses at the end of the description test listed below.

• 1 — The number of pixel axes are compared.

• 2 — The pixel bounds are compared.

• 3 — The list of co-ordinate systems in the WCS FrameSet are compared.

• 4 — The presence or absence of NDF components are compared (COMP).

• 5 — The sky positions of a grid of pixels are compared (ACCPOS).

• 6 — The data units strings are compared (WHITE).

• 7 — The label strings are compared (CASE,WHITE).

• 8 — The title strings are compared (CASE,WHITE).

• 9 — The data types are compared.

• 10 — The lists of NDF extensions are compared.

• 11 — The number of bad DATA values are compared (NBAD).

• 12 — The number of bad VARIANCE values are compared (NBAD).

• 13 — The pixel DATA values are compared (ACCDAT).

• 14 — The pixel VARIANCE values (if any) are compared (ACCVAR).

• 15 — The pixel QUALITY values (if any) are compared (NBAD).

• 16 — The QUALITY names (if any) are compared.

• [17] — The lists of root ancestor NDFs that were used to create each NDF are com-
pared.

Usage:
ndfcompare in1 in2 [report]

Parameters:

521 NDFCOMPARE SUN/95.45 —Specifications of KAPPA applications

ACCDAT = LITERAL (Read)
The maximum difference allowed between two pixel data values for them to be con-
sidered equivalent. The supplied string should contain a numerical value followed by
a single character (case insensitive) from the list below indicating how the numerical
value is to be used.

• "V" — The numerical value is a signal-to-noise value. The absolute difference in
pixel data value is divided by the square root of the smaller of the two variances
associated with the pixels (one from each input NDF). If the resulting ratio is
smaller than the ACCDAT value, then the two pixel data values are considered
to be equivalent. An error is reported if either NDF does not have a VARIANCE
component.
• "R" — The numerical value is a relative error. The absolute difference between

the two pixel data values is divided by the absolute mean of the two data values.
If the resulting ratio is smaller than the ACCDAT value, then the two pixel data
values are considered to be equivalent. To avoid problems with pixels where the
mean is close to zero, a lower limit equal to the RMS of the data values is placed
on the mean value used in the above ratio.
• "A" — The numerical value is an absolute error. If the absolute difference in pixel

data value is smaller than the ACCDAT value, then the two pixel data values are
considered to be equivalent.

If no character is included in the ACCDAT string, "R" is assumed. ["1E-6 R"]

ACCPOS = _DOUBLE (Read)
The maximum difference allowed between two axis values for them to be considered
equivalent, in units of pixels on the corresponding pixel axes. [0.2]

ACCVAR = LITERAL (Read)
The maximum difference allowed between two pixel variance values for them to
be considered equivalent. The supplied string should contain a numerical value
followed by a single character (case insensitive) from the list below indicating how
the numerical value is to be used.

• "R" — The numerical value is a relative error. The absolute difference in vari-
ance value is divided by the absolute mean of the two variance values. If the
resulting ratio is smaller than the ACCVAR value, then the two pixel variances
are considered to be equivalent.
• "A" — The numerical value is an absolute error. If the absolute difference in

variance values is smaller than the ACCVAR value, then the two pixel variances
are considered to be equivalent.

If no character is included in the ACCVAR string, "R" is assumed. ["1E-6 R"]

CASE = _LOGICAL (Read)
If TRUE, then string comparisons are case sensitive. Otherwise they are case insensitive.
[TRUE]

COMP = _LITERAL (Read)
A comma separated list of the NDF components to include in the test. If a null (!)
value is supplied, all NDF components are included. [!]

SUN/95.45 —Specifications of KAPPA applications 522 NDFCOMPARE

DOTESTS() = _INTEGER (Read)
An initial list of indices for the tests to be performed, or null (!) if all tests are to be
included in the initial list. This initial list is modified by excluding any tests specified
by Parameter SKIPTESTS. [!]

IN1 = NDF (Read)
The first NDF.

IN2 = NDF (Read)
The second NDF.

NBAD = LITERAL (Read)
The maximum difference allowed between the number of bad values in each NDF.
The same value is used for both DATA and VARIANCE arrays. It is also used
as the maximum number of pixel that can have different QUALITY values. The
supplied string should contain a numerical value followed by a single character (case
insensitive) from the list below indicating how the numerical value is to be used.

• "R" — The numerical value is a relative error. The absolute difference in the
number of bad values is divided by the mean number of bad values in both NDFs
(for the QUALITY array, the total number of pixels in the NDF is used as the
denominator in this ratio). If the resulting ratio is smaller than the NBAD value,
then the two NDFs are considered to be equivalent for the purposes of this test.
• "A" — The numerical value is an absolute error. If the absolute difference in the

number of bad values is smaller than the NBAD value, then the two NDFs are
considered to be equivalent for the purposes of this test.

If no character is included in the NBAD string, "R" is assumed. ["0.001 R"]

REPORT = LITERAL (Read)
The name of a text file to create in which details of the differences found between the
two NDFs will be store. [!]

SKIPTESTS() = _INTEGER (Read)
A list of indices for tests that are to removed from the initial list of tests specified by
Parameter DOTESTS. If a null (!) value is supplied, the initial list is left unchanged.
[15]

SIMILAR = _LOGICAL (Write)
Set to FALSE on exit if any of the used tests indicate that the two NDFs differ.

WHITE = _LOGICAL (Read)
If TRUE, then trailing or leading white space is ignored when comparing strings.
[FALSE]

Related Applications :

KAPPA: NDFTRACE, NORMALIZE.

523 NDFCOMPRESS SUN/95.45 —Specifications of KAPPA applications

NDFCOMPRESS
Compresses an NDF so that it occupies less disk space

Description:
This application creates a copy of an NDF that occupies less disk space. This compression
does not affect the data values seen by subsequent application, since all applications will
automatically uncompress the data.

Two compression methods are available: SCALE or DELTA (see Parameter METHOD).

Usage:
ndfcompress in out method

Parameters:

DSCALE = _DOUBLE (Read)
The scale factor to use for the Data component, when compressing with METHOD
set to SCALE. If a null (!) value is supplied for DSCALE or DZERO, default values
will be used for both that cause the scaled data values to occupy 96% of the available
range of the data type selected using Parameter SCALEDTYPE. [!]

DZERO = _DOUBLE (Read)
The zero offset to use for the Data component, when compressing with METHOD
set to SCALE. If a null (!) value is supplied for DSCALE or DZERO, default values
will be used for both that cause the scaled data values to occupy 96% of the available
range of the data type selected using Parameter SCALEDTYPE. [!]

IN = NDF (Read)
The input NDF.

METHOD = LITERAL (Read)
The compression method to use. The options are as follows.

• "BOTH" — A lossy compression scheme for all data types. It first creates an
intermediate NDF from the supplied NDF using "SCALED" compression and then
creates the final ouput NDF by applying "DELTA" compression to the intermediate
NDF. The intermediate NDF is then deleted.
• "SCALED" — A lossy compression scheme for all data types. See “Scaled Com-

pression” below, and Parameters DSCALE, DZERO, VSCALE, VZERO, and
SCALEDTYPE.
• "DELTA" — A lossless compression scheme for integer data types. See “Delta

Compression” below, and Parameters ZAXIS, ZMINRATIO, and ZTYPE.

The current value is the default, which is initially "DELTA". []

OUT = NDF (Write)
The output NDF.

SCALEDTYPE = LITERAL (Read)
The data type to use for the scaled data values. This is only used if METHOD is
"SCALED". It can be one of the following options.

SUN/95.45 —Specifications of KAPPA applications 524 NDFCOMPRESS

• "_INTEGER" — four-byte signed integers
• "_WORD" — two-byte signed integers
• "_UWORD" — two-byte unsigned integers
• "_BYTE" — one-byte signed integers
• "_UBYTE" — one-byte unsigned integers

The same data type is used for both DATA and (if required) VARIANCE components
of the output NDF. The initial default value is "_WORD". [current value]

VSCALE = _DOUBLE (Read)
The scale factor to use for the VARIANCE component, when compressing with
METHOD set to SCALE. If a null (!) value is supplied for VSCALE or VZERO,
default values will be used for both that cause the scaled variance values to occupy
96% of the available range of the data type selected using Parameter SCALEDTYPE.
[!]

VZERO = _DOUBLE (Read)
The zero factor to use for the VARIANCE component, when compressing with
METHOD set to SCALE. If a null (!) value is supplied for VSCALE or VZERO,
default values will be used for both that cause the scaled variance values to occupy
96% of the available range of the data type selected using Parameter SCALEDTYPE.
[!]

ZAXIS = _INTEGER (Read)
The index of the pixel axis along which differences are to be taken, when compressing
with METHOD set to "DELTA". If this is zero, a default value will be selected that
gives the greatest compression. [0]

ZMINRATIO = _REAL (Read)
The minimum allowed compression ratio for an array (the ratio of the supplied
array size to the compressed array size), when compressing with METHOD set to
"DELTA". If compressing an array results in a compression ratio smaller than or
equal to ZMINRATIO, then the array is left uncompressed in the new NDF. If the
supplied value is zero or negative, then each array will be compressed regardless of
the compression ratio. [1.0]

ZTYPE = LITERAL (Read)
The data type to use for storing differences between adjacent uncompressed data
values, when compressing with METHOD set to "DELTA". Must be one of _INTEGER,
_WORD, _BYTE or blank. If a null (!) value or blank value is supplied, the data type
that gives the best compression is determined and used. [!]

Examples:
ndfcompress infile outfile scale scaledtype=_uword

Copies the contents of the NDF structure infile to the new structure outfile, scal-
ing the values so that they fit into unsigned two-byte integers. The scale and zero values
used are chosen automatically.

Scaled Compression :

The SCALE compression method scales the supplied data values using a linear trans-
formation so that they fit into a smaller (integer) data type. A description of the scaling

525 NDFCOMPRESS SUN/95.45 —Specifications of KAPPA applications

uses is stored with the output NDF so that later application can reconstruct the original
unscaled values. This method is not lossless, due to the truncation involved in converting
floating-point values to integers.

Delta Compression :

DELTA compression is lossless, but can only be used on integer values. It assumes that
adjacent integer values in the input tend to be close in value, and so differences between
adjacent values can be represented in fewer bits than the absolute values themselves. The
differences are taken along a nominated pixel axis within the supplied array (specified by
Parameter ZAXIS). Any input value that differs from its earlier neighbour by more than
the data range of the selected data type is stored explicitly using the data type of the input
array.

Further compression is achieved by replacing runs of equal input values by a single
occurrence of the value with a corresponding repetition count.

It should be noted that the degree of compression achieved is dependent on the nature
of the data, and it is possible for a compressed array to occupy more space than the
uncompressed array. The mean compression factor actually achieved is displayed (the
ratio of the supplied NDF size to the compressed NDF size).

It is possible to delta compress an NDF that has already been scale compressed. This pro-
vides a means of further compressing floating-point arrays. However, note that the default
values supplied for DSCALE, DZERO, VSCALE, and VZERO may not be appropriate as
they are chosen to maximise the spread of the scaled integer values in order to minimise
the integer truncation error, but delta compression works best on arrays of integers in
which the spread of values is small.

If the input NDF is already DELTA compressed, it will be uncompressed and then recom-
pressed using the supplied parameter values.

More details of delta compression can be found in SUN/11 (ARY - A Subroutine Library for
Accessing ARRAY Data Structures), subsection Delta Compressed Array Form.

Related Applications :

KAPPA: NDFCOPY.

Implementation Status:
The TITLE, LABEL, UNITS, DATA, VARIANCE, QUALITY, AXIS, WCS, and HISTORY
components are copied by this routine, together with all extensions.

SUN/95.45 —Specifications of KAPPA applications 526 NDFCOPY

NDFCOPY
Copies an NDF (or NDF section) to a new location

Description:
This application copies an NDF to a new location. By supplying an NDF section as input
it may be used to extract a subset, or to change the size or dimensionality of an NDF. A
second NDF may also be supplied to act as a shape template, and hence to define the
region of the first NDF which is to be copied.

Any unused space will be eliminated by the copying operation performed by this routine,
so it may be used as a way of compressing NDF structures from which components have
been deleted. This ability also makes NDFCOPY a useful alternative to SETBOUND in
cases where an NDF’s size is to be reduced.

Usage:
ndfcopy in out

Parameters:

COMP = LITERAL (Read)
The name of an array component in the input NDF (specified by Parameter IN) that
will become the DATA_ARRAY in the output NDF (specified by Parameter OUT). It
has the following options.

• "Data" — Each array component present is propagated to its counterpart.
• "Variance" — The VARIANCE component in the input NDF becomes the

DATA_ARRAY in the output NDF and retains its data type. The original
DATA_ARRAY is not copied.
• "Error" — The square root of the VARIANCE component in the input NDF

becomes the DATA_ARRAY in the output NDF and retains the VARIANCE’s
data type. The original DATA_ARRAY and VARIANCE components are not
copied.
• "Quality" — The QUALITY component in the input NDF becomes the

DATA_ARRAY in the output NDF and will be data type _UBYTE. The origi-
nal DATA_ARRAY and VARIANCE components are not copied.

["Data"]

EXTEN = _LOGICAL (Read)
If set to FALSE (the default), any NDFs contained within extensions of the input NDF
are copied to equivalent places within the output NDF without change. If set TRUE,
then any extension NDFs which have the same bounds as the base input NDF are
padded or trimmed as necessary in order to ensure that they have the same bounds
as the output NDF. [FALSE]

IN = NDF (Read)
The input NDF (or section) which is to be copied.

527 NDFCOPY SUN/95.45 —Specifications of KAPPA applications

LIKE = NDF (Read)
This parameter may be used to supply an NDF to be used as a shape template during
the copying operation. If such a template is supplied, then its shape will be used to
select a matching section from the input NDF before copying takes place. By default,
no template will be used and the shape of the output NDF will therefore match that
of the input NDF (or NDF section). The shape of the template in either pixel indices
or the current WCS Frame may be used, as selected by Parameter LIKEWCS. [!]

LIKEWCS = _LOGICAL (Read)
If TRUE, then the WCS bounds of the template supplied via Parameter LIKE are used
to decide on the bounds of the output NDF. Otherwise, the pixel bounds of the
template are used. [FALSE]

OUT = NDF (Write)
The output NDF data structure.

TITLE = LITERAL (Read)
A title for the output NDF. A null value (the default) will cause the title of the NDF
supplied for Parameter IN to be used instead. [!]

TRIM = _LOGICAL (Read)
If TRUE, then the number of pixel axes in the output NDF will be reduced if necessary
to remove any pixel axes which span only a single pixel. For instance if stokes is a
three-dimensional data cube with pixel bounds (1:100,-50:40,1:3), and the Parameter
IN is given the value "stokes(„2)", then the dimensionality of the output depends
on the setting of TRIM: if TRIM=FALSE the output is three-dimensional with pixel
bounds (1:100,-50:40,2:2) and if TRIM=TRUE the output is two-dimensional with pixel
bounds (1:100,-50:40). In this example, the third pixel axis spans only a single pixel
and is consequently removed if TRIM=TRUE. [FALSE]

TRIMBAD = _LOGICAL (Read)
If TRUE, then the pixel bounds of the output NDF are trimmed to exclude any border
of bad pixels within the input NDF. That is, the output NDF will be the smallest NDF
that encloses all good data values in the input NDF. [FALSE]

TRIMWCS = _LOGICAL (Read)
This parameter is only accessed if Parameter TRIM is TRUE. It controls the number of
axes in the current WCS co-ordinate Frame of the output NDF. If TRIMWCS=YES,
then the current Frame in the output NDF will have the same number of axes as
there are pixel axes in the output NDF. If this involves removing axes, then the axes
to retain are specified by Parameter USEAXIS. If TRIMWCS=NO then all axes are
retained in the current WCS Frame of the output NDF. Using the example in the
description of the TRIM parameter, if the input NDF stokes has a three-dimensional
current WCS Frame with axes (RA,Dec,Stokes) and TRIMWCS=YES, then an axis will
be removed from the current Frame to make it two-dimensional (that is, to match the
number of pixel axes remaining after the removal of insignificant pixel axes). The
choice of which two axes to retain is controlled by Parameter USEAXIS. If, on the
other hand, TRIMWCS was set to FALSE, then the output NDF would still have two
pixel axes, but the current WCS Frame would retain all three axes from the input NDF.
If one or more current-Frame axes are removed, the transformation from the current
Frame to pixel Frame may become undefined resulting in some WCS operations
being unusable. The inverse of this transformation (from pixel Frame to current
Frame) is unchanged however. [TRUE]

SUN/95.45 —Specifications of KAPPA applications 528 NDFCOPY

USEAXIS = LITERAL (Read)
This parameter is only accessed if TRIM and TRIMWCS are both TRUE and some axes
need to be removed from the current WCS Frame of the output NDF. It gives the axes
which are to be retained in the current WCS Frame of the output NDF. Each axis can
be specified using one of the following options.

• An integer index of an axis within the current Frame of the input NDF (in the
range 1 to the number of axes in the current Frame).
• An axis Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

The dynamic default selects the axes with the same indices as the pixel axes being
copied. The value should be given as a comma-separated list. []

Examples:
ndfcopy infile outfile

Copies the contents of the NDF structure infile to the new structure outfile. Any
unused space will be eliminated during the copying operation.

ndfcopy infile outfile comp=var

As the previous example except that the VARIANCE component of NDF infile
becomes the DATA_ARRAY of NDF outfile.

ndfcopy in=data1(3:40,-3:17) out=data2 title="Extracted section"

Copies the section (3:40,-3:17) of the NDF called data1 to a new NDF called data2. The
output NDF is assigned the new title "Extracted section", which replaces the title
derived from the input NDF.

ndfcopy galaxy newgalaxy like=oldgalaxy

Copies a section of the NDF called galaxy to form a new NDF called newgalaxy.
The section which is copied will correspond in shape with the template oldgalaxy. Thus,
after the copying operation, both newgalaxy and oldgalaxy will have the same pixel-index
bounds.

ndfcopy aa(20∼11,20∼11) bb like=aa

Copies from the NDF section consisting of an 11×11 pixel region of aa centred
on pixel (20,20), into a new NDF called bb. The shape of the region copied is made to
match the original shape of aa. The effect is to extract the selected square region of pixels
into a new NDF of the same shape as the original, setting the surrounding region to the
bad-pixel value.

529 NDFCOPY SUN/95.45 —Specifications of KAPPA applications

ndfcopy survey(12h23m:12h39m,11d:13d50m,) virgo trimwcs trim

Copies a section specified by equatorial co-ordinate ranges from the three-dimensional
NDF called survey, whose third pixel axis has only one element, to a two-dimensional
NDF called virgo. Information on the third WCS axis is removed too.

Related Applications :

KAPPA: SETBOUND; FIGARO: ISUBSET.

Implementation Status:

• If present, an NDF’s TITLE, LABEL, UNITS, DATA, VARIANCE, QUALITY, AXIS WCS,
and HISTORY components are copied by this routine, together with all extensions.
The output NDF’s title may be modified, if required, by specifying a new value via
the TITLE parameter.

• Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISUBSET

SUN/95.45 —Specifications of KAPPA applications 530 NDFECHO

NDFECHO
Displays a group of NDF names

Description:
This application lists the names of the supplied NDFs to the screen, optionally filtering
them using a regular expression. Its primary use is within scripts that need to process
groups of NDFs. Instead of the full name, a required component of the name may be
displayed instead (see Parameter SHOW).

Two modes are available.

• If the NDFs are specified via the NDF parameter, then the NDFs must exist and be
accessible (an error is reported otherwise). The NDF names obtained can then be
modified by supplying a suitable GRP modification expression such as "∗_A" for
Parameter MOD.
• To list NDFs that may not exist, supply a null (!) value for Parameter NDF and the

main group expression to Parameter MOD.

Usage:
ndfecho ndf [mod] [first] [last] [show]

Parameters:
ABSPATH = _LOGICAL (Read)

If TRUE, any relative NDF paths are converted to absolute, using the current working
directory. [FALSE]

EXISTS = _LOGICAL (Read)
If TRUE, then only display paths for NDFs specified by Parameter MOD that actually
exist and are accessible. [FALSE]

FIRST = _INTEGER (Read)
The index of the first NDF to be tested. A null (!) value causes the first NDF to be
used (Index 1). [!]

LAST = _INTEGER (Read)
The index of the last NDF to be tested. If a non-null value is supplied for FIRST, then
the run-time default for LAST is equal to the supplied FIRST value (so that only a
single NDF will be tested). If a null value is supplied for FIRST, then the run-time
default for LAST is the last NDF in the supplied group. []

LOGFILE = FILENAME (Write)
The name of a text file in which to store the listed NDF names. If a null (!) value is
supplied, no log file is created. [!]

MOD = LITERAL (Read)
An optional GRP modification expression that will be used to modify any names
obtained via the NDF parameter. For instance, if MOD is "∗_A" then the supplied
NDF names will be modified by appending "_A" to them. No modification occurs if
a null (!) value is supplied.

531 NDFECHO SUN/95.45 —Specifications of KAPPA applications

If a null value is supplied for Parameter NDF then the value supplied for Parameter
MOD should not include an asterisk, since there are no names to be modified. Instead,
the MOD value should specify an explicit group of NDF names do not need to exist.
The list can be filtered to remove any NDFs that do not exist (see Parameter EXISTS).
[!]

NDF = NDF (Read)
A group of existing NDFs. This should be given as a comma-separated list, in which
each list element can be one of the following options.

• An NDF name, optionally containing wild-cards and/or regular expressions
("∗", "?", "[a-z]" etc.).
• The name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc.), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

If the value supplied for this parameter ends with a hyphen, then you are re-prompted
for further input until a value is given which does not end with a hyphen. All the
NDFs given in this way are concatenated into a single group.
If a null (!) value is supplied, then the displayed list of NDFs is determined by the
value supplied for the MOD parameter.

PATTERN = LITERAL (Read)
Specifies a pattern matching template using the syntax described below in “Pattern
Matching Syntax”. Each NDF is displayed only if a match is found between this
pattern and the item specified by Parameter SHOW. A null (!) value causes all NDFs
to be displayed. [!]

SHOW = LITERAL (Read)
Specifies the information to be displayed about each NDF. The options are as follows.

• "Base" — The base file name.
• "Dir" — The directory path (if any).
• "Fspec" — The directory, base name and file type concatenated to form a full file

specification.
• "Ftype" — The file type (usually .sdf but may not be if any foreign NDFs are

supplied).
• "HDSpath" — The HDS path within the container file (if any).
• "Path" — The full name of the NDF as supplied by the user.
• "Slice" — The NDF slice specification (if any).

Note, the fields are extracted from the NDF names as supplied by the user. No
missing fields (except for "Ftype") are filled in. ["Path"]

Results Parameters:

NMATCH = _INTEGER (Write)
An output parameter to which is written the number of NDFs between FIRST and LAST
that match the pattern supplied by Parameter PATTERN.

SUN/95.45 —Specifications of KAPPA applications 532 NDFECHO

SIZE = _INTEGER (Write)
An output parameter to which is written the total number of NDFs in the specified group.

VALUE = LITERAL (Write)
An output parameter to which is written information about the NDF specified by Parame-
ter FIRST, or the first NDF in the group if FIRST is not specified. The information to write
is specified by the SHOW parameter.

Examples:
ndfecho mycont

Report the full path of all the NDFs within the HDS container file mycont.sdf.
The NDFs must all exist.

ndfecho ^files.lis first=4 show=base

This reports the file base name for just the fourth NDF in the list specified within the text
file files.lis. The NDFs must all exist.

ndfecho ^files.lis ∗_a logfile=log.lis

This reports the names of the NDFs listed in text file files.lis, but appending
"_a" to the end of each name. The NDFs must all exist. The listed NDF names are written
to a new text file called log.lis.

ndfecho in=! mod={^base}|_a|_b|

This reports the names of the NDFs listed in text file base, but replacing "_a"
with "_b" in their names. The NDFs need not exist since they are completely specified by
Parameter MOD and not by Parameter NDF.

Pattern Matching Syntax :

The syntax for the PATTERN parameter value is a minimal form of regular expression.
The following atoms are allowed.

• "[chars]" — Matches any of the characters within the brackets.

• "[^chars]" — Matches any character that is not within the brackets (ignoring the
initial "^" character).

• "." — Matches any single character.

• "\d" — Matches a single digit.

• "\D" — Matches anything but a single digit.

• "\w" — Matches any alphanumeric character, and "_".

• "\W" — Matches anything but alphanumeric characters, and "_".

• "\s" — Matches white space.

• "\S" — Matches anything but white space.

533 NDFECHO SUN/95.45 —Specifications of KAPPA applications

Any other character that has no special significance within a regular expression matches
itself. Characters that have special significance can be matched by preceding them with a
backslash (\) in which case their special significance is ignored (note, this does not apply
to the characters in the set dDsSwW).

Note, minus signs ("-") within brackets have no special significance, so ranges of charac-
ters must be specified explicitly.

The following quantifiers are allowed.

• "*" — Matches zero or more of the preceding atom, choosing the largest possible
number that gives a match.

• "*?"— Matches zero or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "+" — Matches one or more of the preceding atom, choosing the largest possible
number that gives a match.

• "+?"— Matches one or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "?" — Matches zero or one of the preceding atom.

• "{n}" — Matches exactly n occurrences of the preceding atom.

The following constraints are allowed.

• "^" — Matches the start of the test string.

• "$" — Matches the end of the test string.

Multiple templates can be concatenated, using the "|" character to separate them. The test
string is compared against each one in turn until a match is found.

SUN/95.45 —Specifications of KAPPA applications 534 NDFTRACE

NDFTRACE
Displays the attributes of an NDF data structure

Description:
This routine displays the attributes of an NDF data structure including:

• its name;
• the values of its character components (title, label, and units);
• its shape (pixel bounds, dimension sizes, number of dimensions and total number of

pixels);
• axis co-ordinate information (axis labels, units and extents);
• optionally, axis array attributes (type and storage form) and the values of the axis

normalisation flags;
• attributes of the main data array and any other array components present (including

the type and storage form and an indication of whether ‘bad’ pixels may be present);
• attributes of the current co-ordinate Frame in the WCS component (title, domain,

and, optionally, axis labels and axis units, plus the system epoch and projection for
sky co-ordinate Frames). In addition the bounding box of the NDF within the Frame
is displayed.
• optionally, attributes of all other co-ordinate Frames in the WCS component.
• a list of any NDF extensions present, together with their data types; and
• history information (creation and last-updated dates, the update mode and the

number of history records).

Most of this information is output to parameters.

Usage:
ndftrace ndf

Parameters:
FULLAXIS = _LOGICAL (Read)

If the NDF being examined has an axis co-ordinate system defined, then by default
only the label, units and extent of each axis will be displayed. However, if a TRUE
value is given for this parameter, full details of the attributes of all the axis arrays will
also be given. [FALSE]

FULLFRAME = _LOGICAL (Read)
If a FALSE value is given for this parameter then only the Title and Domain attributes
are displayed for a co-ordinate Frame. Otherwise, a more complete description is
given. [FALSE]

FULLWCS = _LOGICAL (Read)
If a TRUE value is given for this parameter then all co-ordinate Frames in the WCS
component of the NDF are displayed. Otherwise, only the current co-ordinate Frame
is displayed. [FALSE]

535 NDFTRACE SUN/95.45 —Specifications of KAPPA applications

NDF = NDF (Read)
The NDF data structure whose attributes are to be displayed.

Results Parameters:

AEND() = _DOUBLE (Write)
The axis upper extents of the NDF. For non-monotonic axes, zero is used. See Parameter
AMONO. This is not assigned if AXIS is FALSE.

AFORM() = LITERAL (Write)
The storage forms of the axis centres of the NDF. This is only written when FULLAXIS is
TRUE and AXIS is TRUE.

ALABEL() = LITERAL (Write)
The axis labels of the NDF. This is not assigned if AXIS is FALSE.

AMONO() = _LOGICAL (Write)
These are TRUE when the axis centres are monotonic, and FALSE otherwise. This is not
assigned if AXIS is FALSE.

ANORM() = _LOGICAL (Write)
The axis normalisation flags of the NDF. This is only written when FULLAXIS is TRUE and
AXIS is TRUE.

ASTART() = _DOUBLE (Write)
The axis lower extents of the NDF. For non-monotonic axes, zero is used. See Parameter
AMONO. This is not assigned if AXIS is FALSE.

ATYPE() = LITERAL (Write)
The data types of the axis centres of the NDF. This is only written when FULLAXIS is TRUE
and AXIS is TRUE.

AUNITS() = LITERAL (Write)
The axis units of the NDF. This is not assigned if AXIS is FALSE.

AVARIANCE() = _LOGICAL (Write)
Whether or not there are axis variance arrays present in the NDF. This is only written when
FULLAXIS is TRUE and AXIS is TRUE.

AXIS = _LOGICAL (Write)
Whether or not the NDF has an axis system.

BAD = _LOGICAL (Write)
If TRUE, the NDF’s data array may contain bad values.

BADBITS = LITERAL (Write)
The BADBITS mask. This is only valid when QUALITY is TRUE.

CURRENT = _INTEGER (Write)
The integer Frame index of the current co-ordinate Frame in the WCS component.

DIMS() = _INT64 (Write)
The dimensions of the NDF.

SUN/95.45 —Specifications of KAPPA applications 536 NDFTRACE

EXTNAME() = LITERAL (Write)
The names of the extensions in the NDF. It is only written when NEXTN is positive.

EXTTYPE() = LITERAL (Write)
The types of the extensions in the NDF. Their order corresponds to the names in EXTNAME.
It is only written when NEXTN is positive.

FDIM() = _INTEGER (Write)
The numbers of axes in each co-ordinate Frame stored in the WCS component of the
NDF. The elements in this parameter correspond to those in the FDOMAIN and FTITLE
parameters. The number of elements in each of these parameters is given by NFRAME.

FDOMAIN() = LITERAL (Write)
The domain of each co-ordinate Frame stored in the WCS component of the NDF. The
elements in this parameter correspond to those in the FDIM and FTITLE parameters. The
number of elements in each of these parameters is given by NFRAME.

FLABEL() = LITERAL (Write)
The axis labels from the current WCS Frame of the NDF.

FLBND() = _DOUBLE (Write)
The lower bounds of the bounding box enclosing the NDF in the current WCS Frame. The
number of elements in this parameter is equal to the number of axes in the current WCS
Frame (see FDIM). Celestial axis values will be in units of radians.

FORM = LITERAL (Write)
The storage form of the NDF’s data array. This will be "SIMPLE", "PRIMITIVE", or
"SCALED".

FPIXSCALE() = LITERAL (Write)
The nominal WCS pixel scale for each axis in the current WCS Frame. For celestial axes,
the value stored will be in arcseconds. For other axes, the value stored will be in the units
given by the corresponding element of FUNIT.

FTITLE() = LITERAL (Write)
The title of each co-ordinate Frame stored in the WCS component of the NDF. The elements
in this parameter correspond to those in the FDOMAIN and FDIM parameters. The number
of elements in each of these parameters is given by NFRAME.

FUBND() = _DOUBLE (Write)
The upper bounds of the bounding box enclosing the NDF in the current WCS Frame. The
number of elements in this parameter is equal to the number of axes in the current WCS
Frame (see FDIM). Celestial axis values will be in units of radians.

FUNIT() = LITERAL (Write)
The axis units from the current WCS Frame of the NDF.

HISTORY = _LOGICAL (Write)
Whether or not the NDF contains HISTORY records.

LABEL = LITERAL (Write)
The label of the NDF.

537 NDFTRACE SUN/95.45 —Specifications of KAPPA applications

LBOUND() = _INT64 (Write)
The lower bounds of the NDF.

NDIM = _INTEGER (Write)
The number of dimensions of the NDF.

NEXTN = _INTEGER (Write)
The number of extensions in the NDF.

NFRAME = _INTEGER (Write)
The number of WCS domains described by Parameters FDIM, FDOMAIN, and FTITLE.
Set to zero if WCS is FALSE.

QUALITY = _LOGICAL (Write)
Whether or not the NDF contains a QUALITY array.

TITLE = LITERAL (Write)
The title of the NDF.

TYPE = LITERAL (Write)
The data type of the NDF’s data array.

UBOUND() = _INT64 (Write)
The upper bounds of the NDF.

UNITS = LITERAL (Write)
The units of the NDF.

VARIANCE = _LOGICAL (Write)
Whether or not the NDF contains a variance array.

WCS = _LOGICAL (Write)
Whether or not the NDF has any WCS co-ordinate Frames, over and above the default
GRID, PIXEL and AXIS Frames.

WIDTH() = _LOGICAL (Write)
Whether or not there are axis width arrays present in the NDF. This is only written when
FULLAXIS is TRUE and AXIS is TRUE.

Examples:
ndftrace mydata

Displays information about the attributes of the NDF structure called mydata.

ndftrace ndf=r106 fullaxis

Displays information about the NDF structure r106, including full details of any
axis arrays present.

ndftrace mydata ndim=(mdim)

Passes the number of dimensions of the NDF called mydata into the ICL variable mdim.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Specifications of KAPPA applications 538 NDFTRACE

Notes:

• If the WCS component of the NDF is undefined, then an attempt is made to find
WCS information from two other sources: first, an IRAS90 astrometry structure, and
secondly, the FITS extension. If either of these sources yield usable WCS information,
then it is displayed in the same way as the NDF WCS component. Other KAPPA

applications will use this WCS information as if it were stored in the WCS component.

• The reporting of NDF attributes is suppressed when the message filter environment
variable MSG_FILTER is set to QUIET. It benefits procedures and scripts where only
the output parameters are needed. The creation of output parameters is unaffected
by MSG_FILTER.

Related Applications :

KAPPA: FITSLIST, WCSFRAME; HDSTRACE.

Implementation Status:
Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_

539 NOGLOBALS SUN/95.45 —Specifications of KAPPA applications

NOGLOBALS
Resets the KAPPA global parameters

Description:
This application resets the KAPPA global parameters, and so makes their values undefined.

Usage:
noglobals

SUN/95.45 —Specifications of KAPPA applications 540 NOMAGIC

NOMAGIC
Replaces all occurrences of magic value pixels in an NDF array with a

new value

Description:
This function replaces the standard ‘magic value’ assigned to bad pixels in an NDF with
an alternative value, or with random samples taken from a Normal distribution. Input
pixels which do not have the magic value are left unchanged. The number of replacements
is reported. NOMAGIC’s applications include the export of data to software that has
different magic values or does not support bad values.

If a constant value is used to replace magic values (which will be the case if Parameter
SIGMA is given the value zero), then the same replacement value is used for both the
data and variance arrays when COMP="All". If the variance is being processed, the
replacement value is constrained to be non-negative.

Magic values are replaced by random values if the Parameter SIGMA is given a non-zero
value. If both DATA and VARIANCE components are being processed, then the random
values are only stored in the DATA component; a constant value equal to SIGMA squared is
used to replace all magic values in the VARIANCE component. If only a single component
is being processed (whether it be DATA, VARIANCE, or Error), then the random values
are used to replace the magic values. If random values are generated which will not fit into
the allowed numeric range of the output NDF, then they are discarded and new random
values are obtained instead. This continues until a usable value is obtained. This could
introduce some statistical bias if many such re-tries are performed. For this reason SIGMA
is restricted so that there are at least 4 standard deviations between the mean (given by
REPVAL) and the nearest limit. NOMAGIC notifies of any re-tries that are required.

Usage:
nomagic in out repval [sigma] [comp]

Parameters:

COMP = LITERAL (Read)
The components whose flagged values are to be substituted. It may be:

• "Data"
• "Error"
• "Variance"
• "All"

The last of the options forces substitution of bad pixels in both the data and variance
arrays. This parameter is ignored if the data array is the only array component within
the NDF. ["Data"]

IN = NDF (Read)
Input NDF structure containing the data and/or variance array to have its elements
flagged with the magic value replaced by another value.

541 NOMAGIC SUN/95.45 —Specifications of KAPPA applications

OUT = NDF (Write)
Output NDF structure containing the data and/or variance array without any ele-
ments flagged with the magic value.

REPVAL = _DOUBLE (Read)
The constant value to substitute for the magic values, or (if Parameter SIGMA is
given a non-zero value) the mean of the distribution from which replacement values
are obtained. It must lie within the minimum and maximum values of the data
type of the array with higher precision, except when variance is being processed, in
which case the minimum is constrained to be non-negative. The replacement value is
converted to the data type of the array being converted. The suggested default is the
current value.

SIGMA = _DOUBLE (Read)
The standard deviation of the random values used to replace magic values in the
input NDF. If this is zero (or if a null value is given), then a constant replacement
value is used. The supplied value must be positive and must be small enough to
allow at least 4 standard deviations between the mean value (given by REPVAL) and
the closest limit. [!]

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Examples:
nomagic aitoff irasmap repval=−2000000

This copies the NDF called aitoff to the NDF irasmap, except that any bad val-
ues in the data array are replaced with the IPAC blank value, −2000000, in the NDF called
irasmap.

nomagic saturnb saturn 9999.0 comp=all

This copies the NDF called saturnb to the NDF saturn, except that any bad val-
ues in the data and variance arrays are replaced with 9999 in the NDF called saturn.

nomagic in=cleaned out=filled repval=0 sigma=10 comp=all

This copies the NDF called cleaned to the NDF filled, except that any bad val-
ues in the data array are replaced by random samples taken from a Normal distribution of
mean zero and standard deviation 10. Bad values in the variance array are replaced by the
constant value 100.

Notes:

• If the NDF arrays have no bad pixels the application will abort.

• Use GLITCH if a neighbourhood context is required to remove the bad values.

Related Applications :

SUN/95.45 —Specifications of KAPPA applications 542 NOMAGIC

KAPPA: CHPIX, FILLBAD, GLITCH, SEGMENT, SETMAGIC, SUBSTITUTE,
ZAPLIN; FIGARO: GOODVAR.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_GOODVAR

543 NORMALIZE SUN/95.45 —Specifications of KAPPA applications

NORMALIZE
Normalises one NDF to a similar NDF by calculating a scale factor

and zero-point difference

Description:
This application compares the data values in one NDF against the corresponding values
in the other NDF. A least-squares straight-line is then fitted to the relationship between
the two sets of data values in order to determine the relative scale factor and any zero-
level offset between the NDFs (the offset may optionally be fixed at zero—see Parameter
ZEROFF). To reduce computation time, the data points are binned according to the data
value in the second NDF. The mean data value within each bin is used to find the fit and
weights are applied according to the number of pixels which contribute to each bin.

To guard against erroneous data values, which can corrupt the fit obtained, the application
then performs a number of iterations. It calculates a noise estimate for each bin according
to the rms deviation of data values in the bin from the straight-line fit obtained previously.
It then re-bins the data, omitting values which lie more than a specified number of standard
deviations from the expected value in each bin. The straight-line fit is then re-calculated.
You can specify the number of standard deviations and the number of iterations used.

A plot is produced after the final iteration showing the bin centres, with error bars repre-
senting the spread of values in each bin. The best fitting straight line is overlayed on this
plot.

Optionally, an output NDF can be created containing a normalised version of the data
array from the first input NDF.

For the special case of two-dimensional images, if IN2 (or IN1) spans only a single row
or column, it can be used to normalize each row or column of IN1 (or IN2) in turn. See
Parameter LOOP.

Usage:
normalize in1 in2 out

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. The width of
the margins left for the annotation may be controlled using Parameter MARGIN. The
appearance of the axes (colours, founts, etc.) can be controlled using the Parameter
STYLE. The dynamic default is TRUE if CLEAR is TRUE, and FALSE otherwise. []

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also an attempt is made to align the new picture
with the existing picture. Thus you can generate a composite plot within a single
set of axes, say using different colours or modes to distinguish data from different
datasets. [TRUE]

SUN/95.45 —Specifications of KAPPA applications 544 NORMALIZE

DATARANGE(2) = _REAL (Read)
This parameter may be used to override the auto-scaling feature. If given, two real
numbers should be supplied specifying the lower and upper data values in IN2,
between which data will be used. If a null (!) value is supplied, the values used are
the auto-scaled values, calculated according to the value of PCRANGE. Note, this
parameter controls the range of data used in the fitting algorithm. The range of data
displayed in the plot can be specified separately using Parameters XLEFT, XRIGHT,
YBOT, and YTOP. [!]

DEVICE = DEVICE (Read)
The graphics workstation on which to produce the plot. If a null value (!) is supplied
no plot will be made. [Current graphics device]

DRAWMARK = _LOGICAL (Read)
The central markers for each bin are not included in the plot if this parameter is set to
FALSE. [TRUE]

DRAWWIDTH = _LOGICAL (Read)
The “error bars” marking the width of each bin are not included in the plot if this
parameter is set to FALSE. [TRUE]

IN1 = NDF (Read)
The NDF to be normalised.

IN2 = NDF (Read)
The NDF to which IN1 will be normalised.

LOOP = _LOGICAL (Read)
If both IN1 and IN2 are two-dimensional, but one of them spans only a single row
or column, then setting LOOP to TRUE will cause every row or column in to be
normalised independently of each other. Specifically, if IN2 spans only a single row
or column, then it will be used to normalise each row or column of IN1 in turn. Any
output NDF (see Parameter OUT) will have the shape and size of IN1. If IN1 spans
only a single row or column, then it will be normalised in turn by each row or column
of IN2. Any output NDF (see Parameter OUT) will then have the shape and size of
IN2. In either case, the details of the fit for each row or column will be displayed
separately. Also see Parameters OUTSLOPE, OUTOFFSET, and OUTCORR. [FALSE]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave for axis annotation, given as fractions of the
corresponding dimension of the current picture. Four values may be given, in the
order bottom, right, top, left. If fewer than four values are given, extra values are used
equal to the first supplied value. If these margins are too narrow any axis annotation
may be clipped. If a null (!) value is supplied, the value used is 0.15 (for all edges) if
annotated axes are produced, and zero otherwise. [current value]

MARKER = _INTEGER (Read)
Specifies the symbol with which each position should be marked in the plot. It should
be given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot,
2 gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than
or equal to −31. [current value]

MINPIX = _INTEGER (Read)
The minimum number of good pixels required in a bin before it contributes to the
fitted line. It must be in the range 1 to the number of pixels per bin. [2]

545 NORMALIZE SUN/95.45 —Specifications of KAPPA applications

NBIN = _INTEGER (Read)
The number of bins to use when binning the scatter plot prior to fitting a straight line,
in the range 2 to 10000. [50]

NITER = _INTEGER (Read)
The number of iterations performed to reject bad data values in the range 0 to 100.
[2]

NSIGMA = _REAL (Read)
The number of standard deviations at which bad data are rejected. It must lie in the
range 0.1 to 1.0E6. [3.0]

OUT = NDF (Write)
An optional output NDF to hold a version of IN1 which is normalised to IN2. A null
(!) value indicates that an output NDF is not required. See also Parameter LOOP.

OUTCORR = NDF (Write)
An optional 1-dimensonal output NDF to hold the correlation coefficient for each row
or column when LOOP=YES. See Parameter CORR. Ignored if LOOP=NO. [!]

OUTOFFSET = NDF (Write)
An optional 1-dimensonal output NDF to hold the offset used for each row or column
when LOOP=YES. See Parameter OFFSET. Ignored if LOOP=NO. [!]

OUTSLOPE = NDF (Write)
An optional 1-dimensonal output NDF to hold the slope used for each row or column
when LOOP=YES. See Parameter SLOPE. Ignored if LOOP=NO. [!]

PCRANGE(2) = _REAL (Read)
This parameter takes two real values in the range 0 to 100 and is used to modify
the action of the auto-scaling algorithm which selects the data to use in the fitting
algorithm. The two values correspond to the percentage points in the histogram of
IN2 at which the lower and upper cuts on data value are placed. With the default
value, the plots will omit those pixels that lie in the lower and upper two-percent
intensity range of IN2. Note, this parameter controls the range of data used in the
fitting algorithm. The range of data displayed in the plot can be specified separately
using Parameters XLEFT, XRIGHT, YBOT, and YTOP. [2,98]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes, data values, error bars, and best-fitting line.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with

SUN/95.45 —Specifications of KAPPA applications 546 NORMALIZE

a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the best-fitting straight line is controlled by the attributes
Colour(Curves), Width(Curves), etc. (the synonym Line may be used in place of Curves).
The appearance of markers is controlled by Colour(Markers), Width(Markers), etc. (the
synonym Symbols may be used in place of Markers). The appearance of the error bars
is controlled using Colour(ErrBars), Width(ErrBars), etc. Note, Size(ErrBars) controls
the length of the serifs (i.e. the cross pieces at each end of the error bar), and defaults
to 1.0. [current value]

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN1 to be used instead. [!]

XLEFT = _DOUBLE (Read)
The axis value to place at the left hand end of the horizontal axis of the plot. If a null
(!) value is supplied, the value used is the minimum data value used by the fitting
algorithm from IN2 (with a small margin). The value supplied may be greater than
or less than the value supplied for XRIGHT. [!]

XRIGHT = _DOUBLE (Read)
The axis value to place at the right hand end of the horizontal axis of the plot. If a
null (!) value is supplied, the value used is the maximum data value used by the
fitting algorithm from IN2 (with a small margin). The value supplied may be greater
than or less than the value supplied for XLEFT. [!]

YBOT = _DOUBLE (Read)
The axis value to place at the bottom end of the vertical axis of the plot. If a null
(!) value is supplied, the value used is the minimum data value used by the fitting
algorithm from IN1 (with a small margin). The value supplied may be greater than
or less than the value supplied for YTOP. []

YTOP = _DOUBLE (Read)
The axis value to place at the top end of the vertical axis of the plot. If a null (!) value
is supplied, the value used is the maximum data value used by the fitting algorithm
from IN1 (with a small margin). The value supplied may be greater than or less than
the value supplied for YBOT. [!]

ZEROFF = _LOGICAL (Read)
If TRUE, the offset of the linear fit is constrained to be zero. [FALSE]

Results Parameters:

CORR = _REAL (Write)
Pearson’s coefficient of linear correlation for the data included in the last fit.

OFFSET = _REAL (Write)
The offset in the linear normalisation expression: IN1 = SLOPE ∗ IN2 + OFFSET.

SLOPE = _REAL (Write)
The slope of the linear normalisation expression: IN1 = SLOPE ∗ IN2 + OFFSET.

547 NORMALIZE SUN/95.45 —Specifications of KAPPA applications

Examples:
normalize cl123a cl123b cl123c

This normalises NDF cl123a to the NDF cl123b. A plot of the fit is made on the
current graphics device, and the resulting normalisation scale and offset are written only
to the normalize.sdf parameter file (as in the all the examples below except where noted).
The NDF cl123c is the normalised version of the input cl123a.

normalize cl123a cl123b style="’size(errba)=0,title=Gain calibration’"

This normalises NDF cl123a to the NDF cl123b. A plot of the fit is made on the
current graphics device with the title "Gain calibration". The error bars are drawn with
no serifs.

normalize cl123a cl123b cl123c offset=(shift) slope=(scale)

This normalises NDF cl123a to the NDF cl123b. A plot of the fit is made on the
current graphics device. The resulting normalisation scale and offset are written to the
ICL variables SCALE and SHIFT respectively, where they could be passed to another
application via an ICL procedure. The NDF cl123c is the normalised version of the input
cl123a.

normalize in2=old in1=new out=! device=xwindows style=^normstyle

This normalises NDF new to the NDF old. A plot of the fit is made on the xwindows
device, using the plotting style defined in text file normstyle. No output NDF is produced.

normalize in1=new in2=old out=young niter=5 pcrange=[3,98.5]

This normalises NDF new to the NDF old. It has five iterations to reject outliers
from the linear regression, and forms the regression using pixels in old whose data values
lie between the 3 and 98.5 percentiles, comparing with the corresponding pixels in new. A
plot of the fit is made on the current graphics device. The NDF young is the normalised
version of the input new.

Notes:

• The application stores two pictures in the graphics database in the following order:
a FRAME picture containing the annotated axes and data plot, and a DATA picture
containing just the data plot. Note, the FRAME picture is only created if annotated
axes have been drawn, or if non-zero margins were specified using Parameter MAR-
GIN. The world co-ordinates in the DATA picture will correspond to data value in
the two NDFs.

Related Applications :

CCDPACK: MAKEMOS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEMOS

SUN/95.45 —Specifications of KAPPA applications 548 NORMALIZE

Implementation Status:

• The routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF, and propagates all
extensions to the output NDF. All propagated components come from the NDF to be
normalised.

• At the moment, variance values are not used in the fitting algorithm but are modified
in the output NDF to take account of the scaling introduced by the normalisation. (A
later version may take account of variances in the fitting algorithm.)

• Processing of bad pixels and automatic quality masking are supported.

• Only _REAL data can be processed directly. Other non-complex numeric data types
will undergo a type conversion before processing occurs. _DOUBLE data cannot be
processed due to a loss of precision.

• The pixel bounds of the two input NDFs are matched by trimming before calculating
the normalisation constants, and are mapped as vectors to allow processing of NDFs
of any dimensionality. An output NDF may optionally be produced which is based
on the first input NDF (IN1) by applying the calculated normalisation constants to
IN1.

549 NUMB SUN/95.45 —Specifications of KAPPA applications

NUMB
Counts the number of elements of an NDF with values or absolute

values above or below a threshold

Description:
This routine counts and reports the number of elements of an array within an input
NDF structure that have a value or absolute value greater or less than a specified threshold.
This statistic is also shown as a percentage of the total number of array elements.

Usage:
numb in value [comp]

Parameters:

ABS = _LOGICAL (Read)
If ABS=TRUE, the criterion is a comparison of the absolute value with the threshold;
if FALSE, the criterion is a comparison of the actual value with the threshold. The
current value is the suggested default. [FALSE]

ABOVE = _LOGICAL (Read)
If ABOVE=TRUE the criterion tests whether values are greater than the threshold; if
FALSE the criterion tests whether values are less than the threshold. The current value
of ABOVE is the suggested default. [TRUE]

COMP = LITERAL (Read)
The components whose flagged values are to be substituted. It may be "Data",
"Error", "Variance", or "Quality". If "Quality" is specified, then the quality values
are treated as numerical values in the range 0 to 255. ["Data"]

IN = NDF (Read)
Input NDF structure containing the array to be tested.

VALUE = _DOUBLE (Read)
Threshold against which the values of the array elements will be tested. It must lie
in within the minimum and maximum values of the data type of the array being
processed, unless ABS=TRUE or the component is the variance or quality array, in
which case the minimum is zero. The suggested default is the current value.

Results Parameters:

NUMBER = _INTEGER (Write)
The number of elements that satisfied the criterion.

Examples:
numb image 100

This counts the number of elements in the data array of the NDF called image
that exceed 100.

SUN/95.45 —Specifications of KAPPA applications 550 NUMB

numb spectrum 100 noabove

This counts the number of elements in the data array of the NDF called spectrum that are
less than 100.

numb cube 100 abs

This counts the number of elements in the data array of the NDF called cube
whose absolute values exceed 100.

numb image −100 number=(count)

This counts the number of elements in the data array of the NDF called image
that exceed −100 and write the number to ICL variable COUNT.

numb image 200 v

This counts the number of elements in the variance array of the NDF called im-
age that exceed 200.

Implementation Status:

• This routine correctly processes the DATA, QUALITY, TITLE, and VARIANCE com-
ponents of an NDF data structure.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

• Huge NDFs are supported.

551 ODDEVEN SUN/95.45 —Specifications of KAPPA applications

ODDEVEN
Removes odd-even defects from a one-dimensional NDF

Description:
This application forms a smoothed signal for a one-dimensional NDF whose elements
have oscillating biases. It averages the signal levels of alternating pixels. Both elements
must be good and not deviate from each other by more than a threshold for the averaging
to take place.

This application is intended for images exhibiting alternating patterns in columns or
rows, the so called odd-even noise, arising from electronic interference or readout through
different channels. However, you must supply a vector collapsed along the unaffected
axis, such that the vector exhibits the pattern. See task COLLAPSE using the Mode or
Median estimators. The smoothed image is then subtracted from the supplied vector to
yield the odd-even pattern.

Usage:
oddeven in out [thresh]

Parameters:
IN = NDF (Read)

The one-dimensional NDF containing the input array to be filtered.
OUT = NDF (Write)

The NDF to contain the filtered image.
THRESH = _DOUBLE (Read)

The maximum difference between adjacent elements for the averaging filter to be
applied. This allows anomalous pixels to be excluded. If null, !, is given, then there
is no limit. [!]

TITLE = LITERAL (Read)
The title of the output NDF. A null (!) value means using the title of the input NDF.
[!]

Examples:
oddeven raw clean

The one-dimensional NDF called raw is filtered such that adjacent pixels are
averaged to form the output NDF call clean.

oddeven out=clean in=raw thresh=20

As above except only those adjacent pixels whose values differ by no more than
20 are averaged.

Related Applications :

KAPPA: BLOCK, CHPIX, FFCLEAN, GLITCH, ZAPLIN; FIGARO: BCLEAN, CLEAN,
ISEDIT, TIPPEX.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_BCLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CLEAN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

SUN/95.45 —Specifications of KAPPA applications 552 ODDEVEN

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
WCS, and HISTORY components of an NDF data structure and propagates all exten-
sions.

• VARIANCE is merely propagated.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single- or double-precision floating point as appropriate.

553 OUTLINE SUN/95.45 —Specifications of KAPPA applications

OUTLINE
Draws an outline of a two-dimensional NDF

Description:
This application draws an outline of a two-dimensional NDF on the current graphics
device, aligning it with any existing plot.

Annotated axes can be produced (see Parameter AXES), and the appearance of the axes
and curve can be controlled in detail (see Parameter STYLE). The axes show co-ordinates
in the current co-ordinate Frame of the supplied NDF.

This command is a synonym for contour mode=bounds penrot=yes clear=no.

Usage:
outline ndf

Parameters:
AXES = _LOGICAL (Read)

TRUE if labelled and annotated axes are to be drawn around the plot, showing the
current co-ordinate Frame of the supplied NDF. The appearance of the axes can be
controlled using the STYLE parameter. [TRUE]

DEVICE = DEVICE (Read)
The plotting device. [current graphics device]

LABOUT = _LOGICAL (Read)
Specifies the position at which to place a label identifying the input NDF within the
plot. The label is drawn parallel to the first pixel axis. Two values should be supplied
for LABPOS. The first value specifies the distance in millimetres along the first pixel
axis from the centre of the bottom-left pixel to the left edge of the label. The second
value specifies the distance in millimetres along the second pixel axis from the centre
of the bottom-left pixel to the baseline of the label. If a null (!) value is given, no label
is produced. The appearance of the label can be set by using the STYLE parameter
(for instance "Size(strings)=2"). [current value]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the outline for axis annotation. The widths
should be given as fractions of the corresponding dimension of the current picture.
The actual margins used may be increased to preserve the aspect ratio of the DATA
picture. Four values may be given, in the order bottom, right, top, left. If fewer than
four values are given, extra values are used equal to the first supplied value. If these
margins are too narrow any axis annotation may be clipped. If a null (!) value is
supplied, the value used is 0.15 (for all edges) if annotated axes are being produced,
and zero otherwise. [current value]

NDF = NDF (Read)
NDF structure containing the two-dimensional image to be outlined.

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the outline and
annotated axes.

SUN/95.45 —Specifications of KAPPA applications 554 OUTLINE

A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the outline is controlled by the attributes Colour(Curves),
Width(Curves), etc. [current value]

Related Applications :

KAPPA: WCSFRAME, CONTOUR, PICDEF; CCDPACK: DRAWNDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_DRAWNDF

555 OUTSET SUN/95.45 —Specifications of KAPPA applications

OUTSET
Mask pixels inside or outside a specified circle in a two-dimensional

NDF

Description:
This routine assigns a specified value (which may be bad) to either the outside or inside of
a specified circle within a specified component of a given two-dimensional NDF .

Usage:
outset in out centre diam

Parameters:

CENTRE = LITERAL (Read)
The co-ordinates of the centre of the circle. The position must be given in the current
co-ordinate Frame of the NDF (supplying a colon ":" will display details of the
current co-ordinate Frame). The position should be supplied as a list of formatted axis
values separated by spaces or commas. See also Parameter USEAXIS. The current
co-ordinate Frame can be changed using task WCSFRAME.

COMP = LITERAL (Read)
The NDF array component to be masked. It may be "Data", or "Variance", or
"Error" (where "Error" is equivalent to "Variance"). ["Data"]

CONST = LITERAL (Given)
The constant numerical value to assign to the masked pixels, or the string "bad".
["bad"]

DIAM = LITERAL (Read)
The diameter of the circle. If the current co-ordinate Frame of the NDF is a SKY Frame
(e.g. RA and DEC), then the value should be supplied as an increment of celestial
latitude (e.g. DEC). Thus, "10.2" means 10.2 arcseconds, "30:0" would mean 30
arcminutes, and "1:0:0" would mean 1 degree. If the current co-ordinate Frame is
not a SKY Frame, then the diameter should be specified as an increment along Axis
1 of the current co-ordinate Frame. Thus, if the current Frame is PIXEL, the value
should be given simply as a number of pixels.

IN = NDF (Read)
The name of the source NDF.

INSIDE = _LOGICAL (Read)
If a TRUE value is supplied, the constant value is assigned to the inside of the circle.
Otherwise, it is assigned to the outside. [FALSE]

OUT = NDF (Write)
The name of the masked NDF.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

SUN/95.45 —Specifications of KAPPA applications 556 OUTSET

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of strings should be supplied designating the axes that are to be
used when specifying the circle via Parameters CENTRE and DIAM. Each axis can
be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are used. [!]

Examples:
outset neb1 nebm "13.5,201.3" 20 const=0

This copies NDF neb1 to nebm, setting pixels to zero in the DATA array if they
fall outside the specified circle. Assuming the current co-ordinate Frame of neb1 is PIXEL,
the circle is centred at pixel co-ordinates (13.5, 201.3) and has a diameter of 20 pixels.

outset neb1 nebm "15:23:43.2 -22:23:34.2" "10:0" inside comp=var

This copies NDF neb1 to nebm, setting pixels bad in the variance array if they
fall inside the specified circle. Assuming the current co-ordinate Frame of neb1 is a
SKY Frame describing RA and DEC, the aperture is centred at RA 15:23:43.2 and DEC
-22:23:34.2, and has a diameter of 10 arcminutes.

Related Applications :

KAPPA: ARDMASK, REGIONMASK.

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, QUALITY, LABEL, TITLE,
UNITS, HISTORY, and VARIANCE components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• Bad pixels and quality masking are supported.

• All non-complex numeric data types can be handled.

557 PALDEF SUN/95.45 —Specifications of KAPPA applications

PALDEF
Loads the default palette to a colour table

Description:
This application loads the standard palette of colours to fill the portion of the current
graphics device’s colour table which is reserved for the palette. The palette comprises 16
colours and is intended to provide coloured annotations, borders, axes, graphs etc. that
are unaffected by changes to the lookup table used for images.

The standard palette is as follows 0: Black 1: White 2: Red 3: Green 4: Blue 5: Yellow 6:
Magenta 7: Cyan 8–15: Black

Usage:
paldef [device]

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device to be used. [Current graphics device]

Examples:
paldef

This loads the standard palette into the reserved portion of the colour table of
the current graphics device.

paldef xwindows

This loads the standard palette into the reserved portion of the colour table of
the xwindows device.

Notes:

• The effects of this command will only be immediately apparent when run on X
windows which have 256 colours (or other similar pseudocolour devices). On other
devices (for instance, X windows with more than 256 colours) the effects will only
become apparent when subsequent graphics applications are run.

Related Applications :

KAPPA: PALENTRY, PALREAD, PALSAVE.

SUN/95.45 —Specifications of KAPPA applications 558 PALENTRY

PALENTRY
Enters a colour into an graphics device’s palette

Description:
This application obtains a colour and enters it into the palette portion of the current
graphics device’s colour table. The palette comprises up to 16 colours and is intended to
provide coloured annotations, borders, axes, graphs etc. that are unaffected by changes to
the lookup table used for images.

A colour is specified either by the giving the red, green, blue intensities; or named colours.

Usage:
palentry palnum colour [device]

Parameters:

COLOUR() = LITERAL (Read)
A colour to be added to the palette at the entry given by Parameter PALNUM. It is
one of the following options.

• A named colour from the standard colour set, which may be abbreviated. If
the abbreviated name is ambiguous the first match (in alphabetical order) is
selected. The case of the name is ignored. Some examples are "Pink", "Yellow",
"Aquamarine", and "Orchid".
• Normalised red, green, and blue intensities separated by commas or spaces. Each

value must lie in the range 0.0–1.0. For example, "1.0,1.0,0.5" would give a
pale yellow.
• An HTML colour code such as #ff002d.

DEVICE = DEVICE (Read)
Name of the graphics device to be used. [Current graphics device]

PALNUM = _INTEGER (Read)
The number of the palette entry whose colour is to be modified. PALNUM must lie
in the range zero to the minimum of 15 or the number of colour indices minus one.
The suggested default is 1.

Examples:
palentry 5 gold

This makes palette entry number 5 have the colour gold in the reserved portion
of the colour table of the current image display.

palentry 12 [1.0,1.0,0.3] xwindows

This makes the xwindows device’s palette entry number 12 have a pale-yellow
colour.

559 PALENTRY SUN/95.45 —Specifications of KAPPA applications

Notes:

• The effects of this command will only be immediately apparent when run on X
windows which have 256 colours (or other similar pseudocolour devices). On other
devices (for instance, X windows with more than 256 colours) the effects will only
become apparent when subsequent graphics applications are run.

Related Applications :

KAPPA: PALDEF, PALREAD, PALSAVE.

SUN/95.45 —Specifications of KAPPA applications 560 PALREAD

PALREAD
Fills the palette of a colour table from an NDF

Description:
This application reads a palette of colours from an NDF , stored as red, green and
blue intensities, to fill the portion of the current graphics device’s colour table which
is reserved for the palette. The palette comprises 16 colours and is intended to provide
coloured annotations, borders, axes, graphs etc. that are unaffected by changes to the
lookup table used for images.

Usage:
palread palette [device]

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device to be used. [Current graphics device]

PALETTE = NDF (Read)
The name of the NDF containing the palette of reserved colours as its data array. The
palette must be two-dimensional, the first dimension being 3, and the second 16. If
the second dimension is greater than 16 only the first 16 colours are used; if it has less
than 16 just fill as much of the palette as is possible starting from the first colour. The
palette’s values must lie in the range 0.0–1.0.

Examples:
palread rustic

This loads the palette stored in the NDF called rustic into the reserved portion
of the colour table of the current graphics device.

palread rustic xwindows

This loads the palette stored in the NDF called rustic into the reserved portion
of the colour table of the xwindows device.

Notes:

• The effects of this command will only be immediately apparent when run on X
windows which have 256 colours (or other similar pseudocolour devices). On other
devices (for instance, X windows with more than 256 colours) the effects will only
become apparent when subsequent graphics applications are run.

Related Applications :

KAPPA: PALDEF, PALENTRY, PALSAVE.

561 PALSAVE SUN/95.45 —Specifications of KAPPA applications

PALSAVE
Saves the current palette of a colour table to an NDF

Description:
This application reads the palette portion of the current graphics device’s colour table
and saves it in an NDF . The palette comprises 16 colours and is intended to provide
coloured annotations, borders, axes, graphs etc. that are unaffected by changes to the
lookup table used for images. Thus once you have established a palette of colours you
prefer, it is straightforward to recover the palette at a future time.

Usage:
palsave palette [device] [title]

Parameters:

DEVICE = DEVICE (Read)
Name of the graphics device to be used. [Current graphics device]

PALETTE = NDF (Write)
The NDF in which the current colour-table reserved pens are to be stored. Thus if
you have created non-standard colours for annotation, doodling, colour of axes etc.
they may be stored for future use.

TITLE = LITERAL (Read)
Title for the output NDF. ["KAPPA - Palsave"]

Examples:
palsave rustic

This saves the palette of the colour table of the current graphics device into the
NDF called rustic.

palsave hitec xwindows title="Hi-tech-look palette"

This saves the palette of the colour table of the xwindows device in the NDF
called hitec. The NDF has a title called "Hi-tech-look palette".

Related Applications :

KAPPA: PALDEF, PALENTRY, PALREAD.

SUN/95.45 —Specifications of KAPPA applications 562 PARGET

PARGET
Obtains the value or values of an application parameter

Description:
This application reports the value or values of a parameter from a named task. It does
this by searching the parameter file of the task. The purpose is to offer an easier-to-use
interface for passing values (especially results parameters) between tasks in shell scripts.
The values are formatted in lines with as many values as can be accommodated across the
screen up to a maximum of 132 characters; values are space separated. However, in scripts
the values are likely to be written to a script variable. Thus for example in the C-shell:

set med = ‘parget median histat‘

would redirect the output to shell variable med, and thus a reference to $med would
substitute the median value obtained the last time application HISTAT was invoked. If the
parameter comprises a vector of values these can be stored in a C-shell array. For instance,

set perval = ‘parget perval histat‘

would assign elements of the shell array perval[1], perval[2], etc. to the last-computed
percentile values of HISTAT. For other scripting languages such as Python, the alternative
vector format produced by setting Parameter VECTOR to TRUE may be more appropriate.

Single elements of an parameter array may also be accessed using the array index in
parentheses.

Usage:
parget parname applic

Parameters:

APPLIC = LITERAL (Read)
The name of the application from which the parameter comes.

PARNAME = LITERAL (Read)
The parameter whose value or values are to be reported.

VECTOR = _LOGICAL (Read)
If TRUE, then vector parameters will be displayed as a comma-separated list of values
enclosed in square brackets. If FALSE, vector values are printed as a space-separated
list with no enclosing brackets. Additionally, if VECTOR is TRUE, string values
(whether vector or scalar) are enclosed in single quotes and any embedded quotes
are escaped using a backslash. [FALSE]

Examples:
parget mean stats

Report the value of Parameter MEAN for the application STATS.

parget mincoord \

563 PARGET SUN/95.45 —Specifications of KAPPA applications

This reports the values of Parameter MINCOORD of the current application, in
this case STATS.

parget applic=ndftrace parname=flabel(2)

This reports the value of the second element of Parameter FLABEL for the appli-
cation NDFTRACE.

Notes:

• The parameter file is located in the $ADAM_USER directory, if defined, otherwise in the
adam subdirectory of $HOME. If it cannot be located there, the task reports an error.

• The parameter must exist in the selected application parameter file and not be a
structure, except one of type ADAM_PARNAME.

• This task is not designed for use with ICL, where passing parameter values is quite
straightforward. It does not operate with monolith parameter files.

SUN/95.45 —Specifications of KAPPA applications 564 PASTE

PASTE
Pastes a series of NDFs upon each other

Description:
This application copies a series of NDFs , in the order supplied and taking account of
origin information, on to a ‘base’ NDF to produce an output NDF. The output NDF is
therefore a copy of the base NDF obscured wholly or partially by the other input NDFs.
This operation is analogous to pasting in publishing. It is intended for image editing and
the creation of insets.

The dimensions of the NDFs may be different, and indeed so may their dimensionalities.
The output NDF can be constrained to have the dimensions of the base NDF, so the pasted
NDFs are clipped. Normally, the output NDF will have dimensions such that all the input
NDFs are accommodated in full.

Bad values in the pasted NDFs are by default transparent, so the underlying data are not
replaced during the copying.

Input NDFs can be shifted in pixel space before pasting them into the output NDF (see
Parameter SHIFT).

Usage:
paste in p1 [p2] ... [p25] out=?

Parameters:

CONFINE = _LOGICAL (Read)
This parameter controls the dimensions of the output NDF. If CONFINE is FALSE the
output NDF just accommodates all the input NDFs. If CONFINE is TRUE, the output
NDF’s dimensions matches those of the base NDF. [FALSE]

IN = NDF (Read)
This parameter is either:
a) the base NDF on to which the other input NDFs supplied via Parameters P1 to P25
will be pasted; or
b) a group of input NDFs (of any dimensionality) comprising all the input NDFs, of
which the first is deemed to be the base NDF, and the remainder are to be pasted in
the order supplied.
The group should be given as a comma-separated list, in which each list element can
be:

• an NDF name, optionally containing wild-cards and/or regular expressions ("∗",
"?", "[a-z]" etc.).
• the name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc.), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

565 PASTE SUN/95.45 —Specifications of KAPPA applications

If the value supplied for this parameter ends with a hyphen "-", then you are re-
prompted for further input until a value is given which does not end with a hyphen.
All the NDFs given in this way are concatenated into a single group.
The group can contain no more than 1000 names.

OUT = NDF (Write)
The NDF resulting from pasting of the input NDFs on to the base NDF. Its dimensions
may be different from the base NDF. See Parameter CONFINE.

P1-P25 = NDF (Read)
The NDFs to be pasted on to the base NDF. The NDFs are pasted in the order P1, P2,
... P25. There can be no missing NDFs, e.g. in order for P3 to be processed there must
be a P2 given as well. A null value (!) indicates that there is no NDF. NDFs P2 to P25
are defaulted to !. At least one NDF must be pasted, therefore P1 may not be null.
P1 to P25 are ignored if the group specified through Parameter IN comprises more
than one NDF.

SHIFT(*) = _INTEGER (Read)
An incremental shift to apply to the pixel origin of each input NDF before pasting
it into the output NDF. If supplied, this parameter allows a set of NDFs with the
same pixel bounds to be placed ‘side-by-side’ in the output NDF. For instance, this
allows a set of images to be pasted into a cube. The first input NDF is not shifted.
The pixel origin of the second NDF is shifted by the number of pixels given in SHIFT.
The pixel origin of the third NDF is shifted by twice the number of pixels given in
SHIFT. Each subsequent input NDF is shifted by a further multiple of SHIFT. If null
(!) is supplied, no shifts are applied. [!]

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the base
NDF to the output NDF. [!]

TRANSP = _LOGICAL (Read)
If TRANSP is TRUE, bad values within the pasted NDFs are not copied to the output
NDF as if the bad values were transparent. If TRANSP is FALSE, all values are copied
during the paste and a bad value will obscure an underlying value. [TRUE]

Examples:
paste aa inset out=bb

This pastes the NDF called inset on to the arrays in the NDF called aa to pro-
duce the NDF bb. Bad values are transparent. The bounds and dimensionality of bb may
be larger than those of aa.

paste aa inset out=bb notransp

As above except that bad values are copied from the NDF inset to NDF bb.

paste aa inset out=bb confine

As the first example except that the bounds of NDF bb match those of NDF
aa.

SUN/95.45 —Specifications of KAPPA applications 566 PASTE

paste in="aa,inset" out=bb

The same as the first example.

paste in="aa,inset,inset2,inset3" out=bb

Similar to first example, but now two further NDFs inset2 and inset3 are also
pasted.

paste ccd fudge inset out=ccdc

This pastes the NDF called fudge, followed by NDF inset on to the arrays in the
NDF called ccd to produce the NDF ccdc. Bad values are transparent. The bounds and
dimensionality of ccd may be larger than those of ccdc.

paste in="canvas,^shapes.lis" out=collage confine

This pastes the NDFs listed in the text file shapes.lis in the order given on the
NDF called canvas. Bad values are transparent. The bounds of NDF collage match those
of NDF canvas.

paste in=^planes out=cube shift=[0,0,1]

Assuming the text file planes contains a list of two-dimensional NDFs, this ar-
ranges them into a cube, one behind the other.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY, components of an NDF data structure and
propagates all extensions. Propagation is from the base NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

567 PERMAXES SUN/95.45 —Specifications of KAPPA applications

PERMAXES
Permute an NDF’s pixel axes

Description:
This application re-orders the pixel axes of an NDF , together with all related information
(AXIS structures, and the axes of all co-ordinate Frames stored in the WCS component of
the NDF).

Usage:
permaxes in out perm

Parameters:

IN = NDF (Read)
The input NDF data structure.

OUT = NDF (Write)
The output NDF data structure.

PERM() = _INTEGER (Read)
A list of integers defining how the pixel axes are to be permuted. The list must contain
one element for each pixel axis in the NDF. The first element is the index of the pixel
axis within the input NDF which is to become Axis 1 in the output NDF. The second
element is the index of the pixel axis within the input NDF which is to become Axis 2
in the output NDF, etc. Axes are numbered from 1.

TITLE = LITERAL (Read)
A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
permaxes a b [2,1]

Swaps the axes in the two-dimensional NDF called a, to produce a new two-dimensional
NDF called b.

permaxes a b [3,1,2]

Creates a new three-dimensional NDF called b in which Axis 1 corresponds to
Axis 3 in the input three-dimensional NDF called a, Axis 2 corresponds to input Axis 1,
Axis 3 corresponds to input Axis 2.

Notes:

• If any WCS co-ordinate Frame has more axes then the number of pixel axes in the
NDF, then the high numbered surplus axes in the WCS Frame are left unchanged.

SUN/95.45 —Specifications of KAPPA applications 568 PERMAXES

• If any WCS co-ordinate Frame has fewer axes then the number of pixel axes in the
NDF, then the Frame is left unchanged if the specified permutation would change
any of the high numbered surplus pixel axes. A warning message is issued if this
occurs.

Related Applications :

KAPPA: ROTATE, FLIP; FIGARO: IREVX, IREVY, IROT90.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. The data type of the input
pixels is preserved in the output NDF.

• Huge NDFs are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IROT90

569 PICBASE SUN/95.45 —Specifications of KAPPA applications

PICBASE
Selects the BASE picture from the graphics database.

Description:
This command selects the BASE picture. Subsequent plotting for the chosen device will
be in this new current picture. The BASE picture is the largest picture available, and
encompasses all other pictures. By default the chosen device is the current one.

This command is a synonym for piclist picnum=1.

Usage:
picbase

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picbase

This selects the BASE picture for the current graphics device.

picbase device=x2w

This selects the BASE picture for the x2w device.

Related Applications :

KAPPA: PICCUR, PICDATA, PICFRAME, PICLAST, PICLIST, PICSEL.

SUN/95.45 —Specifications of KAPPA applications 570 PICCUR

PICCUR
Uses a graphics cursor to change the current picture

Description:
This application allows you to select a new current picture in the graphics database using
the cursor. Each time a position is selected (usually by pressing a button on the mouse),
details of the topmost picture in the AGI database which encompasses that position are
displayed, together with the cursor position (in millimetres from the bottom -left corner of
the graphics device). On exit the last picture selected becomes the current picture.

Usage:
piccur [device] [name]

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

NAME = LITERAL (Read)
Only pictures of this name are to be selected. For instance, if you want to select a
DATA picture which is covered by a transparent FRAME picture, then you could
specify NAME="DATA". A null (!) or blank string means that pictures of all names
may be selected. [!]

SINGLE = _LOGICAL (Read)
If TRUE then the user can supply only one position using the cursor, where-upon the
application immediately exits, leaving the selected picture as the current picture. If
FALSE is supplied, then the user can supply multiple positions. Once all positions
have been supplied, a button is pressed to indicate that no more positions are required.
[FALSE]

Examples:
piccur

This selects a picture on the current graphics device by use of the cursor. The
picture containing the last-selected point becomes the current picture.

piccur name=data

This is like the previous example, but only DATA pictures can be selected.

Notes:

• Nothing is displayed on the screen when the message filter environment variable
MSG_FILTER is set to QUIET.

Related Applications :

571 PICCUR SUN/95.45 —Specifications of KAPPA applications

KAPPA: CURSOR, PICBASE, PICDATA, PICEMPTY, PICENTIRE, PICFRAME, PICLIST,
PICSEL, PICVIS.

SUN/95.45 —Specifications of KAPPA applications 572 PICDATA

PICDATA
Selects the last DATA picture from the graphics database.

Description:
This command selects the last-created DATA picture. Subsequent plotting for the chosen
device will be in this new current picture. By default the chosen device is the current one.

This command is a synonym for piclist name=data picnum=last.

Usage:
picdata

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picdata

This selects the last DATA picture for the current graphics device.

picdata device=xw

This selects the last DATA picture for the xw device.

Related Applications :

KAPPA: PICCUR, PICBASE, PICFRAME, PICLAST, PICLIST, PICSEL.

573 PICDEF SUN/95.45 —Specifications of KAPPA applications

PICDEF
Defines a new graphics-database FRAME picture or an array of

FRAME pictures

Description:
This application creates either one new graphics-database FRAME picture or a grid of
new FRAME pictures. It offers a variety of ways by which you can define a new picture’s
location and extent. You may constrain a new picture to lie within either the current or the
BASE picture, and the new picture adopts the world co-ordinate system of that reference
picture.

You may specify a single new picture using one of three methods: 1. moving a cursor to
define the lower and upper bounds via pressing choice number 1 (the application will
instruct what to do for the specific graphics device), provided a cursor is available on the
chosen graphics workstation; 2. obtaining the bounds from the environment (in world
co-ordinates of the reference picture); 3. or by giving a position and size for the new
picture. The position is specified by a two-character code. The first controls the vertical
location, and may be "T", "B", or "C" to create the new picture at the top, bottom, or in the
centre respectively. The second defines the horizontal situation, and may be "L", "R", or
"C" to define a new picture to the left, right, or in the centre respectively. Thus a code of
"BR" will make a new picture in the bottom-right corner. The size of the new picture along
each axis may be specified either in centimetres, or as a fraction of the corresponding axis
of the reference picture. The picture may also be forced to have a specified aspect ratio.

The picture created becomes the current picture on exit.

Alternatively, you can create an array of n-by-m equal-sized pictures by giving the number
of pictures in the horizontal and vertical directions. These may or may not be abutted. For
easy reference in later processing the pictures may be labelled automatically. The label
consists of a prefix you define, followed by the number of the picture. The numbering
starts at a defined value, usually one, and increments by one for each new picture starting
from the bottom-left corner and moving from left to right to the end of the line. This is
repeated in each line until the top-right picture. Thus if the prefix were "GALAXY", the start
number is one and the array comprises three pictures horizontally and two vertically, the
top-left picture would have the label "GALAXY4". On completion the bottom-left picture in
the array becomes the current picture.

Usage:

picdef [mode] [fraction]

 xpic ypic prefix=?

lbound=? ubound=?
mode

Parameters:

ASPECT = _REAL (Read)
The aspect ratio (x/y) of the picture to be created in modes other than Cursor, Array,
and XY. The new picture is the largest possible with the chosen aspect ratio that

SUN/95.45 —Specifications of KAPPA applications 574 PICDEF

will fit within the part of the reference picture defined by the fractional sizes (see
Parameter FRACTION). The justification comes from the value of MODE. Thus to
obtain the largest picture, set FRACTION=1.0. A null value (!) does not apply an
aspect-ratio constraint, and therefore the new picture fills the part of the reference
picture defined by the fractional sizes. [!]

CURRENT = _LOGICAL (Read)
TRUE if the new picture is to lie within the current picture, otherwise the new picture
can lie anywhere within the BASE picture. In other words, when it is TRUE the current
picture is the reference picture, and when FALSE, the base is the reference picture.
[FALSE]

DEVICE = DEVICE (Read)
The graphics device. [Current graphics device]

FILL = _REAL (Read)
The linear filling factor for the Array mode. In other words the fractional size (applied
to both co-ordinates) of the new picture within each of the XPIC ∗ YPIC abutted
sections of the picture being sub-divided. Each new picture is located centrally within
the section. A filling factor of 1.0 means that the pictures in the array abut. Smaller
factors permit a gap between the pictures. For example, FILL = 0.9 would give a gap
between the created pictures of 10 per cent of the height and width of each picture,
with exterior borders of 5 per cent. FILL must lie between 0.1 and 1.0. [1.0]

FRACTION() = _REAL (Read)
The fractional size of the new picture along each axis, applicable for modes other than
Array, Cursor, and XY. Thus FRACTION controls the relative shape as well as the
size of the new picture. If only a single value is given then it is applied to both x and
y axes, whereupon the new picture has the shape of the reference picture. So a value
of 0.5 would create a picture 0.25 the area of the current or BASE picture. The default
is 0.5, unless Parameter ASPECT is not null, when the default is 1.0. This parameter
is not used if the picture size is specified in centimetres using Parameter SIZE. []

LABELNO = _INTEGER (Read)
The number used to form the label for the first (bottom-left) picture in Array mode. It
cannot be negative. [1]

LBOUND(2) = _REAL (Read)
Co-ordinates of the lower bound that defines the new picture. The suggested default
is the bottom-left of the current picture. (XY mode)

MODE = LITERAL (Read)
Method for selecting the new picture. The options are "Cursor" for cursor mode
(provided the graphics device has one), "XY" to select x-y limits, and "Array" to
create a grid of equal-sized FRAME pictures. The remainder are locations specified
by two characters, the first corresponding to the vertical position and the second the
horizontal. For the vertical, valid positions are T(op), B(ottom), or C(entre); and for
the horizontal the options are L(eft), R(ight), or C(entre). ["Cursor"]

OUTLINE = _LOGICAL (Read)
If TRUE, a box that delimits the new picture is drawn. [TRUE]

PREFIX = LITERAL (Read)
The prefix to be given to the labels of picture created in Array mode. It should contain
no more than twelve characters. If the empty string "" is given, the pictures will have

575 PICDEF SUN/95.45 —Specifications of KAPPA applications

enumerated labels. Note that the database can contain only one picture with a given
label, and so merely numbering labels increases the chance of losing existing labels.
A ! response means no labelling is required. The suggested default is the last-used
prefix.

SIZE(2) = _REAL (Read)
The size of the new picture along both axes, in centimetres, applicable for modes
other than Array, Cursor, and XY. If a single value is given, it is used for both axes.
If a null value (!) is given, then the size of the picture is determined by Parameter
FRACTION. [!]

UBOUND(2) = _REAL (Read)
Co-ordinates of the upper bound that defines the new picture. The suggested default
is the top-right of the current picture. (XY mode)

XPIC = _INTEGER (Read)
The number of new pictures to be formed horizontally in the BASE or current picture
in Array mode. The total number of new pictures is XPIC ∗ YPIC. The value must lie
in the range 1–20. The suggested default is 2.

YPIC = _INTEGER (Read)
The number of new pictures to be formed vertically in the BASE or current picture in
Array mode. The value must lie in the range 1–20. The suggested default is the value
of Parameter XPIC.

Examples:
picdef tr

Creates a new FRAME picture in the top-right quarter of the full display area
on the current graphics device, and an outline is drawn around the new picture. This
picture becomes the current picture.

picdef bl aspect=1.0

Creates a new FRAME picture within the full display area on the current graph-
ics device, and an outline is drawn around the new picture. This picture is the largest
square possible, and it is justified to the bottom-left corner. It becomes the current picture.

picdef bl size=[15,10]

Creates a new FRAME picture within the full display area on the current graph-
ics device, and an outline is drawn around the new picture. This picture is 15 by 10
centimetres in size and it is justified to the bottom-left corner. It becomes the current
picture.

picdef cc 0.7 current nooutline

Creates a new FRAME picture situated in the centre of the current picture on
the current graphics device. The new picture has the same shape as the current one, but
it is linearly reduced by a factor of 0.7. No outline is drawn around it. The new picture
becomes the current picture.

SUN/95.45 —Specifications of KAPPA applications 576 PICDEF

picdef cc [0.8,0.5] current nooutline

As above except that its height is half that of the current picture, and its width
is 0.8 of the current picture.

picdef cu device=graphon

Creates a new FRAME picture within the full display area of the Graphon de-
vice. The bounds of the new picture are defined by cursor interaction. An outline is drawn
around the new picture which becomes the current picture.

picdef mode=a prefix=M xpic=3 ypic=2

Creates six new equally sized and abutting FRAME pictures within the full dis-
play area of the current graphics device. All are outlined. They have labels M1, M2, M3,
M4, M5, and M6. The bottom-left picture (M1) becomes the current picture.

picdef mode=a prefix="" xpic=3 ypic=2 fill=0.8

As above except that the pictures do not abut since each is 0.8 times smaller in
both dimensions, and the labels are 1, 2, 3, 4, 5, and 6.

Related Applications :

KAPPA: PICBASE, PICCUR, PICDATA, PICFRAME, PICGRID, PICLABEL, PICLIST,
PICSEL, PICXY.

577 PICEMPTY SUN/95.45 —Specifications of KAPPA applications

PICEMPTY
Finds the first empty FRAME picture in the graphics database

Description:
This application selects the first, i.e. oldest, empty FRAME picture in the graphics
database for a graphics device. Empty means that there is no additional picture ly-
ing completely with its bounds. This implies that the FRAME is clear for plotting. This
task is probably most useful for plotting data in a grid of FRAME pictures.

Usage:
picempty [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picempty

This selects the first empty FRAME picture for the current graphics device.

picempty xwindows

This selects the first empty FRAME picture for the xwindows graphics device.

Notes:

• An error is returned if there is no empty FRAME picture, and the current picture
remains unchanged.

Related Applications :

KAPPA: PICENTIRE, PICGRID, PICLAST, PICLIST, PICSEL, PICVIS.

Timing :

The execution time is approximately proportional to the number of pictures in the database
before the first empty FRAME picture is identified.

SUN/95.45 —Specifications of KAPPA applications 578 PICENTIRE

PICENTIRE
Finds the first unobscured and unobscuring FRAME picture in the

graphics database

Description:
This application selects the first, i.e. oldest, FRAME picture in the graphics database for a
graphics device, subject to the following criterion. The picture must not obstruct any other
picture except the BASE, and must itself not be obstructed. Unobstructed means that there
is no younger picture overlying it either wholly or in part. This means that plotting can
occur within the selected FRAME picture without overwriting or obscuring earlier plots.

Usage:
picentire [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picentire

This selects the first unobscured and unobscuring FRAME picture for the current
graphics device.

picentire xwindows

This selects the first unobscured and unobscuring FRAME picture for the xwin-
dows graphics device.

Notes:

• An error is returned if there is no suitable FRAME picture, and the current picture
remains unchanged.

• This routine cannot know whether or a picture has been cleared, and hence is safe to
reuse, as such information is not stored in the graphics database.

Related Applications :

KAPPA: PICEMPTY, PICGRID, PICLAST, PICLIST, PICSEL, PICVIS.

Timing :

The execution time is approximately proportional to a linear combination of the number of
pictures in the database before the unobstructed FRAME picture is found, and the square
of the number of pictures in the database.

579 PICENTIRE SUN/95.45 —Specifications of KAPPA applications

SUN/95.45 —Specifications of KAPPA applications 580 PICFRAME

PICFRAME
Selects the last FRAME picture from the graphics database.

Description:
This command selects the last-created FRAME picture. Subsequent plotting for the chosen
device will be in this new current picture. By default the chosen device is the current one.

This command is a synonym for piclist name=frame picnum=last.

Usage:
picframe

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picframe

This selects the last FRAME picture for the current graphics device.

picframe device=xw

This selects the last FRAME picture for the xw device.

Related Applications :

KAPPA: PICBASE, PICCUR, PICDATA, PICLAST, PICLIST, PICSEL.

581 PICGRID SUN/95.45 —Specifications of KAPPA applications

PICGRID
Creates an array of FRAME pictures

Description:
This command creates a two-dimensional grid of equally sized new FRAME pictures in
the graphics database. The array of pictures do not have to abut, but abutting is the default.
The new pictures are formed within either the current or BASE picture, and they adopt the
world co-ordinate system of that enclosing picture. On completion, the bottom-left picture
in the array becomes the current picture.

For easy reference in later processing the pictures have integer labels. The numbering
starts at a defined value, usually one, and increments by one for each new picture starting
from the bottom-left corner and moving from left to right to the end of the line. This is
repeated in each line until the top-right picture.

This command is a synonym for picdef array 1.0 prefix="".

Usage:
picgrid xpic ypic

Parameters:

CURRENT = _LOGICAL (Read)
TRUE if the new pictures are to lie within the current picture, otherwise the new
pictures can lie anywhere within the BASE picture. In other words, when CURRENT
is TRUE the current picture is the reference picture, and when it is FALSE the BASE is
the reference picture. [FALSE]

DEVICE = DEVICE (Read)
The graphics device. [Current graphics device]

FILL = _REAL (Read)
The linear filling factor for the array. In other words the fractional size (applied to
both co-ordinates) of the new picture within each of the XPIC ∗ YPIC abutted sections
of the picture being sub-divided. Each new picture is located centrally within the
section. A filling factor of 1.0 means that the pictures in the array abut. Smaller
factors permit a gap between the pictures. For example, FILL=0.9 would give a gap
between the created pictures of 10 per cent of the height and width of each picture,
with exterior borders of 5 per cent. FILL must lie between 0.1 and 1.0. [1.0]

LABELNO = _INTEGER (Read)
The number used to form the label for the first (bottom-left) picture. It cannot be
negative. [1]

OUTLINE = _LOGICAL (Read)
If TRUE, a box that delimits the new picture is drawn. [TRUE]

XPIC = _INTEGER (Read)
The number of new pictures to be formed horizontally in the BASE picture. The total
number of new pictures is XPIC ∗ YPIC. The value must lie in the range 1–20. The
suggested default is 2.

SUN/95.45 —Specifications of KAPPA applications 582 PICGRID

YPIC = _INTEGER (Read)
The number of new pictures to be formed vertically in the BASE picture. The total
number of new pictures is XPIC ∗ YPIC. The value must lie in the range 1–20. The
suggested default is the value of Parameter XPIC.

Examples:
picgrid 3 2

Creates six new equally sized and abutting FRAME pictures within the full dis-
play area of the current graphics device. All the pictures are outlined. They have labels 1,
2, 3, 4, 5, and 6. The bottom-left picture (1) becomes the current picture.

picgrid xpic=3 ypic=2 fill=0.8 labelno=11 nooutline

As above except that the pictures do not abut since each is 0.8 times smaller in
both dimensions, the labels are 11 to 16, and there are no picture outlines drawn.

picgrid device=xw current

This creates a 2-by-2 grid of new FRAME pictures within the current picture on
device xw.

Related Applications :

KAPPA: PICCUR, PICDEF, PICLABEL, PICSEL, PICXY.

583 PICIN SUN/95.45 —Specifications of KAPPA applications

PICIN
Finds the attributes of a picture interior to the current picture

Description:
This application finds the attributes of a picture, selected by name, that was created since
the current picture and lies within the bounds of the current picture. The search starts from
the most-recent picture, unless the current picture is included, whereupon the current
picture is tested first.

The attributes reported are the name, comment, label, name of the reference data object,
the bounds in the co-ordinate Frame selected by Parameter FRAME.

Usage:
picin [name] [device] [frame]

Parameters:

CURRENT = _LOGICAL (Read)
If this is TRUE, the current picture is compared against the chosen name before search-
ing from the most-recent picture within the current picture. [FALSE]

DESCRIBE = _LOGICAL (Read)
This controls whether or not the report (when REPORT=TRUE) should contain a
description of the Frame being used. [FALSE]

DEVICE = DEVICE (Read)
Name of the graphics device about which information is required. [Current graphics
device]

EPOCH = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAME) for
a celestial co-ordinate system, then an epoch value is needed to qualify it. This is the
epoch at which the displayed sky co-ordinates were determined. It should be given
as a decimal years value, with or without decimal places ("1996.8" for example).
Such values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian
epoch otherwise.

FRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which the bounds of the picture are to
be reported. When a picture is created by an application such as PICDEF, DISPLAY,
the WCS information describing the available co-ordinate systems are stored with
the picture in the graphics database. This application can report bounds in any of the
co-ordinate Frames stored with the current picture. The string supplied for FRAME
can be one of the following:

• A domain name such as SKY, AXIS, PIXEL, NDC, BASEPIC, CURPIC. the special
domain AGI_WORLD is used to refer to the world co-ordinate system stored in
the AGI graphics database. This can be useful if no WCS information was store
with the picture when it was created.

SUN/95.45 —Specifications of KAPPA applications 584 PICIN

• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null value (!) is supplied, bounds are reported in the co-ordinate Frame which
was current when the picture was created. [!]

NAME = LITERAL (Read)
The name of the picture to be found within the current picture. If it is null (!), the
first interior picture is selected. [DATA]

PNAME = LITERAL (Write)
The name of the picture.

REPORT = _LOGICAL (Read)
If this is FALSE details of the picture are not reported, merely the results are written to
the output parameters. It is intended for use within procedures. [TRUE]

Results Parameters:

COMMENT = LITERAL (Write)
The comment of the picture. Up to 132 characters will be written.

DOMAIN = LITERAL (Write)
The Domain name of the current co-ordinate Frame for the picture.

LABEL = LITERAL (Write)
The label of the picture. It is blank if there is no label.

REFNAM = LITERAL (Write)
The reference object associated with the picture. It is blank if there is no reference object.
Up to 132 characters will be written.

X1 = LITERAL (Write)
The lowest value found within the picture for Axis 1 of the requested co-ordinate Frame
(see Parameter FRAME).

X2 = LITERAL (Write)
The highest value found within the picture for Axis 1 of the requested co-ordinate Frame
(see Parameter FRAME).

Y1 = LITERAL (Write)
The lowest value found within the picture for Axis 2 of the requested co-ordinate Frame
(see Parameter FRAME).

Y2 = LITERAL (Write)
The highest value found within the picture for Axis 2 of the requested co-ordinate Frame
(see Parameter FRAME).

Examples:
picin

This reports the attributes of the last DATA picture within the current picture
for the current graphics device. The bounds of the picture in its current co-ordinate Frame
are reported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

585 PICIN SUN/95.45 —Specifications of KAPPA applications

picin frame=pixel

As above but the bounds of the picture in the PIXEL Frame are reported.

picin refnam=(object) current

This reports the attributes of the last data picture within the current picture for
the current graphics device. If there is a reference data object, its name is written to the
ICL variable OBJECT. The search includes the current picture.

picin x1=(x1) x2=(x2) y1=(y1) y2=(y2)

This reports the attributes of the last DATA picture within the current picture
for the current graphics device. The bounds of the current picture are written to the
ICL variables: X1, X2, Y1, Y2.

Notes:

This application is intended for use within procedures. Also if a DATA picture is selected
and the current picture is included in the search, this application informs about the same
picture that an application that works in a cursor interaction mode would select, and so
acts as a check that the correct picture will be accessed.

Related Applications :

KAPPA: GDSTATE, PICDEF, PICLIST, PICTRANS, PICXY.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_

SUN/95.45 —Specifications of KAPPA applications 586 PICLABEL

PICLABEL
Labels the current graphics-database picture

Description:
This application annotates the current graphics-database picture of a specified device with
a label you define. This provides an easy-to-remember handle for selecting pictures in
subsequent processing.

Usage:
piclabel label [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics device. [Current graphics device]

LABEL = LITERAL (Read)
The label to be given to the current picture. It is limited to 15 characters, but may be
in mixed case. If it is null (!) a blank label is inserted in the database.

Examples:
piclabel GALAXY

This makes the current picture of the current graphics device have a label of
"GALAXY".

piclabel A3 x2w

This labels the current picture on the x2w device "A3".

Notes:

The label must be unique for the chosen device. If the new label clashes with an existing
one, then the existing label is deleted.

Related Applications :

KAPPA: PICDEF, PICLIST, PICSEL.

587 PICLAST SUN/95.45 —Specifications of KAPPA applications

PICLAST
Selects the last picture from the graphics database.

Description:
This command selects the last-created picture. Subsequent plotting for the chosen device
will be in this new current picture. By default the chosen device is the current one.

This command is a synonym for piclist picnum=last.

Usage:
piclast

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [current graphics device]

Examples:
piclast

This selects the last picture for the current graphics device.

piclast device=x2w

This selects the last picture for the x2w device.

Related Applications :

KAPPA: PICBASE, PICCUR, PICDATA, PICFRAME, PICLIST, PICSEL.

SUN/95.45 —Specifications of KAPPA applications 588 PICLIST

PICLIST
Lists the pictures in the graphics database for a device

Description:
This application produces a summary of the contents of the graphics database for a
graphics device, and/or permits a picture specified by its order in the list to be made the
new current picture. The list may either be reported or written to a text file.

The headed list has one line per picture. Each line comprises a reference number; the
picture’s name, comment (up to 24 characters), and label; and a flag to indicate whether or
not there is a reference data object associated with the picture. A "C" in the first column
indicates that the picture that was current when this application was invoked. In the
text file, because there is more room, the name of the reference object is given (up to 64
characters) instead of the reference flag. Pictures are listed in chronological order of their
creation.

Usage:
piclist [name] [logfile] [device] picnum=?

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

LOGFILE = FILENAME (Write)
The name of the text file in which the list of pictures will be made. A null string (!)
means the list will be reported to you. The suggested default is the current value. [!]

NAME = LITERAL (Read)
Only pictures of this name are to be selected. A null string (!) or blanks means that
pictures of all names may be selected. [!]

PICNUM = LITERAL (Read)
The reference number of the picture to be made the current picture when the appli-
cation exits. PICNUM="Last" selects the last picture in the database. Parameter
PICNUM is not accessed if the list is written to the text file. A null (!) or any other
error causes the current picture on entry to be current again on exit. The suggested
default is null.

Examples:
piclist

This reports all the pictures in the graphics database for the current graphics
device.

piclist device=ps_l

This reports all the pictures in the graphics database for the ps_l device.

589 PICLIST SUN/95.45 —Specifications of KAPPA applications

piclist data

This reports all the DATA pictures in the graphics database for the current graphics
device.

piclist data logfile=datapic.dat

This lists all the DATA pictures in the graphics database for the current graphics
device into the text file datapic.dat.

piclist frame picnum=5

This selects the fifth most ancient FRAME picture (in the graphics database for
the current graphics device) as the current picture. The pictures are not listed.

piclist picnum=last

This makes the last picture in the graphics database for the current graphics de-
vice the current picture. The pictures are not listed.

Related Applications :

KAPPA: PICBASE, PICDATA, PICEMPTY, PICENTIRE, PICFRAME, PICIN, PICLAST,
PICSEL, PICVIS.

Timing :

The execution time is approximately proportional to the number of pictures in the database
for the chosen graphics device. Selecting only a subset by name is slightly faster.

SUN/95.45 —Specifications of KAPPA applications 590 PICSEL

PICSEL
Selects a graphics-database picture by its label

Description:
This application selects by label a graphics-database picture of a specified device. If such
a picture is found then it becomes the current picture on exit, otherwise the input picture
remains current. Labels in the database are stored in the case supplied when they were
created. However, the comparisons of the label you supply with the labels in the database
are made in uppercase, and leading spaces are ignored.

Should the label not be found the current picture is unchanged.

Usage:
picsel label [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics device. [Current graphics device]

LABEL = LITERAL (Read)
The label of the picture to be selected.

Examples:
picsel GALAXY

This makes the picture labelled "GALAXY" the current picture on the current graphics
device. Should there be no picture of this name, the current picture is unchanged.

picsel A3 xwindows

This makes the picture labelled "A3" the current picture on the xwindows device. Should
there be no picture of this name, the current picture is unchanged.

Related Applications :

KAPPA: PICDATA, PICDEF, PICEMPTY, PICENTIRE, PICFRAME, PICLABEL, PICLAST,
PICVIS.

591 PICTRANS SUN/95.45 —Specifications of KAPPA applications

PICTRANS
Transforms a graphics position from one picture co-ordinate Frame to

another

Description:
This application transforms a position on a graphics device from one co-ordinate Frame to
another. The input and output Frames may be chosen freely from the Frames available
in the WCS information stored with the current picture in the AGI graphics database.
The transformed position is formatted for display and written to the screen and also to an
output parameter.

Usage:
pictrans posin framein [frameout] [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

EPOCHIN = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAMEIN)
for a celestial co-ordinate system, then an epoch value is needed to qualify it. This is
the epoch at which the supplied sky position was determined. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

EPOCHOUT = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAMEOUT)
for a celestial co-ordinate system, then an epoch value is needed to qualify it. This is
the epoch at which the transformed sky position is required. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

FRAMEIN = LITERAL (Read)
A string specifying the co-ordinate Frame in which the input position is supplied (see
Parameter POSIN). The string can be one of the following options.

• A domain name such as SKY, AXIS, PIXEL, NDC, BASEPIC, CURPIC.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null parameter value is supplied, then the current Frame in the current picture is
used. [!]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 592 PICTRANS

FRAMEOUT = LITERAL (Read)
A string specifying the co-ordinate Frame in which the transformed position is
required. If a null parameter value is supplied, then the current Frame in the picture
is used. The string can be one of the following options.

• A domain name such as SKY, AXIS, PIXEL, GRAPHICS, CURPIC, NDC, BASEPIC.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null parameter value is supplied, then the BASEPIC Frame is used. ["BASEPIC"]

POSIN = LITERAL (Read)
The co-ordinates of the position to be transformed, in the co-ordinate Frame specified
by Parameter FRAMEIN (supplying a colon ":" will display details of the required
co-ordinate Frame). The position should be supplied as a list of formatted axis values
separated by spaces or commas.

Results Parameters:

BOUND = _LOGICAL (Write)
BOUND is TRUE when the supplied point lies within the bounds of the current picture.

POSOUT = LITERAL (Write)
The formatted co-ordinates of the transformed position, in the co-ordinate Frame specified
by Parameter FRAMEOUT. The position will be stored as a list of formatted axis values
separated by spaces.

Examples:
pictrans "100.3,-20.1" framein=pixel

This converts the position (100.3, −20.1), in pixel co-ordinates within the current
picture of the current graphics device, to the BASEPIC co-ordinates of that point in the
BASE picture.

pictrans "100.3,-20.1" framein=pixel frameout=graphics

This converts the position (100.3, −20.1), in pixel co-ordinates within the current
picture of the current graphics device, to the GRAPHICS co-ordinates of that point (i.e.
millimetres from the bottom-left corner of the graphics device).

pictrans "10 10" framein=graphics frameout=basepic

This converts the position (10, 10), in graphics co-ordinates (i.e. the point which
is 10mm above and to the right of the lower-left corner of the graphics device), into
BASEPIC co-ordinates.

Notes:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

593 PICTRANS SUN/95.45 —Specifications of KAPPA applications

• BASEPIC co-ordinates locate a position within the entire graphics device. The bottom-
left corner of the device screen has BASEPIC co-ordinates of (0, 0). The shorter
dimension of the screen has length 1.0, and the other axis has a length greater than
1.0.

• NDC co-ordinates are like BASEPIC co-ordinates except that the top-right corner of
the screen has NDC co-ordinates of (1, 1). That is, both axes of the screen have unit
length.

• GRAPHICS co-ordinates also span the entire graphics device but are measured in
millimetres from the bottom-left corner.

• CURPIC co-ordinates locate a point within the current picture. The bottom-left corner
of the current picture has CURPIC co-ordinates of (0, 0). The shorter dimension of
the current picture has length 1.0, and the other axis has a length greater than 1.0.

• The transformed position is not written to the screen when the message filter envi-
ronment variable MSG_FILTER is set to QUIET. The creation of the output Parameter
POSOUT is unaffected by MSG_FILTER.

Related Applications :

KAPPA: GDSTATE, PICIN, PICXY.

SUN/95.45 —Specifications of KAPPA applications 594 PICVIS

PICVIS
Finds the first unobscured FRAME picture in the graphics database

Description:
This application selects the first, i.e. oldest, unobstructed FRAME picture in the graphics
database for a graphics device. Unobstructed means that there is no younger picture
overlying it either wholly or in part.

Usage:
picvis [device]

Parameters:

DEVICE = DEVICE (Read)
The graphics workstation. [The current graphics device]

Examples:
picvis

This selects the first unobscured FRAME picture for the current graphics device.

picvis xwindows

This selects the first unobscured FRAME picture for the xwindows graphics de-
vice.

Notes:

• An error is returned if there is no unobscured FRAME picture, and the current picture
remains unchanged.

• This routine cannot know whether or a picture has been cleared, and hence is safe to
reuse, as such information is not stored in the graphics database.

Related Applications :

KAPPA: PICEMPTY, PICENTIRE, PICGRID, PICLAST, PICLIST, PICSEL.

Timing :

The execution time is approximately proportional to a linear combination of the number of
pictures in the database before the unobstructed FRAME picture is found, and the square
of the number of pictures in the database.

595 PICXY SUN/95.45 —Specifications of KAPPA applications

PICXY
Creates a new FRAME picture defined by co-ordinate bounds

Description:
This command creates a new FRAME picture in the graphics database. The bounds of the
new picture are defined through two parameters. The new picture is formed within either
the current or BASE picture, and it adopts the world co-ordinate system of that reference
picture. On completion the new picture becomes the current picture.

This command is a synonym for picdef xy 1.0.

Usage:
picxy lbound ubound

Parameters:
CURRENT = _LOGICAL (Read)

TRUE if the new picture is to lie within the current picture, otherwise the new picture
can lie anywhere within the BASE picture. In other words, when CURRENT is
TRUE the current picture is the reference picture, and when it is FALSE the base is the
reference picture. [FALSE]

DEVICE = DEVICE (Read)
The graphics device. [current graphics device]

LBOUND(2) = _REAL (Read)
Co-ordinates of the lower bound that defines the new picture. The suggested default
is the bottom-left of the current picture.

OUTLINE = _LOGICAL (Read)
If TRUE, a box that delimits the new picture is drawn. [TRUE]

UBOUND(2) = _REAL (Read)
Co-ordinates of the upper bound that defines the new picture. The suggested default
is the top-right of the current picture.

Examples:
picxy [0.1,0.2] [0.9,0.6]

This creates a new FRAME picture in the BASE picture extending from (0.1, 0.2)
to (0.9, 0.6), which becomes the new current picture. An outline is drawn around the
picture.

picxy ubound=[1.1,0.9] lbound=[0.1,0.2] current nooutline

This creates a new FRAME picture in the current picture extending from (0.1, 0.2) to
(1.1, 0.9), which becomes the new current picture. No outline is drawn.

Related Applications :

KAPPA: PICCUR, PICDEF, PICGRID, PICSEL.

SUN/95.45 —Specifications of KAPPA applications 596 PIXBIN

PIXBIN
Places each pixel value in an input NDF into an output bin

Description:
This application collects groups of pixel values together from an input NDF and places
each group into a single column of an output NDF. Each such output column represents a
“bin” into which a group of input pixels is placed.

If the input NDF has N pixel axes, the user provides a set of M N-dimensional “index”
NDFs (where M is between 1 and 6). For each pixel in the input NDF, the corresponding
value in each of the M index NDFs is found. This vector of M values is used (after
rounding them to the nearest integer) to determine the pixel indices within the output
(M-dimensional) NDF at which to store the input pixel value. Thus each output pixel
corresponds to a bin into which one or more input pixels can be placed, as selected by the
index NDFs.

There are many possible ways in which the input pixels values that fall in a single bin
could be combined to create a single representative output value for each bin. For instance,
the output NDF could contain the mean of the input values that fall in each bin, or the
maximum, or the standard deviation, etc. However, this application does not store a
single representative value for each bin. Instead it stores all the separate input pixel values
that fall in each bin. This requires an extra trailing pixel axis in the output NDF, with a
lower pixel bounds of 1 and and upper pixel bound equal to the maximum population of
any bin. Each “column” of values parallel to this final output pixel axis represents one
bin, and contains the corresponding input pixel values at its lower end, with bad values
filling any unused higher pixels. The COLLAPSE application could then be used to get a
representative value for each bin by collapsing this final pixel axis using any of the many
estimators provided by COLLAPSE.

An extra group of M NDFs can be supplied that define the WCS to be stored in the output
NDF—see Parameter WCS.

Usage:
pixbin in out index [wcs]

Parameters:

IN = NDF (Read)
The input N-dimensional NDF.

INDEX = NDF (Read)
A group of index NDFs (all with N-dimensions). The number of index NDFs (re-
ferred to below as “M”) supplied should be in the range 1–6 and determines the
dimensionality of the output NDF. A section is taken from each one so that it matches
the input NDF supplied by Parameter IN. The data values in the Jth index NDF are
converted to _INTEGER (by finding the nearest integer) and then used as the pixel
indices on the Jth output pixel axis.

OUT = NDF (Write)
The output NDF containing all the values from the input NDF collected into a set of

597 PIXBIN SUN/95.45 —Specifications of KAPPA applications

bins. This NDF will have M + 1 pixel axes, where M is the number of index NDF
supplied using Parameter INDEX. The final pixel axis enumerates the individual
input pixels that fall within each bin.

WCS = NDF (Read)
An optional group of NDFs (all with N-dimensions) that define the WCS to be stored
in the output NDF. The number of NDFs in this group should be M, the number of
index NDFs (see Parameter INDEX). The data values in the Jth WCS NDF determine
the values to be stored for the Jth axis in the WCS of the output NDF (the WCS values
on the final trailing axis in the output NDF, axis M + 1, are just equal to pixel index).
If a null (!) value is supplied, no WCS is stored in the output NDF. The WCS values
for each of the first M output axes are described using a look-up-table (one for each
axis) that converts value in an index NDF into the corresponding value in a WCS
NDF. For all pixels with the same integer index value, the mean of the corresponding
WCS values is found and stored in the look-up-table. The label and unit for each axis
is taken from the Label and Unit components of the corresponding WCS NDF. [!]

Examples:
pixbin m31 binned radius

Here the pixel values in a two-dimensional NDF called m31 are placed into bins
as defined by the contents of a single two-dimensional NDF called radius, to create a
two-dimensional output NDF called binned. (The number of pixel axes in the output is
always one more than the number of index NDFs.) The data values in NDF radius are
used as the pixel indices along the first axis of the output NDF, at which to store each
input pixel value. Each column in the output NDF contains the individual input pixel
values assigned to that bin, padded with bad values if necessary to fill the column.

Related Applications :

KAPPA: COLLAPSE

Implementation Status:

• This routine correctly processes the DATA, QUALITY, VARIANCE, LABEL, TITLE,
UNITS, and HISTORY, components of the input NDF and propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

SUN/95.45 —Specifications of KAPPA applications 598 PIXDUPE

PIXDUPE
Expands an NDF by pixel duplication

Description:
This routine expands the size of an NDF structure by duplicating each input pixel a
specified number of times along each dimension, to create a new NDF structure. Each
block of output pixels (formed by duplicating a single input pixel) can optionally be
masked, for instance to set selected pixels within each output block bad.

Usage:
pixdupe in out expand

Parameters:

EXPAND() = _INTEGER (Read)
Linear expansion factors to be used to create the new data array. The number of
factors should equal the number of dimensions in the input NDF. If fewer are supplied
the last value in the list of expansion factors is given to the remaining dimensions.
Thus if a uniform expansion is required in all dimensions, just one value need be
entered. If the net expansion is one, an error results. The suggested default is the
current value.

IMASK() = _INTEGER (Read)
Only used if a null (!) value is supplied for Parameter MASK. If accessed, the number
of values supplied for this parameter should equal the number of pixel axes in the
output NDF. A mask array is then created which has bad values at every element
except for the element with indices given by IMASK, which is set to the value 1.0.
See Parameter MASK for a description of the use of the mask array. If a null value is
supplied for IMASK, then no mask is used, and every output pixel in an output block
is set to the value of the corresponding input pixel. [!]

IN = NDF (Read)
Input NDF structure to be expanded.

MASK = NDF (Read)
An input NDF structure holding the mask to be used. If a null (!) value is supplied,
Parameter IMASK will be used to determine the mask. If supplied, the NDF Data
array will be trimmed or padded (with bad values) to create an array in which the
lengths of the pixel axes are equal to the values supplied for Parameter EXPAND.
Each block of pixels in the output array (i.e. the block of output pixels which are
created from a single input pixel) are multiplied by this mask array before being
stored in the output NDF. [!]

OUT = NDF (Write)
Output NDF structure.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

599 PIXDUPE SUN/95.45 —Specifications of KAPPA applications

Examples:
pixdupe aa bb 2

This expands the NDF called aa duplicating pixels along each
dimension, and stores the enlarged data in the NDF called bb. Thus if aa is two-
dimensional, this command would result in a four-fold increase in the array components.

pixdupe cosmos galaxy [2,1]

This expands the NDF called cosmos by duplicating along the first axis, and
stores the enlarged data in the NDF called galaxy.

pixdupe cube1 cube2 [3,1,2] title="Reconfigured cube"

This expands the NDF called cube1 by having three pixels for each pixel along
the first axis and duplicating along the third axis, and stores the enlarged data in the NDF
called cube2. The title of cube2 is "Reconfigured cube".

Related Applications :

KAPPA: COMPADD, COMPAVE, COMPICK, INTERLEAVE.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY, components of an NDF data structure, and
propagates all extensions.

• The AXIS centre, width and variance values in the output are formed by duplicating
the corresponding input AXIS values.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

SUN/95.45 —Specifications of KAPPA applications 600 PLUCK

PLUCK
Plucks slices from an NDF at arbitrary positions

Description:
This application’s function is to extract data at scientifically relevant points such as the
spatial location of a source or wavelength of a spectral feature, rather than at data sam-
pling points (for which NDFCOPY is appropriate). This is achieved by the extraction of
interpolated slices from an NDF . A slice is located at a supplied set of co-ordinates in
the current WCS Frame for some but not all axes, and it possesses one fewer significant
dimension per supplied co-ordinate. The slices run parallel to pixel axes of the NDF.

The interpolation uses one of a selection of resampling methods to effect the non-integer
shifts along the fixed axes, applied to each output element along the retained axes (see the
METHOD, PARAMS, and TOL parameters).

Three routes are available for obtaining the fixed positions, selected using Parameter
MODE:

• from the parameter system (see Parameter POS);

• from a specified positions list (see Parameter INCAT); or

• from a simple text file containing a list of co-ordinates (see Parameter COIN).

In the first mode the application loops, asking for new extraction co-ordinates until it is
told to quit or encounters an error. However there is no looping if the position has been
supplied on the command line.

Each extracted dataset is written to a new NDF, which however, may reside in a single
container file (see the CONTAINER parameter).

Usage:

pluck in axes out method [mode]

pos

coin=?

incat=?
mode

Parameters:

AXES() = _INTEGER (Read)
The WCS axis or axes to remain in the output NDF. The slice will therefore contain an
array comprising all the elements along these axes. The maximum number of axes is
one fewer than the number of WCS axes in the NDF.
Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).

601 PLUCK SUN/95.45 —Specifications of KAPPA applications

• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If the axes of
the current Frame are not parallel to the NDF pixel axes, then the pixel axis which is
most nearly parallel to the specified current Frame axis will be used.

COIN = FILENAME (Read)
Name of a text file containing the co-ordinates of slices to be plucked. It is only
accessed if Parameter MODE is given the value "File". Each line should contain the
formatted axis values for a single position, in the current Frame of the NDF. Axis
values can be separated by spaces, tabs or commas. The file may contain comment
lines with the first character # or !.

CONTAINER = _LOGICAL (Read)
If TRUE, each slice extracted is written as an NDF component of the HDS container
file specified by the OUT parameter. The nth component will be named PLUCK_n. If
set FALSE, each extraction is written to a separate file. On-the-fly format conversion
to foreign formats is not possible when CONTAINER=TRUE. [FALSE]

DESCRIBE = _LOGICAL (Read)
If TRUE, a detailed description of the co-ordinate Frame in which the fixed co-ordinates
are to be supplied is displayed before the positions themselves. It is ignored if
MODE="Catalogue". [current value]

INCAT = FILENAME (Read)
A catalogue containing a positions list giving the co-ordinates of the fixed positions,
such as produced by applications CURSOR, LISTMAKE, etc. It is only accessed if
Parameter MODE is given the value "Catalogue". The catalogue should have a WCS
Frame common with the NDF, so that the NDF and catalogue FrameSets can be
aligned.

MODE = LITERAL (Read)
The mode in which the initial co-ordinates are to be obtained. The supplied string
can be one of the following values.

• "Interface" — positions are obtained using Parameter POS.
• "Catalogue" — positions are obtained from a positions list using Parameter

INCAT.
• "File" — positions are obtained from a text file using Parameter COIN.

[current value]

IN = NDF (Read)
The NDF structure containing the data to be extracted. It must have at least two
dimensions.

METHOD = LITERAL (Read)
The method to use when sampling the input pixel values. For details of these schemes,
see the descriptions of routine AST_RESAMPLEx in SUN/210. METHOD can take
the following values.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/95.45 —Specifications of KAPPA applications 602 PLUCK

• "Linear" — When resampling, the output pixel values are calculated by linear
interpolation in the input NDF among the two nearest pixel values along each
axis chosen by AXES. This method produces smoother output NDFs than the
nearest-neighbour scheme, but is marginally slower.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the interpo-

lation point and sinc(z) = sin(z)/z. Use of this scheme is not recommended.
• "SincSinc" — Uses the sinc(πx)sinc(kπx) kernel. A valuable general-purpose

scheme, intermediate in its visual effect on NDFs between the linear option and
using the nearest neighbour.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. Gives similar results to the
"SincSinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where x is the pixel offset from the inter-

polation point, and somb(z) = 2 ∗ J1(z)/z. J1 is the first-order Bessel function of
the first kind. This scheme is similar to the "Sinc" scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "BlockAve" — Block averaging over all pixels in the surrounding N-dimensional

cube.

All methods propagate variances from input to output, but the variance estimates
produced by interpolation schemes need to be treated with care since the spatial
smoothing produced by these methods introduces correlations variance estimates.
The initial default is "SincSinc". [current value]

OUT = NDF (Write)
The name for the output NDF, or the name of the single container file if CON-
TAINER=TRUE.

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods.
PARAMS(1) is required by all the above schemes. It is used to specify how many
pixels are to contribute to the interpolated result on either side of the interpolation
in each dimension. Typically, a value of 2 is appropriate and the minimum allowed
value is 1 (i.e. one pixel on each side). A value of zero or fewer indicates that a
suitable number of pixels should be calculated automatically. [0]
PARAMS(2) is required only by the SombCos, Gauss, SincSinc, SincCos, and Sinc-
Gauss schemes. For the SombCos, SincSinc, and SincCos schemes, it specifies the
number of pixels at which the envelope of the function goes to zero. The minimum
value is 1.0, and the run-time default value is 2.0. For the Gauss and SincGauss
schemes, it specifies the full-width at half-maximum (FWHM) of the Gaussian enve-
lope. The minimum value is 0.1, and the run-time default is 1.0. On astronomical
images and spectra, good results are often obtained by approximately matching the
FWHM of the envelope function, given by PARAMS(2), to the point-spread function
of the input data. []

603 PLUCK SUN/95.45 —Specifications of KAPPA applications

POS() = LITERAL (Read)
An the co-ordinates of the next slice to be extracted, in the current co-ordinate Frame
of the NDF (supplying a colon ":" will display details of the current co-ordinate
Frame). The position should be supplied as a list of formatted axis values separated
by spaces or commas. POS is only accessed if Parameter MODE is given the value
"Interface". If the co-ordinates are supplied on the command line only one slice
will be extracted; otherwise the application will ask for further positions which may
be terminated by supplying the null value (!).

TITLE = LITERAL (Read)
A Title for every output NDF structure. A null value (!) propagates the title from the
input NDF to all output NDFs. [!]

TOL = _DOUBLE (Read)
The maximum tolerable geometrical distortion that may be introduced as a result of
approximating non-linear Mappings by a set of piece-wise linear transforms. Both
algorithms approximate non-linear co-ordinate transformations in order to improve
performance, and this parameter controls how inaccurate the resulting approximation
is allowed to be, as a displacement in pixels of the input NDF. A value of zero will
ensure that no such approximation is done, at the expense of increasing execution
time. [0.05]

Examples:
pluck omc1 pos="5:35:13.7,-5:22:13.6" axes=FREQ method=sincgauss
params=[3,5] out=omc1_trap

The NDF omc1 is a spectral-imaging cube with (Right ascension, declination,
frequency) World Co-ordinate axes. This example extracts a spectrum at RA=5h35m13.7s ,
Dec=−5◦22′13.6′′ using the SincGauss interpolation method. Three pixels either side of
the point are used to interpolate, the full-width half-maximum of the Gaussian is five
pixels. The resultant spectrum called omc1_trap, is still a cube, but its spatial dimensions
each only have one element.

pluck omc1 mode=cat incat=a axes=FREQ container out=omc1_spectra

This example reads the fixed positions from the positions list in file a.FIT. The
selected spectra are stored in an HDS container file called omc1_spectra.sdf.

pluck omc1 mode=cat incat=a axes=SPEC container out=omc1_spectra

As the previous example, plucking spectra, this time by selecting the generic
spectral axis.

pluck omc1 pos=3.45732E11 axes="RA,Dec" method=lin out=peakplane

This example extracts a plane from omc1 at frequency 3.45732E11 Hz using lin-
ear interpolation and stores it in NDF peakplane.

Notes:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 604 PLUCK

• In Interface or File modes all positions should be supplied in the current co-ordinate
Frame of the NDF. A description of the co-ordinate Frame being used is given if
Parameter DESCRIBE is set to a TRUE value. Application WCSFRAME can be used to
change the current co-ordinate Frame of the NDF before running this application if
required.

• The output NDF has the same dimensionality as the input NDF, although the axes
with fixed co-ordinates (those not specified by the AXES parameter) are degenerate,
having bounds of 1:1. The retention of these insignificant axes enables the co-ordinates
of where the slice originated to be recorded. Such fixed co-ordinates may be examined
with say NDFTRACE. NDFCOPY may be used to trim the degenerate axes if their
presence prevents some old non-KAPPA tasks from operating.

• In Catalogue or File modes the table file need only contain columns supplying the
fixed positions. In this case the co-ordinates along the retained axes are deemed to
be independent, that is they do not affect the shifts required of the other axes. In
practice this assumption only affects File mode, as catalogues made with CURSOR or
LISTMAKE will contain WCS information.
In Interface mode representaive co-ordinates along retained axes are the midpoints
of the bounds of an array that would contain the resampled copy of the whole input
array.

Related Applications :

KAPPA: NDFCOPY, REGRID.

Implementation Status:

• The LABEL, UNITS, and HISTORY components, and all extensions are propagated.
TITLE is controlled by the TITLE parameter. DATA, VARIANCE, AXIS, and WCS
are propagated after appropriate modification. The QUALITY component is not
propagated.

• The processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• The minimum number of dimensions in the input NDF is two.

• Processing a group of input NDFs is not supported unless CONTAINER=TRUE or
when only one output NDF is created per input file.

605 POW SUN/95.45 —Specifications of KAPPA applications

POW
Takes the specified power of each pixel of an NDF

Description:
This routine copies the supplied input NDF , raising each value in the DATA array to
the specified power. The VARIANCE component, if present, is modified appropriately.
Negative data values will only generate good output pixels when the power is an integer.

Usage:
pow in power out

Parameters:

IN = NDF (Read)
The input NDF structure.

OUT = NDF (Write)
The output NDF structure.

POWER = _DOUBLE (Read)
The power.

TITLE = LITERAL (Read)
A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
pow m51 2 m51sq

Square all values in the NDF called m51, and store the results in the NDF called
m51sq.

Related Applications :

KAPPA: ADD, CADD, CMULT, CDIV, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point, or double precision, if appropriate, but the numeric
type of the input pixels is preserved in the output NDF.

SUN/95.45 —Specifications of KAPPA applications 606 PROFILE

PROFILE
Creates a one-dimensional profile through an n-dimensional NDF

Description:
This application samples an n-dimensional NDF at a set of positions, producing a one-
dimensional output NDF containing the sample values. Nearest-neighbour interpolation
is used.

The samples can be placed at specified positions within the input NDF, or can be spaced
evenly along a poly-line joining a set of vertices (see Parameter MODE). The positions of
the samples may be saved in an output positions list (see Parameter OUTCAT).

Usage:

profile in out

 start finish [nsamp]

incat=?
mode

Parameters:

CATFRAME = LITERAL (Read)
A string determining the co-ordinate Frame in which positions are to be stored in
the output catalogue associated with Parameter OUTCAT. The string supplied for
CATFRAME can be one of the following options.

• A Domain name such as SKY, AXIS, PIXEL.
• An integer value giving the index of the required Frame.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

If a null (!) value is supplied, the positions will be stored in the current Frame. [!]

CATEPOCH = _DOUBLE (Read)
The epoch at which the sky positions stored in the output catalogue were determined.
It will only be accessed if an epoch value is needed to qualify the co-ordinate Frame
specified by COLFRAME. If required, it should be given as a decimal years value,
with or without decimal places ("1996.8", for example). Such values are interpreted
as a Besselian epoch if less than 1984.0 and as a Julian epoch otherwise.

FINISH = LITERAL (Read)
The co-ordinates of the last sample in the profile, in the current co-ordinate Frame of
the NDF (supplying ":" will display details of the required co-ordinate Frame). The
position should be supplied as a list of formatted axis values separated by spaces.
This parameter is only accessed if Parameter MODE is set to "Curve" and a null (!)
value is given for INCAT. If the last (top-right) pixel in the NDF has valid co-ordinates
in the current co-ordinate Frame of the NDF, then these co-ordinates will be used as
the suggested default. Otherwise there will be no suggested default.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

607 PROFILE SUN/95.45 —Specifications of KAPPA applications

GEODESIC = _LOGICAL (Read)
If TRUE then the line segments which form the profile will be geodesic curves within
the current co-ordinate Frame of the NDF. Otherwise, the line segments are simple
straight lines. This parameter is only accessed if Parameter MODE is set to "Curve".
As an example, consider a profile consisting of a single line segment which starts
at RA=0h DEC=+80d and finishes at RA=12h DEC=+80d. If GEODESIC is FALSE,
the line segment will be a line of constant declination, i.e. the "straight" line from
the position (0,80) to the position (12, 80), passing through (1, 80), (2, 80), etc. If
GEODESIC is TRUE, then the line segment will be the curve of shortest distance on
the celestial sphere between the start and end. In this particaular case, this will be a
great circle passing through the north celestial pole. [FALSE]

IN = NDF (Read)
Input NDF structure containing the data to be profiled.

INCAT = FILENAME (Read)
A catalogue containing a set of vertices or sample positions defining the required
profile. The file should be in the format of a positions list such as produced by
applications CURSOR and LISTMAKE. If a null value (!) is given then Parameters
START and FINISH will be used to obtain the vertex positions. If Parameter MODE
is given the value "Curve", then the Parameter INCAT is only accessed if a value is
given for it on the command line (otherwise a null value is assumed).

MODE = LITERAL (Read)
The mode by which the sample positions are selected. The alternatives are listed
below.

• "Curve" — The samples are placed evenly along a curve specified by a set of
vertices obtained from the user. The line segments joining these vertices may be
linear or geodesic (see Parameter GEODESIC). Multiple vertices may be supplied
using a text file (see Parameter INCAT). Alternatively, a single line segment can
be specified using Parameters START and FINISH. The number of samples to
take along the curve is specified by Parameter NSAMP.
• "Points" — The positions at which samples should be taken are given explicitly

by the user in a text file (see Parameter INCAT). No other sample positions are
used.

["Curve"]

NSAMP = _INTEGER (Read)
The number of samples required along the length of the profile. The first sample is
at the first supplied vertex, and the last sample is at the last supplied vertex. The
sample positions are evenly spaced within the current co-ordinate Frame of the NDF.
If a null value is supplied, a default value is used equal to one more than the length
of the profile in pixels. This is only accessed if Parameter MODE is given the value
"Curve". [!]

OUT = NDF (Write)
The output NDF. This will be one-dimensional with length specified by Parameter
NSAMP.

OUTCAT = FILENAME (Write)
An output positions list in which to store the sample positions. This is the name of a

SUN/95.45 —Specifications of KAPPA applications 608 PROFILE

catalogue which can be used to communicate positions to subsequent applications. It
includes information describing the available WCS co-ordinate Frames as well as the
positions themselves. If a null value is supplied, no output positions list is produced.
See also Parameter CATFRAME. [!]

START = LITERAL (Read)
The co-ordinates of the first sample in the profile, in the current co-ordinate Frame of
the NDF (supplying ":" will display details of the required co-ordinate Frame). The
position should be supplied as a list of formatted axis values separated by spaces.
This parameter is only accessed if Parameter MODE is set to "Curve" and a null
(!) value is given for INCAT. If the first (bottom-left) pixel in the NDF has valid
co-ordinates in the current co-ordinate Frame of the NDF, then these co-ordinates
will be used as the suggested default. Otherwise there will be no suggested default.

Examples:
profile my_data prof "0 0" "100 100" 40 outcat=samps

Creates a one-dimensional NDF called prof, holding a profile of the data values
in the input NDF my_data along a profile starting at pixel co-ordinates [0.0, 0.0] and
ending at pixel co-ordinates [100.0, 100.0]. The profile consists of forty samples spread
evenly (in the pixel co-ordinate Frame) between these two positions. This example
assumes that the current co-ordinate Frame in the NDF my_data represents pixel
co-ordinates. This can be ensured by issuing the command "wcsframe my_data pixel"
before running profile. A FITS binary catalogue is created called samps.FIT containing
the positions of all samples in the profile, together with information describing all the
co-ordinate Frames in which the positions of the samples are known. This file may be
examined using application LISTSHOW.

profile my_data prof "15:32:47 23:40:08" "15:32:47 23:42"

This example is the same as the last one except that it is assumed that the cur-
rent co-ordinate Frame in the input NDF my_data is an equatorial (RA/DEC) system. It
creates a one-dimensional profile starting at RA=15:32:47 DEC=23:40:08, and ending at the
same RA and DEC=23:42:00. The number of points in the profile is determined by the
resolution of the data.

profile allsky prof incat=prof_path npoint=200 geodesic outcat=aa.fit

This examples creates a profile of the NDF allsky through a set of points given
in a FITS binary catalogue called prof_path.FIT. Such catalogues can be created (for
example) using application CURSOR. Each line segment is a geodesic curve. The profile
is sampled at 200 points. The samples positions are written to the output positions list
aa.fit.

profile allsky2 prof2 mode=point incat=aa.fit

This examples creates a profile of the NDF allsky2 containing samples at the po-
sitions given in the positions list aa.fit. Thus, the profiles created by this example and

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

609 PROFILE SUN/95.45 —Specifications of KAPPA applications

the previous example will sample the two images allsky and allsky2 at the same positions
and so can be compared directly.

Notes:

• This application uses the conventions of the CURSA package for determining the
formats of input and output positions list catalogues. If a file type of .fit is given, then
the catalogue is assumed to be a FITS binary table. If a file type of .txt is given, then
the catalogue is assumed to be stored in a text file in Small Text List (STL) format. If
no file type is given, then .fit is assumed.

Related Applications :

KAPPA: LINPLOT, CURSOR, LISTMAKE, LISTSHOW; CURSA: XCATVIEW.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, WCS, LABEL, TITLE, and
UNITS components of the NDF.

• All non-complex numeric data types can be handled. Only double-precision floating-
point data can be processed directly. Other non-complex data types will undergo a
type conversion before the profile is produced.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun190.htx/sun190.html?xref_XVIEW

SUN/95.45 —Specifications of KAPPA applications 610 PROVADD

PROVADD
Stores provenance information in an NDF

Description:
This application modifies the provenance information stored in an NDF. It records a second
specified NDF as a direct parent of the first NDF. If an NDF has more than one direct
parent then this application should be run multiple times, once for each parent.

Usage:
provadd ndf parent creator isroot moretext

Parameters:

CREATOR = LITERAL (Read)
A text identifier for the software that created the main NDF (usually the name
of the calling application). The format of the identifier is arbitrary, but the form
"PACKAGE:COMMAND" is recommended. If a null (!) value is supplied, no creator
information is stored. [!]

ISROOT = _LOGICAL (Read)
If TRUE, then the NDF given by Parameter PARENT will be treated as a root NDF.
That is, any provenance information within PARENT describing its own parents
is ignored. If FALSE, then any provenance information within PARENT is copied
into the main NDF. PARENT is then a root NDF only if it contains no provenance
information. [FALSE]

MORETEXT = GROUP (Read)
A group of “keyword=value” strings that give additional information about the
parent NDF, and how it was used in the creation of the main NDF. If supplied, this
information is stored with the provenance in the main NDF.
The supplied value should be either a comma-separated list of strings, or the name of
a text file preceded by an up-arrow character "^", containing one or more comma-
separated list of strings. Each string is either a “keyword=value” setting, or the name
of a text file preceded by an up-arrow character "^". Such text files should contain
further comma-separated lists which will be read and interpreted in the same manner
(any blank lines or lines beginning with # are ignored). Within a text file, newlines
can be used as delimiters as well as commas.
Each individual setting should be of the form:
<keyword>=<value>
where <keyword> is either a simple name, or a dot-delimited hierarchy of names (e.g.
"camera.settings.exp=1.0"). The <value> string should not contain any commas.
[!]

NDF = NDF (Read and Write)
The NDF which is to be modified.

PARENT = NDF (Read)
An NDF that is to be recorded as a direct parent of the NDF given by Parameter NDF.

611 PROVADD SUN/95.45 —Specifications of KAPPA applications

Examples:
provadd m51_ff ff

Records the fact that NDF ff was used in the creation of NDF m51_ff.

Notes:

Provenance information is stored in an NDF extension called PROVENANCE, and is
propagated automatically by all KAPPA applications.

Related Applications :

KAPPA: PROVMOD, PROVSHOW, HISCOM.

SUN/95.45 —Specifications of KAPPA applications 612 PROVMOD

PROVMOD
Modifies provenance information for an NDF

Description:
This application modifies the provenance information stored in the PROVENANCE exten-
sion of an NDF.

Usage:
provmod ndf ancestor path

Parameters:

ANCESTOR = LITERAL (Read)
Specifies the indices of one or more ancestors that are to be modified. An index of
zero refers to the supplied NDF itself. A positive index refers to one of the NDFs
listed in the ANCESTORS table in the PROVENANCE extension of the NDF. The
maximum number of ancestors is limited to 100 unless "ALL" or "∗" is specified. The
supplied parameter value can take any of the following forms.

• "ALL" or "∗" — All ancestors.
• "xx,yy,zz" — A list of ancestor indices.
• "xx:yy" — Ancestor indices between xx and yy inclusively. When xx is omitted,

the range begins from 0; when yy is omitted, the range ends with the maximum
value it can take, that is the number of ancestors described in the PROVENANCE
extension.
• Any reasonable combination of above values separated by commas. ["ALL"]

CREATOR = LITERAL (Read)
If the supplied string includes no equals signs, then it is a new value for the "CREATOR"
string read from each of the ancestors being modified. If the supplied string includes
one or more equals signs, then it specifies one or more substitutions to be performed
on the "CREATOR" string read from each of the ancestors being modified. See “Substi-
tution Syntax” below. If null (!) is supplied, the CREATOR item is left unchanged.
[!]

DATE = LITERAL (Read)
If the supplied string includes no equals signs, then it is a new value for the "DATE"
string read from each of the ancestors being modified. If the supplied string includes
one or more equals signs, then it specifies one or more substitutions to be performed
on the "DATE" string read from each of the ancestors being modified. See “Substitution
Syntax” below. If null (!) is supplied, the DATE item is left unchanged. [!]

MORETEXT = GROUP (Read)
This parameter is accessed only if a single ancestor is being modified (see Parameter
ANCESTORS). It gives information to store in the MORE component of the ancestor
(any existing information is first removed). If a null (!) value is supplied, then
existing MORE component is left unchanged.

613 PROVMOD SUN/95.45 —Specifications of KAPPA applications

The supplied value should be either a comma-separated list of strings, or the name of
a text file preceded by an up-arrow character "^", containing one or more comma-
separated list of strings. Each string is either a “keyword=value” setting, or the name
of a text file preceded by an up-arrow character "^". Such text files should contain
further comma-separated lists which will be read and interpreted in the same manner
(any blank lines or lines beginning with # are ignored). Within a text file, newlines
can be used as delimiters as well as commas.
Each individual setting should be of the form:
<keyword>=<value>
where <keyword> is either a simple name, or a dot-delimited hierarchy of names (e.g.
"camera.settings.exp=1.0"). The <value> string should not contain any commas.
[!]

NDF = NDF (Update)
The NDF data structure.

PATH = LITERAL (Read)
If the supplied string includes no equals signs, then it is a new value for the "PATH"
string read from each of the ancestors being modified. If the supplied string includes
one or more equals signs, then it specifies one or more substitutions to be performed
on the "PATH" string read from each of the ancestors being modified. See “Substitution
Syntax” below. If null (!) is supplied, the PATH item is left unchanged. [!]

Examples:
provmod ff path=/home/dsb/real-file.sdf

This modifies any ancestor within the NDF called ff by setting its PATH to
"/home/dsb/real-file.sdf".

provmod ff ancestor=3 moretext="obsidss=acsis_00026_20080322T055855_1"

This modifies ancestor Number 3 by storing a value of acsis_00026_20080322T055855_1
for key obsidss within the additonal information for the ancestor. Any existing additional
information is removed.

provmod ff path=’(_x)$=_y’

This modifies any ancestor within the NDF called ff that has a path ending in
"_x" by replacing the final "_x" with "_y".

provmod ff path=’(.∗)_(.∗)=$2=$1’

This modifies any ancestor within the NDF called ff that has a path consisting
of two parts separated by an underscore by swapping the parts. If there is more than one
underscore in the ancestor path, then the final underscore is used (because the initial
quantifier ".∗" is greedy).

provmod ff path=’(.∗?)_(.∗)=$2=$1’

SUN/95.45 —Specifications of KAPPA applications 614 PROVMOD

This modifies any ancestor within the NDF called ff that has a path consisting
of two parts separated by an underscore by swapping the parts. If there is more than
one underscore in the ancestor path, then the first underscore is used (because the initial
quantifier ".∗?" is not greedy).

Substitution Syntax :

The syntax for the CREATOR, DATE, and PATH parameter values is a minimal form of
regular expression. The following atoms are allowed.

• "[chars]" — Matches any of the characters within the brackets.

• "[^chars]" — Matches any character that is not within the brackets (ignoring the
initial "^" character).

• "." — Matches any single character.

• "\d" — Matches a single digit.

• "\D" — Matches anything but a single digit.

• "\w" — Matches any alphanumeric character, and "_".

• "\W" — Matches anything but alphanumeric characters, and "_".

• "\s" — Matches white space.

• "\S" — Matches anything but white space.

Any other character that has no special significance within a regular expression matches
itself. Characters that have special significance can be matched by preceding them with a
backslash (\) in which case their special significance is ignored (note, this does not apply
to the characters in the set dDsSwW).

Note, minus signs ("-") within brackets have no special significance, so ranges of charac-
ters must be specified explicitly.

The following quantifiers are allowed.

• "*" — Matches zero or more of the preceding atom, choosing the largest possible
number that gives a match.

• "*?"— Matches zero or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "+" — Matches one or more of the preceding atom, choosing the largest possible
number that gives a match.

• "+?"— Matches one or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "?" — Matches zero or one of the preceding atom.

• "{n}" — Matches exactly n occurrences of the preceding atom.

The following constraints are allowed.

• "^" — Matches the start of the test string.

• "$" — Matches the end of the test string.

615 PROVMOD SUN/95.45 —Specifications of KAPPA applications

Multiple templates can be concatenated, using the "|" character to separate them. The test
string is compared against each one in turn until a match is found.

A template should use parentheses to enclose the sub-strings that are to be replaced,
and the set of corresponding replacement values should be appended to the end of the
string, separated by "=" characters. The section of the test string that matches the first
parenthesised section in the template string will be replaced by the first replacement string.
The section of the test string that matches the second parenthesised section in the template
string will be replaced by the second replacement string, and so on.

The replacement strings can include the tokens "$1","$2", etc. The section of the test string
that matched the corresponding parenthesised section in the template is used in place of
the token.

See the “Examples” section above for how to use these facilities.

Related Applications :

KAPPA: PROVADD, PROVREM, PROVSHOW.

SUN/95.45 —Specifications of KAPPA applications 616 PROVREM

PROVREM
Removes selected provenance information from an NDF

Description:
This application removes selected ancestors, either by hiding them, or deleting them
from the provenance information stored in a given NDF. The ‘generation gap’ caused
by removing an ancestor is bridged by assigning all the direct parents of the removed
ancestor to each of the direct children of the ancestor.

The ancestors to be removed can be specified either by giving their indices (Parameter
ANCESTOR), or by comparing each ancestor with a supplied pattern matching template
(Parameter PATTERN).

If an ancestor is hidden rather than deleted (see Parameter HIDE), the ancestor is retained
within the NDF, but a flag is set telling later applications to ignore the ancestor (exactly
how the flag is used will depend on the particular application).

Usage:
provrem ndf pattern item

Parameters:
ANCESTOR = LITERAL (Read)

Specifies the indices of one or more ancestors that are to be removed. If a null (!)
value is supplied, the ancestors to be removed are instead determined using the
PATTERN parameter. Each supplied index must be positive and refers to one of the
NDFs listed in the ANCESTORS table in the PROVENANCE extension of the NDF
(including any hidden ancestors). Note, if ancestor indices are determined using the
PROVSHOW command, then PROVSHOW should be run with the HIDE parameter
set to FALSE; otherwise incorrect ancestor indices may be determined, resulting in the
wrong ancestors being removed by PROVREM.
The maximum number of ancestors that can be removed is limited to 100 unless "LL",
"*" or ! is specified. The supplied parameter value can take any of the following
forms.

• "ALL" or "*" — All ancestors.
• "xx,yy,zz" — A list of ancestor indices.
• "xx:yy" — Ancestor indices between xx and yy inclusively. When xx is omitted,

the range begins from 0; when yy is omitted the range ends with the maximum
value it can take, that is the number of ancestors described in the PROVENANCE
extension.
• Any reasonable combination of above values separated by commas. [!]

HIDE = _LOGICAL (Read)
If TRUE, then the ancestors are not deleted, but instead have a flag set indicating
that they have been hidden. All information about hidden ancestors is retained
unchanged, and can be viewed using PROVSHOW if the HIDE parameter is set
FALSE when running PROVSHOW. [FALSE]

617 PROVREM SUN/95.45 —Specifications of KAPPA applications

ITEM = LITERAL (Read)
Specifies the item of provenance information that is checked against the pattern
matching template specified for Parameter PATTERN. It can be "PATH", "CREATOR" or
"DATE". ["PATH"]

NDF = NDF (Update)
The NDF data structure.

PATTERN = LITERAL (Read)
Specifies a pattern matching template using the syntax described below in “Pattern
Matching Syntax”. Each ancestor listed in the PROVENANCE extension of the NDF
is compared with this template, and each ancestor that matches is removed. The item
of provenance information to be compared to the pattern is specified by Parameter
ITEM.

REMOVE = _LOGICAL (Read)
If TRUE, then the ancestors specified by Parameter PATTERN or ANCESTORS are
removed. Otherwise, these ancestors are retained and all other ancestors are removed.
[TRUE]

Examples:
provrem ff ancestor=1

This removes the first ancestor from the NDF called ff.

provrem ff ancestor=all

This erases all provenance information.

provrem ff pattern=’_xb$|_yb$’ hide

This hides, but does not permanently delete, all ancestors that have paths that
end with "_xb" or "_yb". Note, provenance paths do not include a trailing ".sdf" string.

provrem ff pattern=’_ave’

This removes all ancestors that have paths that contain the string "_ave" anywhere.

provrem ff pattern=’_ave’ remove=no

This removes all ancestors that have paths that do not contain the string "_ave"
anywhere.

provrem ff pattern=’_d[^/]*$’

This removes all ancestors that have file base-names that begin with "_d" . The
pattern matches "_d" followed by any number of characters that are not "/", followed by
the end of the string.

SUN/95.45 —Specifications of KAPPA applications 618 PROVREM

provrem ff pattern=’^m51|^m31’

This removes all ancestors that have paths that begin with "m51" or "m31".

Pattern Matching Syntax :

The syntax for the PATTERN parameter value is a minimal form of regular expression.
The following atoms are allowed.

• "[chars]" — Matches any of the characters within the brackets.

• "[^chars]" — Matches any character that is not within the brackets (ignoring the
initial "^" character).

• "." — Matches any single character.

• "\d" — Matches a single digit.

• "\D" — Matches anything but a single digit.

• "\w" — Matches any alphanumeric character, and "_".

• "\W" — Matches anything but alphanumeric characters, and "_".

• "\s" — Matches white space.

• "\S" — Matches anything but white space.

Any other character that has no special significance within a regular expression matches
itself. Characters that have special significance can be matched by preceding them with a
backslash (\) in which case their special significance is ignored (note, this does not apply
to the characters in the set dDsSwW).

Note, minus signs ("-") within brackets have no special significance, so ranges of charac-
ters must be specified explicitly.

The following quantifiers are allowed.

• "*" — Matches zero or more of the preceding atom, choosing the largest possible
number that gives a match.

• "*?"— Matches zero or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "+" — Matches one or more of the preceding atom, choosing the largest possible
number that gives a match.

• "+?"— Matches one or more of the preceding atom, choosing the smallest possible
number that gives a match.

• "?" — Matches zero or one of the preceding atom.

• "{n}" — Matches exactly n occurrences of the preceding atom.

The following constraints are allowed.

• "^" — Matches the start of the test string.

• "$" — Matches the end of the test string.

619 PROVREM SUN/95.45 —Specifications of KAPPA applications

Multiple templates can be concatenated, using the "|" character to separate them. The test
string is compared against each one in turn until a match is found.

Related Applications :

KAPPA: PROVADD, PROVMOD, PROVSHOW.

SUN/95.45 —Specifications of KAPPA applications 620 PROVSHOW

PROVSHOW
Displays provenance information for an NDF

Description:
This application displays details of the NDFs that were used in the creation of the supplied
NDF. This information is read from the PROVENANCE extension within the NDF, and
includes both immediate parent NDFs and older ancestor NDFs (i.e. the parents of the
parents, etc.).

Each displayed NDF (see Parameter SHOW) is described in a block of lines. The first line
holds an integer index for the NDF followed by the path to that NDF. Note, this path
is where the NDF was when the provenance information was recorded. It is of course
possible that the NDF may subsequently have been moved or deleted.

The remaining lines in the NDF description are as follows.

• "Parents" — A comma-separated list of integers that are the indices of the immediate
parents of the NDF. These are the integers that are displayed on the first line of each
NDF description.

• "Date" — The formatted UTC date and time at which the provenance information
for the NDF was recorded.

• "Creator" — A string identifying the software that created the NDF.

• "More" — A summary of any extra information about the NDF stored with the prove-
nance information. In general this may be an arbitrary HDS structure and so full de-
tails cannot be given on a single line. The HDSTRACE command can be used to exam-
ine the MORE field in detail. To see full details of the NDF with "ID" value of 12 (say),
enter (from a UNIX shell) "hdstrace fred.more.provenance.ancestors’(12)’",
where fred is the name of the NDF supplied for Parameter NDF. If the NDF has no
extra information, this item will not be present.

• "History" — This is only displayed if Parameter HISTORY is set to a TRUE value. It
contains information copied from the HISTORY component of the ancestor NDF. See
Parameter HISTORY.

In addition, a text file can be created containing the paths for the direct parents of the
supplied NDF. See Parameter PARENTS.

Usage:
provshow ndf [show]

Parameters:

DOTFILE = FILENAME (Read)
Name of a new text file in which to store a description of the provenance tree using
the “dot” format. This file can be visualised using third-party tools such as Graphviz,
ZGRViewer, OmniGraffle, etc.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_

621 PROVSHOW SUN/95.45 —Specifications of KAPPA applications

HIDE = _LOGICAL (Read)
If TRUE, then any ancestors which are flagged as ‘hidden’ (for example, using PROVREM)
are excluded from the display. If FALSE, then all requested ancestors, whether hidden
or not, are included in the display (but hidden ancestors will be highlighted as such).
Note, choosing to exclude hidden ancestors may change the index displayed for each
ancestor. The default is to display hidden ancestors if and only if history is being
displayed (see Parameter HISTORY). []

HISTORY = _LOGICAL (Read)
If TRUE, any history records stored with each ancestor are included in the displayed
information. Since the amount of history information displayed can be large, and
thus swamp other information, the default is not to display history information.
When an existing NDF is used in the creation of a new NDF, the provenance system
will copy selected records from the HISTORY component of the existing NDF and
store them with the provenance information in the new NDF. The history records
copied are those that describe operations performed on the existing NDF itself.
Inherited history records that describe operations performed on ancestors of the
existing NDF are not copied. [FALSE]

INEXT = LITERAL (Read)
Determines which ancestor to display next. Only used if Parameter SHOW is set to
"Tree". The user is re-prompted for a new value for this parameter after each NDF is
displayed. The new value should be the integer identifier for one of the parents of
the currently displayed NDF. Alternatively, the string "up" can be supplied, causing
the previously displayed NDF to be displayed again.

NDF = NDF (Read)
The NDF data structure.

PARENTS = FILENAME (Read)
Name of a new text file in which to put the paths to the direct parents of the supplied
NDF. These are written one per line with no extra text. If null, no file is created. [!]

SHOW = LITERAL (Read)
Determines which ancestors are displayed on the screen. It can take any of the
following case-insensitive values (or any abbreviation).

• "All" — Display all ancestors, including the supplied NDF itself.
• "Roots" — Display only the root ancestors (i.e. ancestors that do not themselves

have any recorded parents). The supplied NDF itself is not displayed.
• "Parents" — Display only the direct parents of the supplied NDF. The supplied

NDF itself is not displayed.
• "Tree" — Display the top level NDF and then asks the user which parent to

display next (see Parameter INEXT). The whole family tree can be navigated in
this way.

["All"]

Examples:
provshow m51

This displays information about the NDF m51, and all its recorded ancestors.

SUN/95.45 —Specifications of KAPPA applications 622 PROVSHOW

provshow m51 roots

This displays information about the root ancestors of the NDF m51.

provshow m51 parents

This displays information about the direct parents of the NDF m51.

Notes:

•
An input NDF is included in the provenance of an output NDF only if the DATA
component of the input NDF is mapped for read or update access by the application.
In other words, input NDFs which are accessed only for their metadata (e.g. WCS
information) are not included in the output provenance of an application.

•
If a KAPPA application uses one or more input NDFs to create an output NDF, the
output NDF may or may not contain provenance information depending on two
things: 1) whether any of the input NDFs already contain provenance information,
and 2) the value of the AUTOPROV environment variable. It is usually necessary to set
the AUTOPROV variable to "1" in order to create output NDFs that contain provenance
information. The exception to this if you are supplied with NDFs from another
source that already contain provenance. If such NDFs are used as inputs to KAPPA

applications, then the output NDFs will contain provenance even if the AUTOPROV
variable is unset. However, setting AUTOPROV to "0" will always prevent provenance
information being stored in the output NDFs.

• Some other packages, such as CCDPACK, follow the same strategy for creating and
propagating provenance information.

Related Applications :

KAPPA: PROVADD, HISLIST.

623 PSF SUN/95.45 —Specifications of KAPPA applications

PSF
Determines the parameters of a model star profile by fitting star

images in a two-dimensional NDF

Description:
This application finds a set of parameters to describe a model Gaussian star image. It
can be used for profile-fitting stellar photometry, to evaluate correction terms to aperture
photometry, or for filtering.

The model has a Sérsic radial profile:

D = A exp−0.5 (r/σ)γ

where r is calculated from the true radial distance from the star centre allowing for image
ellipticity, σ is the Gaussian precision constant or profile width. The application combines
a number of star images you specify and determines a mean seeing-disc size, radial fall-off
parameter (γ), axis ratio, and orientation of a model star image.

A table, giving details of the seeing and ellipticity of each star image used can be reported
to an output text file. This table indicates if any star could not be used. Reasons for
rejecting stars are too-many bad pixels present in the image, the star is too close to the
edge of the data array, the ‘star’ is a poor fit to model or it could not be located.

An optional plot of the mean profile and the fitted function may be produced. The two-
dimensional point-spread function may be stored in an NDF for later use, as may the
one-dimensional fitted profile.

Usage:
psf in incat [device] [out] [cut] [range] [isize] [poscols]

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. The width of
the margins left for the annotation may be controlled using Parameter MARGIN. The
appearance of the axes (colours, founts, etc.) can be controlled using the Parameter
STYLE. The dynamic default is TRUE if CLEAR is TRUE, and FALSE otherwise. []

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also an attempt is made to align the new picture
with the existing picture. Thus you can generate a composite plot within a single
set of axes, say using different colours or modes to distinguish data from different
datasets. [TRUE]

COFILE = FILENAME (Read)
Name of a text file containing the co-ordinates of the stars to be used. It is only
accessed if Parameter INCAT is given a null (!) value. Each line should contain the
formatted axis values for a single position, in the current Frame of the NDF. Columns

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 624 PSF

can be separated by spaces, tabs or commas. The file may contain comment lines with
the first character # or !. Other columns may be included in the file, in which case
the columns holding the required co-ordinates should be specified using Parameter
POSCOLS.

CUT = _REAL (Read)
This parameter controls the size of the output NDF. If it is null, !, the dimension
of the square NDF will be the size of the region used to calculate the radial profile,
which usually is given by RANGE ∗ width in pixels ∗ AXISR, unless truncated. If
CUT has a value it is the threshold which must be included in the PSF NDF, and it
is given as the fraction of the peak amplitude of the PSF. For example, if CUT=0.5
the NDF would contain the point-spread function to half maximum. CUT must be
greater than 0 and less than 1. The suggested default is 0.0001. [!]

DEVICE = DEVICE (Read)
The graphics workstation on which to produce a plot of the mean radial profile of
the stars and the fitted function. A null (!) name indicates that no plot is required.
[current graphics device]

GAUSS = _LOGICAL (Read)
If TRUE, the γ coefficient is fixed to be 2; in other words the best-fitting two-dimensional
Gaussian is evaluated. If FALSE, γ is a free parameter of the fit, and the derived value
is returned in Parameter GAMMA. [FALSE]

IN = NDF (Read)
The NDF containing the star images to be fitted.

INCAT = FILENAME (Read)
A catalogue containing a positions list (such as produced by applications CURSOR,
LISTMAKE) giving the star positions to use. If a null (!) value is supplied Parameter
COFILE will be used to get the star positions from a simple text file.

ISIZE = _INTEGER (Read)
The side of the square area to be used when forming the marginal profiles for a star
image, given as a number of pixels. It should be sufficiently large to contain the entire
star image. It should be an odd number and must lie in the range from 3 to 101. [15]

LOGFILE = FILENAME (Read)
Text file to contain the table of parameters for each star. A null (!) name indicates
that no log file is required. [!]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave for axis annotation, given as fractions of the
corresponding dimension of the current picture. Four values may be given, in the
order: bottom, right, top, left. If fewer than four values are given, extra values are
used equal to the first supplied value. If these margins are too narrow, any axis
annotation may be clipped. If a null (!) value is supplied, the value used is 0.15
(for all edges) if either annotated axes or a key are produced, and zero otherwise.
[current value]

MARKER = _INTEGER (Read)
The PGPLOT marker type to use for the data values in the plot. [current value]

MINOR = _LOGICAL (Read)
If MINOR is TRUE the horizontal axis of the plot is annotated with distance along

625 PSF SUN/95.45 —Specifications of KAPPA applications

the minor axis from the centre of the PSF. If MINOR is FALSE, the distance along the
major axis is used. [TRUE]

NORM = _LOGICAL (Read)
If TRUE, the model PSF is normalized so that it has a peak value of unity. Otherwise,
its peak value is equal to the peak value of the fit to the first usable star, in the data
units of the input NDF. [TRUE]

OUT = NDF (Write)
The NDF containing the fitted point-spread function evaluated at each pixel. If null, !,
is entered no output NDF will be created. The dimensions of the array are controlled
by Parameter CUT. The pixel origin is chosen to align the model PSF with the first
fitted star in pixel co-ordinates, thus allowing the NDF holding the model PSF to be
compared directly with the input NDF. A WCS component is stored in the output
NDF holding a copy of the input WCS component. An additional Frame with Domain
name OFFSET is added, and is made the current Frame. This Frame measures the
distance from the PSF centre in the units in which the FWHM is reported. These
changes allows the NDF holding the model PSF to be compared directly with the
input NDF. [!]

POSCOLS = _INTEGER (Read)
Column positions of the co-ordinates (x then y) in an input record of the file specified
by Parameter COFILE. The columns must be different amongst themselves. If there is
duplication new values will be requested. Only accessed if INCAT is given a null (!)
value. If a null (!) value is supplied for POSCOLS, the values [1,2] will be used. [!]

PROFOUT = NDF (Write)
The NDF containing the one-dimensional fitted profile as displayed in the plot. If
null, !, is entered no output NDF will be created. The DATA component of this NDF
holds the fitted PSF value at each radial bin. The VARIANCE component holds the
square of the residuals between the fitted values and the binned values derived from
the input NDF. An AXIS component is included in the NDF containing the radial
distance as displayed in the plot. [!]

RANGE = _REAL (Read)
The number of image profile widths out to which the radial star profile is to be fitted.
(There is an upper limit of 100 pixels to the radius at which data are actually used.)
[4.0]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes, data values, and the model profile.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.

SUN/95.45 —Specifications of KAPPA applications 626 PSF

All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported). The appearance of the model curve is controlled
by the attributes Colour(Curves), Width(Curves), etc. (the synonym Line may be used
in place of Curves). The appearance of the markers representing the real data is
controlled by Colour(Markers), Width(Markers), etc. (the synonym Symbols may be used
in place of Markers). [current value]

TITLE = LITERAL (Read)
The title for the NDF to contain the fitted point-spread function. If null, !, is entered
the NDF will not contain a title. ["KAPPA - PSF"]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of two strings should be supplied specifying the two axes which
are to be used when determining distances, reporting positions, etc. Each axis can be
specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two significant NDF pixel
axes are used. [!]

XLEFT = _DOUBLE (Read)
The axis value to place at the left hand end of the horizontal axis of the plot. If a
null (!) value is supplied, a suitable default value will be found and used. The value
supplied may be greater than or less than the value supplied for XRIGHT. [!]

XRIGHT = _DOUBLE (Read)
The axis value to place at the right hand end of the horizontal axis of the plot. If a
null (!) value is supplied, a suitable default value will be found and used. The value
supplied may be greater than or less than the value supplied for XLEFT. [!]

YBOT = _DOUBLE (Read)
The axis value to place at the bottom end of the vertical axis of the plot. If a null (!)
value is supplied, a suitable default value will be found and used. The value supplied
may be greater than or less than the value supplied for YTOP. [!]

YTOP = _DOUBLE (Read)
The axis value to place at the top end of the vertical axis of the plot. If a null (!) value
is supplied, a suitable default value will be found and used. The value supplied may
be greater than or less than the value supplied for YBOT. [!]

627 PSF SUN/95.45 —Specifications of KAPPA applications

Results Parameters:

AMP1 = _REAL (Write)
The fitted peak amplitude of the first usable star, in the data units of the input NDF.

AXISR = _REAL (Write)
The axis ratio of the star images: the ratio of the major axis length to that of the minor axis.

CENTRE = LITERAL (Write)
The formatted co-ordinates of the first fitted star position, in the current Frame of the NDF.

FWHM = _REAL (Write)
The seeing-disc size: the full width at half maximum across the minor axis of the stars. It
is in units defined by the current Frame of the NDF. For instance, a value in arcseconds
will be reported if the current Frame is a SKY Frame, but pixels will be used if it is a PIXEL
Frame.

GAMMA = _REAL (Write)
The radial fall-off parameter, γ, of the star images. See the description for more details. A
γ of two would be a Gaussian.

ORIENT = _REAL (Write)
The orientation of the major axis of the star images, in degrees. If the current Frame of the
NDF is a SKY Frame, this will be a position angle (measured from north through east).
Otherwise, it will be measured from the positive direction of the first current Frame axis
("X") towards the second current Frame axis ("Y").

TOTAL = _REAL (Write)
The flux of the fitted function integrated to infinite radius. Its unit is the product of the
data unit of the input NDF and the square of the radial unit, such as pixel or arcsec, for the
current WCS Frame, when NORM=FALSE. When NORM=TRUE, TOTAL is just measured
in the squared radial unit. Therefore, for direct comparison of total flux, the same units
must be used.

Examples:
psf ngc6405i starlist.FIT \

Derives the mean point-spread function for the stars images in the NDF called
ngc6405i that are situated near the co-ordinates given in the positions list starlist.FIT.
A plot of the profile is drawn on the current graphics device.

psf ngc6405i starlist device=!

As above but there is no graphical output, and the file type of the input positions list is
defaulted.

psf ngc6405i cofile=starlist.dat gauss \

As the first example, except the psf is fitted to a two-dimensional Gaussian, and
the positions are given in a simple text file (starlist.dat) instead of a positions list.

SUN/95.45 —Specifications of KAPPA applications 628 PSF

psf incat=starlist.FIT in=ngc6405i logfile=fit.log fwhm=(seeing) \

As the first example, but the results, including the fits to each star, are written
to the text file fit.log. The full-width half-maximum is written to the ICL variable
SEEING rather than the parameter file.

psf ngc6405i starlist isize=31 style="’title=Point spread function’"

As the first example, but the area including a star image is 31 pixels square, say
because the seeing is poor or the pixels are smaller than normal. The graph is titled "Point
spread function".

Notes:

• Values for the FWHM seeing are given in arcseconds if the Current co-ordinate Frame
of the NDF is a SKY Frame.

• The stars used to determine the mean image parameters should be chosen to represent
those whose magnitudes are to be found using a stellar photometry application, and
to be sufficiently bright, uncrowded, and noise-free to allow an accurate fit to be
made.

• It is assumed that the image scale does not vary significantly across the image.

• The method to calculate the fit is as follows.

– Marginal profiles of each star image are formed in four directions: at 0, 45, 90 and
135 degrees to the x axis. The profiles are cleaned via an iterative modal filter
that removes contamination such as neighbouring stars; moving from the centre
of the star, the filter prevents each data point from exceeding the maximum of
the two previous data values.

– A Gaussian curve and background is fitted to each profile iteratively refining the
parameters until parameters differ by less than 0.1 per cent from the previous
iteration. If convergence is not met after fifteen iterations, each fit parameter is
approximately the average of its last pair of values. The initial background is the
lower quartile.
Using the resulting four Gaussian centres, a mean centre is found for each star.
Iterations cease when the mean centroid position shifts by less 0.001 from the
previous iteration, or after three iterations if the nominal tolerance is not achieved.

– The four Gaussian widths of all the stars are combined modally, using an
amplitude-weighted average with rejection of erroneous data (using a maximum-
likelihood function for a statistical model in which any of the centres has a
constant probability of being corrupt). From the average widths along the four
profiles, the seeing-disc size, axis ratio and axis inclination are calculated.

– The data surrounding each star is then binned into isophotal zones which are
elliptical annuli centred on the star—the ellipse parameters being those just
calculated. The data in each zone is processed to remove erroneous points (using
the aforementioned maximum-likelihood function) and to find an average value.

629 PSF SUN/95.45 —Specifications of KAPPA applications

A Gaussian profile is fitted to these average values and the derived amplitude is
used to normalise the values to an amplitude of unity. The normalised values are
put into bins together with the corresponding data from all other stars and these
binned data represent a weighted average radial profile for the set of stars, with
the image ellipticity removed. Finally a radial profile is fitted to these data, giving
the radial profile parameter gamma and a final re-estimate of the seeing-disc size.

• If a plot was requested the application stores two pictures in the graphics database in
the following order: a FRAME of the specified size containing the title, annotated
axes, and line plot; and a DATA picture, containing just the data plot. Note, the
FRAME picture is only created if annotated axes have been drawn, or if non-zero
margins were specified using Parameter MARGIN. The NDF associated with the plot
is not stored by reference with the DATA picture. On exit the current database picture
for the chosen device reverts to the input picture.

Related Applications :

PHOTOM; Starman.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, WCS, and
TITLE components of an NDF data structure.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. The output point-spread-
function NDF has the same type as the input NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun45.htx/sun45.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun141.htx/sun141.html?xref_

SUN/95.45 —Specifications of KAPPA applications 630 QUALTOBAD

QUALTOBAD
Set selected NDF pixels bad on the basis of Quality

Description:
This routine produces a copy of an input NDF in which selected pixels are set bad. The
selection is based on the values in the QUALITY component of the input NDF; any pixel
which holds a set of qualities satisfying the quality expression given for Parameter QEXP
is set bad in the output NDF. Named qualities can be associated with specified pixels using
the SETQUAL task.

Usage:
qualtobad in out qexp

Parameters:

IN = NDF (Read)
The input NDF.

OUT = NDF (Write)
The output NDF.

QEXP = LITERAL (Read)
The quality expression.

TITLE = LITERAL (Read)
Title for the output NDF. A null (!) value will cause the input title to be used. [!]

Examples:
qualtobad m51∗ ∗_clean saturated.or.glitch

This example copies all NDFs starting with the string "m51" to a set of corre-
sponding output NDFs. The name of each output NDF is formed by extending the name
of the input NDF with the string "_clean". Any pixels which hold either of the qualities
"saturated" or "glitch" are set to the bad value in the output NDFs.

Related Applications :

KAPPA: REMQUAL, SETBB, SETQUAL, SHOWQUAL.

631 REGIONMASK SUN/95.45 —Specifications of KAPPA applications

REGIONMASK
Applies a mask to a region of an NDF

Description:
This routine masks out a region of an NDF by setting pixels to the bad value, or to a
specified constant value. The region to be masked is specified by a file (see Parameter
REGION) that should contain a description of the region in a form readable by the Starlink
AST library (see SUN/211 or SUN/210). Such formats include AST’s own native format
and other formats that can be converted automatically to an AST Region (e.g. IVOA MOC
and STC-S regions). AST Regions can be created, for instance, using the Starlink ATOOLS
package (a high-level interface to the facilities of the AST library).

Usage:
regionmask in region out

Parameters:
CONST = LITERAL (Given)

The constant numerical value to assign to the region, or the string "Bad". ["Bad"]

IN = NDF (Read)
The name of the input NDF.

INSIDE = _LOGICAL (Read)
If a TRUE value is supplied, the constant value is assigned to the inside of the region.
Otherwise, it is assigned to the outside. [TRUE]

OUT = NDF (Write)
The name of the output NDF.

REGION = FILENAME (Read)
The name of the file containing a description of the Region. This can be a text file
holding a dump of an AST Region (any sub-class of Region may be supplied—e.g.
Box, Polygon, CmpRegion, Prism, etc.), or any file that can be converted automatically
to an AST Region (for instance an IVOA MOC in text or FITS format, an IVOA STC-S
region in text format). An NDF may also be supplied, in which case the rectangular
boundary of the NDF is used as the Region. If the axes spanned by the Region are
not the same as those of the current WCS Frame in the input NDF, an attempt will be
made to create an equivalent new Region that does match the current WCS Frame.
An error will be reported if this is not possible.

Examples:
regionmask a1060 galaxies.txt a1060_sky

This copies input NDF a1060 to the output NDF a1060_sky, setting pixels bad if
they are contained within the Region specified in text file "galaxies.txt".

Related Applications :

KAPPA: ARDMASK; ATOOLS: ASTBOX, ASTCMPREGION, ASTELLIPSE, ASTINTER-
VAL, ASTPOLYGON.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/sun211.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

SUN/95.45 —Specifications of KAPPA applications 632 REGIONMASK

Implementation Status:

• This routine correctly processes the WCS, AXIS, DATA, QUALITY, LABEL, TITLE,
UNITS, HISTORY, and VARIANCE components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

633 REGRID SUN/95.45 —Specifications of KAPPA applications

REGRID
Applies a geometrical transformation to an NDF

Description:
This application uses a specified Mapping to re-grid the pixel positions in an NDF .
The specified Mapping should transform pixel co-ordinates in the input NDF into the
corresponding pixel co-ordinates in the output NDF.

By default, the bounds of the output pixel grid are chosen so that they just encompass all
the transformed input data, but they can be set explicitly using Parameters LBOUND and
UBOUND.

Two algorithms are available for determining the output pixel values: resampling and
rebinning (the method used is determined by the REBIN parameter).

The Mapping to use can be supplied in several different ways (see Parameter MAPPING).

Usage:
regrid in out [method]

Parameters:

AXES() = _INTEGER (Read)
The indices of the pixel axes that are to be re-gridded. These should be in the range 1
to NDIM (the number of pixel axes in the NDF). Each value may appear at most once.
The order of the supplied values is insignificant. If a null (!) value is supplied, then
all pixel axes are re-gridded. Otherwise, only the specified pixel axes are regridded.
Note, it is not always possible to specify completely arbitrary combinations of pixel
axes to be regridded. For instance, if the current WCS Frame contains RA and Dec.
axes, then it is not possible to regrid one of the corresponding pixel axes without the
other. An error will be reported in such cases. [!]

CONSERVE = _LOGICAL (Read)
If set TRUE, then the output pixel values will be scaled in such a way as to preserve
the total data value in a feature on the sky. The scaling factor is the ratio of the output
pixel size to the input pixel size. This option can only be used if the Mapping is
successfully approximated by one or more linear transformations. Thus an error will
be reported if it used when the TOL parameter is set to zero (which stops the use of
linear approximations), or if the Mapping is too non-linear to be approximated by a
piece-wise linear transformation. The ratio of output to input pixel size is evaluated
once for each panel of the piece-wise linear approximation to the Mapping, and is
assumed to be constant for all output pixels in the panel. This parameter is ignored if
the NORM parameter is set FALSE. [TRUE]

IN = NDF (Read)
The NDF to be transformed.

LBOUND() = _INTEGER (Read)
The lower pixel-index bounds of the output NDF. The number of values must be
equal to the number of dimensions in the output NDF. If a null value is supplied,

SUN/95.45 —Specifications of KAPPA applications 634 REGRID

default bounds will be used which are just low enough to fit in all the transformed
pixels of the input NDF. [!]

MAPPING = FILENAME (Read)
The name of a file containing the Mapping to be used, or null (!) if the input
NDF is to be mapped into its own current Frame. If a file is supplied, the forward
direction of the Mapping should transform pixel co-ordinates in the input NDF into
the corresponding pixel co-ordinates in the output NDF. If only a subset of pixel axes
are being re-gridded, then the inputs to the Mapping should correspond to the pixel
axes specified via Parameter AXES. The file may be one of the following.

• A text file containing a textual representation of the AST Mapping to use. Such
files can be created by WCSADD.
• A text file containing a textual representation of an AST FrameSet. If the FrameSet

contains a Frame with Domain PIXEL, then the Mapping used is the Mapping
from the PIXEL Frame to the current Frame. If there is no PIXEL Frame in the
FrameSet, then the Mapping used is the Mapping from the base Frame to the
Current Frame.
• A FITS file. The Mapping used is the Mapping from the FITS pixel co-ordinates in

which the centre of the bottom-left pixel is at co-ordinates (1,1), to the co-ordinate
system represented by the primary WCS headers, CRVAL, CRPIX, etc.
• An NDF. The Mapping used is the Mapping from the PIXEL Frame to the Current

Frame of its WCS FrameSet.

If a null (!) value is supplied, the Mapping used is the Mapping from pixel co-
ordinates in the input NDF to the current Frame in the input NDF. The output NDF
will then have pixel co-ordinates which match the co-ordinates of the current Frame
of the input NDF (apart from possible additional scalings as specified by the SCALE
parameter).

METHOD = LITERAL (Read)
The method to use when sampling the input pixel values (if resampling), or dividing
an input pixel value between a group of neighbouring output pixels (if rebinning).
For details of these schemes, see the descriptions of routines AST_RESAMPLEx and
AST_REBINSEQx in SUN/210. METHOD can take the following values.

• "Bilinear" — When resampling, the output pixel values are calculated by bi-
linear interpolation among the four nearest pixels values in the input NDF. When
rebinning, the input pixel value is divided up bi-linearly between the four nearest
output pixels. Produces smoother output NDFs than the nearest-neighbour
scheme, but is marginally slower.
• "Nearest" — When resampling, the output pixel values are assigned the value of

the single nearest input pixel. When rebinning, the input pixel value is assigned
completely to the single nearest output pixel.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling) or transformed input pixel centre (rebinning), and
sinc(z) = sin(z)/z. Use of this scheme is not recommended.
• "SincSinc" — Uses the sinc(πx)sinc(kπx) kernel. A valuable general-purpose

scheme, intermediate in its visual effect on NDFs between the bi-linear and

http://fits.gsfc.nasa.gov/
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_REBINSEQ\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

635 REGRID SUN/95.45 —Specifications of KAPPA applications

nearest-neighbour schemes.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. Gives similar results to the
"Sincsinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling) or transformed input pixel centre (rebinning), and
somb(z) = 2 ∗ J1(z)/z. J1 is the first-order Bessel function of the first kind. This
scheme is similar to the "Sinc" scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "Gauss" — Uses the e−kx2

kernel. The FWHM of the Gaussian is given by Param-
eter PARAMS(2), and the point at which to truncate the Gaussian to zero is given
by Parameter PARAMS(1).
• "BlockAve" — Block averaging over all pixels in the surrounding N-dimensional

cube. This option is only available when resampling (i.e. if REBIN is set to FALSE).

All methods propagate variances from input to output, but the variance estimates
produced by these schemes other than nearest neighbour need to be treated with care
since the spatial smoothing produced by these methods introduces correlations in the
variance estimates. Also, the degree of smoothing produced varies across the NDF.
This is because a sample taken at a pixel centre will have no contributions from the
neighbouring pixels, whereas a sample taken at the corner of a pixel will have equal
contributions from all four neighbouring pixels, resulting in greater smoothing and
lower noise. This effect can produce complex Moiré patterns in the output variance
estimates, resulting from the interference of the spatial frequencies in the sample
positions and in the pixel-centre positions. For these reasons, if you want to use the
output variances, you are generally safer using nearest-neighbour interpolation. The
initial default is "Nearest". [current value]

NORM = _LOGICAL (Read)
In general, each output pixel contains contributions from multiple input pixel values,
and the number of input pixels contributing to each output pixel will vary from pixel
to pixel. If NORM is set TRUE (the default), then each output value is normalised by
dividing it by the number of contributing input pixels, resulting in each output value
being the weighted mean of the contributing input values. However, if NORM is set
FALSE, this normalisation is not applied. See also Parameter CONSERVE. [TRUE]

OUT = NDF (Write)
The transformed NDF.

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods.
PARAMS(1) is required by all the above schemes. It is used to specify how many
pixels are to contribute to the interpolated result on either side of the interpolation
or binning point in each dimension. Typically, a value of 2 is appropriate and the
minimum allowed value is 1 (i.e. one pixel on each side). A value of zero or fewer
indicates that a suitable number of pixels should be calculated automatically. [0]

SUN/95.45 —Specifications of KAPPA applications 636 REGRID

PARAMS(2) is required only by the Gauss, SincSinc, SincCos, and SincGauss schemes.
For the SombCos, SincSinc, and SincCos schemes, it specifies the number of pixels at
which the envelope of the function goes to zero. The minimum value is 1.0, and the
run-time default value is 2.0. For the Gauss and SincGauss schemes, it specifies the
full-width at half-maximum (FWHM) of the Gaussian envelope measured in output
pixels. The minimum value is 0.1, and the run-time default is 1.0. On astronomical
images and spectra, good results are often obtained by approximately matching the
FWHM of the envelope function, given by PARAMS(2), to the point-spread function
of the input data. []

REBIN = _LOGICAL (Read)
Determines the algorithm used to calculate the output pixel values. If a TRUE value is
given, a rebinning algorithm is used. Otherwise, a resampling algorithm is used. See
the “Choice of Algorithm” topic below. [current value]

SCALE() = _DOUBLE (Read)
Axis scaling factors which are used to modify the supplied Mapping. If the number of
supplied values is fewer than the number of output axes associated with the Mapping,
the final supplied value is duplicated for the missing axes. In effect, transformed
input co-ordinate axis values would be multiplied by these factors to obtain the
corresponding output pixel co-ordinates. If a null (!) value is supplied for SCALE,
then default values are used which depends on the value of Parameter MAPPING. If
a null value is supplied for MAPPING then the default scaling factors are chosen so
that pixels retain their original size (very roughly) after transformation. If as non-null
value is supplied for MAPPING then the default scaling factor used is 1.0 for each
axis (i.e. no scaling). [!]

TITLE = LITERAL (Read)
A Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TOL = _DOUBLE (Read)
The maximum tolerable geometrical distortion which may be introduced as a result
of approximating non-linear Mappings by a set of piece-wise linear transforms. The
resampling algorithm approximates non-linear co-ordinate transformations in order
to improve performance, and this parameter controls how inaccurate the resulting
approximation is allowed to be, as a displacement in pixels of the input NDF. A value
of zero will ensure that no such approximation is done, at the expense of increasing
execution time. [0.2]

UBOUND() = _INTEGER (Read)
The upper pixel-index bounds of the output NDF. The number of values must be
equal to the number of dimensions of the output NDF. If a null value is supplied,
default bounds will be used which are just high enough to fit in all the transformed
pixels of the input NDF. [!]

WLIM = _REAL (Read)
This parameter is only used if REBIN is set TRUE. It specifies the minimum number
of good pixels which must contribute to an output pixel for the output pixel to be
valid. Note, fractional values are allowed. A null (!) value causes a very small
positive value to be used resulting in output pixels being set bad only if they receive
no significant contribution from any input pixel. [!]

637 REGRID SUN/95.45 —Specifications of KAPPA applications

Examples:
regrid sg28948 sg28948r mapping=rotate.ast

Here sg28948 is resampled into a new co-ordinate system using the AST Map-
ping stored in a text file called rotate.ast (which may have been created using WCSADD
for instance).

regrid flat distorted mapping=!

This transforms the NDF called flat into its current co-ordinate Frame, writing
the result to an NDF called distorted. It uses nearest-neighbour resampling. If the units
of the PIXEL and current co-ordinate Frames of flat are of similar size, then the pixel
co-ordinates of distorted will be the same as the current co-ordinates of flat, but if there is
a large scale discrepancy a scaling factor will be applied to give the output NDF a similar
size to the input one. The output NDF will be just large enough to hold the transformed
copies of all the pixels from NDF flat.

regrid flat distorted mapping=! scale=1 method=sinccos params=[0,3]

As the previous example, but the additional scaling factor will not be applied
even in the case of large size discrepancy, and a sinc∗cos one-dimensional resampling
kernel is used which rolls off at a distance of 3 pixels from the central one.

regrid flat distorted mapping=! scale=0.2 method=blockave params=2

In this case, an additional shrinking factor of 0.2 is being applied to the output
NDF (i.e. performed following the Mapping from pixel to current co-ordinates), and the
resampling is being done using a block averaging scheme in which a cube extending two
pixels either side of the central pixel is averaged over to produce the output value. If the
PIXEL-domain and current Frame pixels have (about) the same size, this will result in
every pixel from the input NDF adding a contribution to one pixel of the output NDF.

regrid a119 a119s mapping=! lbound=[1,-20] ubound=[256,172]

This transforms the NDF called a119 into an NDF called a119s. It uses nearest-
neighbour resampling. The shape of a119s is forced to be (1:256,−20:172) regardless of the
location of the transformed pixels of a119.

Notes:

• If the input NDF contains a VARIANCE component, a VARIANCE component will
be written to the output NDF. It will be calculated on the assumption that errors on
the input data values are statistically independent and that their variance estimates
may simply be summed (with appropriate weighting factors) when several input
pixels contribute to an output data value. If this assumption is not valid, then the
output error estimates may be biased. In addition, note that the statistical errors on

SUN/95.45 —Specifications of KAPPA applications 638 REGRID

neighbouring output data values (as well as the estimates of those errors) may often
be correlated, even if the above assumption about the input data is correct, because
of the sub-pixel interpolation schemes employed.

• This task is based on the AST_RESAMPLEx and AST_REBINSEQx routines described
in SUN/210.

Choice of Algorithm :

The algorithm used to produce the output image is determined by the REBIN parameter,
and is based either on resampling the output image or rebinning the corresponding input
image.

The resampling algorithm steps through every pixel in the output image, sampling the
input image at the corresponding position and storing the sampled input value in the
output pixel. The method used for sampling the input image is determined by the
METHOD parameter. The rebinning algorithm steps through every pixel in the input
image, dividing the input pixel value between a group of neighbouring output pixels,
incrementing these output pixel values by their allocated share of the input pixel value,
and finally normalising each output value by the total number of contributing input values.
The way in which the input sample is divided between the output pixels is determined by
the METHOD parameter.

Both algorithms produce an output in which the each pixel value is the weighted mean
of the nearby input values, and so do not alter the mean pixel values associated with a
source, even if the pixel size changes. Thus the total data sum in a source will change if
the input and output pixel sizes differ. However, if the CONSERVE parameter is set TRUE,
the output values are scaled by the ratio of the output to input pixel size, so that the total
data sum in a source is preserved.

A difference between resampling and rebinning is that resampling guarantees to fill the
output image with good pixel values (assuming the input image is filled with good input
pixel values), whereas holes can be left by the rebinning algorithm if the output image
has smaller pixels than the input image. Such holes occur at output pixels that receive
no contributions from any input pixels, and will be filled with the value zero in the
output image. If this problem occurs, the solution is probably to change the width of the
pixel spreading function by assigning a larger value to PARAMS(1) and/or PARAMS(2)
(depending on the specific METHOD value being used).

Both algorithms have the capability to introduce artefacts into the output image. These
have various causes described below.

• Particularly sharp features in the input can cause rings around the corresponding
features in the output image. This can be minimised by suitable settings for the
METHOD and PARAMS parameters. In general such rings can be minimised by
using a wider interpolation kernel (if resampling) or spreading function (if rebinning),
at the cost of degraded resolution.

• The approximation of the Mapping using a piece-wise linear transformation (con-
trolled by Parameter TOL) can produce artefacts at the joints between the panels of
the approximation. These can occur when using the rebinning algorithm, or when
using the resampling algorithm with CONSERVE set to TRUE. They are caused by

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_REBINSEQ\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

639 REGRID SUN/95.45 —Specifications of KAPPA applications

the discontinuities between the adjacent panels of the approximation, and can be
minimised by reducing the value assigned to the TOL parameter.

Related Applications :

KAPPA: FLIP, ROTATE, SLIDE, WCSADD, WCSALIGN; CCDPACK: TRANLIST, TRAN-
NDF, WCSEDIT.

Implementation Status:

• The LABEL, UNITS, and HISTORY components, and all extensions are propagated.
TITLE is controlled by the TITLE parameter. DATA, VARIANCE, and WCS are prop-
agated after appropriate modification. The QUALITY component is also propagated
if Nearest-Neighbour interpolation is being used (note, REBIN must be FALSE). The
AXIS component is not propagated.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. If REBIN is TRUE, the data type
will be converted to one of _INTEGER, _DOUBLE or _REAL for processing.

• There can be an arbitrary number of NDF dimensions.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_TRANLIST
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_TRANNDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_TRANNDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSEDIT

SUN/95.45 —Specifications of KAPPA applications 640 REMQUAL

REMQUAL
Removes specified quality definitions from an NDF

Description:
This routine removes selected quality name definitions from an NDF (see Task SETQUAL)
and optionally clears the corresponding bit in the QUALITY array of the supplied NDF.
All quality names information may be removed by specifying a quality name of "ANY".

An error will be reported if an attempt is made to remove a quality name that has been
flagged as “read-only” (e.g. using the READONLY parameter of the SETQUAL applica-
tion).

Usage:
remqual ndf qnames

Parameters:

CLEAR = _LOGICAL (Read)
If TRUE, the bits in the NDF’s QUALITY array that correspond to the removed quality
names will be cleared. If FALSE, no change will be made to the QUALITY array.
[FALSE]

NDF = NDF (Update)
The NDF to be modified.

QNAMES = LITERAL (Read)
A group of up to 10 quality names to be removed from the input NDF. The group
may be supplied as a comma-separated list, or within a text file (in which case the
name of the text file should be given, preceded by a "^" character.) If more than 10
names are supplied, only the first 10 are used. If any of the supplied quality names
are not defined in the NDF, then warning messages are given but the application
continues to remove any other specified quality names. If the string ANY is specified,
then all defined quality names are removed. If no defined quality names remain, the
structure used to store quality name information is deleted. This feature can be used
to get rid of corrupted quality name information.

Related Applications :

KAPPA: QUALTOBAD, SHOWQUAL, SETQUAL.

Examples:
remqual "m51∗" any

This example will remove all defined quality names from all NDFs with names
starting with the string "m51".

641 RESHAPE SUN/95.45 —Specifications of KAPPA applications

RESHAPE
Reshapes an NDF, treating its arrays as vectors

Description:
This application reshapes an NDF to create another NDF by copying array values. The
array components in the input NDF are treated as vectors. Each output array is filled in
order with values from the input vector, until it is full or the input vector is exhausted.
Output data and variance pixels not filled are set to the bad value; unfilled quality pixels
are set to zero. The filling is in Fortran order, namely the first dimension, followed by the
second dimension,. . . to the highest dimension.

It is possible to form a vectorized NDF using Parameter VECTORIZE without having to
specify the shape.

Usage:
reshape in out shape=?

Parameters:
IN = NDF (Read)

The input NDF to be reshaped.
OUT = NDF (Read)

The NDF after reshaping.
SHAPE() = _INTEGER (Read)

The shape of the output NDF. For example, [50,30,20] would create 50 columns by
30 lines by 20 bands. It is only accessed when VECTORIZE=FALSE.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the base
NDF to the output NDF. [!]

VECTORIZE = _LOGICAL (Read)
If TRUE, the output NDF is the vectorized form of the input NDF. If FALSE, Parameter
SHAPE is used to specify the new shape. [FALSE]

Examples:
reshape shear normal shape=[511,512]

This reshapes the NDF called shear to form NDF normal, whose shape is 511×512 pixels.
One example is where the original image has 512×512 pixels but one pixel was omitted
from each line during some data capture, causing the image to be sheared between lines.

reshape cube cube1d vectorize

This vectorizes the NDF called cube to form NDF cube1d. This could be used
for a task that only permits one-dimensional data.

Related Applications :

KAPPA: CHAIN, PASTE, RESHAPE.

SUN/95.45 —Specifications of KAPPA applications 642 RESHAPE

Implementation Status:

• This routine correctly processes the DATA, QUALITY, VARIANCE, LABEL, TITLE,
UNITS, and HISTORY, components of an NDF data structure and propagates all
extensions. WCS, and AXIS information is lost.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

643 RIFT SUN/95.45 —Specifications of KAPPA applications

RIFT
Adds a scalar to a section of an NDF data structure to correct

rift-valley defects

Description:
The routine adds a scalar (i.e. constant) value to each pixel of an NDF’s data array within
a sub-section to produce a new NDF data structure.

Usage:
rift in scalar out section

Parameters:

IN = NDF (Read)
Input NDF data structure, to which the value is to be added.

OUT = NDF (Write)
Output NDF data structure.

SCALAR = _DOUBLE (Read)
The value to be added to the NDF’s data array within the section.

SECTION = LITERAL (Read)
The pixels to which a scalar is to be added. This is defined as an NDF section, so
that ranges can be defined along any axis, and be given as pixel indices or axis (data)
co-ordinates. So for example "3,4,5" would select the pixel at (3,4,5); "3:5," would
select all elements in columns 3 to 5; ",4" selects line 4. See Section 9 for details.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
rift aa 10.7 bb "100:105" 20

This adds 10 in the columns 100 to 105 in the data array of the NDF called aa
and stores the result in the NDF called bb. In other respects bb is a copy of aa.

rift cubein -100 cubeout "„4"

This adds −100 to all values in the fourth plane of the data array of the NDF
called cubein and stores the result in the NDF called cubeout. In other respects cubeout is
a copy of cubeout.

rift in=aa scalar=2 out=bb section="-10:5,200∼9"

This adds 2 to the rectangular section between columns −10 to 5 and lines 196
to 204 of the data array of the NDF called aa and stores the result in the NDF called bb. In
other respects bb is a copy of aa.

SUN/95.45 —Specifications of KAPPA applications 644 RIFT

Notes:

For similar operations performed on a subset, use the appropriate application to process
the relevant section and then run PASTE to paste the result back into the full array.

Related Applications :

KAPPA: CADD, CHPIX, GLITCH, PASTE, SEGMENT, ZAPLIN; FIGARO: CSET, ICSET,
NCSET, TIPPEX.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• The bad-pixel flag is set to TRUE if undefined values are created during the arithmetic.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_NCSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

645 ROTATE SUN/95.45 —Specifications of KAPPA applications

ROTATE
Rotates a two-dimensional NDF about its centre through any angle

Description:
This routine rotates an array stored in an NDF data structure by an arbitrary angle. The
rotation angle can be chosen automatically to make north vertical in the output NDF
(see Parameter ANGLE). The origin of the rotation is around the point (0, 0) in pixel
co-ordinates. The output array dimensions just accommodate the rotated array. Output
pixels can be generated from the input array by one of two methods: nearest-neighbour
substitution or by bi-linear interpolation. The latter is slower, but gives better results.
Output pixels not corresponding to input pixels take the bad value.

The NDF may have two or three dimensions. If it has three dimensions, then the rotation
is applied in turn to each plane in the cube and the result written to the corresponding
plane in the output cube. The orientation of the rotation plane can be specified using the
AXES parameter.

Usage:
rotate in out angle

Results Parameters:

ANGLEUSED() = _REAL (Write)
An output parameter holding the rotation angle actually used, in degrees. This is useful if
a null value is supplied for parameter ANGLE.

Parameters:
ANGLE = _REAL (Read)

Number of clockwise degrees by which the data array is to be rotated. It must lie
between -360 and 360 degrees. The suggested default is the current value. If a null (!)
value is supplied, then the rotation angle is chosen to make north vertical at the centre
of the image. If the current co-ordinate Frame in the input NDF is not a celestial
co-ordinate frame, then the rotation angle is chosen to make the second axis of the
current Frame vertical.

AXES(2) = _INTEGER (Read)
This parameter is only accessed if the NDF has exactly three significant pixel axes.
It should be set to the indices of the NDF pixel axes which span the plane in which
rotation is to be applied. All pixel planes parallel to the specified plane will be rotated
independently of each other. The dynamic default comprises the indices of the first
two significant axes in the NDF. Note that excluding the first significant axis may be
very inefficient for large cubes; a prior reconfiguration with application PERMAXES
that is compatible with the dynamic default for AXES, will often prove beneficial. []

IN = NDF (Read)
NDF structure containing the two- or three-dimensional array to be rotated.

NNMETH = _LOGICAL (Read)
If TRUE, the nearest-neighbour method will be used to evaluate the output data-array
pixels. This is only accessed when the rotation is not a multiple of 90 degrees. [FALSE]

SUN/95.45 —Specifications of KAPPA applications 646 ROTATE

OUT = NDF (Write)
Output NDF to contain the rotated arrays.

QUALITY = _LOGICAL (Read)
This parameter is only accessed when NNMETH is FALSE and ANGLE is not a
multiple of 90 degrees. Strictly, the quality values are undefined by the bi-linear
interpolation and hence cannot be propagated. However, QUALITY=TRUE offers an
approximation to the quality array by propagating the nearest-neighbour quality to
the output NDF. [FALSE]

TITLE = LITERAL (Read)
A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more than
two axes. A group of two strings should be supplied specifying the two axes which
are to be used when determining the rotation angle needed to make north vertical.
Each axis can be specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two used pixel axes within
the NDF are used. [!]

VARIANCE = _LOGICAL (Read)
A TRUE value causes variance values to be used as weights for the pixel values in
bi-linear interpolation, and also causes output variances to be created. This parameter
is ignored if ANGLE is a multiple of 90 degrees or NNMETH=TRUE; in these cases the
variance array is merely propagated. If a null (!) value is supplied, the value used is
TRUE if the input NDF has a VARIANCE component, and FALSE otherwise. Note that
following this operation the errors are no longer independent. [!]

Examples:
rotate ns ew 90

This rotates the array components in the NDF called ns by 90 degrees clockwise
around pixel co-ordinates [0, 0] and stores the result in the NDF called ew. The former x
axis becomes the new y axis, and the former y axis becomes the new x axis. The former
y-axis arrays are also reversed in the process.

rotate m31 m31r angle=!

This rotates the NDF called m31 so that north is vertical and stores the results in
an NDF called m31r. This assumes that the current WCS Frame in the input NDF is a
celestial co-ordinate Frame.

647 ROTATE SUN/95.45 —Specifications of KAPPA applications

rotate angle=180 out=sn in=ns

This rotates the array components in the NDF called ns by 180 degrees clock-
wise around the pixel co-ordinates [0, 0], and stores the result in the NDF called sn. The
axis arrays are flipped in the output NDF.

rotate f1 f1r 37.2 novariance

This rotates the array components in the NDF called f1 by 37.2 degrees clock-
wise around the pixel co-ordinates [0, 0], and stores the result in the NDF called f1r.
The original axis information is lost. Bi-linear interpolation is used without variance
information. No quality or variance information is propagated.

rotate f1 f1r 106 nnmeth title="Reoriented features map"

This rotates the array components in the NDF called f1 by 106 degrees clock-
wise around the pixel co-ordinates [0, 0], and stores the result in the NDF called f1r.
The original axis information is lost. The resultant array components, all of which are
propagated, are calculated by the nearest-neighbour method. The title of the output NDF
is "Reoriented features map".

rotate velmap rotvelmap 70

This rotates the array components in the three-dimensional NDF called velmap
by 70 degrees clockwise around the pixel co-ordinates [0,0], and stores the result in the
NDF called rotvelmap. The rotation is applied to the first two pixel axes repeated for all
the planes in the cube’s third pixel axis.

rotate velmap rotvelmap 70 axes=[1,3]

This as the previous example except that the rotation is applied in the plane
given by the first and third pixel axes.

Notes:

• Bad pixels are ignored in the bi-linear interpolation. If all four pixels are bad, the
result is bad.

Related Applications :

KAPPA: FLIP, REGRID; FIGARO: IREVX, IREVY, IROT90.

Implementation Status:
The propagation rules depend on Parameters ANGLE and NNMETH.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IREVY
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IROT90

SUN/95.45 —Specifications of KAPPA applications 648 ROTATE

• For rotations that are multiples of 90-degrees, VARIANCE, QUALITY, AXIS, HIS-
TORY, LABEL WCS, and UNITS components of the input NDF are propagated to the
output NDF. The axis and WCS components are switched and flipped as appropriate.

• For the nearest-neighbour method VARIANCE, QUALITY, HISTORY, LABEL, WCS
and UNITS components of the input NDF are propagated to the output NDF.

• For the linear-interpolation method HISTORY, LABEL, WCS and UNITS compo-
nents of the input NDF are propagated to the output NDF. In addition if Parameter
VARIANCE is TRUE, variance information is derived from the input variance; and if
Parameter QUALITY is TRUE, QUALITY is propagated using the nearest neighbour.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric types are supported, though for linear interpolation the
arithmetic is performed using single- or double-precision floating point as appropri-
ate; and for 90 and 270-degree rotations _INTEGER is used for all integer types.

649 SCATTER SUN/95.45 —Specifications of KAPPA applications

SCATTER
Displays a scatter plot between data in two NDFs

Description:
This application displays a two-dimensional plot in which the horizontal axis corresponds
to the data value in the NDF given by Parameter IN1, and the vertical axis corresponds
to the data value in the NDF given by Parameter IN2. Optionally, the variance, standard
deviation or quality may be used instead of the data value for either axis (see Parameters
COMP1 and COMP2). A symbol is displayed at an appropriate position in the plot for
each pixel which has a good value in both NDFs, and falls within the bounds specified
by Parameters XLEFT, XRIGHT, YBOT, and YTOP. The type of symbol may be specified
using Parameter MARKER.

The supplied arrays may be compressed prior to display (see Parameter COMPRESS). This
reduces the number of points in the scatter plot, and also reduces the noise in the data.

The Pearson correlation coefficient of the displayed scatter plot is also calculated and
displayed, and written to output Parameter CORR.

A linear fit to the data can be calculated and displayed (see Parameter FIT).

Usage:
scatter in1 in2 [comp1] [comp2] [device]

Parameters:

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the plot. The width of
the margins left for the annotation may be controlled using Parameter MARGIN. The
appearance of the axes (colours, founts, etc.) can be controlled using the Parameter
STYLE. The dynamic default is TRUE if CLEAR is TRUE, and FALSE otherwise. []

CLEAR = _LOGICAL (Read)
If TRUE the current picture is cleared before the plot is drawn. If CLEAR is FALSE not
only is the existing plot retained, but also an attempt is made to align the new picture
with the existing picture. Thus you can generate a composite plot within a single
set of axes, say using different colours or modes to distinguish data from different
datasets. [TRUE]

COMP1 = LITERAL (Read)
The NDF array component to be displayed on the horizontal axis. It may be "Data",
"Quality", "Variance", or "Error" (where "Error" is an alternative to "Variance"
and causes the square root of the variance values to be displayed). If "Quality" is
specified, then the quality values are treated as numerical values (in the range 0 to
255). ["Data"]

COMP2 = LITERAL (Read)
The NDF array component to be displayed on the vertical axis. It may be "Data",
"Quality", "Variance", or "Error" (where "Error" is an alternative to "Variance"
and causes the square root of the variance values to be displayed). If "Quality" is

SUN/95.45 —Specifications of KAPPA applications 650 SCATTER

specified, then the quality values are treated as numerical values (in the range 0 to
255). ["Data"]

COMPRESS() = _INTEGER (Read)
The compression factors to be used when compressing the supplied arrays prior to
display. If any of the supplied values are greater than 1, then the supplied arrays are
compressed prior to display by replacing each box of input pixels by a single pixel
equal to the mean of the pixels in the box. The size of each box in pixels is given
by the compression factors. No compression occurs if all values supplied for this
parameter are 1. If the number of values supplied is smaller than the number of axes,
the final value supplied is duplicated for the remaining axes. [1]

DEVICE = DEVICE (Read)
The graphics workstation on which to produce the plot. If a null value (!) is supplied
no plot will be made. [current graphics device]

FIT = _LOGICAL (Read)
If TRUE, then a linear fit to the scatter points is added to the plot. The slope and
offset of this fit is displayed on the screen and written to output Parameters SLOPE,
OFFSET, and RMS. A symmetric linear-fit algorithm is used, which caters for the
presence of noise in both X and Y values. Outliers are identified and ignored. Note,
the fit is based on just those points that are visible in the scatter plot. Points outside
the bounds of the plot are ignored. Points that are inside the plot are also ignored if
their reflection through the best-fit line are outside the plot. This avoids biasing the
fit if the plot bounds omit more points on one side of the line than the other. [current
value]

IN1 = NDF (Read)
The NDF to be displayed on the horizontal axis.

IN2 = NDF (Read)
The NDF to be displayed on the vertical axis.

MARGIN(4) = _REAL (Read)
The widths of the margins to leave for axis annotation, given as fractions of the
corresponding dimension of the current picture. Four values may be given, in the
order bottom, right, top, left. If fewer than four values are given, extra values are used
equal to the first supplied value. If these margins are too narrow any axis annotation
may be clipped. If a null (!) value is supplied, the value used is 0.15 (for all edges) if
annotated axes are produced, and zero otherwise. [current value]

MARKER = _INTEGER (Read)
Specifies the symbol with which each position should be marked in the plot. It should
be given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot,
2 gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than
or equal to −31. [current value]

PERC1(2) = _REAL (Read)
The percentiles that define the default values for XLEFT and XRIGHT. For example,
[5,95] would result in the lowest and highest 5% of the data value in IN1 being
excluded from the plot if the default values are accepted for XLEFT and XRIGHT.
[current value]

PERC2(2) = _REAL (Read)
The percentiles that define the default values for YBOT and YTOP. For example,

651 SCATTER SUN/95.45 —Specifications of KAPPA applications

[5,95] would result in the lowest and highest 5% of the data value in IN2 being
excluded from the plot if the default values are accepted for YBOT and YTOP. [current
value]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use when drawing the
annotated axes, and markers.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of markers is controlled by Colour(Markers), Width(Markers), etc. (the
synonym Symbols may be used in place of Markers). [current value]

XLEFT = _DOUBLE (Read)
The axis value to place at the left hand end of the horizontal axis. If a null (!) value is
suplied, the value used is determined by Parameter PERC1. The value supplied may
be greater than or less than the value supplied for XRIGHT. [!]

XRIGHT = _DOUBLE (Read)
The axis value to place at the right hand end of the horizontal axis. If a null (!) value
is suplied, the value used is determined by Parameter PERC1. The value supplied
may be greater than or less than the value supplied for XLEFT. [!]

YBOT = _DOUBLE (Read)
The axis value to place at the bottom end of the vertical axis. If a null (!) value is
suplied, the value used is determined by Parameter PERC2. The value supplied may
be greater than or less than the value supplied for YTOP. [!]

YTOP = _DOUBLE (Read)
The axis value to place at the top end of the vertical axis. If a null (!) value is suplied,
the value used is determined by Parameter PERC2. The value supplied may be
greater than or less than the value supplied for YBOT. [!]

Results Parameters:

CORR = _DOUBLE (Write)
The Pearson correlation coefficient of the visible points in the scatter plot (points outside

SUN/95.45 —Specifications of KAPPA applications 652 SCATTER

the plot are ignored). A value of zero is stored if the correlation coefficient cannot be
calculated.

NPIX = _INTEGER (Write)
The number of pixels used to form the correlation coefficient.

OFFSET = _DOUBLE (Write)
An output parameter giving the offset in the linear fit: IN2 = SLOPE ∗ IN1 + OFFSET.
Only used if Parameter FIT is TRUE.

RMS = _DOUBLE (Write)
An output parameter giving the RMS residual of the data (excluding outliers) about the
linear fit. Only used if Parameter FIT is TRUE.

SLOPE = _DOUBLE (Write)
An output parameter giving the slope of the linear fit: IN2 = SLOPE ∗ IN1 + OFFSET.
Only used if Parameter FIT is TRUE.

Examples:
scatter cl123a cl123b

This displays a scatter plot of the data value in NDF cl123b against the data
value in NDF cl123a, on the current graphics device.

scatter cl123a cl123a pscol_l comp2=error compress=3

This displays a scatter plot of the error in NDF cl123a against the data value in
the same NDF. The graphics device used is pscol_l. The data are compressed by a factor of
3 on each axis before forming the plot.

Notes:

• Any pixels that are bad (after any compression) in either array are excluded from the
plot, and from the calculation of the default axis limits
• The application stores two pictures in the graphics database in the following order:

a FRAME picture containing the annotated axes and data plot, and a DATA picture
containing just the data plot. Note, the FRAME picture is only created if annotated
axes have been drawn, or if non-zero margins were specified using Parameter MAR-
GIN. The world co-ordinates in the DATA picture will correspond to data value in
the two NDFs.

Related Applications :

KAPPA: NORMALIZE.

Implementation Status:

• Processing of bad pixels and automatic quality masking are supported.
• Only _REAL data can be processed directly. Other non-complex numeric data types

will undergo a type conversion before processing occurs.

653 SEGMENT SUN/95.45 —Specifications of KAPPA applications

SEGMENT
Copies polygonal segments from one NDF into another

Description:
This routine copies one or more polygonal segments from the first input NDF (Parameter
IN1), and pastes them into the second input NDF (Parameter IN2) at the same pixel co-
ordinates. The resulting mosaic is stored in the output NDF (see OUT). Either input NDF
may be supplied as null (!) in which case the corresponding areas of the output NDF are
filled with bad values. For instance, supplying a null value for IN2 allows segments to be
cut from IN1 and pasted on to a background of bad values. Supplying a null value for IN1
allows ‘holes’ to be cut out of IN2 and filled with bad values.

Each polygonal segment is specified by giving the positions of its vertices. This may
be done using a graphics cursor, by supplying a positions list or text file containing the
positions, or by supplying the positions in response to a parameter prompt. The choice is
made by Parameter MODE.

This application may also be used to cut and paste cylinders with polygonal cross-sections
from NDFs with more than two dimensions. See the “Notes” section below for further
details.

Usage:

segment in1 in2 out

coords=?

incat1-incat20=?

poly1-poly20=?
mode

Parameters:

COORDS = LITERAL (Read)
The co-ordinates of a single vertex for the current polygon. If Parameter MODE is set
to "Interface", this parameter is accessed repeatedly to obtain the co-ordinates of all
vertices in the polygon. A null value should be given when the final vertex has been
specified. Each position should be supplied within the current co-ordinate Frame of
the output NDF (see Parameter OUT). Supplying a colon ":" will display details of
the required co-ordinate Frame. No more than two formatted axis values (separated
by a comma or space) may be supplied. If the co-ordinate Frame being used has more
than two axes, then the two axes to use must be specified using Parameter USEAXIS.

DEVICE = DEVICE (Read)
The name of the graphics device on which an image is displayed. Only used if
Parameter MODE is given the value "Cursor". Any graphics specified by Parameter
PLOT will be produced on this device. This device must support cursor interaction.
[current graphics device]

IN1 = NDF (Read)
The input NDF containing the data to be copied to the inside of the supplied polygonal

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 654 SEGMENT

segments. If a null value is supplied, the inside of the polygonal segments will be
filled with bad values.

IN2 = NDF (Read)
The input NDF containing the data to be copied to the outside of the supplied
polygonal segments. If a null value is supplied, the outside of the polygonal segments
will be filled with bad values.

INCAT1-INCAT20 = FILENAME (Read)
If MODE is "Catalogue", each of the Parameters INCAT1 to INCAT20 are used to
access catalogues containing the co-ordinates of the vertices of a single polygon.
Suitable catalogues may be created using CURSOR, LISTMAKE, etc. If a value is
assigned to INCAT1 on the command line, you are not prompted for any of the
remaining parameters in this group; additional polygon catalogues must also be
supplied on the command line. Otherwise, you are prompted for INCAT1, then
INCAT2, etc. until a null value is given or INCAT20 is reached.
The positions in each catalogue are mapped into the pixel co-ordinate Frame of
the output NDF by aligning the WCS information stored in the catalogue with the
WCS information in the output NDF. A message indicating the Frame in which the
positions were aligned with the output NDF is displayed.

LOGFILE = FILENAME (Write)
The name of a text file in which the co-ordinates of the polygon vertices are to be
stored. A null value (!) means that no file is created. [!]

MARKER = _INTEGER (Read)
This parameter is only accessed if Parameter PLOT is set to "Chain" or "Mark". It
specifies the type of marker with which each cursor position should be marked, and
should be given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives
a dot, 2 gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger
than or equal to −31. [current value]

MODE = LITERAL (Read)
The mode in which the co-ordinates of each polygon vertex are to be obtained. The
supplied string can be one of the following selection.

• "Interface" — positions are obtained using Parameter COORDS. These posi-
tions must be supplied in the current co-ordinate Frame of the output NDF (see
Parameter OUT).
• "Cursor" — positions are obtained using the graphics cursor of the device speci-

fied by Parameter DEVICE. The WCS information stored with the picture in the
graphics database is used to map the supplied cursor positions into the pixel
co-ordinate Frame of the output NDF. A message is displayed indicating the
co-ordinate Frame in which the picture and the output NDF were aligned.
• "Catalogue" — positions are obtained from positions lists using Parameters

INCAT1 to INCAT20. Each catalogue defines a single polygon. The WCS in-
formation in each catalogue is used to map the positions in the catalogue into
the pixel co-ordinate Frame of the output NDF. A message is displayed for each
catalogue indicating the co-ordinate Frame in which the catalogue and the output
NDF were aligned.

655 SEGMENT SUN/95.45 —Specifications of KAPPA applications

• "File" — positions are obtained from text files using Parameters POLY1 to
POLY20. Each file defines a single polygon. Each line in a file must contain two
formatted axis values in the current co-ordinate Frame of the output NDF (see
Parameter OUT), separated by white space or a comma.

[current value]

MAXPOLY = _INTEGER (Read)
The maximum number of polygons which can be used. For instance, this can be set
to 1 to ensure that no more than one polygon is used (this sort of thing can be useful
when writing procedures or scripts). A null value causes no limit to be imposed
(unless MODE="File" or "Catalogue" in which case a limit of 20 is imposed). [!]

MINPOLY = _INTEGER (Read)
The minimum number of polygons which can be used. For instance, this can be set to
2 to ensure that at least two polygons are used. The supplied value must be fewer
than or equal to the value given for MAXPOLY and must be greater than zero. [1]

OUT = NDF (Write)
The output NDF. If only one input NDF is supplied (that is, if one of IN1 and IN2
is assigned a null value), then the output NDF has the same shape and size as the
supplied input NDF. Also, ancillary data such as WCS information is propagated
from the supplied input NDF. In particular, this means that the current co-ordinate
Frame of the output NDF (in which vertex positions should be supplied if MODE
is "File" or "Interface") is inherited from the input NDF. If two input NDFs are
supplied, then the shape and size of the output NDF corresponds to the area of
overlap between the two input NDFs (in pixel space), and the WCS information and
current Frame are inherited from the NDF associated with Parameter IN1.

PLOT = LITERAL (Read)
The type of graphics to be used to mark the position of each selected vertex. It is
only used if Parameter MODE is given the value "Cursor". The appearance of these
graphics (colour, size, etc.) is controlled by the STYLE parameter. PLOT can take any
of the following values.

• "None" — No graphics are produced.
• "Mark" — Each position is marked with a marker of type specified by Parameter

MARKER.
• "Poly" — Causes each position to be joined by a line to the previous position.

Each polygon is closed by joining the last position to the first.
• "Chain" — This is a combination of "Mark" and "Poly". Each position is marked

by a marker and joined by a line to the previous position. Parameter MARKER is
used to specify the marker to use. [current value]

POLY1-POLY20 = FILENAME (Read)
If MODE is "File", each of the Parameters POLY1 to POLY20 are used to access
text files containing the co-ordinates of the vertices of a single polygon. If a value
is assigned to POLY1 on the command line, you are not prompted for any of the
remaining parameters in this group; additional polygon files must also be supplied
on the command line. Otherwise, you are prompted for POLY1, then POLY2, etc.
until a null value is given or POLY20 is reached.

SUN/95.45 —Specifications of KAPPA applications 656 SEGMENT

Each position should be supplied within the current co-ordinate Frame of the output
NDF (see Parameter OUT). No more than two formatted axis values (separated by a
comma or space) may be supplied on each line. If the co-ordinate Frame being used
has more than two axes, then the two axes to use must be specified using Parameter
USEAXIS.

QUALITY = _LOGICAL (Read)
If a TRUE value is supplied for Parameter QUALITY then quality information is copied
from the input NDFs to the output NDFs. Otherwise, the quality information is not
copied. This parameter is only accessed if all supplied input NDFs have defined
QUALITY components. If any of the supplied input NDFs do not have defined
QUALITY components, then no quality is copied. Note, if a null input NDF is given
then the corresponding output QUALITY values are set to zero. [TRUE]

STYLE = GROUP (Read)
A group of attribute settings describing the style to use when drawing the graphics
specified by Parameter PLOT.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the lines forming the edges of each polygon is controlled by the
attributes Colour(Curves), Width(Curves), etc. (either of the synonyms Lines and Edges
may be used in place of Curves). The appearance of the vertex markers is controlled
by the attributes Colour(Markers), Size(Markers), etc. (the synonyms Vertices may be
used in place of Markers). [current value]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the output NDF has
more than two axes. A group of two strings should be supplied specifying the two
axes spanning the plane in which the supplied polygons are defined. Each axis can
be specified using one of the following options.

• An integer index of an axis within the current Frame of the output NDF (in the
range 1 to the number of axes in the current Frame).
• An axis Symbol string such as "RA" or "VRAD".

657 SEGMENT SUN/95.45 —Specifications of KAPPA applications

• A generic option where "SPEC" requests the spectral axis, "TIME" selects the
time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the first two significant NDF pixel
axes are used. [!]

VARIANCE = _LOGICAL (Read)
If a TRUE value is supplied for Parameter VARIANCE then variance information is
copied from the input NDFs to the output NDFs. Otherwise, the variance information
is not copied. This parameter is only accessed if all supplied input NDFs have defined
VARIANCE components. If any of the supplied input NDFs do not have defined
VARIANCE components, then no variances are copied. Note, if a null input NDF is
given then the corresponding output variance values are set bad. [TRUE]

Examples:
segment in1=m51a in2=m51b out=m51_comp incat1=coords mode=cat

Copies a region of the NDF m51a to the corresponding position in the output
NDF m51_comp. The region is defined by the list of vertex co-ordinates held in catalogue
coords.FIT. All pixels in the output NDF which fall outside this region are given the
corresponding pixel values from NDF m51b.

segment in1=m51a out=m51_cut mode=cursor plot=poly accept

Copies a region of the NDF m51a to the corresponding position in the output
NDF m51_cut. The region is defined by selecting vertices using a graphics cursor. The
image m51a should previously have been displayed. Each vertex is joined to the previous
vertex by a line on the graphics device. The ACCEPT keyword causes the suggested
null default value for IN2 to be accepted. This means that all pixels outside the region
identified using the cursor will be set bad in the output NDF.

Notes:

• Supplied positions are mapped into the pixel co-ordinate Frame of the output NDF
before being used. This means that the two input NDFs (if supplied) must be aligned
in pixel space before using this application.
• The routine can handle NDFs of arbitrary dimensionality. If either input has three or

more dimensions then all planes in the NDF pixel arrays are processed in the same
way, that is the same polygonal regions are extracted from each plane and copied
to the corresponding plane of the output NDF. The plane containing the polygons
must be defined using Parameter USEAXIS. This plane is a plane within the current
co-ordinate Frame of the output NDF (which is inherited from the first supplied
input NDF). This scheme will only work correctly if the selected plane in the current
co-ordinate Frame is parallel to one of the planes of the pixel array.

Related Applications :

KAPPA: ARDMASK, ERRCLIP, FILLBAD, FFCLEAN, PASTE, REGIONMASK, SET-
MAGIC, THRESH.

SUN/95.45 —Specifications of KAPPA applications 658 SEGMENT

Implementation Status:

• This routine will propagate VARIANCE component values so long as all supplied
input NDFs have defined VARIANCE components, and Parameter VARIANCE is
not FALSE.

• This routine will propagate QUALITY component values so long as all supplied
input NDFs have defined QUALITY components, and Parameter QUALITY is not
FALSE.

• The UNITS, AXIS, LABEL, TITLE, WCS, and HISTORY components are propagated
from the first supplied input NDF, together with all extensions.

• All non-complex numeric types are supported. The following data types are pro-
cessed directly: _WORD, _INTEGER, _REAL, _DOUBLE.

659 SETAXIS SUN/95.45 —Specifications of KAPPA applications

SETAXIS
Sets values for an axis array component within an NDF data structure

Description:
This routine modifies the values of an axis array component or system within an NDF data
structure. There are a number of options (see Parameter MODE). They permit the deletion
of the axis system, or an individual variance or width component; the replacement of one
or more individual values; assignment of the whole array using Fortran-like mathematical
expressions, or values in a text file, or to pixel co-ordinates, or by copying from another
NDF.

If an AXIS structure does not exist, a new one whose centres are pixel co-ordinates is
created before any modification.

Usage:

setaxis ndf dim mode [comp]

file=?

index=? newval=?

exprs=?

axisndf=?
mode

Parameters:

AXISNDF = NDF (Read)
The Data values in this NDF are used as the axis centre values if Parameter MODE
is set to "NDF". The supplied NDF must be one dimensional and must be aligned in
pixel co-ordinates with the NDF axis that is being modified.

COMP = LITERAL (Read)
The name of the NDF axis array component to be modified. The choices are: "Centre",
"Data", "Error", "Width" or "Variance". "Data" and "Centre" are synonyms and
selects the axis centres. "Variance" is the variance of the axis centres, i.e. measures
the uncertainty of the axis-centre values. "Error" is the alternative to "Variance"
and causes the square of the supplied error values to be stored. "Width" selects the
axis width array. ["Data"]

DIM = _INTEGER (Read)
The axis dimension for which the array component is to be modified. There are
separate arrays for each NDF dimension. The value must lie between 1 and the
number of dimensions of the NDF. This defaults to 1 for a one-dimensional NDF.
DIM is not accessed when COMP="Centre" and MODE="Delete". The suggested
default is the current value. []

EXPRS = LITERAL (Read)
A Fortran-like arithmetic expression giving the value to be assigned to each element
of the axis array specified by Parameter COMP. The expression may just contain
a constant for the axis widths or variances, but the axis-centre values must vary.

SUN/95.45 —Specifications of KAPPA applications 660 SETAXIS

In the latter case and whenever a constant value is not required, there are two
tokens available—INDEX and CENTRE—either or both of which may appear in the
expression. INDEX represents the pixel index of the corresponding array element,
and CENTRE represents the existing axis centres. Either the CENTRE or the INDEX
token must appear in the expression when modifying the axis centres. All of the
standard Fortran-77 intrinsic functions are available for use in the expression, plus a
few others (see SUN/61 for details and an up-to-date list).
Here are some examples. Suppose the axis centres are being changed, then EX-
PRS="INDEX-0.5" gives pixel co-ordinates, EXPRS="2.3 ∗ INDEX + 10" would
give a linear axis at offset 10 and an increment of 2.3 per pixel, EXPRS="LOG(INDEX∗5.2)"
would give a logarithmic axis, and EXPRS="CENTRE+10" would add ten to all the
array centres. If COMP="Width", EXPRS=0.96 would set all the widths to 0.96, and
EXPRS="SIND(INDEX-30)+2" would assign the widths to two plus the sine of the
pixel index with respect to index 30 measured in degrees.
EXPRS is only accessed when MODE="Expression".

FILE = FILENAME (Read)
Name of the text file containing the free-format axis data. This parameter is only
accessed if MODE="File". The suggested default is the current value.

INDEX = _INTEGER (Read)
The pixel index of the array element to change. A null value (!) terminates the loop
during multiple replacements. This parameter is only accessed when MODE="Edit".
The suggested default is the current value.

LIKE = NDF (Read)
A template NDF containing axis arrays. These arrays will be copied into the NDF
given by Parameter NDF. All axes are copied. The other parameters are only accessed
if a null (!) value is supplied for LIKE. If the NDF being modified extends beyond
the edges of the template NDF, then the template axis arrays will be extrapolated to
cover the entire NDF. This is done using linear extrapolation through the last two
extreme axis values. [!]

MODE = LITERAL (Read)
The mode of the modification. It can be one of the following.

• "Delete" — Deletes the array, unless COMP="Data" or "Centre" whereupon
the whole axis structure is deleted.
• "Edit" — Allows the modification of individual elements within the array.
• "Expression" — Allows a mathematical expression to define the array values.

See Parameter EXPRS.
• "File" — The array values are read in from a free-format text file.
• "Linear_WCS" — The axis centres are set to the least-squares linear fit to the

values of the selected axis in the current co-ordinate Frame of the NDF. This is
useful for exporting to packages with limited FITS WCS compatibility and when
the non-linearity is small. "Linear_WCS" is only available when COMP="Data"
or "Centre".
• "NDF" — The axis centres are set to the corresponding Data values read from the

NDF specified by Parameter AXISNDF. This is only available when COMP="Data"
or "Centre".

http://www.starlink.ac.uk/cgi-bin/htxserver/sun61.htx/sun61.html?xref_

661 SETAXIS SUN/95.45 —Specifications of KAPPA applications

• "Pixel" — The axis centres are set to pixel co-ordinates. This is only available
when COMP="Data" or "Centre".
• "WCS" — The axis centres are set to the values of the selected axis in the current

co-ordinate Frame of the NDF. This is only available when COMP="Data" or
"Centre".

The suggested default is the current value.

NDF = NDF (Read and Write)
The NDF data structure in which an axis array component is to be modified.

NEWVAL = LITERAL (Read)
Value to substitute in the array element. The range of allowed values depends on the
data type of the array being modified. NEWVAL="Bad" instructs that the bad value
appropriate for the array data type be substituted. Placing NEWVAL on the command
line permits only one element to be replaced. If there are multiple replacements, a null
value (!) terminates the loop. This parameter is only accessed when MODE="Edit".

TYPE = LITERAL (Read)
The data type of the modified axis array. TYPE can be either "_REAL" or "_DOUBLE".
It is only accessed for MODE="File", "Expression", or "Pixel". If a null (!) value
is supplied, the value used is the current data type of the array component if it exists,
otherwise it is "_REAL". [!]

Examples:
setaxis ff mode=delete

This erases the axis structure from the NDF called ff.

setaxis ff like=hh

This creates axis structures in the NDF called ff by copying them from the NDF
called hh, extrapolating them as necessary to cover ff.

setaxis abell4 1 expr exprs="CENTRE + 0.1 ∗ (INDEX-1)"

This modifies the axis centres along the first axis in the NDF called abell4. The
new centre values are spaced by 0.1 more per element than previously.

setaxis cube 3 expr error exprs="25.3+0.2∗MOD(INDEX,8)"

This modifies the axis errors along the third axis in the NDF called cube. The
new errors values are given by the expression "25.3+0.2∗MOD(INDEX,8)", in other words
the noise has a constant term (25.3), and a cyclic ramp component of frequency 8 pixels.

setaxis spectrum mode=file file=spaxis.dat

This assigns the axis centres along the first axis in the one-dimensional NDF
called spectrum. The new centre values are read from the free-format text file called
spaxis.dat.

SUN/95.45 —Specifications of KAPPA applications 662 SETAXIS

setaxis ndf=plate3 dim=2 mode=pixel

This assigns pixel co-ordinates to the second axis’s centres in the NDF called
plate3.

setaxis datafile 2 expression exprs="centre" type=_real

This modifies the data type of axis centres along the second dimension of the
NDF called datafile to be _REAL.

setaxis cube 2 edit index=3 newval=129.916

This assigns the value 129.916 to the axis centre at index 3 along the second axis
of the NDF called cube.

setaxis comp=width ndf=cube dim=1 mode=edit index=-16 newval=1E-05

This assigns the value 1.0E-05 to the axis width at index −16 along the first axis
of the NDF called cube.

Notes:

• An end-of-file error results when MODE="File" and the file does not contain suffi-
cient values to assign to the whole array. In this case the axis array is unchanged. A
warning is given if there are more values in a file record than are needed to complete
the axis array.

• An invalid expression when MODE="Expression" results in an error and the axis
array is unchanged.

• The chapter entitled “The Axis Coordinate System” SUN/33 describes the NDF axis
co-ordinates system and is recommended reading especially if you are using axis
widths.

• There is no check, apart from constraints on Parameter NEWVAL, that the variance is
not negative and the widths are positive.

File Format :

The format is quite flexible. The number of axis-array values that may appear on a line
is variable; the values are separated by at least a space, comma, tab or carriage return.
A line can have up to 255 characters. In addition a record may have trailing comments
designated by a hash or exclamation mark. Here is an example file, though a more regular
format would be clearer for the human reader (say 10 values per line with commenting).

Axis Centres along second dimension
-3.4 -0.81
.1 3.3 4.52 5.6 9 10.5 12. 15.3 18.1 20.2

http://www.starlink.ac.uk/cgi-bin/htxserver/i.htx/i.html?xref_n
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_the_axis_coordinate_system

663 SETAXIS SUN/95.45 —Specifications of KAPPA applications

23 25.3 ! a comment
26.8,27.5 29. 30.76 32.1 32.4567
35.2 37.
<EOF>

Related Applications :

KAPPA: AXCONV, AXLABEL, AXUNITS; FIGARO: LXSET, LYSET.

Implementation Status:
Processing is in single- or double-precision floating point.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_LXSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_LYSET

SUN/95.45 —Specifications of KAPPA applications 664 SETBAD

SETBAD
Sets new bad-pixel flag values for an NDF

Description:
This application sets new logical values for the bad-pixel flags associated with an
NDF’s data and/or variance arrays. It may either be used to test whether bad pix-
els are actually present in these arrays and to set their bad-pixel flags accordingly, or to
set explicit TRUE or FALSE values for these flags.

Usage:
setbad ndf [value]

Parameters:

DATA = _LOGICAL (Read)
This parameter controls whether the NDF’s data array is processed. If a TRUE value is
supplied (the default), then it will be processed. Otherwise it will not be processed,
so that the variance array (if present) may be considered on its own. The DATA and
VARIANCE parameters should not both be set to FALSE. [TRUE]

MODIFY = _LOGICAL (Read)
If a TRUE value is supplied for this parameter (the default), then the NDF’s bad-pixel
flags will be permanently modified if necessary. If a FALSE value is supplied, then
no modifications will be made. This latter mode allows the routine to be used to
check for the presence of bad pixels without changing the current state of an NDF’s
bad-pixel flags. It also allows the routine to be used on NDFs for which write access
is not available. [TRUE]

NDF = NDF (Read and Write)
The NDF in which bad pixels are to be checked for, and/or whose bad-pixel flags are
to be modified. (Note that setting the MODIFY parameter to FALSE makes it possible
to check for bad pixels without permanently modifying the NDF.)

VALUE = _LOGICAL (Read)
If a null (!) value is supplied for this parameter (the default), then the routine will
check to see whether any bad pixels are present. This will only involve testing the
value of each pixel if the bad-pixel flag value is initially TRUE, in which case it will be
reset to FALSE if no bad pixels are found. If the bad-pixel flag is initially FALSE, then it
will remain unchanged.
If a logical (TRUE or FALSE) value is supplied for this parameter, then it indicates the
new bad-pixel flag value which is to be set. Setting a TRUE value indicates to later
applications that there may be bad pixels present in the NDF, for which checks must
be made. Conversely, setting a FALSE value indicates that there are definitely no bad
pixels present, in which case later applications need not check for them and should
interpret the pixel values in the NDF literally.
The VALUE parameter is not used (a null value is assumed) if the MODIFY parameter
is set to FALSE indicating that the NDF is not to be permanently modified. [!]

665 SETBAD SUN/95.45 —Specifications of KAPPA applications

VARIANCE = _LOGICAL (Read)
This parameter controls whether the NDF’s variance array is processed. If a TRUE
value is supplied (the default), then it will be processed. Otherwise it will not be
processed, so that the data array may be considered on its own. The DATA and
VARIANCE parameters should not both be set to FALSE. [TRUE]

Examples:
setbad ngc1097

Checks the data and variance arrays (if present) in the NDF called ngc1097 for
the presence of bad pixels. If the initial bad-pixel flag values indicate that bad pixels may
be present, but none are found, then the bad-pixel flags will be reset to FALSE. The action
taken will be reported.

setbad ndf=ngc1368 nomodify

Performs the same checks as described above, this time on the NDF called ngc1368. The
presence or absence of bad pixels is reported, but the NDF is not modified.

setbad myfile nodata

Checks the variance array (if present) in the NDF called myfile for the presence
of bad pixels, and modifies its bad-pixel flag accordingly. Specifying nodata inhibits
processing of the data array, whose bad-pixel flag is left unchanged.

setbad halpha false

Sets the bad-pixel flag for the NDF called halpha to FALSE. Any pixel values
which might previously have been regarded as bad will subsequently be interpreted
literally as valid pixels.

setbad hbeta true

Sets the bad-pixel flags for the NDF called hbeta to be TRUE. If any pixels have
the special ‘bad’ value, then they will subsequently be regarded as invalid pixels. Note
that if this is followed by a further command such as "setbad hbeta", then an actual
check will be made to see whether any pixels have this special value. The bad-pixel flags
will be returned to FALSE if they do not.

Bad-pixel Flag Values :

If a bad-pixel flag is TRUE, it indicates that the associated NDF array may contain the
special ‘bad’ value and that affected pixels are to be regarded as invalid. Subsequent
applications will need to check for such pixels and, if found, take account of them.

Conversely, if a bad-pixel flag value is FALSE, it indicates that there are no bad pixels
present. In this case, any special ‘bad’ values appearing in the array are to be interpreted
literally as valid pixel values.

SUN/95.45 —Specifications of KAPPA applications 666 SETBAD

Quality Components :

Bad pixels may also be introduced into an NDF’s data and variance arrays implicitly
through the presence of an associated NDF QUALITY component. This application will
not take account of such a component, nor will it modify it.

However, if either of the NDF’s data or variance arrays do not contain any bad pixels
themselves, a check will be made to see whether a QUALITY component is present. If it
is (and its associated bad-bits mask is non-zero), then a warning message will be issued
indicating that bad pixels may be introduced via this QUALITY component. If required,
these bad pixels may be eliminated either by setting the bad-bits mask to zero or by erasing
the QUALITY component.

Related Applications :

KAPPA: NOMAGIC, SETMAGIC.

667 SETBB SUN/95.45 —Specifications of KAPPA applications

SETBB
Sets a new value for the quality bad-bits mask of an NDF

Description:
This application sets a new value for the bad-bits mask associated with the QUALITY com-
ponent of an NDF . This 8-bit mask is used to select which of the bits in the quality array
should normally be used to generate ‘bad’ pixels when the NDF is accessed.

Wherever a bit is set to 1 in the bad-bits mask, the corresponding bit will be extracted
from the NDF’s quality array value for each pixel (the other quality bits being ignored). A
pixel is then considered ‘bad’ if any of the extracted quality bits is set to 1. Effectively, the
bad-bits mask therefore allows selective activation of any of the eight 1-bit masks which
can be stored in the quality array.

The bit mask can be given either numerically (in decimal, binary, octal or hexadecimal
format), or as a set of quality names (see SETQUAL).

Usage:
setbb ndf bb

Parameters:

AND = _LOGICAL (Read)
By default, the value supplied via the BB parameter will be used literally as the new
bad-bits mask value. However, if a TRUE value is given for the AND parameter, then
a bit-wise ‘AND’ will first be performed with the old value of the mask. This facility
allows individual bits in within the mask to be cleared (i.e. reset to zero) without
affecting the current state of other bits (see the "Examples" section).
The AND parameter is not used if a TRUE value is given for the OR parameter. [FALSE]

BB = LITERAL (Read)
The new integer value for the bad-bits mask. This may either be specified in normal
decimal notation, or may be given using binary, octal or hexadecimal notation by
adding a "B", "O" or "Z" prefix (respectively) to the appropriate string of digits. The
value supplied should lie in the range 0 to 255 decimal (or 8 bits of binary).
If the AND and OR parameters are both FALSE, then the value supplied will be used
directly as the new mask value. However, if either of these logical parameters is set to
TRUE, then an appropriate bit-wise ‘AND’ or ‘OR’ operation with the old mask value
will first be performed.
It may also be specified as a comma-separated list of quality names. A quality name
is a symbolic name that identifies a specific quality bit (quality names can be defined
using SETQUAL, and displayed using SHOWQUAL).
The default value suggested when prompting for this value is chosen so as to leave
the original mask value unchanged.

NDF = NDF (Read and Write)
The NDF whose bad-bits mask is to be modified.

SUN/95.45 —Specifications of KAPPA applications 668 SETBB

OR = _LOGICAL (Read)
By default, the value supplied via the BB parameter will be used literally as the new
bad-bits mask value. However, if a TRUE value is given for the OR parameter, then
a bit-wise ‘OR’ will first be performed with the old value of the mask. This facility
allows individual bits in within the mask to be set to 1 without affecting the current
state of other bits (see the "Examples" section). [FALSE]

Examples:
setbb myframe 3

Sets the bad-bits mask value for the QUALITY component of the NDF called
myframe to the value 3. This means that bits 1 and 2 of the associated quality array will be
used to generate bad pixels.

setbb myframe "SKY,BACK"

Sets the bad-bits mask value for the quality component of the NDF called myframe so
that any pixel that is flagged with either of the two qualities "SKY" or "BACK" will be set
bad. The NDF should contain information that associates each of these quality names
with a specific bit in the quality array. Such information can for instance be created using
the SETQUAL command.

setbb ndf=myframe bb=b11

This example performs the same operation as above, but in this case the new
mask value has been specified using binary notation.

setbb xspec b10001000 or

Causes the bad-bits mask value in the NDF called xspec to undergo a bit-wise
‘OR’ operation with the binary value 10001000. This causes bits 4 and 8 to be set without
changing the state of any other bits in the mask.

setbb quasar ze7 and

Causes the bad-bits mask value in the NDF called quasar to undergo a bit-wise
‘AND’ operation with the hexadecimal value E7 (binary 11100111). This causes bits 4 and
5 to be cleared (i.e. reset to zero) without changing the state of any other bits in the mask.

Notes:

The bad-bits value will be disregarded if the NDF supplied does not have a QUALITY
component present. A warning message will be issued if this should occur.

Related Applications :

KAPPA: QUALTOBAD, REMQUAL, SETQUAL, SHOWQUAL; FIGARO: Q2BAD.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_Q2BAD

669 SETBOUND SUN/95.45 —Specifications of KAPPA applications

SETBOUND
Sets new bounds for an NDF

Description:
This application sets new pixel-index bounds for an NDF , either trimming it to remove
unwanted pixels, or padding it with bad pixels to achieve the required shape. The number
of dimensions may also be altered. The NDF is accessed in update mode and modified in
situ, preserving existing pixel values which lie within the new bounds.

Usage:
setbound ndf

Parameters:

LIKE = NDF (Read)
This parameter may be used to specify an NDF which is to be used as a shape
template. If such a template is supplied, then its bounds will be used to determine
the new shape required for the NDF specified via the NDF parameter. By default no
template will be used and the new shape will be determined by means of a section
specification applied to the NDF being modified (see the “Examples”). [!]

NDF = NDF (Read and Write)
The NDF whose bounds are to be modified. In normal use, an NDF section will
be specified for this parameter (see the “Examples”) and the routine will use the
bounds of this section to determine the new bounds required for the base NDF from
which the section is drawn. The base NDF is then accessed in update mode and its
bounds are modified in situ to make them equal to the bounds of the section specified.
If a section is not specified, then the NDF’s shape will only be modified if a shape
template is supplied via the LIKE parameter.

Examples:
setbound datafile(1:512,1:512)

Sets the pixel-index bounds of the NDF called datafile to be (1:512, 1:512), either
by trimming off unwanted pixels or by padding out with bad pixels, as necessary.

setbound alpha(:7,56:)

Modifies the NDF called alpha so that its first dimension has an upper bound of
7 and its second dimension has a lower bound of 56. The lower bound of the first
dimension and the upper bound of the second dimension remain unchanged.

setbound ndf=kg74b(,5500.0∼100.0)

Sets new bounds for the NDF called kg74b. The bounds of the first dimension
are left unchanged, but those of the second dimension are changed so that this dimension

SUN/95.45 —Specifications of KAPPA applications 670 SETBOUND

has an extent of 100.0 centred on 5500.0, using the physical units in which this second
dimension is calibrated.

setbound newspec like=oldspec

Changes the bounds of the NDF newspec so that they are equal to the bounds
of the NDF called oldspec.

setbound xflux(:2048) like=xflux

Extracts the section extending from the lower bound of the one-dimensional
NDF called xflux up to pixel 2048, and then modifies the bounds of this section to be equal
to the original bounds of xflux, replacing xflux with this new NDF. This leaves the final
shape unchanged, but sets all pixels from 2049 onwards to be equal to the bad-pixel value.

setbound whole(5:10,5:10) like=whole(0:15,0:15)

Extracts the section (5:10, 5:10) from the base NDF called whole and then sets its
bounds to be equal to those of the section whole(0:15, 0:15), replacing whole with this new
NDF. The effect is to select a 6-pixel-square region from the original NDF and then to pad
it with a 5-pixel-wide border of bad pixels.

Notes:

This routine modifies the NDF in situ and will not release unused file space if the size of the
NDF is reduced. If recovery of unused file space is required, then the related application
NDFCOPY should be used. This will copy the selected region of an NDF to a new data
structure from which any unused space will be eliminated.

Related Applications :

KAPPA: NDFCOPY, SETORIGIN; FIGARO: ISUBSET.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISUBSET

671 SETEXT SUN/95.45 —Specifications of KAPPA applications

SETEXT
Manipulates the contents of a specified NDF extension

Description:
This task enables the contents of a specified NDF extension to be edited. It can create a new
extension or delete an existing one, can create new scalar components within an extension,
or modify or display the values of existing scalar components within the extension. The
task operates on only one extension at a time, and must be closed down and restarted to
work on a new extension.

The task may operate in one of two modes, according to the LOOP parameter. When
LOOP=FALSE only a single option is executed at a time, making the task suitable for
use from an ICL procedure. When LOOP=TRUE several options may be executed at once,
making it easier to modify several extension components interactively in one go.

Usage:

setext ndf xname option cname

ok

ctype=? shape=? ok

newname=?

xtype=?
option

Parameters:
CNAME = LITERAL (Read)

The name of component (residing within the extension) to be examined or modified.
It is only accessed when OPTION="Erase", "Get", "Put", or "Rename".

CTYPE = LITERAL (Read)
The type of component (residing within the extension) to be created. Allowed val-
ues are "LITERAL", "_LOGICAL", "_DOUBLE", "_REAL", "_INTEGER", "_CHAR", "_BYTE",
"_UBYTE", "_UWORD", "_WORD". The length of the character type may be defined by ap-
pending the length, for example, "_CHAR∗32" is a 32-character component. "LITERAL"
and "_CHAR" generate 80-character components. CTYPE is only accessed when OP-
TION="Put".

CVALUE = LITERAL (Read)
The value(s) for the component. Each value is converted to the appropriate data type
for the component. CVALUE is only accessed when OPTION="Put". Note that for
an array of values the list must be enclosed in brackets, even in response to a prompt.
For convenience, if LOOP=TRUE, you are prompted for each string.

LOOP = _LOGICAL (Read)
LOOP=FALSE requests that only one operation be performed. This allows batch
and non-interactive processing or use in procedures. LOOP=TRUE makes SETEXT
operate in a looping mode that allows several modifications and/or examinations
to be made to the NDF for one activation. Setting OPTION to "Exit" will end the
looping. [TRUE]

SUN/95.45 —Specifications of KAPPA applications 672 SETEXT

NDF = NDF (Update)
The NDF to modify or examine.

NEWNAME = LITERAL (Read)
The new name of a renamed extension component. It is only accessed when OP-
TION="Rename".

OK = _LOGICAL (Read)
This parameter is used to seek confirmation before a component is erased or overwrit-
ten. A TRUE value permits the operation. A FALSE value leaves the existing component
unchanged. This parameter is ignored when LOOP=FALSE.

OPTION = LITERAL (Read)
The operation to perform on the extension or a component therein. The recognised
options are listed below.

"Delete" — Delete an existing NDF extension.
"Erase" — Erase a component within an NDF extension
"Exit" — Exit from the task (when LOOP=TRUE)
"Get" — Display the value of a component within an NDF extension.

The component must exist.
"Put" — Change the value of a component within an NDF extension

or create a new component.
"Rename" — Renames a component. The component must exist.

"Select"] — Selects another extension. If the extension does
not exist a new one is created. This option is not allowed when
LOOP=FALSE.

The suggested default is the current value, except for the first option where there is
no default.

SHAPE() = _INTEGER (Read)
The shape of the component. Thus 3,2 would be a two-dimensional object with three
elements along each of two lines. 0 creates a scalar. The suggested default is the shape
of the object if it already exists, otherwise it is the current value. It is only accessed
when OPTION="Put".

XNAME = LITERAL (Read)
The name of the extension to modify.

XTYPE = LITERAL (Read)
The type of the extension to create. The suggested default is the current value or
"EXT" when there is no current value.

Examples:
setext hh50 fits delete noloop

This deletes the FITS extension in the NDF called hh50.

setext myndf select xtype=mytype noloop

This creates the extension MYEXT of data type MYTYPE in the NDF called myndf.

673 SETEXT SUN/95.45 —Specifications of KAPPA applications

setext xname=ccdpack ndf=abc erase cname=filter noloop

This deletes the FILTER component of the CCDPACK extension in the NDF called abc.

setext abc ccdpack put cname=filter cvalue=B ctype=_char noloop

This assigns the character value "B" to the FILTER component of the CCDPACK
extension a the NDF called abc.

setext virgo plate put cname=pitch shape=2 cvalue=[32,16] ctype=_byte
noloop

This sets the byte two-element vector of component PITCH of the PLATE exten-
sion in the NDF called virgo. The first element of PITCH is set to 32 and the second to
16.

setext virgo plate rename cname=filter newname=waveband noloop

This renames the FILTER component of the PLATE extension in the NDF called
virgo to WAVEBAND.

Notes:

• The "Put" option allows the creation of extension components with any of the primi-
tive data types.

• The task creates the extension automatically if it does not exist and only allows one
extension to be modified at a time.

Related Applications :

KAPPA: FITSIMP, FITSLIST, NDFTRACE; CCDPACK: CCDEDIT; FIGARO: FITSKEYS;
HDSTRACE; IRAS90: IRASTRACE, PREPARE.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_CCDEDIT
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_FITSKEYS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_IRASTRACE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_PREPARE

SUN/95.45 —Specifications of KAPPA applications 674 SETLABEL

SETLABEL
Sets a new label for an NDF data structure

Description:
This routine sets a new value for the LABEL component of an existing NDF data structure.
The NDF is accessed in update mode and any pre-existing label is over-written with a new
value. Alternatively, if a ‘null’ value (!) is given for the LABEL parameter, then the NDF’s
label will be erased.

Usage:
setlabel ndf label

Parameters:

LABEL = LITERAL (Read)
The value to be assigned to the NDF’s LABEL component. This should describe the
type of quantity represented in the NDF’s data array (e.g. "Surface Brightness" or
"Flux Density"). The value may later be used by other applications, for instance
to label the axes of graphs where the NDF’s data values are plotted. The suggested
default is the current value.

NDF = NDF (Read and Write)
The NDF data structure whose label is to be modified.

Examples:
setlabel ngc1068 "Surface Brightness"

Sets the LABEL component of the NDF structure ngc1068 to be "Surface Brightness".

setlabel ndf=datastruct label="Flux Density"

Sets the LABEL component of the NDF structure datastruct to be "Flux Density".

setlabel raw_data label=!

By specifying a null value (!), this example erases any previous value of the
LABEL component in the NDF structure raw_data.

Related Applications :

KAPPA: AXLABEL, SETTITLE, SETUNITS.

675 SETMAGIC SUN/95.45 —Specifications of KAPPA applications

SETMAGIC
Replaces all occurrences of a given value in an NDF array with the

bad value

Description:
This task flags all pixels that have a defined value in an NDF with the standard bad (‘magic’)
value. Other values are unchanged. The number of replacements is reported. SETMAGIC’s
applications include the import of data from software that has a different magic value.

Usage:
setmagic in out repval [comp]

Parameters:
COMP = LITERAL (Read)

The components whose values are to be flagged as bad. It may be "Data", "Variance",
"Error", or "All". The last of the options forces substitution of bad pixels in both the
data and variance arrays. This parameter is ignored if the data array is the only array
component within the NDF. ["Data"]

IN = NDF (Read)
Input NDF structure containing the data and/or variance array to have some of its
elements flagged with the magic-value.

OUT = NDF (Write)
Output NDF structure containing the data and/or variance array that is a copy of the
input array, but with bad values flagging the replacement value.

REPVAL = _DOUBLE (Read)
The element value to be substituted with the bad value. The same value is replaced
in both the data and variance arrays when COMP="All". It must lie within the
minimum and maximum values of the data type of the array with higher precision.
The replacement value is converted to data type of the array being converted before
the search begins. The suggested default is the current value.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Examples:
setmagic irasmap aitoff repval=-2000000

This copies the NDF called irasmap to the NDF aitoff, except that any pixels
with the IPAC blank value of −2000000 are flagged with the standard bad value in aitoff.

setmagic saturn saturnb 9999.0 comp=All

This copies the NDF called saturn to the NDF saturnb, except that any elements
in the data and variance arrays that have value 9999.0 are flagged with the standard bad
value.

SUN/95.45 —Specifications of KAPPA applications 676 SETMAGIC

Notes:

• The comparison for floating-point values tests that the difference between the replace-
ment value and the element value is less than their mean times the precision of the
data type.

Related Applications :

KAPPA: CHPIX, FILLBAD, GLITCH, NOMAGIC, SEGMENT, SUBSTITUTE, ZAPLIN;
FIGARO: GOODVAR.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_GOODVAR

677 SETNORM SUN/95.45 —Specifications of KAPPA applications

SETNORM
Sets a new value for one or all of an NDF’s axis-normalisation flags

Description:
This routine sets a new value for one or all the normalisation flags in an NDF AXIS

data structure. The NDF is accessed in update mode. This flag determines how the NDF’s
data and variance arrays behave when the associated axis information is modified.

If an AXIS structure does not exist, a new one whose centres are pixel co-ordinates is
created.

Usage:
setnorm ndf dim

Parameters:

ANORM = _LOGICAL (Read)
The normalisation flag for the axis. TRUE means that the data and variance values
in the NDF are normalised to the pixel width values for the chosen axis so that the
product of data value and width, and variance and the squared width are constant if
the width is altered.
A FALSE value means that the data and variance need not alter as the pixel widths are
varied. This is the default for an axis. The suggested default is the current value.

DIM = _INTEGER (Read)
The axis dimension for which the normalisation flag is to be modified. There are
separate units for each NDF dimension. A value of 0 sets the normalisation flag for
all the axes. The value must lie between 0 and the number of dimensions of the NDF.
This defaults to 1 for a one-dimensional NDF. The suggested default is the current
value. []

NDF = NDF (Read and Write)
The NDF data structure in which an axis-normalisation flag is to be modified.

Examples:
setnorm hd23568 0 anorm

This sets the normalisation flags along all axes of the NDF structure hd23568 to
be true.

setnorm ndf=spect noanorm

This sets the normalisation flag of the one-dimensional NDF structure spect to
be false.

setnorm borg 3 anorm

SUN/95.45 —Specifications of KAPPA applications 678 SETNORM

This sets the normalisation flag for the third dimension in the NDF structure
borg.

Axis Normalisation :

In general, the axis-normalisation property is not needed. An example where it is relevant
is a spectrum in which data values representing energy per unit wavelength and each
pixel has a known spread in wavelength. The sum of each pixel’s data value multiplied by
its width gives the energy in a part of the spectrum. A change to the axis width, say to
allow for the redshift, necessitates a corresponding modification to the data value to retain
this property. In two dimensions an example is where the data measure flux per unit area
of sky and the pixel widths are defined in terms of angular size.

Related Applications :

KAPPA: SETAXIS.

679 SETORIGIN SUN/95.45 —Specifications of KAPPA applications

SETORIGIN
Sets a new pixel origin for an NDF

Description:
This application sets a new pixel origin value for an NDF data structure. The NDF is
accessed in update mode and the indices of the first pixel (the NDF’s lower pixel-index
bounds) are set to specified integer values, which may be positive or negative. No other
properties of the NDF are altered. If required, a template NDF may be supplied and the
new origin values will be derived from it.

Usage:
setorigin ndf origin

Parameters:

LIKE = NDF (Read)
This parameter may be used to supply an NDF which is to be used as a template. If
such a template is supplied, then its origin (its lower pixel-index bounds) will be used
as the new origin value for the NDF supplied via the NDF parameter. By default, no
template will be used and the new origin will be specified via the ORIGIN parameter.
[!]

NDF = NDF (Read and Write)
The NDF data structure whose pixel origin is to be modified.

ORIGIN() = _INTEGER (Read)
A one-dimensional array specifying the new pixel origin values, one for each NDF
dimension.

Examples:
setorigin image_2d [1,1]

Sets the indices of the first pixel in the two-dimensional image image_2d to be
(1, 1). The image pixel values are unaltered.

setorigin ndf=starfield

A new pixel origin is set for the NDF structure called starfield. SETORIGIN will
prompt for the new origin values, supplying the existing values as defaults.

setorigin ndf=cube origin=[-128,-128]

Sets the pixel origin values for the first two dimensions of the three-dimensional
NDF called cube to be (−128, −128). A value for the third dimension is not specified, so
the origin of this dimension will remain unchanged.

setorigin betapic like=alphapic

SUN/95.45 —Specifications of KAPPA applications 680 SETORIGIN

Sets the pixel origin of the NDF called betapic to be equal to that of the NDF
called alphapic.

Notes:

If the number of new pixel origin values is fewer than the number of NDF dimensions,
then the pixel origin of the extra dimensions will remain unchanged. If the number of
values exceeds the number of NDF dimensions, then the excess values will be ignored.

Timing :

Setting a new pixel origin is a quick operation whose timing does not depend on the size
of the NDF.

Related Applications :

KAPPA: SETBOUND.

681 SETQUAL SUN/95.45 —Specifications of KAPPA applications

SETQUAL
Assigns a specified quality to selected pixels within an NDF

Description:
This routine assigns (or optionally removes) the quality specified by Parameter QNAME
to (or from) selected pixels in an NDF . For more information about using quality within
KAPPA see Section 16.

The user can select the pixels to be operated on in one of three ways (see Parameter
SELECT).

• By giving a ‘mask’ NDF. Pixels with bad values in the mask NDF will be selected
from the corresponding input NDF.

• By giving a list of pixel indices for the pixels that are to be selected.

• By giving an ARD file containing a description of the regions of the NDF that are
to be selected. The ARD system (see SUN/183) uses a textual language to describe
geometric regions of an array. Text files containing ARD description suitable for use
with this routine can be created interactively using the routine ARDGEN or with
GAIA.

The operation to be performed on the pixels is specified by Parameter FUNCTION. The
given quality may be assigned to or removed from pixels within the NDF. The pixels
operated on can either be those selected by the user (as described above), or those not
selected. The quality of all other pixels is left unchanged (unless the Parameter FUNCTION
is given the value "NS+HU" or "NU+HS"). Thus for instance if pixel (1, 1) already held the
quality specified by QNAME, and the quality was then assigned to pixel (2, 2) this would
not cause the quality to be removed from pixel (1, 1).

This routine can also be used to copy all quality information from one NDF to another (see
Parameter LIKE).

Usage:
setqual ndf qname comment mask

Parameters:

ARDFILE = FILENAME (Read)
The name of the ARD file containing a description of the parts of the NDF to be
‘selected’. The ARD parameter is only prompted for if the SELECT parameter is
given the value "ARD". The co-ordinate system in which positions within this file
are given should be indicated by including suitable COFRAME or WCS statements
within the file (see SUN/183), but will default to pixel co-ordinates in the absence
of any such statements. For instance, starting the file with a line containing the text
"COFRAME(SKY,System=FK5)" would indicate that positions are specified in RA/DEC
(FK5,J2000). The statement "COFRAME(PIXEL)" indicates explicitly that positions are
specified in pixel co-ordinates.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun183.htx/sun183.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

SUN/95.45 —Specifications of KAPPA applications 682 SETQUAL

COMMENT = LITERAL (Read)
A comment to store with the quality name. This parameter is only prompted for if
the NDF does not already contain a definition of the quality name.

FUNCTION = LITERAL (Read)
This parameter specifies what function is to be performed on the ‘selected’ pixels
specified using Parameters MASK, LIST or ARDFILE. It can take any of the following
values.

• "HS" — Ensure that the quality specified by QNAME is held by all the selected
pixels. The quality of all other pixels is left unchanged.
• "HU" — Ensure that the quality specified by QNAME is held by all the pixels that

have not been selected. The quality of the selected pixels is left unchanged.
• "NS" — Ensure that the quality specified by QNAME is not held by any of the

selected pixels. The quality of all other pixels is left unchanged.
• "NU" — Ensure that the quality specified by QNAME is not held by any of

the pixels that have not been selected. The quality of the selected pixels is left
unchanged.
• "HS+NU" — Ensure that the quality specified by QNAME is held by all the

selected pixels and not held by any of the other pixels.
• "HU+NS" — Ensure that the quality specified by QNAME is held by all the pixels

that have not been selected and not held by any of the selected pixels.

["HS"]

LIKE = NDF (Read)
An existing NDF from which the QUALITY component and quality names are to
be copied. These overwrite any corresponding information in the NDF given by
Parameter NDF. If null (!), then the operation of this command is instead determined
by Parameter SELECT. [!]

LIST = LITERAL (Read)
A group of pixels positions within the input NDF listing the pixels that are to be
‘selected’ (see Parameter FUNCTION). Each position should be giving as a list of pixel
indices (e.g. X1, Y1, X2, Y2,. . . for a two dimensional NDF). LIST is only prompted
for if Parameter SELECT is given the value "LIST".

MASK = NDF (Read)
A mask NDF used to define the ‘selected’ pixels within the input NDF (see Parameter
FUNCTION). The mask should be aligned pixel-for-pixel with the input NDF. Pixels
that are bad in the mask NDF are ‘selected’. The quality of any pixels that lie outside
the bounds of the mask NDF are left unaltered. This parameter is only prompted for
if the Parameter SELECT is given the value "MASK".

NDF = NDF (Update)
The NDF in which the quality information is to be stored.

QNAME = LITERAL (Read)
The quality name. If the supplied name is not already defined within the input NDF,
then a definition of the name is added to the NDF. The user is warned if the quality
name is already defined within the NDF.

683 SETQUAL SUN/95.45 —Specifications of KAPPA applications

QVALUE = _INTEGER (Read)
If not null, then the whole QUALITY array is filled with the constant value given by
QVALUE, which must be in the range 0 to 255. No other changes are made to the
NDF. [!]

READONLY = _LOGICAL (Read)
If TRUE, then an error will be reported if any attempt is subsequently made to remove
the quality name (e.g. using REMQUAL). [FALSE]

SELECT = LITERAL (Read)
If Parameter LIKE is null, then this parameter determines how the pixels are selected,
and can take the values "Mask", "List" or "ARD" (see Parameters MASK, LIST, and
ARD). ["Mask"]

XNAME = LITERAL (Read)
If an NDF already contains any quality name definitions then new quality names are
put in the same extension as the old names. If no previous quality names have been
stored in the NDF then Parameter XNAME will be used to obtain the name of an
NDF extension in which to store the new quality name. The extension will be created
if it does not already exist (see Parameter XTYPE). [QUALITY_NAMES]

XTYPE = LITERAL (Read)
If a new NDF extension is created to hold quality names (see Parameter XNAME),
then Parameter XTYPE is used to obtain the HDS data type for the created extension.
The run time default is to give the extension a type identical to its name. []

Examples:
setqual m51 saturated "Saturated pixels" m51_cut

This example ensures that the quality "SATURATED" is defined within the NDF
m51. The comment "Saturated pixels" is stored with the quality name if it did not
already exist in the NDF. The quality SATURATED is then assigned to all pixels for which
the corresponding pixel in NDF m51_CUT is bad. The quality of all other pixels is left
unchanged.

setqual "m51,cena" source_a select=list list=^source_a.lis function=hs+nu

This example ensures that pixels within the two NDFs m51 and cena which are
included in the list of pixel indices held in text file source_a.lis, have the quality
"SOURCE_A", and also ensures that none of the pixels which were not included in
source_a.lis have the quality.

setqual m51 source_b select=ard ardfile=background.ard

This example assigns the quality "source_b" to pixels of the NDF m51 as de-
scribed by an ARD description stored in the text file "background.ard". This text file
could for instance have been created using routine ARDGEN.

Notes:

SUN/95.45 —Specifications of KAPPA applications 684 SETQUAL

• All the quality names which are currently defined within an NDF can be listed by
application SHOWQUAL. Quality name definitions can be removed from an NDF
using application REMQUAL. If there is no room for any more quality names to be
added to the NDF then REMQUAL can be used to remove a quality name in order to
make room for the new quality names.

Related Applications :

KAPPA: QUALTOBAD, REMQUAL, SHOWQUAL.

685 SETSKY SUN/95.45 —Specifications of KAPPA applications

SETSKY
Stores new WCS information within an NDF

Description:
This application adds WCS information describing a celestial sky co-ordinate system to a
two-dimensional NDF . This information can be stored either in the form of a standard
NDF WCS component, or in the form of an IRAS90 astrometry structure (see Parameter
IRAS90).

The astrometry is determined either by you supplying explicit values for certain projection
parameters, or by you providing the sky and corresponding image co-ordinates for a set
of positions (see Parameter POSITIONS). In the latter case, the projection parameters are
determined automatically by searching through parameter space in order to minimise the
sum of the squared residuals between the supplied pixel co-ordinates and the transformed
sky co-ordinates. You may force particular projection parameters to take certain values by
assigning an explicit value to the corresponding application parameter listed below. The
individual residuals at each position can be written out to a logfile so that you can identify
any aberrant points. The RMS residual (in pixels) implied by the best-fitting parameters is
displayed.

Usage:
setsky ndf positions coords epoch [projtype] [lon] [lat] [refcode]

[pixelsize] [orient] [tilt] [logfile]

Parameters:

COORDS = LITERAL (Read)
The sky co-ordinate system to use. Valid values include "Ecliptic" (IAU 1980),
"Equatorial" (FK4 and FK5), and "Galactic" (IAU 1958). Ecliptic and equatorial co-
ordinates are referred to the mean equinox of a given epoch. This epoch is specified by
appending it to the system name, in parentheses, for example, "Equatorial(1994.5)".
The epoch may be preceded by a single character, "B" or "J", indicating that the epoch
is Besselian or Julian respectively. If this letter is missing, a Besselian epoch is assumed
if the epoch is less than 1984.0, and a Julian epoch is assumed otherwise.

EPOCH = _DOUBLE (Read)
The Julian epoch at which the observation was made (e.g. "1994.0").

IRAS90 = _LOGICAL (Read)
If a TRUE value is supplied, then the WCS information will be stored in the form of
an IRAS90 astrometry structure. This is the form used by the IRAS90 package (see
SUN/163). In this case, any existing IRAS90 astrometry structure will be over-written.
See the “Notes” section below for warnings about using this form.
If a FALSE value is supplied, then the WCS information will be stored in the form
of a standard NDF WCS component which will be recognized, used and updated
correctly by most other Starlink software.
If a null value (!) is supplied, then a TRUE value will be used if the supplied NDF
already has an IRAS90 extension. Otherwise a FALSE value will be used. [!]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 686 SETSKY

LAT = LITERAL (Read)
The latitude of the reference point, in the co-ordinate system specified by Param-
eter COORDS. For example, if COORDS is "Equatorial", LAT is the declination.
See SUN/163, Section 4.7.2 for full details of the allowed syntax for specifying this
position. For convenience here are some examples how you may specify the decli-
nation -45 degrees, 12 arcminutes: "-45 12 00", "-45 12", "-45d 12m", "-45.2d",
"-451200", "-0.78888r". The last of these is a radians value. A null value causes the
latitude of the reference point to be estimated automatically from the data supplied
for Parameter POSITIONS. [!]

LOGFILE = FILENAME (Read)
Name of the text file to log the final projection parameter values and the residual at
each supplied position. If null, there will be no logging. This parameter is ignored if
a null value is given to Parameter POSITIONS. [!]

LON= LITERAL (Read)
The longitude of the reference point, in the co-ordinate system specified by Parameter
COORDS. For example, if COORDS is "Equatorial", LON is the right ascension.
See SUN/163, Section 4.7.2 for full details of the allowed syntax for specifying
this position. For convenience here are some examples how you may specify the
right ascension 11 hours, 34 minutes, and 56.2 seconds: "11 34 56.2", "11h 34m
56.2s", "11 34.9366", "11.58228", "113456.2". See Parameter LAT for examples
of specifying a non-equatorial longitude. A null value causes the longitude of the
reference point to be estimated automatically from the data supplied for Parameter
POSITIONS. [!]

NDF = NDF (Read and Write)
The NDF in which to store the WCS information.

ORIENT = LITERAL (Read)
The position angle of the NDF’s y axis on the celestial sphere, measured from north
through east. North is defined as the direction of increasing sky latitude, and east
is the direction of increasing sky longitude. Values are constrained to the range 0 to
two-pi radians. A null value causes the position angle to be estimated automatically
from the data supplied for Parameter POSITIONS. [!]

PIXELREF(2) = REAL (Read)
The pixel co-ordinates of the reference pixel (x then y). This parameter is ignored
unless REFCODE="Pixel". Remember that the centre of a pixel at indices i,j is
(i− 0.5, j− 0.5). A null value causes the pixel co-ordinates of the reference point to
be estimated automatically from the data supplied for Parameter POSITIONS. [!]

PIXELSIZE(2) = _REAL (Read)
The x and y pixel sizes at the reference position. If only one value is given, the pixel
is deemed to be square. Values may be given in a variety of units (see Parameter
LAT). For example, 0.54 arcseconds could be specified as "0.54s" or "0.009m" or
"2.618E-6r". A null value causes the pixel dimensions to be estimated automatically
from the data supplied for Parameter POSITIONS. [!]

POSITIONS = LITERAL (Read)
A list of sky co-ordinates and corresponding image co-ordinates for the set of positions
which are to be used to determine the astrometry. If a null value is given then the
astrometry is determined by the explicit values you supply for each of the other

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SEC:COF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SEC:COF

687 SETSKY SUN/95.45 —Specifications of KAPPA applications

parameters. Each position is defined by four values, the sky longitude (in the same
format as for Parameter LON), the sky latitude (in the same format as for Parameter
LAT), the image pixel x co-ordinate and the image pixel y co-ordinate (both decimal
values). These should be supplied (in the order stated) for each position. These
values are given in the form of a ‘group expression’ (see SUN/150). This means that
values can be either typed in directly or supplied in a text file. If typed in directly, the
items in the list should be separated by commas, and you are re-prompted for further
values if the last supplied value ends in a minus sign. If conveyed in a text file, they
should again be separated by commas, but can be split across lines. The name of the
text file is given in response to the prompt, preceded by an ‘up arrow’ symbol (^).

PROJTYPE = LITERAL (Read)
The type of projection to use. The options are: "Aitoff" — Aitoff equal-area,
"Gnomonic" — Gnomonic (i.e. tangent plane), "Lambert" — Lambert normal equiva-
lent cylindrical, "Orthographic" — Orthographic.
The following synonyms are also recognised: "All_sky" — Aitoff, "Cylindrical" —
Lambert, "Tangent_plane" — Gnomonic.
See SUN/163 for descriptions of these projections. A null value causes the projection
to be determined automatically from the data supplied for Parameter POSITIONS.
[!]

REFCODE = LITERAL (Read)
The code for the reference pixel. If it has value "Pixel" this requests that pixel
co-ordinates for the reference point be obtained through Parameter PIXELREF. The
other options are locations specified by two characters, the first corresponding to
the vertical position and the second the horizontal. For the vertical, valid positions
are T(op), B(ottom), or C(entre); and for the horizontal the options are L(eft), R(ight),
or C(entre). Thus REFCODE="CC" means the reference position is at the centre of
the NDF image, and "BL" specifies that the reference position is at the centre of the
bottom-left pixel in the image. A null value causes the pixel co-ordinates of the
reference point to be estimated automatically from the data supplied for Parameter
POSITIONS. [!]

TILT = LITERAL (Read)
The angle through which the celestial sphere is to be rotated prior to doing the
projection. The axis of rotation is a radius passing through the reference point. The
rotation is in an anti-clockwise sense when looking from the reference point towards
the centre of the celestial sphere. In common circumstances this can be set to zero.
Values may be given in a variety of units (see Parameter LAT). Values are constrained
to the range 0 to two-pi radians. A null value causes the latitude of the reference
point to be estimated automatically from the data supplied for Parameter POSITIONS.
["0.0"]

Examples:
setsky m51 ^stars.lis ecl(j1994.0) 1994.0 logfile=m51.log

This creates a WCS component to a two-dimensional NDF called m51. The val-
ues for Parameters PROJTYPE, LON, LAT, PIXELREF, PIXELSIZE, and ORIENT are
determined automatically so that they minimised the sum of the squared residuals (in
pixels) at each of the positions specified in the file stars.lis. This file contains a line

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SEC:PROJ

SUN/95.45 —Specifications of KAPPA applications 688 SETSKY

for each position, each line containing an ecliptic longitude and latitude, followed by a
pair of image co-ordinates. These values should be separated by commas. The ecliptic
co-ordinates were determined at Julian epoch 1994.0, and are referred to the mean equinox
at Julian epoch 1994.0. The determined parameter values together with the residual at
each position are logged to file m51.log.

setsky m51 ^stars.lis ecl(j1994.0) 1994.0 orient=0 projtype=orth

This creates a WCS component within the two-dimensional NDF called m51.
The values for Parameters PROJTYPE, LON, LAT, PIXELREF, and PIXELSIZE are
determined automatically as in the previous example. In this example however, an
Orthographic projection is forced, and the value zero is assigned to Parameter ORIENT,
resulting in north being ‘upwards’ in the image.

setsky virgo "!" eq(j2000.0) 1989.3 gn "12 29" "+12 30" bl 1.1s 0.0d

This creates a WCS component within the two-dimensional NDF called virgo. It
is a gnomonic projection in the equatorial system at Julian epoch 2000.0. The bottom-left
pixel of the image is located at right ascension 12 hours 29 minutes, declination +12
degrees 30 minutes. A pixel at that position is square and has angular size of 1.1
arcseconds. The image was observed at epoch 1989.3. At the bottom-left of the image,
north is at the top, parallel to the y-axis of the image.

setsky map "!" galactic(1950.0) 1993.8 aitoff 90 0 cc [0.5d,0.007r] 180.0d

This creates a WCS component within the two-dimensional NDF called map. It
is an Aitoff projection in the galactic system at Besselian epoch 1950.0. The centre of
the image is located at galactic longitude 90 degrees, latitude 0 degrees. A pixel at that
position is rectangular and has angular size of 0.5 degrees by 0.007 radians. The image
was made at epoch 1993.8. At the image centre, south is at the top and is parallel to the
y-axis of the image.

setsky zodiac "!" ec 1983.4 or 10.3 -5.6 Pixel 20m 0.3d
pixelref=[9.5,-11.2] IRAS90=YES

This creates an IRAS90 astrometry extension within the two-dimensional NDF
called zodiac. It is an orthographic projection in the Ecliptic system at Besselian epoch
1950.0. The reference point at pixel co-ordinates (9.5, −11.2) corresponds to ecliptic
longitude 10.3 degrees, latitude −5.6 degrees. A pixel at that position is square and has
angular size of 20 arcminutes. The image was observed at epoch 1983.4. At the reference
point the y-axis of the image points to 0.3 degrees east of north.

Notes:

• The GAIA image display tool (SUN/214) provides various interactive tools for storing
new WCS information within an NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

689 SETSKY SUN/95.45 —Specifications of KAPPA applications

• This application was written to supply the limited range of WCS functions required
by the IRAS90 package. For instance, it does not support the complete range or
projections or sky co-ordinate systems which may be represented by the more general
NDF WCS component.

• If WCS information is stored in the form of an IRAS90 astrometry structure (see
Parameter IRAS90), it will in general be invalidated by any subsequent KAPPA

commands which modify the transformation between sky and pixel co-ordinates.
For instance, if the image is moved using SLIDE (for example), then the IRAS90
astrometry structure will no longer correctly describe the sky co-ordinates associated
with each pixel. For this reason (amongst others) it is better to set Parameter IRAS90
to FALSE.

Related Applications :

ASTROM; IRAS90: SKYALIGN, SKYBOX, SKYGRID, SKYLINE, SKYMARK, SKYPOS,
SKYWRITE.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun5.htx/sun5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYALIGN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYBOX
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYGRID
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYLINE
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYMARK
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYPOS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_SKYWRITE

SUN/95.45 —Specifications of KAPPA applications 690 SETTITLE

SETTITLE
Sets a new title for an NDF data structure

Description:
This routine sets a new value for the TITLE component of an existing NDF data structure.
The NDF is accessed in update mode and any pre-existing title is over-written with a new
value. Alternatively, if a ‘null’ value (!) is given for the TITLE parameter, then the NDF’s
title will be erased.

Usage:
settitle ndf title

Parameters:

NDF = NDF (Read and Write)
The NDF data structure whose title is to be modified.

TITLE = LITERAL (Read)
The value to be assigned to the NDF’s TITLE component (e.g. "NGC1068 with a
B filter" or "Ice band in HD123456"). This value may later be used by other
applications as a heading for graphs and other forms of display where the NDF’s
data values are plotted. The suggested default is the current value.

Examples:
settitle ngc1068 "NGC1068 with a B filter"

Sets the TITLE component of the NDF structure ngc1068 to be "NGC1068 with a
B filter".

settitle ndf=myspec title="Ice band, short integration"

Sets the TITLE component of the NDF structure myspec to be "Ice band, short
integration".

settitle dat123 title=!

By specifying a null value (!), this example erases any previous value of the
TITLE component in the NDF structure dat123.

Related Applications :

KAPPA: SETLABEL, SETUNITS.

691 SETTYPE SUN/95.45 —Specifications of KAPPA applications

SETTYPE
Sets a new numeric type for the DATA and VARIANCE components

of an NDF

Description:
This application allows the numeric type of the DATA and VARIANCE components of
an NDF to be changed. The NDF is accessed in update mode and the values stored in
these components are converted in situ to the new type. No other attributes of the NDF
are changed.

Usage:
settype ndf type

Parameters:

COMPLEX = _LOGICAL (Read)
If a TRUE value is given for this parameter, then the NDF’s array components will be
altered so that they hold complex values, an imaginary part containing zeros being
created if necessary. If a FALSE value is given, then the components will be altered so
that they hold non-complex values, any imaginary part being deleted if necessary. If
a null (!) value is supplied, the value used is chosen so that no change is made to the
current state. [!]

DATA = _LOGICAL (Read)
If a TRUE value is given for this parameter, then the numeric type of the NDF’s data
array will be changed. Otherwise, this component’s type will remain unchanged.
[TRUE]

NDF = NDF (Read and Write)
The NDF data structure whose array components are to have their numeric type
changed.

TYPE = LITERAL (Read)
The new numeric type to which the NDF’s array components are to be converted.
The value given should be one of the following: _DOUBLE, _REAL, _INTEGER,
_WORD, _UWORD, _BYTE or _UBYTE (note the leading underscore). Existing pixel
values stored in the NDF will not be lost, but will be converted to the new type. Any
values which cannot be represented using the new type will be replaced with the
bad-pixel value.

VARIANCE = _LOGICAL (Read)
If a TRUE value is given for this parameter, then the numeric type of the NDF’s
VARIANCE array will be changed. Otherwise, this component’s type will remain
unchanged. [TRUE]

Examples:
settype rawdata _real

Converts the data and variance values held in the NDF data structure rawdata

SUN/95.45 —Specifications of KAPPA applications 692 SETTYPE

to have a numeric type of _REAL (i.e. to be stored as single-precision floating-point
numbers).

settype inst.run1 _word novariance

Converts the data array in the NDF structure inst.run1 to be stored as word (i.e.
Fortran INTEGER∗2) values. No change is made to the VARIANCE component.

settype hd26571 _double complex

Causes the DATA and VARIANCE components of the NDF structure hd26571 to
be altered so as to hold complex values using double precision numbers. The existing
pixel values are converted to this new type.

Timing :

The execution time is approximately proportional to the number of pixel values to be
converted.

Related Applications :

FIGARO: RETYPE.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RETYPE

693 SETUNITS SUN/95.45 —Specifications of KAPPA applications

SETUNITS
Sets a new units value for an NDF data structure

Description:
This routine sets a new value for the UNITS component of an existing NDF data structure.
The NDF is accessed in update mode and any pre-existing UNITS component is over-
written with a new value. Alternatively, if a ‘null’ value (!) is given for the UNITS
parameter, then the NDF’s UNITS component will be erased.

There is also an option to modify the pixel values within the NDF to reflect the change in
units (see Parameter MODIFY).

Usage:
setunits ndf units

Parameters:

NDF = NDF (Read and Write)
The NDF data structure whose UNITS component is to be modified.

MODIFY = _LOGICAL (Read)
If a TRUE value is supplied, then the pixel values in the DATA and VARIANCE com-
ponents of the NDF will be modified to reflect the change in units. For this to be
possible, both the original Units value in the NDF and the new Units value must both
correspond to the format for units strings described in the FITS WCS standard (see
"Representations of world coordinates in FITS", Greisen & Calabretta, 2002,
A&A—available at (http://www.aoc.nrao.edu/∼egreisen/wcs_AA.ps.gz) If either
of the two units strings are not of this form, or if it is not possible to find a transfor-
mation between them (for instance, because they represent different quantities), an
error is reported. [FALSE]

UNITS = LITERAL (Read)
The value to be assigned to the NDF’s UNITS component (e.g. "J/(m∗∗2∗Angstrom∗s)"
or "count/s"). This value may later be used by other applications for labelling graphs
and other forms of display where the NDF’s data values are shown. The suggested
default is the current value.

Examples:
setunits ngc1342 "count/s"

Sets the UNITS component of the NDF structure ngc1342 to have the value "count/s".
The pixel values are not changed.

setunits ndf=spect units="J/(m∗∗2∗Angstrom∗s)"

Sets the UNITS component of the NDF structure spect to have the value
"J/(m∗∗2∗Angstrom∗s)". The pixel values are not changed.

http://www.aoc.nrao.edu/$\sim $egreisen/wcs_AA.ps.gz

SUN/95.45 —Specifications of KAPPA applications 694 SETUNITS

setunits datafile units=!

By specifying a null value (!), this example erases any previous value of the
UNITS component in the NDF structure datafile. The pixel values are not changed.

setunits ndf=spect units="MJy" modify

Sets the UNITS component of the NDF structure spect to have the value "MJy".
If possible, the pixel values are changed from their old units to the new units. For instance,
if the UNITS component of the NDF was original "J/(m∗∗2∗s∗GHz)", the DATA values
will be multiplied by 1.0E11, and the variance values by 1.0E22. However, if the original
UNITS component was (say) "K" (Kelvin) then an error would be reported since there is
no direct conversion from Kelvin to Megajansky.

Related Applications :

KAPPA: AXUNITS, SETLABEL, SETTITLE.

695 SETVAR SUN/95.45 —Specifications of KAPPA applications

SETVAR
Sets new values for the VARIANCE component of an NDF data

structure

Description:
This routine sets new values for the VARIANCE component of an NDF data structure. The
new values can be copied from a specified component of a second NDF or can be generated
from the supplied NDF’s data array by means of a Fortran-like arithmetic expression. Any
previous variance information is over-written with the new values. Alternatively, if a ‘null’
value (!) is given for the variance, then any pre-existing variance information is erased.

Usage:
setvar ndf variance

Parameters:

COMP = LITERAL (Read)
The name of an NDF array component within the NDF specified by Parameter FROM.
The values in this array component are used as the new variance values to be stored
in the VARIANCE component of the NDF specified by Parameter NDF. The supplied
value must be one of "Data" or "Variance". ["Data"]

FROM = NDF (Read)
An NDF data structure containing the values to be used as the new variance val-
ues. The NDF component from which to read the new variance values is specified
by Parameter COMP. If NDF is not contained completely within FROM, then the
VARIANCE component of NDF will be padded with bad values. If a null (!) value
is supplied, the new variance values are determined by the expression given for
Parameter VARIANCE. [!]

NDF = NDF (Read and Write)
The NDF data structure whose variance values are to be modified.

VARIANCE = LITERAL (Read)
A Fortran-like arithmetic expression giving the variance value to be assigned to each
pixel in terms of the variable DATA, which represents the value of the corresponding
data array pixel. For example, VARIANCE="DATA" implies normal

√
N error esti-

mates, whereas VARIANCE="DATA + 50.7" might be used if a sky background of
50.7 units had previously been subtracted.
If a ‘null’ value (!) is given for this parameter, then no new VARIANCE component
will be created and any pre-existing variance values will be erased.

Examples:
setvar ngc4709 data

This sets the VARIANCE component within the NDF structure ngc4709 to equal
its corresponding data-array component.

SUN/95.45 —Specifications of KAPPA applications 696 SETVAR

setvar ndf=arcspec "data - 0.31"

This sets the VARIANCE component within the NDF structure arcspec to be its
corresponding data-array component less a constant 0.31.

setvar cube4 Variance=!

This erases the values of the VARIANCE component within the NDF structure
cube4, if it exists.

Notes:

• All of the standard Fortran 77 intrinsic functions are available for use in the variance
expression, plus a few others (see SUN/61 for details and an up-to-date list).

• Calculations are performed using real arithmetic (or double precision if appropriate)
and are constrained to be non-negative.

• The data type of the VARIANCE component is set to match that of the DATA compo-
nent.

Related Applications :

KAPPA: ERRCLIP; FIGARO: GOODVAR.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun61.htx/sun61.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_GOODVAR

697 SHADOW SUN/95.45 —Specifications of KAPPA applications

SHADOW
Enhances edges in a two-dimensional NDF using a shadow effect

Description:
This routine enhances a two-dimensional NDF by creating a bas-relief or shadow effect,
that causes features in an array to appear as though they have been illuminated from the
side by some imaginary light source. The enhancement is useful in locating edges and fine
detail in an array.

Usage:
shadow in out

Parameters:

IN = NDF (Read)
The two-dimensional NDF to be enhanced.

OUT = NDF (Write)
The output NDF containing the enhanced image.

SHIFT(2) = _INTEGER (Read)
The shift in x and y pixel indices to be used in the enhancement. If the x shift is
positive, positive features in the original array will appear to be lit from the positive
x direction, i.e. from the right. Similarly, if the y shift is positive, the light source will
appear to be shining from the top of the array. A one- or two-pixel shift is normally
adequate. [1,1]

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
shadow horse horse_bas

This enhances the NDF called horse by making it appear to be illuminated from
the top-right, and stores the result in the NDF called horse_bas.

shadow out=aash in=aa [-1,-1] title="Bas relief"

This enhances the NDF called aa by making it appear to be illuminated from
the bottom left, and stores the result in the NDF called aash, which has the title "Bas
relief".

Related Applications :

KAPPA: LAPLACE, MEDIAN; FIGARO: ICONV3.

Implementation Status:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICONV3

SUN/95.45 —Specifications of KAPPA applications 698 SHADOW

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• The output NDF will be trimmed compared with the input NDF by the shifts applied.

699 SHOWQUAL SUN/95.45 —Specifications of KAPPA applications

SHOWQUAL
Display the quality names defined in an NDF

Description:
This routine displays a list of all the quality names currently defined within a supplied
NDF (see task SETQUAL). The descriptive comments which were stored with the quality
names when they were originally defined are also displayed. An option exists for also
displaying the number of pixels which hold each quality.

Usage:
showqual ndf [count]

Parameters:

COUNT = _LOGICAL (Read)
If TRUE, then the number of pixels in each NDF which holds each defined quality is
displayed. These figures are shown in parentheses between the quality name and
associated comment. This option adds significantly to the run time. [NO]

NDF = NDF (Read)
The NDF whose quality names are to be listed.

Results Parameters:

QNAMES() = LITERAL (Write)
The quality names associated with each bit, starting from the lowest significant bit. Unas-
signed bits have blank strings.

Examples:
showqual "m51,cena" yes

This example displays all the quality names currently defined for the two NDFs
m51 and cena together with the number of pixels holding each quality.

Related Applications :

KAPPA: REMQUAL, QUALTOBAD, SETQUAL.

SUN/95.45 —Specifications of KAPPA applications 700 SLIDE

SLIDE
Realigns an NDF using a translation

Description:
The pixels of an NDF are shifted by a given number of pixels along each pixel axis. The
shift need not be an integer number of pixels, and pixel interpolation will be performed
if necessary using the scheme selected by Parameter METHOD. The shifts to use are
specified either by an absolute vector given by the ABS parameter or by the difference
between a fiducial point and a standard object given by the FID and OBJ parameters
respectively. In each case the co-ordinates are specified in the NDF’s pixel co-ordinate
Frame.

Usage:
slide in out abs method

Parameters:

ABS() = _DOUBLE (Read)
Absolute shifts in pixels. The number of values supplied must match the number of
pixel axes in the NDF. It is only used if STYPE="Absolute".

FID() = _DOUBLE (Read)
Position of the fiducial point in pixel co-ordinates. The number of values supplied
must match the number of pixel axes in the NDF. It is only used if STYPE="Relative".
An object centred at the pixel co-ordinates given by Parameter OBJ in the input NDF
will be centred at the pixel co-ordinates given by Parameter FID in the output NDF.

IN = NDF (Read)
The NDF to be translated.

METHOD = LITERAL (Read)
The interpolation method used to perform the translation. The following values are
permitted:

• "Nearest" — Nearest-neighbour sampling.
• "Linear" — Linear interpolation.
• "Sinc" — Sum of surrounding pixels weighted using a one-dimensional sinc(πx)

kernel.
• "SincSinc" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx)sinc(kπx) kernel.
• "SincCos" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx) cos(kπx) kernel.
• "SincGauss" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx)e−kx2
kernel.

• "BlockAve" — Block averaging over all pixels in the surrounding n-dimensional
cube.

701 SLIDE SUN/95.45 —Specifications of KAPPA applications

In the above, sinc(z) = sin(z)/z. Some of these schemes will require additional
parameters to be supplied via the PARAMS parameter. A more-detailed discussion of
these schemes is given in the “Sub-pixel Interpolation Schemes” section below. The
initial default is "Linear". [current value]

OBJ = LITERAL (Read)
Position of the standard object in pixel co-ordinates. The number of values supplied
must match the number of pixel axes in the NDF. It is only used if STYPE="Relative".
An object centred at the pixel co-ordinates given by Parameter OBJ in the input NDF
will be centred at the pixel co-ordinates given by Parameter FID in the output NDF.

OUT = NDF (Write)
The translated NDF.

PARAMS() = _DOUBLE (Read)
Parameters required to control the resampling scheme. One or more values may be
required to specify the exact resampling behaviour, according to the value of the
METHOD parameter. See the section on “Sub-pixel Interpolation Schemes”.

STYPE = LITERAL (Read)
The sort of shift to be used. The choice is "Relative" or "Absolute". ["Absolute"]

TITLE = LITERAL (Read)
Title for the output NDF. A null (!) value will cause the input title to be used. [!]

Examples:
slide m31 m31_acc [3.2,2.3]

The pixels in the NDF m31 are shifted by 3.2 pixels in x and 2.3 pixels in y, and
written to NDF m31_acc. Linear interpolation is used to produce the output data (and, if
present, variance) array.

slide m31 m31_acc [3.2,2.3] nearest

The same as the previous example except that nearest-neighbour resampling is
used. This will be somewhat faster, but may result in features shifted by up to half a pixel.

slide speca specb stype=rel fid=11.2 obj=11.7

The pixels in the NDF speca are shifted by 0.5 (i.e. 11.7 − 11.2) pixels and the
output NDF is written as specb.

slide speca specb stype=abs abs=0.5

This does just the same as the previous example.

Sub-Pixel Interpolation Schemes :

When performing the translation the pixels are resampled from the input grid to the output
grid by default using linear interpolation. For many purposes this default scheme will be
adequate, but for greater control over the resampling process the METHOD and PARAMS
parameters can be used. Detailed discussion of the use of these parameters can be found
in the “Sub-pixel Interpolation Schemes” section of the AST_RESAMPLE documentation.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar

SUN/95.45 —Specifications of KAPPA applications 702 SLIDE

Notes:

• If the NDF is shifted by a whole number of pixels along each axis, this applica-
tion merely changes the pixel origin in the NDF. It can thus be compared to the
SETORIGIN command.

• Resampled axis centres that are beyond the bounds of the input NDF are given
extrapolated values from the first (or last) pair of valid centres.

Implementation Status:

• The LABEL, UNITS, and HISTORY components, and all extensions are propagated.
TITLE is controlled by the TITLE parameter. DATA, VARIANCE, AXIS and WCS
are propagated after appropriate modification. The QUALITY component is also
propagated if nearest-neighbour interpolation is being used.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• There can be an arbitrary number of NDF dimensions.

Related Applications :

KAPPA: REGRID, SQORST, WCSADD.

703 SQORST SUN/95.45 —Specifications of KAPPA applications

SQORST
Squashes or stretches an NDF

Description:
An output NDF is produced by squashing or stretching an input NDF along one or more
of its dimensions. The shape of the output NDF can be specified in one of two ways,
according to the value of the MODE parameter; either a distortion factor is given for each
dimension, or its lower and upper pixel bounds are given explicitly.

Usage:

sqorst in out

factors

lbound=? ubound=?

pixscale=?
mode

Parameters:

AXIS = _INTEGER (Read)
Assigning a value to this parameter indicates that a single axis should be squashed or
stretched. If a null (!) value is supplied for AXIS, a squash or stretch factor must be
supplied for each axis in the manner indicated by the MODE parameter. If a non-null
value is supplied for AXIS, it should be the integer index of the axis to be squashed
or stretched (the first axis has index 1). In this case, only a single squash or stretch
factor should be supplied, and all other axes will be left unchanged. If MODE is set to
PixelScale", then the supplied value should be the index of a WCS axis. Otherwise
it should be the index of a pixel axis. [!]

CENTRE = LITERAL (Read)
Determines the centre about which the WCS co-ordinates are stretching or squashing.
The following values are permitted.

• "Centre" — The WCS co-ordinates at the centre of the output NDF are the same
as those at the centre of the input NDF.
• "Origin" — The WCS co-ordinates at the pixel origin of the output NDF are the

same as those at the pixel origin of the input NDF.

["Centre"]

CONSERVE = _LOGICAL (Read)
If set TRUE, then the output pixel values will be scaled in such a way as to preserve
the total data value in a feature on the sky. The scaling factor is the ratio of the output
pixel size to the input pixel size. This ratio is evaluated once for each panel of a
piece-wise linear approximation to the Mapping, and is assumed to be constant for
all output pixels in the panel. [FALSE]

FACTORS() = _DOUBLE (Read)
This parameter is used only if MODE="Factors". It defines the factor by which each

SUN/95.45 —Specifications of KAPPA applications 704 SQORST

dimension will be distorted to produce the output NDF. A factor greater than one is
a stretch and less than one is a squash. If no value has been supplied for Parameter
AXIS, the number of values supplied for FACTORS must be the same as the number
of pixel axes in the NDF. If a non-null value has been supplied for Parameter AXIS,
then only a single value should be supplied for FACTORS and that value will be used
to distort the axis indicated by Parameter AXIS.

IN = NDF (Read)
The NDF to be squashed or stretched.

LBOUND() = _INTEGER (Read)
This parameter is only used if MODE="Bounds". It specifies the lower pixel-index
values of the output NDF. If no value has been supplied for Parameter AXIS, the
number of values supplied for LBOUND must be the same as the number of pixel
axes in the NDF. If a non-null value has been supplied for Parameter AXIS, then only
a single value should be supplied for LBOUND and the supplied value will be used
as the new lower bounds on the axis indicated by Parameter AXIS. If null (!) is given,
the lower pixel bounds of the input NDF will be used.

METHOD = LITERAL (Read)
The interpolation method used to perform the one-dimensional resampling opera-
tions which constitute the squash or stretch. The following values are permitted.

• "Auto" — Equivalent to "BlockAve" with an appropriate PARAMS for squashes
by a factor of 2 or more, otherwise equivalent to "Linear".
• "Nearest" — Nearest-neighbour sampling.
• "Linear" — Linear interpolation.
• "Sinc" — Sum of surrounding pixels weighted using a one-dimensional sinc(πx)

kernel.
• "SincSinc" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx)sinc(kπx) kernel.
• "SincCos" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx) cos(kπx) kernel.
• "SincGauss" — Sum of surrounding pixels weighted using a one-dimensional

sinc(πx)e−kx2
kernel.

• "BlockAve" — Block averaging over surrounding pixels.

In the above, sinc(z) = sin(z)/z. Some of these schemes will require additional
parameters to be supplied via the PARAMS parameter. A more-detailed discussion of
these schemes is given in the "Sub-Pixel Interpolation Schemes" section below.
["Auto"]

MODE = LITERAL (Read)
This determines how the shape of the output NDF is to be specified. The allowed
values and their meanings are as follows.

• "Factors" — the FACTORS parameter will be used to determine the factor by
which each dimension should be multiplied.
• "Bounds" — the LBOUND and UBOUND parameters will be used to get the

lower and upper pixel bounds of the output NDF.

705 SQORST SUN/95.45 —Specifications of KAPPA applications

• "PixelScale" — the PIXSCALE parameter will be used to obtain the new pixel
scale to use for each WCS axis.

["Factors"]

OUT = NDF (Write)
The squashed or stretched NDF.

PARAMS() = _DOUBLE (Read)
Parameters required to control the resampling scheme. One or more values may be
required to specify the exact resampling behaviour, according to the value of the
METHOD parameter. See the section on “Sub-pixel Interpolation Schemes”.

PIXSCALE = LITERAL (Read)
The PIXSCALE parameter is only used if Parameter MODE is set to "PixelScale". It
should be supplied as a comma-separated list of the required new pixel scales. In this
context, a pixel scale for a WCS axis is the increment in WCS axis value caused by
a movement of one pixel along the WCS axis, and are measured at the first pixel in
the array. Pixel scales for celestial axes should be given in arcseconds. An asterisk,
"∗", can be used instead of a numerical value to indicate that an axis should retain
its current scale. The suggested default values are the current pixel scales. If no
value has been supplied for Parameter AXIS, the number of values supplied for
PIXSCALE must be the same as the number of WCS axes in the NDF. If a non-null
value has been supplied for Parameter AXIS, then only a single value should be
supplied for PIXSCALE and that value will be used as the new pixel scale on the
WCS axis indicated by Parameter AXIS.

TITLE = LITERAL (Read)
Title for the output NDF. A null (!) value causes the input title to be used. [!]

UBOUND() = _INTEGER (Read)
This parameter is only used if MODE="Bounds". The upper pixel index values of
the output NDF. If no value has been supplied for Parameter AXIS, the number of
values supplied for UBOUND must be the same as the number of pixel axes in the
NDF. If a non-null value has been supplied for Parameter AXIS, then only a single
value should be supplied for UBOUND and the supplied value will be used as the
new upper bounds on the axis indicated by Parameter AXIS. If null (!) is given, the
upper pixel bounds of the input NDF will be used.

Examples:
sqorst block blocktall [1,2,1]

The three-dimensional NDF called block is stretched by a factor of two along its
second axis to produce an NDF called blocktall with twice as many pixels. The same data
block is represented, but each pixel in the output NDF corresponds to half a pixel in the
input NDF. The default resampling scheme, linear interpolation in the stretch direction, is
used.

sqorst block blocktall [1,2,1] method=sincsinc params=[2,2]

The same operation as the previous example is performed, except that a Lanczos kernel
is used for the interpolation.

SUN/95.45 —Specifications of KAPPA applications 706 SQORST

sqorst cygnus1 squish1 mode=bounds lbound=[1,1] ubound=[50,50]

This turns the two-dimensional NDF cygnus1 into a new NDF squish1 which
has 50 pixels along each side. The same region of sky is represented, but the input image
is squashed along both axes to fit the specified dimensions.

sqorst fred mode=pixelscale pixscale=5 axis=3

This resamples a cube NDF called fred on to a velocity scale of 5 km/s per pixel
along its third axis.

Notes:

If the input NDF contains a VARIANCE component, a VARIANCE component will be
written to the output NDF. It will be calculated on the assumption that errors on the input
data values are statistically independent and that their variance estimates may simply be
summed (with appropriate weighting factors) when several input pixels contribute to an
output data value. If this assumption is not valid, then the output error estimates may be
biased. In addition, note that the statistical errors on neighbouring output data values (as
well as the estimates of those errors) may often be correlated, even if the above assumption
about the input data is correct, because of the sub-pixel interpolation schemes employed.

Sub-Pixel Interpolation Schemes :

When squashing or stretching an NDF, a separate one-dimensional resampling operation
is performed for each of the dimensions in which a resize is being done. By default (when
METHOD="Auto") this is done using linear interpolation, unless it is a squash of a factor
of two or more, in which case a block-averaging scheme which averages over 1/FACTOR
pixels. For many purposes this default scheme will be adequate, but for greater control
over the resampling process the METHOD and PARAMS parameters can be used. Detailed
discussion of the use of these parameters can be found in the “Sub-pixel Interpolation
Schemes” section of the AST_RESAMPLE documentation. By default, all interpolation
schemes preserve flux density rather than total flux, but this may be changed using the
CONSERVE parameter.

Implementation Status:

•
The LABEL, UNITS, and HISTORY components, and all extensions are propagated.
TITLE is controlled by the TITLE parameter. DATA, VARIANCE, AXIS and WCS
are propagated after appropriate modification. The QUALITY component is also
propagated if nearest-neighbour interpolation is being used.
• Processing of bad pixels and automatic quality masking are supported.
• All non-complex numeric data types can be handled.
• There can be an arbitrary number of NDF dimensions.

Related Applications :

KAPPA: REGRID, SLIDE, WCSADD.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar

707 STATS SUN/95.45 —Specifications of KAPPA applications

STATS
Computes simple statistics for an NDF’s pixels

Description:
This application computes and displays simple statistics for the pixels in an NDF’s data,
quality or variance array. The statistics available are:

• the pixel sum,

• the pixel mean,

• the pixel population standard deviation,

• the pixel population skewness and excess kurtosis,

• the value and position of the minimum- and maximum-valued pixels,

• the total number of pixels in the NDF,

• the number of pixels used in the statistics, and

• the number of pixels omitted.

Iterative κ-sigma clipping may also be applied as an option (see Parameter CLIP).

Order statistics (median and percentiles) may optionally be derived and displayed (see Pa-
rameters ORDER and PERCENTILES). Although this can be a relatively slow operation on
large arrays, unlike HISTAT the reported order statistics are accurate, not approximations,
irrespective of the distribution of values being analysed.

Usage:
stats ndf [comp] [clip] [logfile]

Parameters:

CLIP() = _REAL (Read)
An optional one-dimensional array of clipping levels to be applied, expressed as
standard deviations. If a null value is supplied for this parameter (the default), then
no iterative clipping will take place and the statistics computed will include all the
valid NDF pixels.
If an array of clipping levels is given, then the routine will first compute statistics
using all the available pixels. It will then reject all those pixels whose values lie
outside κ standard deviations of the mean (where κ is the first value supplied) and
will then re-evaluate the statistics. This rejection iteration is repeated in turn for each
value in the CLIP array. A maximum of five values may be supplied, all of which
must be positive. [!]

COMP = LITERAL (Read)
The name of the NDF array component for which statistics are required: "Data",
"Error", "Quality" or "Variance" (where "Error" is the alternative to "Variance"
and causes the square root of the variance values to be taken before computing the
statistics). If "Quality" is specified, then the quality values are treated as numerical
values (in the range 0 to 255). ["Data"]

SUN/95.45 —Specifications of KAPPA applications 708 STATS

LOGFILE = FILENAME (Write)
A text file into which the results should be logged. If a null value is supplied (the
default), then no logging of results will take place. [!]

NDF = NDF (Read)
The NDF data structure to be analysed.

ORDER = _LOGICAL (Read)
Whether or not to calculate order statistics. If set TRUE the median and optionally
percentiles are determined and reported. [FALSE]

PERCENTILES(100) = _REAL (Read)
A list of percentiles to be found. None are computed if this parameter is null (!). The
percentiles must be in the range 0.0 to 100.0. This parameter is ignored unless ORDER
is TRUE. [!]

Results Parameters:

KURTOSIS = _DOUBLE (Write)
The population excess kurtosis of all the valid pixels in the NDF array. This is the normal
kurtosis minus 3, such that a Gaussian distribution of values would generate an excess
kurtosis of 0.

MAXCOORD() = _DOUBLE (Write)
A one-dimensional array of values giving the WCS co-ordinates of the centre of the (first)
maximum-valued pixel found in the NDF array. The number of co-ordinates is equal to
the number of NDF dimensions.

MAXIMUM = _DOUBLE (Write)
The maximum pixel value found in the NDF array.

MAXPOS() = _INTEGER (Write)
A one-dimensional array of pixel indices identifying the (first) maximum-valued pixel
found in the NDF array. The number of indices is equal to the number of NDF dimensions.

MAXWCS = LITERAL (Write)
The formatted WCS co-ordinates at the maximum pixel value. The individual axis values
are comma separated.

MEAN = _DOUBLE (Write)
The mean value of all the valid pixels in the NDF array.

MEDIAN = _DOUBLE (Write)
The median value of all the valid pixels in the NDF array when ORDER is TRUE.

MINCOORD() = _DOUBLE (Write)
A one-dimensional array of values giving the data co-ordinates of the centre of the (first)
minimum-valued pixel found in the NDF array. The number of co-ordinates is equal to
the number of NDF dimensions.

MINIMUM = _DOUBLE (Write)
The minimum pixel value found in the NDF array.

709 STATS SUN/95.45 —Specifications of KAPPA applications

MINPOS() = _INTEGER (Write)
A one-dimensional array of pixel indices identifying the (first) minimum-valued pixel
found in the NDF array. The number of indices is equal to the number of NDF dimensions.

MINWCS = LITERAL (Write)
The formatted WCS co-ordinates at the minimum pixel value. The individual axis values
are comma separated.

NUMBAD = _INTEGER (Write)
The number of pixels which were either not valid or were rejected from the statistics
during iterative κ-sigma clipping.

NUMGOOD = _INTEGER (Write)
The number of NDF pixels which actually contributed to the computed statistics.

NUMPIX = _INTEGER (Write)
The total number of pixels in the NDF (both good and bad).

PERVAL() = _DOUBLE (Write)
The values of the percentiles of the good pixels in the NDF array. This parameter is only
written when one or more percentiles have been requested.

SIGMA = _DOUBLE (Write)
The population standard deviation of the pixel values in the NDF array.

SKEWNESS = _DOUBLE (Write)
The population skewness of all the valid pixels in the NDF array.

TOTAL = _DOUBLE (Write)
The sum of the pixel values in the NDF array.

Examples:
stats image

Computes and displays simple statistics for the data array in the NDF called
image.

stats image order percentiles=[25,75]

As the previous example but it also reports the median, 25 and 75 percentiles.

stats ndf=spectrum variance

Computes and displays simple statistics for the variance array in the NDF called
spectrum.

stats spectrum error

Computes and displays statistics for the variance array in the NDF called spec-
trum, but takes the square root of the variance values before doing so.

SUN/95.45 —Specifications of KAPPA applications 710 STATS

stats halley logfile=stats.dat

Computes statistics for the data array in the NDF called halley, and writes the
results to a logfile called stats.dat.

stats ngc1333 clip=[3.0,2.8,2.5]

Computes statistics for the data array in the NDF called ngc1333, applying three
iterations of κ-sigma clipping. The statistics are first calculated for all the valid pixels in
the data array. Those pixels with values lying more than 3.0 standard deviations from the
mean are then rejected, and the statistics are re-computed. This process is then repeated
twice more, rejecting pixel values lying more than 2.8 and 2.5 standard deviations from
the mean. The final statistics are displayed.

Implementation Status:

• This routine correctly processes the AXIS, DATA, VARIANCE, QUALITY, TITLE, and
HISTORY components of the NDF.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
double-precision floating point.

• Any number of NDF dimensions is supported.

Related Applications :

KAPPA: HISTAT, NDFTRACE; FIGARO: ISTAT.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ISTAT

711 SUB SUN/95.45 —Specifications of KAPPA applications

SUB
Subtracts one NDF data structure from another

Description:
The routine subtracts one NDF data structure from another pixel-by-pixel to produce a
new NDF.

Usage:
sub in1 in2 out

Parameters:

IN1 = NDF (Read)
First NDF, from which the second NDF is to be subtracted.

IN2 = NDF (Read)
Second NDF, to be subtracted from the first NDF.

OUT = NDF (Write)
Output NDF to contain the difference of the two input NDFs.

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN1 to be used instead. [!]

Examples:
sub a b c

This subtracts the NDF called b from the NDF called a, to make the NDF called
c. NDF c inherits its title from a.

sub out=c in1=a in2=b title="Background subtracted"

This subtracts the NDF called b from the NDF called a, to make the NDF called
c. NDF c has the title "Background subtracted".

Notes:

If the two input NDFs have different pixel-index bounds, then they will be trimmed to
match before being subtracted. An error will result if they have no pixels in common.

Related Applications :

KAPPA: ADD, CADD, CDIV, CMULT, CSUB, DIV, MATHS, MULT.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, HIS-
TORY, WCS, and VARIANCE components of an NDF data structure and propagates
all extensions.

SUN/95.45 —Specifications of KAPPA applications 712 SUB

• The UNITS component is propagated only if it has the same value in both input
NDFs.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Huge NDFs are supported.

713 SUBSTITUTE SUN/95.45 —Specifications of KAPPA applications

SUBSTITUTE
Replaces all occurrences of a given value in an NDF array with

another value

Description:
This application changes all pixels that have a defined value in an NDF with an alternate
value. The number of replacements is reported. Two modes are available.

• A single pair of old and new values can be supplied (see Parameters OLDVAL and
NEWVAL). All occurrences of OLDVAL are replaced with NEWVAL. Other values
are unchanged.

• A look-up table containing corresponding old and new values can be supplied. By
default, each input pixel that equals an old value is replaced by the corresponding new
value. Alternatively, all input pixels can be changed to a new value by interpolation
between the input values (see Parameters LUT and INTERP).

Usage:
substitute in out oldval newval [comp]

Parameters:

COMP = LITERAL (Read)
The components whose values are to be substituted. It may be "Data", "Error",
"Variance", or "All". The last of the options forces substitution in both the data
and variance arrays. This parameter is ignored if the data array is the only array
component within the NDF. ["Data"]

IN = NDF (Read)
Input NDF structure containing the data and/or variance array to have some of its
elements substituted.

INTERP = LITERAL (Read)
Determines how the values in the file specified by Parameter LUT are used, from the
following options.

• "None" – Pixel values that equal an input value are replaced by the corresponding
output value. Other values are left unchanged.
• "Nearest" – Every pixel value is replaced by the output value corresponding to

the nearest input value.
• "Linear" – Every pixel value is replaced by an output value determined using

linear interpolation between the input values.

If "Nearest" or "Linear" is used, pixel values that are outside the range of input
value covered by the look-up table are set bad in the output. Additionally, an error is
reported if the old data values are not montonic increasing. ["None"]

SUN/95.45 —Specifications of KAPPA applications 714 SUBSTITUTE

LUT = FILENAME (Read)
The name of a text file containing a look-up table of old and new data values. If
null (!) is supplied for this parameter the old and new data values will instead be
obtained using Parameters OLDVAL and NEWVAL. Lines starting with a hash (#) or
exclamation mark (!) are ignored, as are blank lines. Other lines should contain an
old data value followed by the corresponding new data value. The way in which the
values in this table are used is determined by Parameter INTERP. [!]

NEWVAL = _DOUBLE (Read)
The value to replace occurrences of OLDVAL. It must lie within the minimum and
maximum values of the data type of the array with higher precision. The new value
is converted to data type of the array being converted before the search begins. The
suggested default is the current value. This parameter is only accessed if a null value
is supplied for Parameter LUT.

OLDVAL = _DOUBLE (Read)
The element value to be replaced. The same value is substituted in both the data and
variance arrays when COMP="All". It must lie within the minimum and maximum
values of the data type of the array with higher precision. The replacement value is
converted to data type of the array being converted before the search begins. The
suggested default is the current value. This parameter is only accessed if a null value
is supplied for Parameter LUT.

OUT = NDF (Write)
Output NDF structure containing the data and/or variance array that is a copy of the
input array, but with replacement values substituted.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

TYPE = LITERAL (Read)
The numeric type for the output NDF. The value given should be one of the following:
_DOUBLE, _REAL, _INTEGER, _INT64, _WORD, _UWORD, _BYTE or _UBYTE
(note the leading underscore). If a null (!) value is supplied, the output data type
equals the input data type. [!]

Examples:
substitute aa bb 1 0

This copies the NDF called aa to the NDF bb, except that any pixels with value
1 in aa are altered to have value 0 in bb.

substitute aa bb oldval=1 newval=0 comp=v

As above except the substitution occurs to the variance values.

substitute in=saturn out=saturn5 oldval=2.5 newval=5 comp=All

This copies the NDF called saturn to the NDF saturn5, except that any elements
in the data and variance arrays that have value 2.5 are altered to have value 5 in saturn5.

715 SUBSTITUTE SUN/95.45 —Specifications of KAPPA applications

Notes:

• The comparison for floating-point values tests that the difference between the replace-
ment value and the element value is less than their mean times the precision of the
data type.

Related Applications :

KAPPA: CHPIX, FILLBAD, GLITCH, NOMAGIC, SEGMENT, SETMAGIC, ZAPLIN;
FIGARO: GOODVAR.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_GOODVAR

SUN/95.45 —Specifications of KAPPA applications 716 SURFIT

SURFIT
Fits a polynomial or bi-cubic spline surface to two-dimensional data

array

Description:
The background of a two-dimensional data array in the supplied NDF structure is es-
timated by condensing the array into equally sized rectangular bins, fitting a spline or
polynomial surface to the bin values, and finally evaluating the surface for each pixel in
the data array.

There is a selection of estimators by which representative values for each bin are deter-
mined. There are several options to make the fit more accurate. Values beyond upper and
lower thresholds may be excluded from the binning. Bad pixels are also excluded, so prior
masking may help to find the background more rapidly. κ-sigma clipping of the fitted bins
is available so that the fit is not biased by anomalous bins, such as those entirely within an
extended object. If a given bin contains more than a prescribed fraction of bad pixels, it is
excluded from the fit.

The data array representing the background is evaluated at each pixel by one of two
methods. It is written to the output NDF structure.

The raw binned data, the weights, the fitted binned data and the residuals to the fit may
be written to a logfile. This also keeps a record of the input parameters and the rms error
of the fit.

Usage:
surfit in out [fittype] [estimator] [bindim] [evaluate]

Parameters:

BINDIM() = _INTEGER (Read)
The x-y dimensions of a bin used to estimate the local background. If you supply only
one value, it is used for both dimensions. The minimum value is 2. The maximum
may be constrained by the number of polynomial terms, such that in each direction
there are at least as many bins as terms. If a null (!) value is supplied, the value used
is such that 32 bins are created along each axis. [!]

CLIP() = _REAL (Read)
Array of limits for progressive clipping of pixel values during the binning process
in units of standard deviation. A null value means only unclipped statistics are
computed and presented. Between one and five values may be supplied. [2,3]

ESTIMATOR = LITERAL (Read)
The estimator for the bin. It must be one of the following values: "Mean" for the
mean value, "Ksigma" for the mean with κ-sigma clipping; "Mode" for the mode, and
"Median" for the median. "Mode" is only available when there are at least twelve
pixels in a bin. If a null (!) value is supplied, "Median" is used if there are fewer than
6 values in a bin, and "Mode" is used otherwise. [!]

717 SURFIT SUN/95.45 —Specifications of KAPPA applications

EVALUATE = LITERAL (Read)
The method by which the resulting data array is to be evaluated from the surface-fit. It
must be either "Interpolate" where the values at the corners of the bins are derived
first, and then the pixel values are found by linear interpolation within those bins; or
"All" where the surface-fit is evaluated for every pixel. The latter is slower, but can
produce more-accurate results, unless the surface is well behaved. The default is the
current value, which is initially set to "Interpolate". []

FITCLIP() = _REAL (Read)
Array of limits for progressive clipping of the binned array in units of the rms
deviation of the fit. A null value (!) means no clipping of the binned array will take
place. Between 1 and 5 values may be supplied. The default is the current value,
which is ! initially. []

FITTYPE = LITERAL (Read)
The type of fit. It must be either "Polynomial" for a Chebyshev polynomial or
"Spline" for a bi-cubic spline. The default is the current value, which initially is
"Spline". []

GENVAR = _LOGICAL (Read)
If TRUE, a constant variance array is created in the output NDF assigned to the mean
square surface-fit error. [FALSE]

LOGFILE = FILENAME (Read)
Name of the file to log the binned array and errors before and after fitting. If null,
there will be no logging. [!]

IN = NDF (Read)
NDF containing the two-dimensional data array to be fitted.

KNOTS(2) = _INTEGER (Read)
The number of interior knots used for the bi-cubic-spline fit along the x and y axes.
These knots are equally spaced within the image. Both values must be in the range
0 to 11. If you supply a single value, it applies to both axes. Thus 1 creates one
interior knot, [5,4] gives 5 along the x axis and 4 along the y direction. Increasing
this parameter’s values increases the flexibility of the surface. Normally, 4 is a
reasonable value. The upper limit of acceptable values will be reduced along each
axis when its binned array dimension is fewer than 29. KNOTS is only accessed when
FITTYPE="Spline". The default is the current value, which is 4 initially. []

ORDER(2) = _INTEGER (Read)
The orders of the fits along the x and y directions. Both values must be in the range
0 to 14. If you supply a single single value, it applies to both axes. Thus 0 gives a
constant, [3,1] gives a cubic along the x direction and a linear fit along the y axis.
Increasing this parameter’s values increases the flexibility of the surface. The upper
limit of acceptable values will be reduced along each axis when its binned array
dimension is fewer than 29. ORDER is only accessed when FITTYPE="Polynomial".
The default is the current value, which is 4 initially. []

OUT = NDF (Write)
NDF to contain the fitted two-dimensional data array.

THRHI = _REAL (Read)
Upper threshold above which values will be excluded from the analysis to derive

SUN/95.45 —Specifications of KAPPA applications 718 SURFIT

representative values for the bins. If it is null (!) there will be no upper threshold.
[!]

THRLO = _REAL (Read)
Lower threshold below which values will be excluded from the analysis to derive
representative values for the bins. If it is null (!) there will be no lower threshold. [!]

TITLE = LITERAL (Read)
The title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

WLIM = _REAL (Read)
The minimum fraction of good pixels in a bin that permits the bin to be included
in the fit. Here good pixels are ones that participated in the calculation of the bin’s
representative value. So they exclude both bad pixels and ones rejected during
estimation (e.g. ones beyond the thresholds or were clipped). [!]

Results Parameters:

RMS = _REAL (Write)
The RMS deviation of the fit from the original data (per pixel).

Notes:

A polynomial surface fit is stored in a SURFACEFIT extension, component FIT of type
POLYNOMIAL, variant CHEBYSHEV or BSPLINE.

For further details of the CHEBYSHEV variant see SGP/38. The CHEBYSHEV variant
includes the fitting variance for each coefficient.

The BSPLINE variant structure is provisional. It contain the spline coefficients in the
two-dimensional DATA_ARRAY component, the knots in XKNOTS and YKNOTS arrays,
and a scaling factor to restore the original values in SCALE. All of these components have
type _REAL.

Also stored in the SURFACEFIT extension is the r.m.s. deviation to the fit (component
RMS); and the co-ordinate system component COSYS, set to "GRID".

Examples:
surfit comaB comaB_bg

This calculates the surface fit to the two-dimensional NDF called comaB using
the current defaults. The evaluated fit is stored in the NDF called comaB_bg.

surfit comaB comaB_bg poly median order=5 bindim=[24,30]

As above except that 5th-order polynomial fit is chosen, the median is used to
derive the representative value for each bin, and the binning size is 24 pixels along the
first axis, and 32 pixels along the second.

surfit comaB comaB_bg fitclip=[2,3] logfile=comaB_fit.lis

As the first example except that the binned array is clipped at 2 then 3 standard
deviations to remove outliers before the final fit is computed. The text file comaB_fit.lis
records a log of the surface fit.

http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_

719 SURFIT SUN/95.45 —Specifications of KAPPA applications

surfit comaB comaB_bg estimator=ksigma clip=[2,2,3]

As the first example except that the representative value of each bin is the mean
after clipping twice at 2 then once at 3 standard deviations.

surfit in=irasorion out=sback evaluate=all fittype=s knots=7

This calculates the surface fit to the two-dimensional NDF called irasorion. The
fit is evaluated at every pixel and the resulting array stored in the NDF called sback. A
spline with seven knots along each axis is used to fit the surface.

Related Applications :

KAPPA: ARDMASK, FITSURFACE, MAKESURFACE, REGIONMASK.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF. Any input VARIANCE is
ignored.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single- or double-precision floating point for FITTYPE="Spline" or "Polynomial"
respectively. The output NDF’s DATA and VARIANCE components have type _REAL
(single-precision).

SUN/95.45 —Specifications of KAPPA applications 720 THRESH

THRESH
Edits an NDF to replace values between or outside given limits with

specified constant values

Description:
This application creates an output NDF by copying values from an input NDF, replacing
all values within given data ranges by a user-specified constant or by the bad value. Upper
and lower thresholds are supplied using Parameters THRLO and THRHI.

If THRLO is less than or equal to THRHI, values between and including the two thresholds
are copied from the input to output array. Any values in the input array greater than the
upper threshold will be set to the value of Parameter NEWHI, and anything less than the
lower threshold will be set to the value of Parameter NEWLO, in the output data array.
Thus the output NDF is constrained to lie between the two bounds.

If THRLO is greater than THRHI, values greater than or equal to THRLO are copied from
the input to output array, together with values less than or equal to THRHI. Any values
between THRLO and THRHI will be set to the value of Parameter NEWLO in the output
NDF.

Each replacement value may be the bad-pixel value for masking.

Usage:
thresh in out thrlo thrhi newlo newhi [comp]

Parameters:

COMP = LITERAL (Read)
The components whose values are to be constrained between thresholds. The options
are limited to the arrays within the supplied NDF. In general the value may be "Data",
"Quality", "Error", or "Variance". If "Quality" is specified, then the quality values
are treated as numerical values in the range 0 to 255. ["Data"]

IN = NDF (Read)
Input NDF structure containing the array to have thresholds applied.

NEWHI = LITERAL (Read)
This gives the value to which all input array-element values greater than the upper
threshold are set. If this is set to "Bad", the bad value is substituted. Numerical values
of NEWHI must lie in within the minimum and maximum values of the data type
of the array being processed. The suggested default is the upper threshold. This
parameter is ignored if THRLO is greater than THRHI.

NEWLO = LITERAL (Read)
This gives the value to which all input array-element values less than the lower
threshold are set. If this is set to "Bad", the bad value is substituted. Numerical values
of NEWLO must lie in within the minimum and maximum values of the data type of
the array being processed. The suggested default is the lower threshold.

OUT = NDF (Write)
Output NDF structure containing the thresholded version of the array.

721 THRESH SUN/95.45 —Specifications of KAPPA applications

THRHI = _DOUBLE (Read)
The upper threshold value within the input array. It must lie in within the minimum
and maximum values of the data type of the array being processed. The suggested
default is the current value.

THRLO = _DOUBLE (Read)
The lower threshold value within the input array. It must lie within the minimum
and maximum values of the data type of the array being processed. The suggested
default is the current value.

TITLE = LITERAL (Read)
Title for the output NDF structure. A null value (!) propagates the title from the
input NDF to the output NDF. [!]

Results Parameters:

NUMHI = _INTEGER (Write)
The number of pixels whose values were thresholded as being greater than the THRHI
threshold.

NUMLO = _INTEGER (Write)
The number of pixels whose values were thresholded as being less than the THRLO
threshold.

NUMRANGE = _INTEGER (Write)
The number of pixels whose values were thresholded as being between the THRLO and
THRHI thresholds, if THRLO is greater than THRHI.

NUMSAME = _INTEGER (Write)
The number of unchanged pixels.

Examples:
thresh zzcam zzcam2 100 500 0 0

This copies the data array in the NDF called zzcam to the NDF called zzcam2.
Any data value less than 100 or greater than 500 in zzcam is set to 0 in zzcam2.

thresh zzcam zzcam2 500 100 0

This copies the data array in the NDF called zzcam to the NDF called zzcam2.
Any data value less than 500 and greater than 100 in zzcam is set to 0 in zzcam2.

thresh zzcam zzcam2 100 500 0 0 comp=Variance

As above except that the data array is copied unchanged and the thresholds ap-
ply to the variance array.

thresh n253 n253cl thrlo=-0.5 thrhi=10.1 \

This copies the data array in the NDF called n253 to the NDF called n253cl. Any data
value less than −0.5 in n253 is set to −0.5 in n253cl, and any value greater than 10.1 in
n253 becomes 10.1 in n253cl.

SUN/95.45 —Specifications of KAPPA applications 722 THRESH

thresh pavo pavosky -0.02 0.02 bad bad

All data values outside the range −0.02 to 0.02 in the NDF called pavo become
bad in the NDF called pavosky. All values within this range are copied from pavo to
pavosky.

Related Applications :

KAPPA: HISTEQ, MATHS; FIGARO: CLIP, IDIFF, RESCALE.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of an NDF data structure and
propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

• Any number of NDF dimensions is supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CLIP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_IDIFF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_RESCALE

723 TRANDAT SUN/95.45 —Specifications of KAPPA applications

TRANDAT
Converts free-format text data into an NDF

Description:
This application takes grid data contained in a free-format text file and stores them in the
data array of an NDF . The data file could contain, for example, mapping data or results
from simulations which are to be converted into an image for analysis.

There are two modes of operation which depend on whether the text file contains co-
ordinate information, or solely data values (determined by Parameter AUTO).

a) AUTO=FALSE If the file contains co-ordinate information the format of the data
is tabular; the positions and values are arranged in columns and a record may contain
information for only a single point. Where data points are duplicated only the last
value appears in the NDF. Comment lines can be given, and are indicated by a hash or
exclamation mark in the first column. Here is an example file (the vertical ellipses indicate
missing lines in the file):

Model 5, phi = 0.25, eta = 1.7
1 -40.0 40.0 1121.9
2 0.0 30.0 56.3
3 100.0 20.0 2983.2
4 120.0 85.0 339.3
. . . .
. . . .
. . . .
<EOF>

The records do not need to be ordered (but see the warning in the “Notes”), as the
application searches for the maximum and minimum co-ordinates in each dimension so
that it can define the size of the output image. Also, each record may contain other data
fields (separated by one or more spaces), which need not be all the same data type. In the
example above only columns 2, 3 and 4 are required. There are parameters (POSCOLS,
VALCOL) which select the co-ordinate and value columns.

The distance between adjacent pixels (given by Parameter PSCALE) defaults to 1, and is in
the same units as the read-in co-ordinates. The pixel index of a data value is calculated
using the expression

index = FLOOR((x− xo f f)/scale) + 1

where x is the supplied co-ordinate and xo f f is the value of the POFFSET parameter
(which defaults to the minimum supplied co-ordinate along an axis), scale is the value
of Parameter PSCALE, and FLOOR is a function that returns the largest integer that is
smaller (i.e. more negative) than its argument.

You are informed of the number of points found and the maximum and minimum co-
ordinate values for each dimension. There is no limit imposed by the application on

SUN/95.45 —Specifications of KAPPA applications 724 TRANDAT

the number of points or the maximum output array size, though there may be external
constraints. The derived array size is reported in case you have made a typing error in the
text file. If you realise that this has indeed occurred just abort (!!) when prompted for the
output NDF.

b) AUTO=TRUE If the text file contains no co-ordinates, the format is quite flexible,
however, the data are read into the data array in Fortran order, i.e. the first dimension is
the most rapidly varying, followed by the second dimension and so on. The number of
data values that may appear on a line is variable; data values are separated by at least a
space, comma, tab or carriage return. A line can have up to 255 characters. In addition a
record may have trailing comments designated by a hash or exclamation mark. Here is an
example file, though a more regular format would be clearer for the human reader.

test for the new TRANDAT
23 45.3 ! a comment
50.7,47.5 120. 46.67 47.89 42.4567
.1 23.3 45.2 43.2 56.0 30.9 29. 27. 26. 22.4 20. 18. -12. 8.
9.2 11.
<EOF>

Notice that the shape of the NDF is defined by a parameter rather than explicitly in the
file.

Usage:
trandat freename out [poscols] [valcol] [pscale] [dtype] [title]

Parameters:

AUTO = _LOGICAL (Read)
If TRUE the text file does not contain co-ordinate information. [FALSE]

BAD = _LOGICAL (Read)
If TRUE the output NDF data array is initialised with the bad value, otherwise it is
filled with zeroes. [TRUE]

DTYPE = LITERAL (Read)
The HDS type of the data values within the text file, and the type of the data ar-
ray in the output NDF. The options are: ’_REAL’, ’_DOUBLE’, ’_INTEGER’, ’_BYTE’,
’_UBYTE’, ’_WORD’, ’_UWORD’. (Note the leading underscore.) [’_REAL’]

FREENAME = FILENAME (Read)
Name of the text file containing the free-format data.

LBOUND() = _INTEGER (Read)
The lower bounds of the NDF to be created. The number of values must match the
number supplied to Parameter SHAPE. It is only accessed in automatic mode. If a
null (!) value is supplied, the value used is 1 along each axis. [!]

POFFSET() = _REAL (Read)
The supplied co-ordinates that correspond to the origin of floating point pixel co-
ordinates. It is only used in co-ordinate mode. Its purpose is to permit an offset from
some arbitrary units to pixels. If a null (!) value is supplied, the value used is the
minimum supplied co-ordinate value for each dimension. [!]

725 TRANDAT SUN/95.45 —Specifications of KAPPA applications

POSCOLS() = _INTEGER (Read)
Column positions of the co-ordinates in an input record of the text file, starting from
x to higher dimensions. It is only used in co-ordinate mode. The columns must
be different amongst themselves and also different from the column containing the
values. If there is duplication, new values for both POSCOLS and VALCOL will be
requested. [1,2]

PSCALE() = _REAL (Read)
Pixel-to-pixel distance in co-ordinate units for each dimension. It is only used in
co-ordinate mode. Its purpose is to permit linear scaling from some arbitrary units to
pixels. [1.0 in each co-ordinate dimension]

QUANTUM = _INTEGER (Read)
You can safely ignore this parameter. It is used for fine-tuning performance in the
co-ordinate mode.
The application obtains work space to store the position-value data before they can
be copied into the output NDF so that the array bounds can be computed. Since the
number of lines in the text file is unknown, the application obtains chunks of work
space whose size is three times this parameter whenever it runs out of storage. (Three
because the parameter specifies the number of lines in the file rather than the number
of data items.) If you have a large number of points there are efficiency gains if you
make this parameter either about 20–30 per cent or slightly greater than or equal to
the number of lines your text file. A value slightly less than the number of lines is
inefficient as it creates nearly 50 per cent unused space. A value that is too small can
cause unnecessary unmapping, expansion and re-mapping of the work space. For
most purposes the default should give acceptable performance. It must lie between
32 and 2097152. [2048]

SHAPE() = _INTEGER (Read)
The shape of the NDF to be created. For example, [50,30,20] would create 50
columns by 30 lines by 10 bands. It is only accessed in automatic mode.

NDF = NDF (Write)
Output NDF for the generated data array.

TITLE = LITERAL (Read)
Title for the output NDF. ["KAPPA - Trandat"]

VALCOL = _INTEGER (Read)
Column position of the array values in an input record of the text file. It is only used
in co-ordinate mode. The column position must be different from those specified for
the co-ordinate columns. If there is duplication, new values for both POSCOLS and
VALCOL will be requested. [3]

Examples:
trandat simdata.dat model

Reads the text file simdata.dat and stores the data into the data array of a two-
dimensional, _REAL NDF called model. The input file should have the co-ordinates and
real values arranged in columns, with the x-y positions in columns 1 and 2 respectively,
and the real data in column 3.

trandat freename=simdata out=model auto shape=[50,40,9]

SUN/95.45 —Specifications of KAPPA applications 726 TRANDAT

Reads the text file simdata and stores the data into the data array of a three-
dimensional, _REAL NDF called model. Its x dimension is 50, y is 40 and z is 9. The input
file only contains real values and comments.

trandat freename=simdata out=model auto shape=[50,40,9] dtype=_i

As the previous example except an _INTEGER NDF is created, and the text file
must contain integer data.

trandat simdata.dat model [6,3,4] 2

Reads the text file simdata.dat and stores the data into the data array of a three-
dimensional, _REAL NDF called model. The input file should have the co-ordinates and
real values arranged in columns, with the x-y-z positions in columns 6, 3 and 4 respectively,
and the real data in column 2.

trandat spectrum.dat lacertid noauto poscols=2 valcol=4 pscale=2.3

Reads the text file spectrum.dat and stores the data into the data array of a one-
dimensional, _REAL NDF called lacertid. The input file should have the co-ordinate and
real values arranged in columns, with its co-ordinates in columns 2, and the real data
in column 4. A one-pixel step in the NDF corresponds to 2.3 in units of the supplied
co-ordinates.

Notes:

• Bad data values may be represented by the string “BAD” (case insensitive) within
the input text file.
• All non-complex numeric data types can be handled. However, byte, unsigned byte,

word and unsigned word require data conversion, and therefore involve additional
processing. to a vector element (for n-d generality).
• WARNING: In non-automatic mode it is strongly advisable for large output NDFs

to place the data in Fortran order, i.e. the first dimension is the most rapidly varying,
followed by the second dimension and so on. This gives optimum performance.
The meaning of ‘large’ will depend on working-set quotas on your system, but a
few megabytes gives an idea. If you jump randomly backwards and forwards, or
worse, have a text file in reverse-Fortran order, this can have disastrous performance
consequences for you and other users.
• In non-automatic mode, the co-ordinates for each dimension are stored in the NDF

axis structure. The first centre is at the minimum value found in the list of positions
for the dimension plus half of the scale factor. Subsequent centres are incremented by
the scale factor.
• The output NDF may have between one and seven dimensions.
• In automatic mode, an error is reported if the shape does not use all the data points

in the file.

727 TRANDAT SUN/95.45 —Specifications of KAPPA applications

Related Applications :

CONVERT: ASCII2NDF, NDF2ASCII; FIGARO: ASCIN, ASCOUT.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_ASCII2NDF
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_NDF2ASCII
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ASCIN
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ASCOUT

SUN/95.45 —Specifications of KAPPA applications 728 TRIG

TRIG
Performs a trigonometric transformation on a NDF

Description:
This routine copies the supplied input NDF , performing a specified trigonometric opera-
tion (sine, tangent, etc.) on each value in the DATA array. The VARIANCE component, if
present, is modified appropriately. Pixels for which the required value is undefined, or
outside the numerical range of the NDFs data type, are set bad in the output.

Usage:
trig in trigfunc out title

Parameters:

IN = NDF (Read)
The input NDF structure.

OUT = NDF (Write)
The output NDF structure.

TRIGFUNC = LITERAL (Read)
Trigonometrical function to be applied. The options are as follows.

• "ACOS" — arc-cosine (radians)
• "ACOSD" — arc-cosine (degrees)
• "ASIN" — arc-sine (radians)
• "ASIND" — arc-sine (degrees)
• "ATAN" — arc-tangent (radians)
• "ATAND" — arc-tangent (degrees)
• "COS" — cosine (radians)
• "COSD" — cosine (degrees)
• "SIN" — sine (radians)
• "SIND" — sine (degrees)
• "TAN" — tangent (radians)
• "TAND" — tangent (degrees)

TITLE = LITERAL (Read)
A title for the output NDF. A null value will cause the title of the NDF supplied for
Parameter IN to be used instead. [!]

Examples:
trig sindata asind data

Take the arc-sine of the data values in the NDF called sindata, and store the
results (in degrees) in the NDF called data.

729 TRIG SUN/95.45 —Specifications of KAPPA applications

trig sindata asin data

As above, but the output values are stored in radians.

Related Applications :

KAPPA: ADD, CADD, CMULT, CDIV, CSUB, DIV, MATHS, MULT, SUB.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
HISTORY, WCS, and VARIANCE components of an NDF data structure and propa-
gates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point, or double precision, if appropriate, but the numeric
type of the input pixels is preserved in the output NDF.

SUN/95.45 —Specifications of KAPPA applications 730 VECPLOT

VECPLOT
Plots a two-dimensional vector map

Description:
This application plots vectors defined by the values contained within a pair of two-
dimensional NDFs , the first holding the magnitude of the vector quantity at each pixel,
and the second holding the corresponding vector orientations. It is assumed that the two
NDFs are aligned in pixel co-ordinates. The number of vectors in the plot is kept to a
manageable value by only plotting vectors for pixels on a sparse regular matrix. The
increment (in pixels) between plotted vectors is given by Parameter STEP. Zero orientation
may be fixed at any position angle within the plot by specifying an appropriate value for
Parameter ANGROT. Each vector may be represented either by an arrow or by a simple
line, as selected by Parameter ARROW.

The plot is produced within the current graphics database picture, and may be aligned with
an existing DATA picture if the existing picture contains suitable co-ordinate Frame infor-
mation (see Parameter CLEAR).

Annotated axes can be produced (see Parameter AXES), and the appearance of these can
be controlled in detail using Parameter STYLE. The axes show co-ordinates in the current
co-ordinate Frame of NDF1.

A key to the vector scale can be displayed to the right of the vector map (see Parameter
KEY). The appearance and position of this key may be controlled using Parameters
KEYSTYLE and KEYPOS.

Usage:
vecplot ndf1 ndf2 [comp] [step] [vscale] [arrow] [just] [device]

Parameters:
ANGROT = _REAL (Read)

A rotation angle in degrees to be added to each vector orientation before plotting the
vectors (see Parameter NDF2). It should be in the range 0–360. [0.0]

ARROW = LITERAL (Read)
Vectors are drawn as arrows, with the size of the arrow head specified by this param-
eter. Simple lines can be drawn by setting the arrow head size to zero. The value
should be expressed as a fraction of the largest dimension of the vector map. [current
value]

AXES = _LOGICAL (Read)
TRUE if labelled and annotated axes are to be drawn around the vector map. These
display co-ordinates in the current co-ordinate Frame NDF1, which may be changed
using application WCSFRAME (see also Parameter USEAXIS). The width of the
margins left for the annotation may be controlled using Parameter MARGIN. The
appearance of the axes (colours, founts, etc.) can be controlled using the STYLE
parameter. [TRUE]

CLEAR = _LOGICAL (Read)
TRUE if the graphics device is to be cleared before displaying the vector map. If you

731 VECPLOT SUN/95.45 —Specifications of KAPPA applications

want the vector map to be drawn over the top of an existing DATA picture, then set
CLEAR to FALSE. The vector map will then be drawn in alignment with the displayed
data. If possible, alignment occurs within the current co-ordinate Frame of the NDF. If
this is not possible (for instance, if suitable WCS information was not stored with the
existing DATA picture), then alignment is attempted in PIXEL co-ordinates. If this is
not possible, then alignment is attempted in GRID co-ordinates. If this is not possible,
then alignment is attempted in the first suitable Frame found in the NDF irrespective
of its domain. A message is displayed indicating the domain in which alignment
occurred. If there are no suitable Frames in the NDF then an error is reported. [TRUE]

COMP = LITERAL (Read)
The component of NDF1 which is to be used to define the vector magnitudes. It may
be "Data", "Error" or "Variance". The last two are not available if NDF1 does not
contain a VARIANCE component. The vector orientations are always defined by the
"Data" component of NDF2. ["Data"]

DEVICE = DEVICE (Read)
The plotting device. [Current graphics device]

FILL = _LOGICAL (Read)
The DATA picture containing the vector map is usually produced with the same
shape as the data. However, for maps with markedly different dimensions this
default behaviour may not give the clearest result. When FILL is TRUE, the smaller
dimension of the picture is expanded to produce the largest possible picture within
the current picture. [FALSE]

JUST = LITERAL (Read)
The justification for each vector; it can take any of the following values:

• "Centre" — the vectors are drawn centred on the corresponding pixel,
• "Start" — the vectors are drawn starting at the corresponding pixel, and
• "End" — the vectors are drawn ending at the corresponding pixel.

["Centre"]

KEY = _LOGICAL (Read)
TRUE if a key indicating the vector scale is to be produced. [TRUE]

KEYPOS() = _REAL (Read)
Two values giving the position of the key. The first value gives the gap between the
right-hand edge of the vector map and the left-hand edge of the key (0.0 for no gap,
1.0 for the largest gap). The second value gives the vertical position of the top of the
key (1.0 for the highest position, 0.0 for the lowest). If the second value is not given,
the top of the key is placed level with the top of the vector map. Both values should
be in the range 0.0 to 1.0. If a key is produced, then the right-hand margin specified
by Parameter MARGIN is ignored. [current value]

KEYSTYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the key (see
Parameter KEY).
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and

SUN/95.45 —Specifications of KAPPA applications 732 VECPLOT

interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the text in the key is controlled using String attributes (e.g. Colour(Strings),
Font(Strings); the synonym Text can be used in place of Strings). Note, the Size at-
tribute specifies the size of key text relative to the size of the numerical labels on the
vector-map axes. Thus a value of 2.0 for Size will result in text which is twice the
size of the numerical axis labels. The appearance of the example vector is controlled
using Curve attributes (e.g. Colour(Curves); the synonym Vector can be used in place of
Curves). The numerical scale value is formatted as an axis-1 value (using attributes
Format(1), Digits(1), etc; the synonym Scale can be used in place of the value 1). The
length of the example vector is formatted as an axis-2 value (using attribute Format(2),
etc; the synonym Vector can be used in place of the value 2). The vertical space
between lines in the key can be controlled using attribute TextLabGap. A value of
1.0 is used if no value is set for this attribute, and produces default vertical spacing.
Values larger than 1.0 increase the vertical space, and values less than 1.0 decrease
the vertical space. [current value]

KEYVEC = _REAL (Read)
Length of the vector to be displayed in the key, in data units. If a null (!) value is
supplied, the value used is generated on the basis of the spread of vector lengths in
the plot. [!]

MARGIN(4) = _REAL (Read)
The widths of the margins to leave around the vector map for axis annotation. The
widths should be given as fractions of the corresponding dimension of the current
picture. The actual margins used may be increased to preserve the aspect ratio of
the DATA picture. Four values may be given, in the order; bottom, right, top, left. If
fewer than four values are given, extra values are used equal to the first supplied
value. If these margins are too narrow any axis annotation may be clipped. If a null
(!) value is supplied, the value used is 0.15 (for all edges) if annotated axes are being
produced, and zero otherwise. See also Parameter KEYPOS. [current value]

NDF1 = NDF (Read)
NDF structure containing the two-dimensional image giving the vector magnitudes.

NDF2 = NDF (Read)
NDF structure containing the two-dimensional image giving the vector orientations.
The values are considered to be in units of degrees unless the UNITS component of

733 VECPLOT SUN/95.45 —Specifications of KAPPA applications

the NDF has the value "Radians" (case insensitive). The positive y pixel axis defines
zero orientation, and rotation from the x pixel axis to the y pixel is considered positive.

STEP = _INTEGER (Read)
The number of pixels between adjacent displayed vectors (along both axes). Increas-
ing this value reduces the number of displayed vectors. If a null (!) value is supplied,
the value used gives about thirty vectors along the longest axis of the plot. [!]

STYLE = GROUP (Read)
A group of attribute settings describing the plotting style to use for the vectors and
annotated axes.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of the vectors is controlled by the attributes Colour(Curves), Width(Curves),
etc. (the synonym Vectors may be used in place of Curves). [current value]

VSCALE = _REAL (Read)
The scale to be used for the vectors. The supplied value should give the data value
corresponding to a vector length of one centimetre. If a null (!) value is supplied, a
default value is used. [!]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the NDF has more
than two axes. A group of two strings should be supplied specifying the two axes
which are to be used when annotating and aligning the vector map. Each axis can be
specified using one of the following options.

• Its integer index within the current Frame of the input NDF (in the range 1 to the
number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

SUN/95.45 —Specifications of KAPPA applications 734 VECPLOT

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the two significant NDF pixel
axes are used. [!]

Examples:
vecplot polint polang

Produces a vector map on the current graphics device with vector magnitude
taken from the NDF called polint and vector orientation taken from NDF polang. All other
settings are defaulted, so for example about 20 vectors are displayed along the longest
axis, and a key is plotted.

vecplot polint polang angrot=23.4 clear=no

Produces a vector map in which the primary axis of the vectors (as defined by
the value zero in the NDF polang) is at the position angle 23.4 degrees (measured
anti-clockwise from the positive y axis) in the displayed map. The map is drawn over the
top of the previously drawn DATA picture, aligned in a suitable co-ordinate Frame.

vecplot stack(„2) stack(„1) arrow=0.1 just=start nokey

Produces a vector map in which the vectors are defined by two planes in the
three-dimensional NDF called stack. There is no need to copy the two planes into two
separate NDFs before running VECPLOT. Each vector is represented by an arrow, starting
at the position of the corresponding pixel. No key to the vector scale and justification is
produced.

Notes:

• If no Title is specified via the STYLE parameter, then the TITLE component in NDF1
is used as the default title for the annotated axes. Should the NDF not have a TITLE
component, then the default title is instead taken from current co-ordinate Frame in
NDF1, unless this attribute has not been set explicitly, whereupon the name of NDF1
is used as the default title.

• The application stores a number of pictures in the graphics database in the following
order: a FRAME picture containing the annotated axes, vectors, and key; a KEY
picture to store the key if present; and a DATA picture containing just the vectors.
Note, the FRAME picture is only created if annotated axes or a key has been drawn,
or if non-zero margins were specified using Parameter MARGIN. The world co-
ordinates in the DATA picture will be pixel co-ordinates. A reference to NDF1,
together with a copy of the WCS information in the NDF are stored in the DATA
picture. On exit the current database picture for the chosen device reverts to the input
picture.

Related Applications :

KAPPA: CALPOL.

735 VECPLOT SUN/95.45 —Specifications of KAPPA applications

Implementation Status:

• Only real data can be processed directly. Other non-complex numeric data types will
undergo a type conversion before the vector plot is drawn.

• Bad pixels and quality masking are supported.

SUN/95.45 —Specifications of KAPPA applications 736 WCSADD

WCSADD
Creates a Mapping and optionally adds a new co-ordinate Frame into

the WCS component of an NDF

Description:
This application can be used to create a new AST Mapping and optionally use the Mapping
to add a new co-ordinate Frame into the WCS component of an NDF (see Parameter
NDF). An output text file may also be created holding a textual representation of the
Mapping for future use by other applications such as REGRID (see Parameter MAPOUT).
A number of different types of Mapping can be used (see Parameter MAPTYPE).

When adding a new Frame to a WCS component, the Mapping is used to connect the new
Frame to an existing one (called the basis Frame: see Parameter FRAME). The specific type
of Frame to add is specified using Parameter FRMTYPE (the default is to simply copy
the basis Frame). Optionally (see Parameter TRANSFER), attributes which have been
assigned an explicit value in the basis Frame are transferred to the new Frame (but only if
they are relevant to the type of the new Frame). The value of the Domain attribute for the
new Frame can be specified using Parameter DOMAIN. Other attribute values for the new
Frame may be specified using Parameter ATTRS. The new Frame becomes the current
co-ordinate Frame in the NDF (unless Parameter RETAIN is set TRUE).

WCSADD will only generate Mappings with the same number of input and output axes;
this number is determined by the number of axes in the basis Frame if an NDF is supplied,
or by the NAXES parameter otherwise.

Usage:
wcsadd ndf frame domain maptype

Parameters:

ATTRS = GROUP (Read)
A group of attribute settings to be applied to the new Frame before adding it into the
NDF.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which
they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of an attribute appropriate to the type of Frame specified
by Parameter FRMTYPE (see SUN/210 for a complete description of all attributes),
and <value> is the value to assign to the attribute. Default values will be used for
any unspecified attributes—these defaults are inherited from the basis Frame. Any
unrecognised attributes are ignored (no error is reported).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

737 WCSADD SUN/95.45 —Specifications of KAPPA applications

CENTRE(2) = _DOUBLE (Read)
The co-ordinates of the centre of a pincushion distortion. It is only used when
MAPTYPE="PINCUSHION". See also DISCO. [0,0]

DIAG() = _DOUBLE (Read)
The elements along the diagonal of the linear transformation matrix. There will be as
many of these as there are axes in the basis Frame. Each effectively gives the factor by
which co-ordinates on the corresponding axis should be multiplied. This parameter
is only used when MAPTYPE="DIAG".

DISCO = _DOUBLE (Read)
The distortion coefficient of a pincushion distortion. Used in conjunction with the
CENTRE parameter, this defines the forward transformation to be used as follows:

XX = X + D ∗ (X− C1) ∗ ((X− C1) ∗ ∗2 + (Y− C2) ∗ ∗2)

YY = Y + D ∗ (Y− C2) ∗ ((X− C1) ∗ ∗2 + (Y− C2) ∗ ∗2)

where (X,Y) are the input co-ordinates, (XX,YY) the output co-ordinates, D is DISCO,
and C1 and C2 are the two elements of CENTRE. DISCO is only used when MAP-
TYPE="PINCUSHION".

DOMAIN = LITERAL (Read)
The value for the Domain attribute for the new Frame. Care should be taken to
ensure that domain names are used consistently. This will usually mean avoiding any
domain names that are already in use within the WCS component, particularly the
standard domain names such as GRID, FRACTION, PIXEL, AXIS, and GRAPHICS.
The supplied value is stripped of spaces, and converted to upper case before being
used.
Note, if Parameter MAPTYPE is set to "REFNDF", then the value supplied for Parame-
ter DOMAIN indicates the Domain of the Frame within the reference NDF that is to
be copied (see Parameter REFNDF).

EPOCH = _DOUBLE (Read)
If the basis Frame is specified using a ‘Sky Co-ordinate System’ specification for a
celestial co-ordinate system (see Parameter FRAME), then an epoch value is needed
to qualify it. This is the epoch at which the supplied sky positions were determined. It
should be given as a decimal-years value, with or without decimal places ("1996.8"
for example). Such values are interpreted as a Besselian epoch if less than 1984.0 and
as a Julian epoch otherwise. The suggested default is the value stored in the basis
Frame.

FOREXP = LITERAL (Read)
A group of expressions to be used for the forward co-ordinate transformations in
a MathMap. There must be at least as many expressions as the number of axes of
the Mapping, but there may be more if intermediate expressions are to be used. The
expressions may be given directly in response to the prompt, or read from a text
file, in which case the name of the file should be given, preceded by a "^" character.
Individual expression should be separated by commas or, if they are supplied in a
file, newlines (see Section 4.13).
The syntax for each expression is Fortran-like; see the "Examples" section below, and
Appendix G for details. FOREXP is only used when MAPTYPE="MATH".

SUN/95.45 —Specifications of KAPPA applications 738 WCSADD

FRAME = LITERAL (Read)
A string specifying the basis Frame. If a null value is supplied the current co-ordinate
Frame in the NDF is used. The string can be one of the following:

• A domain name such as SKY, AXIS, PIXEL. The two "pseudo-domains" WORLD
and DATA may be supplied and will be translated into PIXEL and AXIS respec-
tively, so long as the WCS component of the NDF does not contain Frames with
these domains.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

FRMTYPE = LITERAL (Read)
The type of Frame to add to the NDF. If a null (!) value is supplied, a copy of the
basis Frame is used (as modified by Parameters ATTRS and DOMAIN). The allowed
values are as follows.

• "FRAME" — A simple Cartesian Frame (the number of axes is equal to the number
of outputs from the Mapping)
• "SKYFRAME" — A two-dimensional Frame representing positions on the celestial

sphere.
• "SPECFRAME" — A one-dimensional Frame representing positions within an elec-

tromagnetic spectrum.
• "TIMEFRAME" — A one-dimensional Frame representing moments in time.

Note, if Parameter MAPTYPE is set to "REFNDF", then Parameter FRMTYPE will
not be used—the Frame used will instead always be a copy of the Frame from the
reference NDF (as selected by Parameter DOMAIN). [!]

INVEXP = LITERAL (Read)
The expressions to be used for the inverse co-ordinate transformations in a MathMap.
See FOREXP. INVEXP is only used when MAPTYPE="MATH".

MAPIN = FILENAME (Read)
The name of a file containing an AST Mapping with which to connect the basis Frame
to the new one. The file may be a text file which contains the textual representation of
an AST Mapping, or a FITS file which contains the Mapping as an AST object encoded
in its headers, or an NDF. If it is an NDF, the Mapping from its base (GRID-domain)
to current Frame will be used. Only used when MAPTYPE="FILE".

MAPOUT = FILENAME (Write)
The name of a text file in which to store a textual representation of the Mapping. This
can be used, for instance, by the REGRID application. If a null (!) value is supplied,
no file is created. [!]

MAPTYPE = LITERAL (Read)
The type of Mapping to be used to connect the new Frame to the basis Frame. It must
be one of the following strings, each of which require some additional parameters as
indicated.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_
http://fits.gsfc.nasa.gov/

739 WCSADD SUN/95.45 —Specifications of KAPPA applications

• "DIAGONAL" — A linear mapping with no translation of off-diagonal coefficients
(see Parameter DIAG)
• "FILE" — A mapping defined by an AST Mapping supplied in a separate file

(see Parameter MAPIN)
• "LINEAR" — A general linear mapping (see Parameter TR)
• "MATH" — A general algebraically defined mapping (see Parameters FOREXP,

INVEXP, SIMPFI, SIMPIF)
• "PINCUSHION" — A pincushion/barrel distortion (see Parameters DISCO and

CENTRE)
• "REFNDF" — The Mapping is obtained by aligning the NDF with a second refer-

ence NDF (see Parameter REFNDF)
• "SHIFT" — A translation (see Parameter SHIFT)
• "UNIT" — A unit mapping
• "ZOOM" — A uniform expansion/contraction (see Parameter ZOOM)

["LINEAR"]

NAXES = _INTEGER (Read)
The number of input and output axes which the Mapping will have. Only used if a
null value is supplied for Parameter NDF.

NDF = NDF (Read and Write)
The NDF in which to store a new co-ordinate Frame. Supply a null (!) value if you
do not wish to add a Frame to an NDF (you can still use the MAPOUT parameter to
write the Mapping to a text file).

REFNDF = NDF (Read)
A reference NDF from which to obtain the Mapping and Frame. The NDFs specified
by Parameters NDF and REFNDF are aligned in a suitable co-ordinate system (usually
their current Frames—an error is reported if the two NDFs cannot be aligned). The
Mapping from the basis Frame in “NDF” (specified by Parameter FRAME) to the
required Frame in “REFNDF” (specified by Parameter DOMAIN) is then found
and used. The Frame added into “NDF” is always a copy of the reference Frame—
regardless of the setting of Parameter FRMTYPE. Parameter REFNDF is only used
when Parameter MAPTYPE is set to "REFNDF", in which case a value must also be
supplied for Parameter NDF (an error will be reported otherwise).

RETAIN = _LOGICAL (Read)
Indicates whether the original current Frame should be retained within the WCS
FrameSet of the modified NDF (see Parameter NDF). If FALSE, the newly added
Frame is the current Frame on exit. Otherwise, the original current Frame is retained
on exit. [FALSE]

SHIFT() = _DOUBLE (Read)
A vector giving the displacement represented by the translation. There must be one
element for each axis. Only used when MAPTYPE="SHIFT".

SIMPFI = _LOGICAL (Read)
The value of the Mapping’s SimpFI attribute (whether it is legitimate to simplify
the forward followed by the inverse transformation to a unit transformation). This
parameter is only used when MAPTYPE="MATH". [TRUE]

SUN/95.45 —Specifications of KAPPA applications 740 WCSADD

SIMPIF = _LOGICAL (Read)
The value of the Mapping’s SimpIF attribute (whether it is legitimate to simplify
the inverse followed by the forward transformation to a unit transformation). This
parameter is only used when MAPTYPE="MATH". [TRUE]

TR() = _DOUBLE (Read)
The values of this parameter are the coefficients of a linear transformation from the
basis Frame specified by Parameter FRAME to the new Frame. This parameter is only
used when MAPTYPE="LINEAR". For instance, if a feature has co-ordinates (X,Y,Z,. . .)
in the basis Frame, and co-ordinates (U,V,W,. . .) in the new Frame, then the following
transformations would be used, depending on how many axes the two Frames have:

• one-dimensional:
U = TR(1) + TR(2) ∗ X

• two-dimensional:

U = TR(1) + TR(2) ∗ X + TR(3) ∗Y

V = TR(4) + TR(5) ∗ X + TR(6) ∗Y

• three-dimensional:

U = TR(1) + TR(2) ∗ X + TR(3) ∗Y + TR(4) ∗ Z

V = TR(5) + TR(6) ∗ X + TR(7) ∗Y + TR(8) ∗ Z

W = TR(9) + TR(10) ∗ X + TR(11) ∗Y + TR(12) ∗ Z

The correct number of values must be supplied (that is, N ∗ (N + 1) where N is the
number of axes in the new and old Frames). If a null value (!) is given it is assumed
that the new Frame and the basis Frame are connected using a unit mapping (i.e.
corresponding axis values are identical in the two Frames). This parameter is only
used when MAPTYPE="LINEAR". [!]

TRANSFER = _LOGICAL (Read)
If TRUE, attributes which have explicitly set values in the basis Frame (specified
by Parameter FRAME) are transferred to the new Frame (specified by Parameter
FRMTYPE), if they are applicable to the new Frame. If FALSE, no attribute values
are transferred. The dynamic default is TRUE if and only if the two Frames are of the
same class and have the same value for their Domain attributes. []

ZOOM = _DOUBLE (Read)
The scaling factor for a ZoomMap; every co-ordinate will be multiplied by this factor
in the forward transformation. ZOOM is only used when MAPTYPE="ZOOM".

Examples:
wcsadd speca axis frmtype=specframe maptype=unit
attrs="’system=wave,unit=Angstrom’"

This example assumes the NDF called speca has an Axis structure describing
wavelength in Ångstroms. It adds a corresponding SpecFrame into the WCS component
of the NDF. The SpecFrame is connected to the Frame describing the NDF Axis structure
using a unit Mapping. Subsequently, WCSATTRIB can be used to modify the SpecFrame
so that it describes the spectral-axis value in some other system (frequency, velocities of
various forms, energy, wave number, etc.).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

741 WCSADD SUN/95.45 —Specifications of KAPPA applications

wcsadd ngc5128 pixel old_pixel unit

This adds a new co-ordinate Frame into the WCS component of the NDF called
ngc5128. The new Frame is given the domain OLD_PIXEL and is a copy of the existing
PIXEL Frame. This OLD_PIXEL Frame will be retained through further processing and
can be used as a record of the original pixel co-ordinate Frame.

wcsadd my_data dist-lum dist(au)-lum linear tr=[0,2.0626E5,0,0,0,1]

This adds a new co-ordinate Frame into the WCS component of the NDF called
my_data. The new Frame is given the domain DIST(AU)-LUM and is a copy of an existing
Frame with domain DIST-LUM. The first axis in the new Frame is derived from the first
axis in the basis Frame but is in different units (AU instead of parsecs). This change of
units is achieved by multiplying the old Frame Axis 1 values by 2.0626E5. The values on
the second axis are copied without change. You could then use application WCSATTRIB
to set the Unit attribute for Axis 1 of the new Frame to "AU".

wcsadd my_data dist-lum dist(au)-lum diag diag=[2.0626E5,1]

This does exactly the same as the previous example.

wcsadd ax322 ! shrunk zoom zoom=0.25 mapout=zoom.ast

This adds a new Frame to the WCS component of ax322 which is a one-quarter-
scale copy of its current co-ordinate Frame. The Mapping is also stored in the text file
zoom.ast.

wcsadd cube grid slid shift shift=[0,0,1024]

This adds a new Frame to the WCS component of the NDF cube which matches
the GRID-domain co-ordinates in the first two axes, but is translated by 1024 pixels on the
third axis.

wcsadd plane pixel polar math simpif simpfi
forexp="’r=sqrt(x∗x+y∗y),theta=atan2(y,x)’"
invexp="’x=r∗cos(theta),y=r∗sin(theta)’"

A new Frame is added which gives pixel positions in polar co-ordinates. Fortran-like
expressions are supplied which define both the forward and inverse transformations of
the Mapping. The symbols x and y are used to represent the two input Cartesian pixel
co-ordinate axes, and the symbols r and theta are used to represent the output polar
co-ordinates. Note, the single quotes are needed when running from the UNIX shell in
order to prevent the shell interpreting the parentheses and commas within the expressions.

wcsadd plane pixel polar math simpif simpfi forexp=^ft invexp=^it

SUN/95.45 —Specifications of KAPPA applications 742 WCSADD

As above, but the expressions defining the transformations are supplied in two
text files called ft and it, instead of being supplied directly. Each file could contain the
two expression on two separate lines.

wcsadd ndf=! naxes=2 mapout=pcd.ast maptype=pincushion disco=5.3e-10

This constructs a pincushion-type distortion Mapping centred on the origin with
a distortion coefficient of 5.3e-10, and writes out the Mapping as a text file called pcd.ast.
This file could then be used by REGRID to resample the pixels of an NDF according to this
transformation. No NDF is accessed.

wcsadd qmosaic frame=grid domain=polanal maptype=refndf refndf=imosaic

This adds a new co-ordinate Frame into the WCS component of the NDF called
qmosaic. The new Frame has domain “POLANAL” and is copied from the NDF called
imosaic (an error is reported if there is no such Frame with imosaic). The new co-ordinate
Frame is attached to the base Frame (i.e. GRID co-ordinates) within qmosaic using a
Mapping that produces alignment between qmosaic and imosaic.

Notes:

• The new Frame has the same number of axes as the basis Frame.

• An error is reported if the transformation supplied using Parameter TR is singular.

Related Applications :

KAPPA: NDFTRACE, REGRID, WCSATTRIB, WCSFRAME, WCSREMOVE; CCDPACK:
WCSEDIT.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_WCSEDIT

743 WCSALIGN SUN/95.45 —Specifications of KAPPA applications

WCSALIGN
Aligns a group of NDFs using World Co-ordinate System information

Description:
This application resamples or rebins a group of input NDFs , producing corresponding out-
put NDFs which are aligned pixel-for-pixel with a specified reference NDF, or POLPACK
catalogue (see Parameter REFCAT).

If an input NDF has more pixel axes than the reference NDF, then the extra pixel axes are
retained unchanged in the output NDF. Thus, for instance, if an input RA/Dec/velocity
cube is aligned with a reference two-dimensional galactic-longitude/latitude image, the
output NDF will be a galactic-longitude/latitude/velocity cube.

The transformations needed to produce alignment are derived from the co-ordinate system
information stored in the WCS components of the supplied NDFs. For each input NDF,
alignment is first attempted in the current co-ordinate Frame of the reference NDF. If this
fails, alignment is attempted in the current co-ordinate Frame of the input NDF. If this
fails, alignment occurs in the pixel co-ordinate Frame. A message indicating which Frame
alignment was achieved in is displayed.

Two algorithms are available for determining the output pixel values: resampling and
rebinning (the method used is determined by the REBIN parameter).

Two methods exist for determining the bounds of the output NDFs. First you can give
values for Parameters LBND and UBND which are then used as the pixel index bounds
for all output NDFs. Second, if a null value is given for LBND or UBND, default values
are generated separately for each output NDF so that the output NDF just encloses the
entire area covered by the corresponding input NDF. Using the first method will ensure
that all output NDFs have the same pixel origin, and so the resulting NDFs can be directly
compared. However, this may result in the output NDFs being larger than necessary. In
general, the second method results in smaller NDFs being produced, in less time. However,
the output NDFs will have differing pixel origins which need to be taken into account
when comparing the aligned NDFs.

Usage:
wcsalign in out lbnd ubnd ref

Parameters:

ABORT = _LOGICAL (Read)
This controls what happens if an error occurs whilst processing one of the input NDFs.
If a FALSE value is supplied for ABORT, then the error message will be displayed, but
the application will attempt to process any remaining input NDFs. If a TRUE value is
supplied for ABORT, then the error message will be displayed, and the application
will abort. [FALSE]

ACC = _REAL (Read)
The positional accuracy required, as a number of pixels. For highly non-linear
projections, a recursive algorithm is used in which successively smaller regions
of the projection are fitted with a least-squares linear transformation. If such a

SUN/95.45 —Specifications of KAPPA applications 744 WCSALIGN

transformation results in a maximum positional error greater than the value supplied
for ACC (in pixels), then a smaller region is used. High accuracy is paid for by larger
run times. [0.5]

ALIGNREF = _LOGICAL (Read)
Determines the co-ordinate system in which each input NDF is aligned with the
reference NDF. If TRUE, alignment is performed in the co-ordinate system described
by the current Frame of the WCS FrameSet in the reference NDF. If FALSE, alignment is
performed in the co-ordinate system specified by the following set of WCS attributes
in the reference NDF: AlignSystem, AlignStdOfRest, AlignOffset, AlignSpecOffset,
AlignSideBand, AlignTimeScale. The AST library provides fixed defaults for all these.
So for instance, AlignSystem defaults to ICRS for celestial axes and Wavelength for
spectral axes, meaning that celestial axes will be aligned in ICRS and spectral axes in
wavelength, by default. Similarly, AlignStdOfRest defaults to Heliocentric, meaning
that by default spectral axes will be aligned in the Heliocentric rest frame.
As an example, if you are aligning two spectra which both use radio velocity as the
current WCS, but which have different rest frequencies, then setting ALIGNREF
to TRUE will cause alignment to be performed in radio velocity, meaning that the
differences in rest frequency are ignored. That is, a channel with 10 Km/s in the
input is mapping onto the channel with 10 km/s in the output. If ALIGNREF is
FALSE (and no value has been set for the AlignSystem attribute in the reference WCS),
then alignment will be performed in wavelength, meaning that the different rest
frequencies cause an additional shift. That is, a channel with 10 Km/s in the input
will be mapping onto which ever output channel has the same wavelength, taking
into account the different rest frequencies.
As another example, consider aligning two maps which both have (azimuth,elevation)
axes. If ALIGNREF is TRUE, then any given (az,el) values in one image will be mapped
onto the exact same (az,el) values in the other image, regardless of whether the two
images were taken at the same time. But if ALIGNREF is FALSE, then a given (az,el)
value in one image will be mapped onto pixel that has the same ICRS co-ordinates
in the other image (since AlignSystem default to ICRS for celestial axes). Thus any
different in the observation time of the two images will result in an additional shift.
As yet another example, consider aligning two spectra which are both in frequency
with respect to the LSRK, but which refer to different points on the sky. If ALIGNREF
is TRUE, then a given LSRK frequency in one spectrum will be mapped onto the exact
same LSRK frequency in the other image, regardless of the different sky positions.
But if ALIGNREF is FALSE, then a given input frequency will first be converted to
Heliocentric frequency (the default value for AlignStdOfRest is "Heliocentric"),
and will be mapped onto the output channel that has the same Heliocentric frequency.
Thus the differecen in sky positions will result in an additional shift. [FALSE]

CONSERVE = _LOGICAL (Read)
If set TRUE, then the output pixel values will be scaled in such a way as to preserve
the total data value in a feature on the sky. The scaling factor is the ratio of the output
pixel size to the input pixel size. This option can only be used if the Mapping is
successfully approximated by one or more linear transformations. Thus an error will
be reported if it used when the ACC parameter is set to zero (which stops the use of
linear approximations), or if the Mapping is too non-linear to be approximated by a
piece-wise linear transformation. The ratio of output to input pixel size is evaluated

745 WCSALIGN SUN/95.45 —Specifications of KAPPA applications

once for each panel of the piece-wise linear approximation to the Mapping, and is
assumed to be constant for all output pixels in the panel. The dynamic default is TRUE
if rebinning, and FALSE if resampling (see Parameter REBIN). []

IN = NDF (Read)
A group of input NDFs (of any dimensionality). This should be given as a comma-
separated list, in which each list element can be:

• an NDF name, optionally containing wild-cards and/or regular expressions ("∗",
"?", "[a-z]" etc.).
• the name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc.), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

If the value supplied for this parameter ends with a minus sign "-", then you are re-
prompted for further input until a value is given which does not end with a hyphen.
All the NDFs given in this way are concatenated into a single group.

INSITU = _LOGICAL (Read)
If INSITU is set to TRUE, then no output NDFs are created. Instead, the pixel origin of
each input NDF is modified in order to align the input NDFs with the reference NDF
(which is a much faster operation than a full resampling). This can only be done if
the mapping from input pixel co-ordinates to reference pixel co-ordinates is a simple
integer pixel shift of origin. If this is not the case an error will be reported when the
input is processed (what happens then is controlled by the ABORT parameter). Also,
in-situ alignment is only possible if null values are supplied for LBND and UBND.
[FALSE]

LBND() = _INTEGER (Read)
An array of values giving the lower pixel-index bound on each axis for the output
NDFs. The number of values supplied should equal the number of axes in the
reference NDF. The given values are used for all output NDFs. If a null value (!) is
given for this parameter or for Parameter UBND, then separate default values are
calculated for each output NDF which result in the output NDF just encompassing the
corresponding input NDF. The suggested defaults are the lower pixel-index bounds
from the reference NDF, if supplied (see Parameter REF).

MAXPIX = _INTEGER (Read)
A value which specifies an initial scale size in pixels for the adaptive algorithm
which approximates non-linear Mappings with piece-wise linear transformations. If
MAXPIX is larger than any dimension of the region of the output grid being used, a
first attempt will be made to approximate the Mapping by a linear transformation
over the entire output region. If a smaller value is used, the output region will first be
divided into subregions whose size does not exceed MAXPIX pixels in any dimension,
and then attempts will be made at approximation. [1000]

METHOD = LITERAL (Read)
The method to use when sampling the input pixel values (if resampling), or dividing
an input pixel value up between a group of neighbouring output pixels (if rebinning).

SUN/95.45 —Specifications of KAPPA applications 746 WCSALIGN

For details of these schemes, see the descriptions of routines AST_RESAMPLEx and
AST_REBINx in SUN/210. METHOD can take the following values.

• "Bilinear" — When resampling, the output pixel values are calculated by bi-
linear interpolation among the four nearest pixels values in the input NDF. When
rebinning, the input pixel value is divided up bi-linearly between the four nearest
output pixels. Produces smoother output NDFs than the nearest-neighbour
scheme, but is marginally slower.
• "Nearest" — When resampling, the output pixel values are assigned the value of

the single nearest input pixel. When rebinning, the input pixel value is assigned
completely to the single nearest output pixel.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling) or transformed input pixel centre (rebinning), and
sinc(z) = sin(z)/z. Use of this scheme is not recommended.
• "SincSinc" — Uses the sinc(πx)sinc(kπx) kernel. A valuable general-purpose

scheme, intermediate in its visual effect on NDFs between the bi-linear and
nearest-neighbour schemes.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. Gives similar results to the
"Sincsinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where x is the pixel offset from the inter-

polation point (resampling) or transformed input pixel centre (rebinning), and
somb(z) = 2 ∗ J1(z)/z. J1 is the first-order Bessel function of the first kind. This
scheme is similar to the "Sinc" scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "Gauss" — Uses the e−kx2

kernel. The FWHM of the Gaussian is given by Param-
eter PARAMS(2), and the point at which to truncate the Gaussian to zero is given
by Parameter PARAMS(1).

All methods propagate variances from input to output, but the variance estimates
produced by interpolation schemes other than nearest neighbour need to be treated
with care since the spatial smoothing produced by these methods introduces cor-
relations in the variance estimates. Also, the degree of smoothing produced varies
across the NDF. This is because a sample taken at a pixel centre will have no contribu-
tions from the neighbouring pixels, whereas a sample taken at the corner of a pixel
will have equal contributions from all four neighbouring pixels, resulting in greater
smoothing and lower noise. This effect can produce complex Moiré patterns in the
output variance estimates, resulting from the interference of the spatial frequencies
in the sample positions and in the pixel centre positions. For these reasons, if you
want to use the output variances, you are generally safer using nearest-neighbour
interpolation. The initial default is "SincSinc". [current value]

OUT = NDF (Write)
A group of output NDFs corresponding one-for-one with the list of input NDFs given
for Parameter IN. This should be given as a comma-separated list, in which each list
element can be:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_RESAMPLE\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_REBIN\protect \T1\textdollar <\protect \T1\textdollar X\protect \T1\textdollar >\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

747 WCSALIGN SUN/95.45 —Specifications of KAPPA applications

• an NDF name. If the name contains an asterisk character "∗", the name of the
corresponding input NDF (without directory or file suffix) is substituted for
the asterisk (for instance, "∗_al" causes the output NDF name to be formed by
appending the string "_al" to the corresponding input NDF name). Input NDF
names can also be edited by including original and replacement strings between
vertical bars after the NDF name (for instance, ∗_al|b4|B1| causes any occurrence
of the string "B4" in the input NDF name to be replaced by the string "B1" before
appending the string "_al" to the result).
• the name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional editing, etc.), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

If the value supplied for this parameter ends with a hyphen "-", then you are re-
prompted for further input until a value is given which does not end with hyphen.
All the NDFs given in this way are concatenated into a single group.
This parameter is only accessed if the INSITU parameter is FALSE.

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods.
PARAMS(1) is required by all the above schemes. It is used to specify how many
pixels are to contribute to the interpolated result on either side of the interpolation
or binning point in each dimension. Typically, a value of 2 is appropriate and the
minimum allowed value is 1 (i.e. one pixel on each side). A value of zero or fewer
indicates that a suitable number of pixels should be calculated automatically. [0]
PARAMS(2) is required only by the Gauss, SombCos, SincSinc, SincCos, and Sinc-
Gauss schemes. For the SombCos, SincSinc and SincCos schemes, it specifies the
number of pixels at which the envelope of the function goes to zero. The minimum
value is 1.0, and the run-time default value is 2.0. For the Gauss and SincGauss
schemes, it specifies the full-width at half-maximum (FWHM) of the Gaussian en-
velope measured in output pixels. The minimum value is 0.1, and the run-time
default is 1.0. On astronomical NDFs and spectra, good results are often obtained by
approximately matching the FWHM of the envelope function, given by PARAMS(2),
to the point-spread function of the input data. []

REBIN = _LOGICAL (Read)
Determines the algorithm used to calculate the output pixel values. If a TRUE value is
given, a rebinning algorithm is used. Otherwise, a resampling algorithm is used. See
the “Choice of Algorithm” topic below. The initial default is FALSE. [current value]

REF = NDF (Read)
The NDF to which all the input NDFs are to be aligned. If a null value is supplied for
this parameter, the first NDF supplied for Parameter IN is used. This parameter is
only used if no catalogue is supplied for Parameter REFCAT.

REFCAT = FILENAME (Read)
A POLPACK catalogue defining the WCS to which all the input NDFs are to be
aligned. If a null value is supplied for this parameter, the WCS will be obtained from
an NDF using Parameter REF. [!]

SUN/95.45 —Specifications of KAPPA applications 748 WCSALIGN

UBND() = _INTEGER (Read)
An array of values giving the upper pixel-index bound on each axis for the output
NDFs. The number of values supplied should equal the number of axes in the
reference NDF. The given values are used for all output NDFs. If a null value (!) is
given for this parameter or for Parameter LBND, then separate default values are
calculated for each output NDF which result in the output NDF just encompassing the
corresponding input NDF. The suggested defaults are the upper pixel-index bounds
from the reference NDF, if supplied (see Parameter REF).

WLIM = _REAL (Read)
This parameter is only used if REBIN is set TRUE. It specifies the minimum number
of good pixels which must contribute to an output pixel for the output pixel to be
valid. Note, fractional values are allowed. A null (!) value causes a very small
positive value to be used resulting in output pixels being set bad only if they receive
no significant contribution from any input pixel. [!]

Examples:
wcsalign image1 image1_al ref=image2 accept

This example resamples the NDF called image1 so that it is aligned with the
NDF call image2, putting the output in image1_al. The output image has the same
pixel-index bounds as image2 and inherits WCS information from image2.

wcsalign m51∗ ∗_al lbnd=! accept

This example resamples all the NDFs with names starting with the string "m51"
in the current directory so that they are aligned with the first input NDF. The output NDFs
have the same names as the input NDFs, but extended with the string "_al". Each output
NDF is just big enough to contain all the pixels in the corresponding input NDF.

wcsalign ^in.lis ^out.lis lbnd=! accept

This example is like the previous example, except that the names of the input
NDFs are read from the text file in.lis, and the names of the corresponding output NDFs
are read from text file out.lis.

Choice of Algorithm :

The algorithm used to produce the output image is determined by the REBIN parameter,
and is based either on resampling the output image or rebinning the input image.

The resampling algorithm steps through every pixel in the output image, sampling the
input image at the corresponding position and storing the sampled input value in the
output pixel. The method used for sampling the input image is determined by the
METHOD parameter. The rebinning algorithm steps through every pixel in the input
image, dividing the input pixel value between a group of neighbouring output pixels,
incrementing these output pixel values by their allocated share of the input pixel value,
and finally normalising each output value by the total number of contributing input values.
The way in which the input sample is divided between the output pixels is determined by
the METHOD parameter.

749 WCSALIGN SUN/95.45 —Specifications of KAPPA applications

Both algorithms produce an output in which the each pixel value is the weighted mean
of the near-by input values, and so do not alter the mean pixel values associated with a
source, even if the pixel size changes. Thus the total data sum in a source will change if
the input and output pixel sizes differ. However, if the CONSERVE parameter is set TRUE,
the output values are scaled by the ratio of the output to input pixel size, so that the total
data sum in a source is preserved.

A difference between resampling and rebinning is that resampling guarantees to fill the
output image with good pixel values (assuming the input image is filled with good input
pixel values), whereas holes can be left by the rebinning algorithm if the output image
has smaller pixels than the input image. Such holes occur at output pixels which receive
no contributions from any input pixels, and will be filled with the value zero in the
output image. If this problem occurs the solution is probably to change the width of the
pixel spreading function by assigning a larger value to PARAMS(1) and/or PARAMS(2)
(depending on the specific METHOD value being used).

Both algorithms have the capability to introduce artefacts into the output image. These
have various causes described below.

• Particularly sharp features in the input can cause rings around the corresponding
features in the output image. This can be minimised by suitable settings for the
METHOD and PARAMS parameters. In general such rings can be minimised by
using a wider interpolation kernel (if resampling) or spreading function (if rebinning),
at the cost of degraded resolution.

• The approximation of the Mapping using a piece-wise linear transformation (con-
trolled by Parameter ACC) can produce artefacts at the joints between the panels
of the approximation. They are caused by the discontinuities between the adjacent
panels of the approximation, and can be minimised by reducing the value assigned
to the ACC parameter.

Notes:

• WCS information (including the current co-ordinate Frame) is propagated from the
reference NDF to all output NDFs.

• QUALITY is propagated from input to output only if Parameter METHOD is set to
"Nearest" and REBIN is set to FALSE.

Related Applications :

KAPPA: WCSFRAME, REGRID; CCDPACK: TRANNDF.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, LABEL, TITLE, UNITS, WCS,
and HISTORY components of the input NDFs (see the METHOD parameter for notes
on the interpretation of output variances).

• Processing of bad pixels and automatic quality masking are supported.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_TRANNDF

SUN/95.45 —Specifications of KAPPA applications 750 WCSALIGN

• All non-complex numeric data types can be handled. If REBIN is TRUE, the data type
will be converted to one of _INTEGER, _DOUBLE or _REAL for processing.

751 WCSATTRIB SUN/95.45 —Specifications of KAPPA applications

WCSATTRIB
Manages attribute values associated with the WCS component of an

NDF

Description:
This application can be used to manage the values of attributes associated with the current
co-ordinate Frame of an NDF (title, axis labels, axis units, etc.).

Each attribute has a name, a value, and a state. This application accesses all attribute
values as character strings, converting to and from other data types as necessary. The
attribute state is a Boolean flag (i.e. TRUE or FALSE) indicating whether or not a value has
been assigned to the attribute. If no value has been assigned to an attribute, then it adopts
a default value until an explicit value is assigned to it. An attribute value can be cleared,
causing the attribute to revert to its default value.

The operation performed by this application is controlled by Parameter MODE, and can:

• display the value of an attribute;

• set a new value for an attribute;

• set new values for a list of attributes;

• clear an attribute value; and

• test the state of an attribute.

Note, the attributes of the PIXEL, GRID and AXIS Frames are managed internally by the
NDF library. They may be examined using this application, but an error is reported if any
attempt is made to change them. The exception to this is that the Domain attribute may be
changed, resulting in a copy of the Frame being added to the WCS component of the NDF
with the new Domain name. The AXIS Frame is derived from the AXIS structures within
the NDF, so the AXLABEL and AXUNITS commands may be used to change the axis label
or units string for the AXIS Frame.

Usage:
wcsattrib ndf mode name newval

Parameters:

MODE = LITERAL (Read)
The operation to be performed on the attribute specified by Parameter NAME. It can
be one of the following options.

• "Clear" — Clears the current attribute value, causing it to revert to its default
value.
• "Get" — The current value of the attribute is displayed on the screen and written

to output Parameter VALUE. If the attribute has not yet been assigned a value
(or has been cleared), then the default value will be displayed.

SUN/95.45 —Specifications of KAPPA applications 752 WCSATTRIB

• "MSet" — Assigns new values to multiple attributes. The attribute names and
values are obtained using Parameter SETTING.
• "Set" — Assigns a new value, given by Parameter NEWVAL, to the attribute.
• "Test" — Displays "TRUE" if the attribute has been assigned a value, and "FALSE"

otherwise (in which case the attribute will adopt its default value). This flag is
written to the output Parameter STATE.

The initial suggested default is "Get".

NAME = LITERAL (Read)
The attribute name. It is not used if MODE is "MSet".

NDF = NDF (Read and Write)
The NDF to be modified. When MODE="Get", the access is Read only.

NEWVAL = LITERAL (Read)
The new value to assign to the attribute. It is only used if MODE is "Set".

REMAP = _LOGICAL (Read)
Only accessed if MODE is "Set" or "Clear". If REMAP is TRUE, then the Map-
pings which connect the current Frame to the other Frames within the WCS Frame-
Set will be modified (if necessary) to maintain the FrameSet integrity. For instance, if
the current Frame of the NDF represents FK5 RA and DEC, and you change System
from "FK5" to "Galactic", then the Mappings which connect the SKY Frame to
the other Frames (e.g. PIXEL, AXIS) will be modified so that each pixel corresponds
to the correct Galactic co-ordinates. If REMAP is FALSE, then the Mappings will not
be changed. This can be useful if the FrameSet has incorrect attribute values for some
reason, which need to be corrected without altering the Mappings to take account of
the change. [TRUE]

SETTING = LITERAL (Read)
This is only accessed if MODE is set to "MSet". It should hold a comma-separated list
of "<attribute>=<value>" strings, where <attribute> is the name of an attribute
and <value> is the value to assign to the attribute.

Results Parameters:

STATE = _LOGICAL (Write)
On exit, this holds the state of the attribute on entry to this application. It is not used if
MODE is "MSet".

VALUE = LITERAL (Write)
On exit, this holds the value of the attribute on entry to this application. It is not used if
MODE is "MSet".

Examples:
wcsattrib my_spec set System freq

This sets the System attribute of the current co-ordinate Frame in the NDF called
my_Spec so that the Frame represents frequency (this assumes the current Frame is a
SpecFrame). The Mappings between the current Frame and the other Frames are modified
to take account of the change of system.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

753 WCSATTRIB SUN/95.45 —Specifications of KAPPA applications

wcsattrib my_spec mset setting=’unit(1)=km/s,system(1)=vrad’

This sets new values of "km/s" and "vrad" simultaneously for the Unit and Sys-
tem attributes for the first axis of the NDF called my_spec.

wcsattrib ngc5128 set title "Polarization map of Centaurus-A"

This sets the Title attribute of the current co-ordinate Frame in the NDF called
ngc5128 to the string "Polarization map of Centaurus-A".

wcsattrib my_data set domain saved_pixel

This sets the Domain attribute of the current co-ordinate Frame in the NDF called my_data
to the string SAVED_PIXEL.

wcsattrib my_data set format(1) "%10.5G"

This sets the Format attribute for Axis 1 in the current co-ordinate Frame in the
NDF called my_data, so that axis values are formatted as floating-point values using
a minimum field width of ten characters, and displaying five significant figures. An
exponent is used if necessary.

wcsattrib ngc5128 set format(2) bdms.2

This sets the Format attribute for Axis 2 in the current co-ordinate Frame in the
NDF called ngc5128, so that axis values are formatted as separate degrees, minutes and
seconds fields, separated by blanks. The seconds field has two decimal places. This
assumes the current co-ordinate Frame in the NDF is a celestial co-ordinate Frame.

wcsattrib my_data get label(1)

This displays the label associated with the first axis of the current co-ordinate
Frame in the NDF called my_data. A default label is displayed if no value has been set for
this attribute.

wcsattrib my_data test label(1)

This displays "TRUE" if a value has been set for the Label attribute for the first
axis of the current co-ordinate Frame in the NDF called my_data, and "FALSE" otherwise.

wcsattrib my_data clear label(1)

This clears the Label attribute for the first axis of the current co-ordinate Frame
in the NDF called my_data. It reverts to its default value.

wcsattrib my_data set equinox J2000 remap=no

SUN/95.45 —Specifications of KAPPA applications 754 WCSATTRIB

This assumes that the Equinox attribute for the current co-ordinate Frame within
NDF "my_data" has been set to some incorrect value, which needs to be corrected to
"J2000". The REMAP parameter is set FALSE, which prevents the inter-Frame Mappings
from being altered to take account of the new Equinox value. This means that each pixel
in the NDF will retain its original RA and DEC values (but they will now be interpreted
as J2000). If REMAP had been left at its default value of TRUE, then the RA and DEC
associated with each pixel would have been modified in order to precess them from the
original (incorrect) equinox to J2000.

Notes:

• An error is reported if an attempt is made to set or clear the Base Frame in the WCS
component.

• The Domain names GRID, FRACTION, AXIS, and PIXEL are reserved for use by the
NDF library and an error will be reported if an attempt is made to assign one of these
values to any Frame.

Related Applications :

KAPPA: AXLABEL, AXUNITS, NDFTRACE, WCSADD, WCSFRAME, WCSREMOVE,
WCSCOPY.

755 WCSCOPY SUN/95.45 —Specifications of KAPPA applications

WCSCOPY
Copies WCS information from one NDF to another

Description:
This application copies the WCS component from one NDF to another, optionally mod-
ifying it to take account of a linear mapping between the pixel co-ordinates in the two
NDFs. It can be used, for instance, to rectify the loss of WCS information produced by
older applications which do not propagate the WCS component.

Usage:
wcscopy ndf like [tr] [confirm]

Parameters:
CONFIRM = _LOGICAL (Read)

If TRUE, the user is asked for confirmation before replacing any existing WCS compo-
nent within the input NDF. No confirmation is required if there is no WCS component
in the input NDF. [TRUE]

LIKE = NDF (Read)
The reference NDF data structure from which WCS information is to be copied.

NDF = NDF (Read and Write)
The input NDF data structure in which the WCS information is to be stored. Any
existing WCS component is over-written (see Parameter CONFIRM).

OK = _LOGICAL (Read)
This parameter is used to get a confirmation that an existing WCS component within
the input NDF can be over-written.

TR() = _DOUBLE (Read)
The values of this parameter are the coefficients of a linear transformation from pixel
co-ordinates in the reference NDF given for Parameter LIKE, to pixel co-ordinates
in the input NDF given for Parameter NDF. For instance, if a feature has pixel co-
ordinates (X,Y,Z,. . .) in the reference NDF, and pixel co-ordinates (U,V,W,. . .) in the
input NDF, then the following transformations would be used, depending on how
many axes each NDF has:

• one-dimensional:
U = TR(1) + TR(2) ∗ X

• two-dimensional:

U = TR(1) + TR(2) ∗ X + TR(3) ∗Y

V = TR(4) + TR(5) ∗ X + TR(6) ∗Y

• three-dimensional:

U = TR(1) + TR(2) ∗ X + TR(3) ∗Y + TR(4) ∗ Z

V = TR(5) + TR(6) ∗ X + TR(7) ∗Y + TR(8) ∗ Z

W = TR(9) + TR(10) ∗ X + TR(11) ∗Y + TR(12) ∗ Z

SUN/95.45 —Specifications of KAPPA applications 756 WCSCOPY

If a null value (!) is given it is assumed that the pixel co-ordinates of a given feature
are identical in the two NDFs. [!]

Examples:
wcscopy m51_sim m51

This copies the WCS component from the NDF called m51 to the NDF called
m51_sim, which may hold the results of a numerical simulation for instance. It is assumed
that the two NDFs are aligned (i.e. the pixel co-ordinates of any feature are the same in
both NDFs).

wcscopy m51_sqorst m51 [125,0.5,0.0,125,0.0,0.5]

This example assumes that an application similar to SQORST has previously
been used to change the size of a two-dimensional NDF called m51, producing a new NDF
called m51_sqorst. It is assumed that this SQORST-like application does not propagate
WCS and also resets the pixel origin to [1, 1]. In fact, this is what SQORST actually did,
prior to KAPPA version 1.0. This example shows how WCSCOPY can be used to rectify
this by copying the WCS component from the original NDF m51 to the squashed NDF
m51_sqorst, modifying it in the process to take account of both the squashing and the
resetting of the pixel origin produced by SQORST. To do this, you need to work out
the transformation in pixel co-ordinates produced by SQORST, and specify this when
running WCSCOPY using the TR parameter. Let’s assume the first axis of NDF m51 has
pixel-index bounds of I1:I2 (these values can be found using NDFTRACE). If the first
axis in the squashed NDF m51_sqorst spansM pixels (where M is the value assigned to
SQORST Parameter XDIM), then it will have pixel-index bounds of 1:M. Note, the lower
bound is 1 since the pixel origin has been reset by SQORST. The squashing factor for the
first axis is then:

FX = M/(I2− I1 + 1)

and the shift in the pixel origin is:

SX = FX ∗ (1− I1)

Likewise, if the bounds of the second axis in m51 are J1:J2, and SQORST Parameter YDIM
is set to N, then the squashing factor for the second axis is:

FY = N/(J2− J1 + 1)

and the shift in the pixel origin is:

SY = FY ∗ (1− J1)

You would then use the following values for Parameter TR when running WCSCOPY:

TR = [SX, FX, 0.0, SY, 0.0, FY]

Note, the zero terms indicate that the axes are independent (i.e. there is no rotation of the
image). The numerical values in the example are for an image with pixel-index bounds of
52:251 on both axes which was squashed by SQORST to produce an image with 100 pixels
on each axis.

757 WCSCOPY SUN/95.45 —Specifications of KAPPA applications

Notes:

• An error is reported if the transformation supplied using Parameter TR is singular.

• The pixel with pixel index I spans a range of pixel co-ordinate from (I − 1.0) to I.

• The pixel indices of the bottom-left pixel in an NDF is called the pixel origin of the
NDF, and can take any value. The pixel origin can be examined using application
NDFTRACE and set using application SETORIGIN. WCSCOPY takes account of the
pixel origins in the two NDFs when modifying the WCS component. Thus, if a null
value is given for Parameter TR, the supplied WCS component may still be modified
if the two NDFs have different pixel origins.

Related Applications :

KAPPA: NDFTRACE, WCSADD, WCSATTRIB, WCSFRAME, WCSREMOVE.

SUN/95.45 —Specifications of KAPPA applications 758 WCSFRAME

WCSFRAME
Changes the current co-ordinate Frame in the WCS component of an

NDF

Description:
This application displays the current co-ordinate Frame associated with an NDF and then
allows the user to specify a new Frame. The current co-ordinate Frame determines the co-
ordinate system in which positions within the NDF will be expressed when communicating
with the user.

Having selected a new current co-ordinate Frame, its attributes (such the specific system it
uses to represents points within its Domain, its units, etc.) can be changed using KAPPA

command WCSATTRIB.

Usage:
wcsframe ndf frame epoch

Parameters:

EPOCH = _DOUBLE (Read)
If a Sky Co-ordinate System specification is supplied (using Parameter FRAME) for a
celestial co-ordinate system, then an epoch value is needed to qualify it. This is the
epoch at which the supplied sky positions were determined. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

FRAME = LITERAL (Read)
A string specifying the new co-ordinate Frame. If a null parameter value is supplied,
then the current Frame is left unchanged. The suggested default is the Domain (or
index if the Domain is not set) of the current Frame. The string can be one of the
following:

• A domain name such as SKY, SPECTRUM, AXIS, PIXEL. The two ‘pseudo-
domains’ WORLD and DATA may be supplied and will be translated into PIXEL
and AXIS respectively, so long as the WCS component of the NDF does not
contain Frames with these domains.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163). Using an SCS value is equivalent to specifying "SKY" for this pa-
rameter and then setting the System attribute (to "FK5", "Galactic", etc.) using
KAPPA command WCSATTRIB. The specific system used to describe positions in
other Domains (SPECTRUM, for instance) must be set using WCSATTRIB.

NDF = NDF (Read and Write)
The NDF data structure in which the current co-ordinate Frame is to be modified.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

759 WCSFRAME SUN/95.45 —Specifications of KAPPA applications

Examples:
wcsframe m51 pixel

This chooses pixel co-ordinates for the current co-ordinate Frame in the NDF
m51.

wcsframe m51 sky

This chooses celestial co-ordinates for the current co-ordinate Frame in the NDF
m51 (if available). The specific celestial co-ordinate system (FK5, Galactic, etc.) will
depend on the contents of the WCS component of the NDF, but may be changed by setting
a new value for the System attribute using the WCSATTRIB command.

wcsframe m51 spectral

This chooses spectral co-ordinates for the current co-ordinate Frame in the NDF
m51 (if available). The specific spectral co-ordinate system (wavelength, frequency, etc.)
will depend on the contents of the WCS component of the NDF, but may be changed by
setting a new value for the System attribute using the WCSATTRIB command.

wcsframe m51 equ(J2000) epoch=1998.2

This chooses equatorial (RA/DEC) co-ordinates referred to the equinox at Julian
epoch 2000.0 for the current co-ordinate Frame in the NDF m51. The positions were
determined at the Julian epoch 1998.2 (this is needed to correct positions for the fictitious
proper motions which may be introduced when converting between different celestial
co-ordinate systems).

wcsframe m51 2

This chooses the second co-ordinate Frame in the WCS component of the NDF.

wcsframe m51 data

This chooses a co-ordinate Frame with domain DATA if one exists, or the AXIS
co-ordinate Frame otherwise.

wcsframe m51 world

This chooses a co-ordinate Frame with domain WORLD if one exists, or the PIXEL
co-ordinate Frame otherwise.

Notes:

• The current co-ordinate Frame in the supplied NDF is not displayed if a value is
assigned to Parameter FRAME on the command line.

SUN/95.45 —Specifications of KAPPA applications 760 WCSFRAME

• This routine may add a new co-ordinate Frame into the WCS component of the NDF.

• The NDFTRACE command can be used to examine the co-ordinate Frames in the
WCS component of an NDF.

Related Applications :

KAPPA: NDFTRACE, WCSATTRIB, WCSCOPY, WCSREMOVE.

761 WCSMOSAIC SUN/95.45 —Specifications of KAPPA applications

WCSMOSAIC
Tiles a group of NDFs using World Co-ordinate System information

Description:
This application aligns and rebins a group of input NDFs into a single output NDF. It differs
from WCSALIGN in both the algorithm used, and in the requirements placed on the input
NDFs. WCSMOSAIC requires that the transformation from pixel to WCS co-ordinates be
defined in each input NDF, but (unlike WCSALIGN) the inverse transformation from WCS
to pixel co-ordinates need not be defined. For instance, this means that WCSMOSAIC
can process data in which the WCS position of each input pixel is defined via a look-up
table rather than an analytical expression. Note however, that the WCS information in the
reference NDF (see Parameter REF) must have a defined inverse transformation.

The WCSMOSAIC algorithm proceeds as follows. First, the output NDF is filled with
zeros. An associated array of weights (one weight for each output pixel) is created and
is also filled with zeros. Each input NDF is then processed in turn. For each pixel in the
current input NDF, the corresponding transformed position in the output NDF is found
(based on the WCS information in both NDFs). The input pixel value is then divided
up between a small group of output pixels centred on this central output position. The
method used for choosing the fraction of the input pixel value assigned to each output
pixel is determined by the METHOD and PARAMS parameters. Each of the affected
output pixel values is then incremented by its allocated fraction of the input pixel value.
The corresponding weight values are incremented by the fractions used (that is, if 0.25 of
an input pixel is assigned to an output pixel, the weight for the output pixel is incremented
by 0.25). Once all pixels in the current input NDF have been rebinned into the output
NDF in this way, the algorithm proceeds to rebin the next input NDF in the same way.
Once all input NDFs have been processed, output pixels which have a weight less than the
value given by Parameter WLIM are set bad. The output NDF may then optionally (see
Parameter NORM) be normalised by dividing it by the weights array. This normalisation
of the output NDF takes account of any difference in the number of pixels contributing to
each output pixel, and also removes artefacts which may be produced by aliasing between
the input and output pixel grids. Thus each output pixel value is a weighted mean of the
input pixel values from which it receives contributions. This means that the units of the
output NDF are the same as the input NDF. In particular, any difference between the input
and output pixel sizes is ignored, resulting in the total input data sum being preserved
only if the input and output NDFs have equal pixel sizes. However, an option exists to
scale the input values before use so that the total data sum in each input NDF is preserved
even if the input and output pixel sizes differ (see Parameter CONSERVE).

If the input NDFs contain variances, then these are propagated to the output. Alternatively,
output variances can be generated from the spread of input values contributing to each
output pixel (see Parameter GENVAR). Any input variances can also be used to weight the
input data (see Parameter VARIANCE). By default, all input data are given equal weight.
An additional weight for each NDF can be specified using Parameter WEIGHTS.

The transformations needed to produce alignment are derived from the co-ordinate system
information stored in the WCS components of the supplied NDFs. For each input NDF,

SUN/95.45 —Specifications of KAPPA applications 762 WCSMOSAIC

alignment is first attempted in the current co-ordinate Frame of the reference NDF. If this
fails, alignment is attempted in the current co-ordinate Frame of the input NDF. If this
fails, alignment occurs in the pixel co-ordinate Frame. A message indicating which Frame
alignment was achieved in is displayed.

Usage:
wcsmosaic in out lbnd ubnd ref

Parameters:

ACC = _REAL (Read)
The positional accuracy required, as a number of pixels. For highly non-linear
projections, a recursive algorithm is used in which successively smaller regions
of the projection are fitted with a least-squares linear transformation. If such a
transformation results in a maximum positional error greater than the value supplied
for ACC (in pixels), then a smaller region is used. High accuracy is paid for by longer
run times. [0.05]

ALIGNREF = _LOGICAL (Read)
Determines the co-ordinate system in which each input NDF is aligned with the
reference NDF. If TRUE, alignment is performed in the co-ordinate system described
by the current Frame of the WCS FrameSet in the reference NDF. If FALSE, alignment is
performed in the co-ordinate system specified by the following set of WCS attributes
in the reference NDF: AlignSystem AlignStdOfRest, AlignOffset, AlignSpecOffset,
AlignSideBand, AlignTimeScale. The AST library provides fixed defaults for all these.
So for instance, AlignSystem defaults to ICRS for celestial axes and Wavelength for
spectral axes, meaning that celestial axes will be aligned in ICRS and spectral axes in
wavelength, by default. Similarly, AlignStdOfRest defaults to Heliocentric, meaning
that by default spectral axes will be aligned in the Heliocentric rest frame.
As an example, if you are mosaicing two spectra which both use radio velocity as
the current WCS, but which have different rest frequencies, then setting ALIGNREF
to TRUE will cause alignment to be performed in radio velocity, meaning that the
differences in rest frequency are ignored. That is, a channel with 10 Km/s in the
input is mapping onto the channel with 10 km/s in the output. If ALIGNREF is
FALSE (and no value has been set for the AlignSystem attribute in the reference WCS),
then alignment will be performed in wavelength, meaning that the different rest
frequencies cause an additional shift. That is, a channel with 10 Km/s in the input
will be mapping onto which ever output channel has the same wavelength, taking
into account the different rest frequencies.
As another example, consider mosaicing two maps which both have (azimuth,elevation)
axes. If ALIGNREF is TRUE, then any given (az,el) values in one image will be mapped
onto the exact same (az,el) values in the other image, regardless of whether the two
images were taken at the same time. But if ALIGNREF is FALSE, then a given (az,el)
value in one image will be mapped onto pixel that has the same ICRS co-ordinates
in the other image (since AlignSystem default to ICRS for celestial axes). Thus any
different in the observation time of the two images will result in an additional shift.
As yet another example, consider mosaicking two spectra which are both in frequency
with respect to the LSRK, but which refer to different points on the sky. If ALIGNREF
is TRUE, then a given LSRK frequency in one spectrum will be mapped onto the exact
same LSRK frequency in the other image, regardless of the different sky positions.

763 WCSMOSAIC SUN/95.45 —Specifications of KAPPA applications

But if ALIGNREF is FALSE, then a given input frequency will first be converted to
Heliocentric frequency (the default value for AlignStdOfRest is Heliocentric"), and
will be mapped onto the output channel that has the same Heliocentric frequency.
Thus the difference in sky positions will result in an additional shift. [FALSE]

CONSERVE = _LOGICAL (Read)
If set TRUE, then the output pixel values will be scaled in such a way as to preserve
the total data value in a feature on the sky. The scaling factor is the ratio of the output
pixel size to the input pixel size. This option can only be used if the Mapping is
successfully approximated by one or more linear transformations. Thus an error will
be reported if it used when the ACC parameter is set to zero (which stops the use of
linear approximations), or if the Mapping is too non-linear to be approximated by a
piece-wise linear transformation. The ratio of output to input pixel size is evaluated
once for each panel of the piece-wise linear approximation to the Mapping, and is
assumed to be constant for all output pixels in the panel. This parameter is ignored if
the NORM parameter is set FALSE. [TRUE]

GENVAR = _LOGICAL (Read)
If TRUE, output variances are generated based on the spread of input pixel values
contributing to each output pixel. Any input variances then have no effect on the
output variances (although input variances will still be used to weight the input
data if the VARIANCE parameter is set TRUE). If GENVAR is set FALSE, the output
variances are based on the variances in the input NDFs, so long as all input NDFs
contain variances (otherwise the output NDF will not contain any variances). If a
null (!) value is supplied, then a value of FALSE is adopted if and only if all the input
NDFs have variance components (TRUE is used otherwise). [FALSE]

IN = NDF (Read)
A group of input NDFs (of any dimensionality). This should be given as a comma-
separated list, in which each list element can be one of the following options.

• An NDF name, optionally containing wild-cards and/or regular expressions
("∗", "?", "[a-z]" etc.).
• The name of a text file, preceded by an up-arrow character "^". Each line in the

text file should contain a comma-separated list of elements, each of which can in
turn be an NDF name (with optional wild-cards, etc.), or another file specification
(preceded by an up-arrow). Comments can be included in the file by commencing
lines with a hash character "#".

If the value supplied for this parameter ends with a hyphen, then you are re-prompted
for further input until a value is given which does not end with a hyphen. All the
NDFs given in this way are concatenated into a single group.

LBND() = _INTEGER (Read)
An array of values giving the lower pixel-index bound on each axis for the output
NDF. The suggested default values just encompass all the input data. A null value (!)
also results in these same defaults being used. [!]

MAXPIX = _INTEGER (Read)
A value which specifies an initial scale size in pixels for the adaptive algorithm
which approximates non-linear Mappings with piece-wise linear transformations. If
MAXPIX is larger than sny dimension of the region of the output grid being used, a

SUN/95.45 —Specifications of KAPPA applications 764 WCSMOSAIC

first attempt will be made to approximate the Mapping by a linear transformation
over the entire output region. If a smaller value is used, the output region will first be
divided into subregions whose size does not exceed MAXPIX pixels in any dimension,
and then attempts will be made at approximation. [1000]

METHOD = LITERAL (Read)
The method to use when dividing an input pixel value between a group of neighbour-
ing output pixels. For details on these schemes, see the description of AST_REBINx
in SUN/210. METHOD can take the following values.

• "Bilinear" — The input pixel value is divided bi-linearly between the four
nearest output pixels. This produces smoother output NDFs than the nearest-
neighbour scheme, but is marginally slower.
• "Nearest" — The input pixel value is assigned completely to the single nearest

output pixel.
• "Sinc" — Uses the sinc(πx) kernel, where x is the pixel offset from the trans-

formed input pixel centre, and sinc(z) = sin(z)/z. Use of this scheme is not
recommended.
• "SincSinc" — Uses the sinc(πx)sinc(kπx) kernel. This is a valuable general-

purpose scheme, intermediate in its visual effect on NDFs between the bilinear
and nearest-neighbour schemes.
• "SincCos" — Uses the sinc(πx) cos(kπx) kernel. It gives similar results to the
"Sincsinc" scheme.
• "SincGauss" — Uses the sinc(πx)e−kx2

kernel. Good results can be obtained by
matching the FWHM of the envelope function to the point-spread function of the
input data (see Parameter PARAMS).
• "Somb" — Uses the somb(πx) kernel, where somb(z) = 2 ∗ J1(z)/z. J1 is the

first-order Bessel function of the first kind. This scheme is similar to the "Sinc"
scheme.
• "SombCos" — Uses the somb(πx) cos(kπx) kernel. This scheme is similar to the
"SincCos" scheme.
• "Gauss" — Uses the e−kx2

kernel. The FWHM of the Gaussian is given by Param-
eter PARAMS(2), and the point at which to truncate the Gaussian to zero is given
by Parameter PARAMS(1).

All methods propagate variances from input to output, but the variance estimates
produced by schemes other than nearest neighbour need to be treated with care
since the spatial smoothing produced by these methods introduces correlations in the
variance estimates. Also, the degree of smoothing produced varies across the NDF.
This is because a sample taken at a pixel centre will have no contributions from the
neighbouring pixels, whereas a sample taken at the corner of a pixel will have equal
contributions from all four neighbouring pixels, resulting in greater smoothing and
lower noise. This effect can produce complex Moiré patterns in the output variance
estimates, resulting from the interference of the spatial frequencies in the sample
positions and in the pixel-centre positions. For these reasons, if you want to use the
output variances, you are generally safer using nearest-neighbour interpolation. The
initial default is "SincSinc". [current value]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_REBIN\protect \T1\textdollar <X>\protect \T1\textdollar
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_

765 WCSMOSAIC SUN/95.45 —Specifications of KAPPA applications

NORM = _LOGICAL (Read)
In general, each output pixel contains contributions from multiple input pixel values,
and the number of input pixels contributing to each output pixel will vary from pixel
to pixel. If NORM is set TRUE (the default), then each output value is normalised by
dividing it by the number of contributing input pixels, resulting in each output value
being the weighted mean of the contibuting input values. However, if NORM is set
FALSE, this normalisation is not applied. See also Parameter CONSERVE. Setting
NORM to FALSE and VARIANCE to TRUE results in an error being reported. [TRUE]

OUT = NDF (Write)
The output NDF. If a null (!) value is supplied, WCSMOSAIC will terminate early
without creating an output cube, but without reporting an error. Note, the pixel
bounds which the output cube would have had will still be written to output Param-
eters LBOUND and UBOUND, even if a null value is supplied for OUT.

PARAMS(2) = _DOUBLE (Read)
An optional array which consists of additional parameters required by the Sinc,
SincSinc, SincCos, SincGauss, Somb, SombCos, and Gauss methods.
PARAMS(1) is required by all the above schemes. It is used to specify how many
output pixels on either side of the central output pixel are to receive contribution
from the corresponding input pixel. Typically, a value of 2 is appropriate and the
minimum allowed value is 1 (i.e. one pixel on each side). A value of zero or fewer
indicates that a suitable number of pixels should be calculated automatically. [0]
PARAMS(2) is required only by the Gauss, SombCos, SincSinc, SincCos, and Sinc-
Gauss schemes. For the SombCos, SincSinc and SincCos schemes, it specifies the
number of output pixels at which the envelope of the function goes to zero. The
minimum value is 1.0, and the run-time default value is 2.0. For the Gauss and Sinc-
Gauss schemes, it specifies the full-width at half-maximum (FWHM) of the Gaussian
envelope measured in output pixels. The minimum value is 0.1, and the run-time
default is 1.0. []

REF = NDF (Read)
The NDF to which all the input NDFs are to be aligned. If a null value is supplied for
this parameter, the first NDF supplied for Parameter IN is used. The WCS information
in this NDF must have a defined inverse transformation (from WCS co-ordinates to
pixel co-ordinates). [!]

UBND() = _INTEGER (Read)
An array of values giving the upper pixel-index bound on each axis for the output
NDF. The suggested default values just encompass all the input data. A null value (!)
also results in these same defaults being used. [!]

VARIANCE = _LOGICAL (Read)
If TRUE, then any input VARIANCE components in the input NDFs are used to weight
the input data (the weight used for each data value is the reciprocal of the variance).
If FALSE, all input data is given equal weight. Note, some applications (such as
CCDPACK:MAKEMOS) use a parameter named USEVAR to determine both whether
input variances are used to weights input data values, and also how to calculate
output variances. However, WCSMOSAIC uses the VARIANCE parameter only
for the first of these purposes (determining whether to weight the input data). The
second purpose (determining how to create output variances) is fulfilled by the
GENVAR parameter. [FALSE]

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_MAKEMOS

SUN/95.45 —Specifications of KAPPA applications 766 WCSMOSAIC

WEIGHTS = LITERAL (Read)
An optional group of numerical weights, one for each of the input NDFs specified by
Parameter IN. If VARIANCE is TRUE, the weight assigned to each input pixel is the
value supplied in this group correspoinding to the appropriate input NDF, divided
by the variance of the pixel value. An error is reported if the number of supplied
weights does not equal the number of supplied input NDFs. [!]

WLIM = _REAL (Read)
This parameter specifies the minimum number of good pixels that must contribute to
an output pixel for the output pixel to be valid. Note, fractional values are allowed.
If a value less than 1.0E-10 is supplied, a value of 1.0E-10 is used. [1.0E-10]

Results Parameters:

FLBND() = _DOUBLE (Write)
The lower bounds of the bounding box enclosing the output NDF in the current WCS
Frame. The number of elements in this parameter is equal to the number of axes in the
current WCS Frame. Celestial axis values will be in units of radians.

FUBND() = _DOUBLE (Write)
The upper bounds of the bounding box enclosing the output NDF in the current WCS
Frame. The number of elements in this parameter is equal to the number of axes in the
current WCS Frame. Celestial axis values will be in units of radians.

LBOUND() = _INTEGER (Write)
The lower pixel bounds of the output NDF. Note, values will be written to this output
parameter even if a null value is supplied for Parameter OUT.

UBOUND() = _INTEGER (Write)
The upper pixel bounds of the output NDF. Note, values will be written to this output
parameter even if a null value is supplied for Parameter OUT.

Examples:
wcsmosaic m51∗ mosaic lbnd=! accept

This example rebins all the NDFs with names starting with the string "m51" in
the current directory so that they are aligned with the first input NDF, and combines them
all into a single output NDF called mosaic. The output NDF is just big enough to contain
all the pixels in all the input NDFs.

Notes:

• WCS information (including the current co-ordinate Frame) is propagated from the
reference NDF to the output NDF.
• QUALITY is not propagated from input to output.
• There are different facts reported, their verbosity depending on the current message-

reporting level set by environment variable MSG_FILTER. If this is set to QUIET, no
information will be displayed while the command is executing. When the filtering
level is at least as verbose as NORMAL, the interpolation method being used will be
displayed. If set to VERBOSE, the name of each input NDF will also be displayed as it
is processed.

767 WCSMOSAIC SUN/95.45 —Specifications of KAPPA applications

Related Applications :

KAPPA: WCSFRAME, WCSALIGN, REGRID; CCDPACK: TRANNDF.

Implementation Status:

• This routine correctly processes the DATA, VARIANCE, LABEL, TITLE, UNITS, WCS,
and HISTORY components of the input NDFs (see the METHOD parameter for notes
on the interpretation of output variances).

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled, but the data type will be
converted to one of _INTEGER, _DOUBLE or _REAL for processing.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun139.htx/sun139.html?xref_TRANNDF

SUN/95.45 —Specifications of KAPPA applications 768 WCSREMOVE

WCSREMOVE
Remove co-ordinate Frames from the WCS component of an NDF

Description:
This application allows you to remove one or more co-ordinate Frames from the WCS com-
ponent in an NDF . The indices of any remaining Frames are ‘shuffled down’ to fill the
gaps left by the removed Frames.

Usage:
wcsremove ndf frames

Parameters:

FRAMES() = LITERAL (Read
Specifies the Frame(s) to be removed. It can be a list of indices (within the WCS
component of the supplied NDF) or list of Domain names. If one or more Domain
name are specified, any WCS Frames which have a matching Domain are removed.
If a list of indices is supplied, any indices outside the range of the available Frames
are ignored. Single Frames or a set of adjacent Frames may be specified, e.g.. typing
[4,6-9,12,14-16] will remove Frames 4,6,7,8,9,12,14,15,16. (Note that the brackets
are required to distinguish this array of characters from a single string including
commas. The brackets are unnecessary when there only one item.) If you wish to
remove all the files enter the wildcard ∗. 5-∗ will remove from 5 to the last Frame.

NDF = NDF (Read and Write)
The NDF data structure.

Examples:
wcsremove m51 "3-5"

This removes Frames 3, 4 and 5 from the NDF called m51. Any remaining Frames with
indices higher than 5 will be re-numbered to fill the gaps left by the removed Frames (i.e.
the original Frame 6 will become Frame 3, etc.).

Notes:

• The Frames within the WCS component of an NDF may be examined using applica-
tion NDFTRACE.

Related Applications :

KAPPA: NDFTRACE, WCSADD, WCSATTRIB, WCSCOPY, WCSFRAME.

769 WCSSHOW SUN/95.45 —Specifications of KAPPA applications

WCSSHOW
Examines the internal structure of a WCS description.

Description:
This application allows you to examine WCS information (represented by an AST Object)
stored in a specified NDF or HDS object, or a catalogue. The structure can be dumped to
a text file, or a Graphical User Interface can be used to navigate through the structure (see
Parameter LOGFILE). A new FrameSet can also be stored in the WCS component of an
NDF (see Parameter NEWWCS). This allows an NDF WCS component to be dumped to a
text file, edited, and then restored to the NDF.

The GUI main window contains the attribute values of the supplied AST Object. Only
those associated with the Object’s class are displayed initially, but attributes of the Objects
parent classes can be displayed by clicking one of the class button to the top left of the
window.

If the Object contains attributes which are themselves AST Objects (such as the Frames
within a FrameSet), then new windows can be created to examine these attributes by
clicking over the attribute name.

Usage:
wcsshow ndf object logfile newwcs full quiet

Parameters:

CAT = FILENAME (Read)
A catalogue containing a positions list such as produced by applications LISTMAKE,
CURSOR. If supplied, the WCS Information in the catalogue is displayed. If a null
(!) is supplied, the WCS information in the NDF specified by Parameter NDF is
displayed. [!]

FULL = _INTEGER (Read)
This parameter is a three-state flag and takes values of -1, 0, or +1. It controls the
amount of information included in the output generated by this application. If FULL
is zero, then a modest amount of non-essential but useful information will be included
in the output. If FULL is negative, all non-essential information will be suppressed
to minimise the amount of output, while if it is positive, the output will include the
maximum amount of detailed information about the Object being examined. [current
value]

LOGFILE = FILENAME (Write)
The name of the text file in which to store a dump of the specified AST Object. If a
null (!) value is supplied, no log file is created. If a log file is given, the Tk browser
window is not produced. [!]

NDF = NDF (Read or Update)
If an NDF is supplied, then its WCS FrameSet is displayed. If a null (!) value is
supplied, then the Parameter OBJECT is used to specify the AST Object to display.
Update access is required to the NDF if a value is given for Parameter NEWWCS.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Object

SUN/95.45 —Specifications of KAPPA applications 770 WCSSHOW

Otherwise, only read access is required. Only accessed if a null (!) value is supplied
for CAT.

NEWWCS = GROUP (Read)
A group expression giving a dump of an AST FrameSet which is to be stored as the
WCS component in the NDF given by Parameter NDF. The existing WCS component
is unchanged if a null value is supplied. The value supplied for this parameter is
ignored if a null value is supplied for Parameter NDF. The Base Frame in the FrameSet
is assumed to be the GRID Frame. If a value is given for this parameter, then the log
file or Tk browser will display the new FrameSet (after being stored in the NDF and
retrieved). [!]

OBJECT = LITERAL (Read)
The HDS object containing the AST Object to display. Only accessed if Parameters
NDF and CAT are null. It must have an HDS type of WCS, must be scalar, and
must contain a single one-dimensional array component with name DATA and type
_CHAR.

QUIET = _LOGICAL (Read)
If TRUE, then the structure of the AST Object is not displayed (using the Tk GUI).
Other functions are unaffected. If a null (!) value is supplied, the value used is TRUE
if a non-null value is supplied for Parameter LOGFILE or Parameter NEWWCS, and
FALSE otherwise. [!]

Examples:
wcsshow m51

Displays the WCS component of the NDF m51 in a Tk GUI.

wcsshow m51 logfile=m51.ast

Dumps the WCS component of the NDF m51 to text file m51.ast.

wcsshow m51 newwcs=^m51.ast

Reads a FrameSet from the text file m51.ast and stores it in the WCS component
of the NDF m51. For instance, the text file m51.ast could be an edited version of the text
file created in the previous example.

wcsshow object="∼/agi_starprog.agi_3800_1.picture(4).more.ast_plot"

Displays the AST Plot stored in the AGI database with X windows picture number 4.

771 WCSSLIDE SUN/95.45 —Specifications of KAPPA applications

WCSSLIDE
Applies a translational correction to the WCS in an NDF

Description:
This application modifies the WCS information in an NDF so that the WCS position
of a given pixel is moved by specified amount along each WCS axis. The shifts to use
are specified either by an absolute offset vector given by the ABS parameter or by the
difference between a fiducial point and a standard object given by the FID and OBJ
parameters respectively. In each case the co-ordinates are specified in the NDF’s current
WCS co-ordinate Frame.

Usage:
wcsslide ndf abs

Parameters:

ABS() = _DOUBLE (Read)
Absolute shift for each WCS axis. The number of values supplied must match the
number of WCS axes in the NDF. It is only used if STYPE="Absolute". Offsets for
celestial longitude and latitude axes should be specified in arcseconds. Offsets for all
other types of axes should be given directly in the units of the axis.

FID = LITERAL (Read)
A comma-separated list of formatted axis values giving the position of the fiducial
point in WCS co-ordinates. The number of values supplied must match the number
of WCS axes in the NDF. It is only used if STYPE="Relative".

NDF = NDF (Update)
The NDF to be translated.

OBJ = LITERAL (Read)
A comma-separated list of formatted axis values giving the position of the standard
object in WCS co-ordinates. The number of values supplied must match the number
of WCS axes in the NDF. It is only used if STYPE="Relative".

STYPE = LITERAL (Read)
The sort of shift to be used. The choice is "Relative" or "Absolute". ["Absolute"]

Examples:
wcsslide m31 [32,23]

The (RA,Dec) axes in the NDF m31 are shifted by 32 arcseconds in right ascen-
sion and 23 arcseconds in declination.

wcsslide speca stype=rel fid=211.2 obj=211.7

The spectral axis in the NDF speca (which measures frequency in GHz), is shifted by
0.5 GHz (i.e. 211.7–211.2).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

SUN/95.45 —Specifications of KAPPA applications 772 WCSSLIDE

wcsslide speca stype=abs abs=0.5

This does just the same as the previous example.

Notes:

• The correction is affected by translating pixel co-ordinates by a constant amount
before projection them into WCS co-ordinates. Therefore, whilst the translation will
be constant across the array in pixel co-ordinates, it may vary in WCS co-ordinates
depending on the nature of the pixel→WCS transformation. The size of the trans-
lation in pixel co-ordinates is chosen in order to produce the required shift in WCS
co-ordinates at the OBJ position (if STYPE is "Relative"), or at the array centre (if
STYPE is "Absolute").

Related Applications :

KAPPA: SLIDE.

Implementation Status:

• There can be an arbitrary number of NDF dimensions.

773 WCSTRAN SUN/95.45 —Specifications of KAPPA applications

WCSTRAN
Transform a position from one NDF co-ordinate Frame to another

Description:
This application transforms a position from one NDF co-ordinate Frame to another. The
input and output Frames may be chosen freely from the Frames available in the WCS
component of the supplied NDF. The transformed position is formatted for display and
written to the screen and also to an output parameter.

Usage:
wcstran ndf posin framein [frameout]

Parameters:

EPOCHIN = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAMEIN)
for a celestial co-ordinate system, then an epoch value is needed to qualify it. This is
the epoch at which the supplied sky position was determined. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

EPOCHOUT = _DOUBLE (Read)
If a ‘Sky Co-ordinate System’ specification is supplied (using Parameter FRAMEOUT)
for a celestial co-ordinate system, then an epoch value is needed to qualify it. This is
the epoch at which the transformed sky position is required. It should be given as a
decimal years value, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch if less than 1984.0 and as a Julian epoch
otherwise.

FRAMEIN = LITERAL (Read)
A string specifying the co-ordinate Frame in which the input position is supplied (see
Parameter POSIN). If a null parameter value is supplied, then the current Frame in
the NDF is used. The string can be one of the following:

• A domain name such as SKY, AXIS, PIXEL. The two ‘pseudo-domains’ WORLD
and DATA may be supplied and will be translated into PIXEL and AXIS respec-
tively, so long as the WCS component of the NDF does not contain Frames with
these domains.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

FRAMEOUT = LITERAL (Read)
A string specifying the co-ordinate Frame in which the transformed position is
required. If a null parameter value is supplied, then the current Frame in the NDF is
used. The string can be one of the following:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun163.htx/sun163.html?xref_

SUN/95.45 —Specifications of KAPPA applications 774 WCSTRAN

• A domain name such as SKY, AXIS, PIXEL. The two ‘pseudo-domains’ WORLD
and DATA may be supplied and will be translated into PIXEL and AXIS respec-
tively, so long as the WCS component of the NDF does not contain Frames with
these domains.
• An integer value giving the index of the required Frame within the WCS compo-

nent.
• An IRAS90 Sky Co-ordinate System (SCS) values such as "EQUAT(J2000)" (see

SUN/163).

NDF = NDF (Read and Write)
The NDF data structure containing the required co-ordinate Frames.

POSIN = LITERAL (Read)
The co-ordinates of the position to be transformed, in the co-ordinate Frame specified
by Parameter FRAMEIN (supplying a colon ":" will display details of the required
co-ordinate Frame). The position should be supplied as a list of formatted axis values
separated by spaces or commas.

QUIET = _LOGICAL (Read)
If TRUE, the transformed position is not written to the screen (it is still written to the
output Parameter POSOUT). [FALSE]

SKYDEG = _INTEGER (Read)
If greater than zero, the values for any celestial longitude or latitude axes are for-
matted as decimal degrees, irrespective of the Format attributes in the NDF WCS
component. The supplied integer value indicates the number of decimal places re-
quired. If the SKYDEG value is less than or equal to zero, the formats specified by
the Format attributes in the WCS component are honoured. [0]

Results Parameters:

POSOUT = LITERAL (Write)
The formatted co-ordinates of the transformed position, in the co-ordinate Frame specified
by Parameter FRAMEOUT. The position will be stored as a list of formatted axis values
separated by spaces or commas.

Examples:
wcstran m51 "100.1 21.5" pixel

This transforms the pixel position "100.1 21.5" into the current co-ordinate Frame of
the NDF m51. The results are displayed on the screen and written to the output Parameter
POSOUT.

wcstran m51 "1:00:00 -12:30" equ(B1950) pixel

This transforms the RA/DEC position "1:00:00 -12:30" (referred to the J2000
equinox) into pixel co-ordinates within the NDF m51. The results are written to the output
Parameter POSOUT.

wcstran m51 "1:00:00 -12:30" equ(B1950) equ(j2000)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_AST_UNFORMAT

775 WCSTRAN SUN/95.45 —Specifications of KAPPA applications

This is like the previous example except that the position is transformed into
RA/DEC referred to the B1950 equinox, instead of pixel co-ordinates.

Notes:

• The transformed position is not written to the screen when the message filter envi-
ronment variable MSG_FILTER is set to QUIET. The creation of the output Parameter
POSOUT is unaffected by MSG_FILTER.

Related Applications :

KAPPA: LISTMAKE, LISTSHOW, NDFTRACE, WCSATTRIB, WCSFRAME.

SUN/95.45 —Specifications of KAPPA applications 776 WIENER

WIENER
Applies a Wiener filter to a one- or two-dimensional array

Description:
This application filters the supplied one- or two-dimensional array using a Wiener filter.
It takes an array holding observed data and another holding a Point-Spread Function as
input and produces an output restored array with potentially higher resolution and lower
noise. Generally superior results can be obtained using applications MEM2D or LUCY,
but at the cost of much more processing time.

The Wiener filter attempts to minimise the mean squared difference between the unde-
graded image and the restored image. To do this it needs to know the power spectrum of
the undegraded image (i.e. the power at each spatial frequency before the instrumental
blurring and the addition of noise). Obviously, this is not usually available, and instead
the power spectrum of some other image must be used (the ‘model’ image). The idea is
that a model image should be chosen for which there is some a priori reason for believing
it to have a power spectrum similar to the undegraded image. Many different suggestions
have been made for the best way to make this choice and the literature should be consulted
for a detailed discussion (for instance, see the paper Wiener Restoration of HST Images:
Signal Models and Photometric Behavior by I.C. Busko in the proceedings of the first Annual
Conference on Astronomical Data Analysis Software and Systems, Tucson). By default,
this application uses a ‘white’ model image, i.e. one in which there is equal power at all
spatial frequencies. The default value for this constant power is the mean power per pixel
in the input image. There is also an option to use the power spectrum of a supplied model
image.

The filter also depends on a model of the noise in the supplied image. This application
assumes that the noise is ’white’ and is constant across the image. You can specify the
noise power to use. If a noise power of zero is supplied, then the Wiener filter just becomes
a normal inverse filter which will tend to amplify noise in the supplied image.

The filtering is done by multiplying the Fourier transform of the supplied image by the
Fourier transform of the filter function. The output image is then created by taking the
inverse Fourier transform of the product. The Fourier transform of the filter function is
given by:

H∗

|H|2 + Pn
Pg

where H is the Fourier transform of the supplied Point-Spread Function, Pn is the noise
power, Pg is the power in the model image, and H∗ is the complex conjugate of H. If the
supplied model includes noise (as indicated by Parameter QUIET) then Pn is subtracted
from Pg before evaluating the above expression.

Usage:
wiener in psf out xcentre ycentre

777 WIENER SUN/95.45 —Specifications of KAPPA applications

Parameters:

IN = NDF (Read)
The input NDF containing the observed data. This image may contain bad values,
in which case the bad values will be replaced by zero before applying the filter. The
resulting filtered image is normalised by dividing each pixel value by the correspond-
ing weight of the good input pixels. These weights are found by filtering a mask
image which holds the value one at every good input pixel, and zero at every bad
input pixel.

MODEL = NDF (Read)
An NDF containing an image to use as the model for the power spectrum of the
restored image. Any bad values in this image are replaced by the mean of the good
values. If a null value is supplied then the model power spectrum is taken to be
uniform with a value specified by Parameter PMODEL. [!]

OUT = NDF (Write)
The restored output array. An extension named WIENER is added to the output NDF
to indicate that the image was created by this application (see Parameter QUIET).

PMODEL = _REAL (Read)
The mean power per pixel in the model image. This parameter is only accessed if
a null value is supplied for Parameter MODEL. If a value is obtained for PMODEL
then the model image is assumed to have the specified constant power at all spatial
frequencies. If a null (!) value is supplied, the value used is the mean power per
pixel in the input image. [!]

PNOISE = _REAL (Read)
The mean noise power per pixel in the observed data. For Gaussian noise this is equal
to the variance. If a null (!) value is supplied, the value used is an estimate of the
noise variance based on the difference between adjacent pixel values in the observed
data. [!]

PSF = NDF (Read)
An NDF holding an estimate of the Point-Spread Function (PSF) of the input array.
This could, for instance, be produced using the KAPPA application PSF. There should
be no bad pixels in the PSF otherwise an error will be reported. The PSF can be
centred anywhere within the array, but the location of the centre must be specified
using Parameters XCENTRE and YCENTRE. The PSF is assumed to have the value
zero outside the supplied NDF.

QUIET = _LOGICAL (Read)
This specifies whether or not the image given for Parameter MODEL (or the value
given for Parameter PMODEL), includes noise. If the model does not include any
noise then a TRUE value should be supplied for QUIET. If there is any noise in the
model then QUIET should be supplied FALSE. If a null (!) value is supplied, the
value used is FALSE, unless the image given for Parameter MODEL was created by a
previous run of WIENER (as indicated by the presence of a WIENER extension in the
NDF), in which case the run time default is TRUE (i.e. the previous run of WIENER is
assumed to have removed the noise). [!]

THRESH = _REAL (Read)
The fraction of the PSF peak amplitude at which the extents of the PSF are determined.
These extents are used to derive the size of the margins that pad the supplied input

SUN/95.45 —Specifications of KAPPA applications 778 WIENER

array. Lower values of THRESH will result in larger margins being used. THRESH
must be positive and less than 0.5. [0.0625]

TITLE = LITERAL (Read)
A title for the output NDF. A null (!) value means using the title of the input NDF.
[!]

WLIM = _REAL (Read)
If the input array contains bad values, then this parameter may be used to determine
the minimum weight of good input values required to create a good output value. It
can be used, for example, to prevent output pixels from being generated in regions
where there are relatively few good input values to contribute to the restored result.
It can also be used to ‘fill in’ small areas (i.e. smaller than the PSF) of bad pixels.
The numerical value given for WLIM specifies the minimum total weight associated
with the good pixels in a smoothing box required to generate a good output pixel
(weights for each pixel are defined by the normalised PSF). If this specified minimum
weight is not present, then a bad output pixel will result, otherwise a smoothed
output value will be calculated. The value of this parameter should lie between 0.0
and 1.0. WLIM=0 causes a good output value to be created even if there is only one
good input value, whereas WLIM=1 causes a good output value to be created only if
all input values are good. [0.001]

XCENTRE = _INTEGER (Read)
The x pixel index of the centre of the PSF within the supplied PSF array. The
suggested default is the middle pixel (rounded down if there are an even number of
pixels per line).

YCENTRE = _INTEGER (Read)
The y pixel index of the centre of the PSF within the supplied PSF array. The suggested
default is the middle line (rounded down if there are an even number of lines).

Examples:
wiener cenA star cenA_hires 11 13

This example deconvolves the array in the NDF called cenA, putting the result-
ing array in the NDF called cenA_hires. The PSF is defined by the array in NDF star, and
the centre of the PSF is at pixel (11, 13).

wiener cenA star cenA_hires 11 13 pnoise=0

This example performs the same function as the previous example, except that
the noise power is given as zero. This causes the Wiener filter to reduce to a standard
inverse filter, which will result in more high frequencies being present in the restored
image.

wiener cenA star cenA_hires 11 13 model=theory quiet

This example performs the same function as the first example, except that the
power spectrum of the restored image is modelled on that of NDF theory, which may for
instance contain a theoretical model of the object in NDF cenA, together with a simulated

779 WIENER SUN/95.45 —Specifications of KAPPA applications

star field. The Parameter QUIET is set to a TRUE value to indicate that the theoretical
model contains no noise.

Notes:

• The convolutions required by the Wiener filter are performed by the multiplication
of Fourier transforms. The supplied input array is extended by a margin along each
edge to avoid problems of wrap-around between opposite edges of the array. The
width of this margin is about equal to the width of the significant part of the PSF
(as determined by Parameter THRESH). The application displays the width of these
margins. The margins are filled by replicating the edge pixels from the supplied input
NDFs.

Related Applications :

KAPPA: FOURIER, LUCY, MEM2D.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, LABEL, TITLE, UNITS,
WCS, and HISTORY components of the input NDF and propagates all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled. Arithmetic is performed using
single-precision floating point.

SUN/95.45 —Specifications of KAPPA applications 780 ZAPLIN

ZAPLIN
Replaces regions in a two-dimensional NDF by bad values or by

linear interpolation

Description:
This routine replaces selected areas within a two-dimensional input NDF (specified
by Parameter IN), either by filling the areas with bad values, or by linear interpolation
between neighbouring data values (see Parameter ZAPTYPE). Each area to be replaced
can be either a range of pixel columns extending the full height of the image, a range
of pixel lines extending the full width of the image, or a rectangular region with edges
parallel to the pixel axes (see Parameter LINCOL).

The bounds of the area to be replaced can be specified either by using a graphics cursor,
or directly in response to parameter prompts, or by supplying a text file containing the
bounds (see Parameter MODE). In the first two modes the application loops asking for
new areas to zap, until told to quit or an error is encountered. In the last mode processing
stops when the end of file is found. An output text file may be produced containing a
description of the areas replaced (see Parameter COLOUT). This file may be used to specify
the regions to be replaced in a subsequent invocation of ZAPLIN.

Usage:

zaplin in out [title]

lincol=?

columns=? lines=?

colin=?
mode

Parameters:

COLIN = FILENAME (Read)
The name of a text file containing the bounds of the areas to be replaced. This
parameter is only accessed if Parameter MODE is set to "File". Each record in the
file must be either a blank line, a comment (indicated by a "!" or "#" in column 1),
or a definition of an area to be replaced, consisting of three or four space-separated
fields. If a range of columns is to be replaced, each of the first two fields should be
a formatted value for the first axis of the current co-ordinate Frame of the input
NDF, and the third field should be the single character "C". If a range of lines is to be
replaced, each of the first two fields should be a formatted value for the second axis of
the current co-ordinate Frame, and the third field should be the single character "L".
If a rectangular region is to be replaced, the first two fields should give the formatted
values on axes 1 and 2 at one corner of the box, and the second two fields should give
the formatted values on axes 1 and 2 at the opposite corner of the box.

COLOUT = FILENAME (Read)
The name of an output text file in which to store descriptions of the areas replaced
by the current invocation of this application. It has the same format as the input
file accessed using Parameter COLIN, and so may be used as input on a subsequent

781 ZAPLIN SUN/95.45 —Specifications of KAPPA applications

invocation. This parameter is not accessed if Parameter MODE is set to "File". If
COLOUT is null (!), no file will be created. [!]

COLUMNS = LITERAL (Read)
A pair of x values indicating the range of columns to be replaced. All columns
between the supplied values will be replaced. This parameter is only accessed if
Parameter LINCOL is set to "Columns" or "Region", and Parameter MODE is set to
"Interface". Each x value should be given as a formatted value for Axis 1 of the
current co-ordinate Frame of the input NDF. The two values should be separated by
a comma, or by one or more spaces.

DEVICE = DEVICE (Read)
The graphics device to use if Parameter MODE is set to "Cursor". [Current graphics
device]

IN = NDF (Read)
The input image.

LINCOL = LITERAL (Read)
The type of area is to be replaced. This parameter is only accessed if Parameter MODE
is set to "Cursor" or "Interface". The options are as follows.

• "Lines" — Replaces lines of pixels between the y values specified by Parameter
LINES. Each replaced line extends the full width of the image.
• "Columns" — Replaces columns of pixels between the x values specified by

Parameter COLUMNS. Each replaced column extends the full height of the
image.
• "Region" — Replaces the rectangular region of pixels within the x and y bounds

specified by Parameters COLUMNS and LINES. The edges of the box are parallel
to the pixel axes.

If this parameter is specified on the command line, and Parameter MODE is set
to "Interface", only one area will be replaced; otherwise a series of areas will be
replaced until a null (!) value is supplied for this parameter.

LINES = LITERAL (Read)
A pair of y values indicating the range of lines to be replaced. All lines between
the supplied values will be replaced. This parameter is only accessed if Parameter
LINCOL is set to "Lines" or "Region", and Parameter MODE is set to "Interface".
Each y value should be given as a formatted value for Axis 2 of the current co-ordinate
Frame of the input NDF. The two values should be separated by a comma, or by one
or more spaces.

MARKER = INTEGER (Read)
This parameter is only accessed if Parameter PLOT is set to "Mark". It specifies the
type of marker with which each cursor position should be marked, and should be
given as an integer PGPLOT marker type. For instance, 0 gives a box, 1 gives a dot, 2
gives a cross, 3 gives an asterisk, 7 gives a triangle. The value must be larger than or
equal to −31. [current value]

MODE = LITERAL (Read)
The method used to obtain the bounds of the areas to be replaced. The supplied
string can be one of the following options.

SUN/95.45 —Specifications of KAPPA applications 782 ZAPLIN

• "Interface" — Bounds are obtained using Parameters COLUMNS and LINES.
The type of area to be replaced is specified using Parameter LINCOL.
• "Cursor" — Bounds are obtained using the graphics cursor of the device spec-

ified by Parameter DEVICE. The type of area to be replaced is specified using
Parameter LINCOL. The WCS information stored with the picture in the graphics
database is used to map the supplied cursor positions into the pixel co-ordinate
Frame of the input NDF. A message is displayed indicating the co-ordinate Frame
in which the picture and the output NDF were aligned. Graphics may be drawn
over the image indicating the region to be replaced (see Parameter PLOT).
• "File" — The bounds and type of each area to be replaced are supplied in the

text file specified by Parameter COLIN.

[current value]

NOISE = _LOGICAL (Read)
This parameter is only accessed if Parameter ZAPTYPE is set to "Linear". If a TRUE
value is supplied, gaussian noise is added to each interpolated pixel value. The vari-
ance of the noise is equal to the variance of the data value being replaced. If the data
variance is bad, no noise is added. If the input NDF has no VARIANCE component,
variances equal to the absolute data value are used. This facility is provided for
cosmetic use. [FALSE]

OUT = NDF (Write)
The output image.

PLOT = LITERAL (Read)
The type of graphics to be used to mark each cursor position. The appearance of
these graphics (colour, size, etc.) is controlled by the STYLE parameter. PLOT can
take any of the following values.

• "Adapt" — Causes "Box" to be used if a region is being replaced, "Vline" is
a range of columns is being replaced, and "Hline" if a range of lines is being
replaced.
• "Box" — A rectangular box with edges parallel to the edges of the graphics device

is drawn with the two specified positions at opposite corners.
• "Mark"— Each position is marked by the symbol specified by Parameter MARKER.
• "None" — No graphics are produced.
• "Vline" — A vertial line is drawn through each specified position, extending the

entire height of the selected picture.
• "Hline" — A horizontal line is drawn through each specified position, extending

the entire width of the selected picture.

[current value]

STYLE = GROUP (Read)
A group of attribute settings describing the style to use when drawing the graphics
specified by Parameter PLOT.
A comma-separated list of strings should be given in which each string is either an
attribute setting, or the name of a text file preceded by an up-arrow character "^".
Such text files should contain further comma-separated lists which will be read and
interpreted in the same manner. Attribute settings are applied in the order in which

783 ZAPLIN SUN/95.45 —Specifications of KAPPA applications

they occur within the list, with later settings overriding any earlier settings given for
the same attribute.
Each individual attribute setting should be of the form:
<name>=<value>
where <name> is the name of a plotting attribute, and <value> is the value to
assign to the attribute. Default values will be used for any unspecified attributes.
All attributes will be defaulted if a null value (!)—the initial default—is supplied.
To apply changes of style to only the current invocation, begin these attributes with
a plus sign. A mixture of persistent and temporary style changes is achieved by
listing all the persistent attributes followed by a plus sign then the list of temporary
attributes.
See Section E for a description of the available attributes. Any unrecognised attributes
are ignored (no error is reported).
The appearance of vertical and horizontal lines is controlled by the attributes
Colour(Curves), Width(Curves), etc. (the synonym Lines may be used in place of Curves).
The appearance of boxes is controlled by the attributes Colour(Border), Size(Border),
etc. (the synonym Box may be used in place of Border). The appearance of markers is
controlled by attributes Colour(Markers), Size(Markers), etc. [current value]

TITLE = LITERAL (Read)
Title for the output image. A null value (!) propagates the title from the input image
to the output image. [!]

USEAXIS = GROUP (Read)
USEAXIS is only accessed if the current co-ordinate Frame of the input NDF has more
than two axes. A group of two strings should be supplied specifying the two axes
spanning the plane containing the areas to be replaced. Each axis can be specified
using one of the following options.

• Its integer index within the current Frame of the output NDF (in the range 1 to
the number of axes in the current Frame).
• Its Symbol string such as "RA" or "VRAD".
• A generic option where "SPEC" requests the spectral axis, "TIME" selects the

time axis, "SKYLON" and "SKYLAT" picks the sky longitude and latitude axes
respectively. Only those axis domains present are available as options.

A list of acceptable values is displayed if an illegal value is supplied. If a null (!)
value is supplied, the axes with the same indices as the first two significant NDF pixel
axes are used. [!]

ZAPTYPE = LITERAL (Read)
The method used to choose the replacement pixel values. It should be one of the
options below.

• "Bad" — Replace the selected pixels by bad values.
• "Linear" — Replace the selected pixels using linear interpolation. If a range

of lines is replaced, then the interpolation is performed vertically between the
first non-bad pixels above and below the selected lines. If a range of columns
is replaced, then the interpolation is performed horizontally between the first

SUN/95.45 —Specifications of KAPPA applications 784 ZAPLIN

non-bad pixels to the left and right of the selected columns. If a rectangular
region is replaced, then the interpolation is bi-linear between the nearest non-bad
pixels on all four edges of the selected region. If interpolation is not possible (for
instance, if the selected pixels are at the edge of the array) then the pixels are
replaced with bad values. ["Linear"]

Examples:
zaplin out=cleaned colout=fudge.dat

Assuming the current value of Parameter MODE is "Cursor", this will copy the
NDF associated with the last DATA picture to an NDF called cleaned, interactively
replacing areas using the current graphics device. Linear interpolation is used to obtain
the replacement values. A record of the areas replaced will be stored in a text file named
fudge.dat.

zaplin grubby cleaned i lincol=r columns="188 190" lines="15 16"

This replaces a region from pixel (188, 15) to (190, 16) within the NDF called
grubby and stores the result in the NDF called cleaned. The current co-ordinate Frame
in the input NDF should be set to PIXEL first (using WCSFRAME). The replacement is
performed using linear interpolation.

zaplin grubby(6„) cleaned i lincol=r columns="188 190"

This replaces columns 188 to 190 in the 6th y-z plane region within the NDF
called grubby and stores the result in the NDF called cleaned. The current co-ordinate
Frame in the input NDF should be set to PIXEL first (using WCSFRAME). The replacement
is performed using linear interpolation.

zaplin m42 m42c f colin=aaoccd1.dat zaptype=b

This flags with bad values the regions in the NDF called m42 defined in the text
file called aaoccd1.dat, and stores the result in an NDF called m42c.

zaplin m42 m42c f colin=aaoccd1.dat noise

As above except that linear interpolation plus cosmetic noise are used to replace
the areas to be cleaned rather than bad pixels.

Notes:

• Bounds supplied in Interface and File mode are transformed into the PIXEL Frame of
the input NDF before being used.

• Complicated results arise if the axes of the current Frame of the input NDF are not
parallel to the pixel axes. In these cases it is usually better to switch to the PIXEL
Frame (using WCSFRAME) prior to using ZAPLIN. Roughly speaking, the range of

785 ZAPLIN SUN/95.45 —Specifications of KAPPA applications

pixel lines and/or columns which are replaced will include any which intersect the
specified range on the current-Frame axis.

• When using input files care should be taken to ensure that the co-ordinate system
used in the file matches the current co-ordinate Frame of the input NDF.

• If the input NDF is a section of an NDF with a higher dimensionality, the "lines" and
"columns" are with respect to the two-dimensional section, and do not necessarily
refer to the first and second dimensions of the NDF as a whole. See the "Examples".

Related Applications :

KAPPA: ARDMASK, CHPIX, FILLBAD, GLITCH, NOMAGIC, REGIONMASK, SEG-
MENT, SETMAGIC; FIGARO: CSET, ICSET, NCSET, TIPPEX.

Implementation Status:

• This routine correctly processes the AXIS, DATA, QUALITY, VARIANCE, LABEL,
TITLE, UNITS, WCS, and HISTORY components of the input NDF and propagates
all extensions.

• Processing of bad pixels and automatic quality masking are supported.

• All non-complex numeric data types can be handled.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_CSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_ICSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_NCSET
http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_TIPPEX

SUN/95.45 —Descriptions of Frame Attributes 786

D Descriptions of Frame Attributes

Each co-ordinate Frame has several attributes that determine its properties. This section lists
the most important of these. See SUN/210 for a complete description of the properties of
Frames and their attributes. The application WCSATTRIB can be used to examine attribute
values associated with the current Frame of an NDF, and change the values of those that are not
read-only.

Digits/Digits(axis)
Number of digits of precision

Description:
This attribute specifies how many digits of precision are required by default when a co-
ordinate value is formatted for a Frame axis (e.g. when producing annotated plot axes).
Its value may be set either for a Frame as a whole, or (by subscripting the attribute name
with the number of an axis) for each axis individually. Any value set for an individual axis
will override the value for the Frame as a whole.

Note that the Digits value acts only as a means of determining a default value for the
Format attribute. Its effects are overridden if a Format string is set explicitly for an axis.

The default Digits value for a Frame is 7. If a value fewer than 1 is supplied, then 1 is used
instead.

If the Frame is actually a SkyFrame (e.g. describes celestial longitude and latitude), then
the Digits value specifies the total number of digits in the formatted axis value—that is, the
sum of the hours (or degrees), minutes and seconds digits.

Examples:
wcsattrib m51 set digits 4

This sets the Digits attribute to the value 4 for all axes in the current Frame of
the NDF m51. This results in axis values being formatted with four digits of precision
when they are displayed by any application, so long as no value has been set for the
Format attribute.

wcsattrib m51 set digits(1) 4

This is like the previous example, except that the Digits value is only set for the
first axis in the current Frame of the NDF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

787 Domain SUN/95.45 —Descriptions of Frame Attributes

Domain
Co-ordinate system domain

Description:
This attribute contains a string that identifies the physical domain of the co-ordinate system
that a Frame describes.

The Domain attribute also controls how Frames align with each other. If the Domain value
in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Some Frames are given standard Domain values when they are created (e.g. GRID, FRAC-
TION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS). Frames
created by the user (for instance, using WCSADD) can have any Domain value, but the
standard Domain names should be avoided unless the standard meanings are appropriate
for the Frame being created.

Examples:
wcsattrib m51 set domain oldpixel

If the current co-ordinate Frame in the NDF m51 is the PIXEL Frame, then this
command takes a ‘snap-shot’ of the PIXEL Frame and stores it as a new Frame with
Domain OLDPIXEL in the WCS component. Subsequent changes to the PIXEL Frame
(for instance, produced by applications that rotate, or move the contents of the NDF) will
not effect the OLDPIXEL Frame, which will thus provide a ‘frozen’ record of the original
PIXEL Frame.

Notes:

• All Domain values are converted to uppercase and white space is removed before use.

DSBCentre
The central position of interest in a dual-sideband spectrum

(DSBSpecFrames only)

Description:
This attribute specifies the central position of interest in a dual-sideband spectrum. Its sole
use is to determine the local oscillator frequency (the frequency which marks the boundary
between the lower and upper sidebands). See the description of the IF (intermediate
frequency) attribute for details of how the local oscillator frequency is calculated. The
sideband containing this central position is referred to as the "observed" sideband, and
the other sideband as the "image" sideband.

The value is accessed as a position in the spectral system specified by the System attribute,
but is stored internally as topocentric frequency. Thus, if the System attribute of the DSB-
SpecFrame is set to "VRAD", the Unit attribute set to "m/s" and the StdOfRest attribute set

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame

SUN/95.45 —Descriptions of Frame Attributes 788 Epoch

to "LSRK", then values for the DSBCentre attribute should be supplied as radio velocity in
units of "m/s" relative to the kinematic LSR (alternative units may be used by appending
a suitable units string to the end of the value). This value is then converted to topocentric
frequency and stored. If (say) the Unit attribute is subsequently changed to "km/s" before
retrieving the current value of the DSBCentre attribute, the stored topocentric frequency
will be converted back to LSRK radio velocity, this time in units of "km/s", before being
returned.

The default value for this attribute is 30 GHz.

Notes:

• The attributes which define the transformation to or from topocentric frequency
should be assigned their correct values before accessing this attribute. These poten-
tially include System, Unit, StdOfRest, ObsLon, ObsLat, ObsAlt, Epoch, RefRA, RefDec,
and RestFreq.

Epoch
Epoch of observation

Description:
This attribute is used to qualify the co-ordinate system described by a Frame, by giving
the moment in time when the co-ordinates are known to be correct. Often, this will be the
date of observation.

The Epoch value is important in cases where the co-ordinate system changes with time.
For instance, when considering celestial co-ordinate systems, possible reasons for change
include: (i) changing aberration of light caused by the observer’s velocity (e.g. due to
the Earth’s motion around the Sun), (ii) changing gravitational deflection by the Sun due
to changes in the observer’s position with time, (iii) fictitious motion due to rotation of
non-inertial co-ordinate systems (e.g. the old FK4 system), and (iv) proper motion of the
source itself (although this last effect is not handled by the SkyFrame class because it
affects individual sources rather than the co-ordinate system as a whole).

The Epoch attribute is stored as a Modified Julian Date, and is not usually changed.

Notes:

• Care must be taken to distinguish the Epoch value, which relates to motion (or
apparent motion) of the source, from the superficially similar Equinox value. The
latter is used to qualify a co-ordinate system which is itself in motion in a (notionally)
predictable way as a result of being referred to a slowly moving reference plane (e.g.
the equator).

• See the description of the System attribute for details of which qualifying attributes
apply to each celestial co-ordinate system.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

789 Equinox SUN/95.45 —Descriptions of Frame Attributes

Input Formats :

The formats accepted when setting an Epoch value are listed below. They are all case-
insensitive and are generally tolerant of extra white space and alternative field delimiters.

• Besselian Epoch: Expressed in decimal years, with or without decimal places ("B1950"
or "B1976.13" for example).

• Julian Epoch: Expressed in decimal years, with or without decimal places ("J2000"
or "J2100.9" for example).

• Year: Decimal years, with or without decimal places ("1996.8" for example). Such
values are interpreted as a Besselian epoch (see above) if less than 1984.0 and as a
Julian epoch otherwise.

• Julian Date: With or without decimal places ("JD 2454321.9" for example).

• Modified Julian Date: With or without decimal places ("MJD 54321.4" for example).

• Gregorian Calendar Date: With the month expressed either as an integer or a 3-
character abbreviation, and with optional decimal places to represent a fraction of a
day ("1996-10-2" or "1996-Oct-2.6" for example). If no fractional part of a day is
given, the time refers to the start of the day (zero hours).

• Gregorian Date and Time: Any calendar date (as above) but with a fraction of a day
expressed as hours, minutes and seconds ("1996-Oct-2 12:13:56.985" for example).

Output Format :

When enquiring Epoch values, the format used is the “Year” format described under “Input
Formats”. This is a value in decimal years, which will be a Besselian epoch if less than
1984.0, and a Julian epoch otherwise.

Equinox
Epoch of the mean equinox (SkyFrames only)

Description:
This attribute is used to qualify those celestial co-ordinate systems described by a SkyFrame that
are notionally based on the ecliptic (the plane of the Earth’s orbit around the Sun) and/or
the Earth’s equator.

Both of these planes are in motion and their positions are difficult to specify precisely. In
practice, therefore, a model ecliptic and/or equator are used instead. These, together with
the point on the sky that defines the co-ordinate origin (the intersection of the two planes
termed the ‘mean equinox’) move with time according to some models that remove the
more-rapid fluctuations. The SkyFrame class supports both the old FK4 and the current
FK5 models.

The position of a fixed source expressed in any of these co-ordinate systems will appear to
change with time due to movement of the co-ordinate system itself (rather than motion of
the source). Such co-ordinate systems must therefore be qualified by a moment in time

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

SUN/95.45 —Descriptions of Frame Attributes 790 Format(axis)

(the ‘epoch of the mean equinox’ or ‘equinox’ for short) which allows the position of the
model co-ordinate system on the sky to be determined. This is the rôle of the Equinox
attribute.

The Equinox attribute is stored as a Modified Julian Date, but when setting or getting its
value you may use the same formats as for the Epoch attribute (q.v.).

Notes:

• Care must be taken to distinguish the Equinox value, which relates to the definition of
a time-dependent co-ordinate system (based on solar-system reference planes which
are in motion), from the superficially similar Epoch value. The latter is used to qualify
co-ordinate systems where the positions of sources change with time (or appear to do
so) for a variety of other reasons, such as aberration of light caused by the observer’s
motion, etc.

• See the description of the System attribute for details of which qualifying attributes
apply to each celestial co-ordinate system.

Format(axis)
Format specification for axis values

Description:
This attribute specifies the format to be used when displaying co-ordinate values associated
with a particular Frame axis (i.e. to convert values from binary to character form).

If no Format value is set for a Frame axis, a default value is supplied instead. This is based
on the value of the Digits, or Digits(axis) attribute and is chosen so that it displays the
requested number of digits of precision.

The interpretation of this string depends on whether or not the Frame is a SkyFrame. If
it is not, the string is interpreted as a format-specification string to be passed to the C
“printf” function (e.g. "%1.7G") in order to format a single co-ordinate value (supplied
as a double-precision number).

For SkyFrames, the syntax and default value of the Format string is re-defined to allow
the formatting of sexagesimal values as appropriate for the particular celestial co-ordinate
system being represented. The syntax of SkyFrame Format strings is described (below) in
the “SkyFrame Formats” section.

SkyFrame Formats :

The Format string supplied for a SkyFrame should contain zero or more of the following
characters. These may occur in any order, but the following is recommended for clarity.

• "+": Indicates that a plus sign should be prefixed to positive values. By default, no
plus sign is used.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

791 Format(axis) SUN/95.45 —Descriptions of Frame Attributes

• "z": Indicates that leading zeros should be prefixed to the value so that the first field
is of constant width, as would be required in a fixed-width table (leading zeros are
always prefixed to any fields that follow). By default, no leading zeros are added.

• "i": Use the standard ISO field separator (a colon) between fields. This is the default
behaviour.

• "b": Use a blank to separate fields.

• "l": Use a letter ("h"/"d", "m" or "s" as appropriate) to separate fields.

• "g": This is the same as "l", except that the separator characters are displayed as
small superscripts when drawn on a graphical device.

• "d": Include a degrees field. Expressing the angle purely in degrees is also the default
if none of "h", "m", "s" or "t" are given.

• "h": Express the angle as a time and include an hours field (where 24 hours corre-
spond to 360 degrees). Expressing the angle purely in hours is also the default if "t"
is given without either "m" or "s".

• "m": Include a minutes field. By default this is not included.

• "s": Include a seconds field. By default this is not included. This request is ignored if
"d" or "h" is given, unless a minutes field is also included.

• "t": Express the angle as a time (where 24 hours correspond to 360 degrees). This
option is ignored if either "d" or "h" is given and is intended for use where the value
is to be expressed purely in minutes and/or seconds of time (with no hours field). If
"t" is given without "d", "h", "m" or "s" being present, then it is equivalent to "h".

• ".": Indicates that decimal places are to be given for the final field in the formatted
string (whichever field this is). The "." should be followed immediately by an
unsigned integer which gives the number of decimal places required. By default, no
decimal places are given.

All of the above format specifiers are case-insensitive. If several characters make con-
flicting requests (e.g. if both "i" and "b" appear), then the character occurring last takes
precedence, except that "d" and "h" always override "t".

Examples:
wcsattrib my_data set format(1) %10.5G

This sets the Format attribute for Axis 1 in the current co-ordinate Frame in the
NDF called my_data, so that axis values are formatted as floating-point values using
a minimum field width of ten characters, and displaying five significant figures. An
exponent is used if necessary.

wcsattrib ngc5128 set format(2) bdms.2

This sets the Format attribute for Axis 2 in the current co-ordinate Frame in the
NDF called ngc5128, so that axis values are formatted as separate degrees, minutes and
seconds field, separated by blanks. The seconds field has two decimal places. This
assumes the current co-ordinate Frame in the NDF is a celestial co-ordinate Frame (i.e. a
SkyFrame).

SUN/95.45 —Descriptions of Frame Attributes 792 IF

Notes:

• When specifying this attribute by name, it should be subscripted with the number of
the Frame axis to which it applies.

IF
The intermediate frequency in a dual-sideband spectrum

(DSBSpecFrames only)

Description:
This attribute specifies the (topocentric) intermediate frequency in a dual-sideband spec-
trum. Its sole use is to determine the local oscillator (LO) frequency (the frequency which
marks the boundary between the lower and upper sidebands). The LO frequency is equal
to the sum of the centre frequency and the intermediate frequency. Here, the "centre
frequency" is the topocentric frequency in Hz corresponding to the current value of the
DSBCentre attribute. The value of the IF attribute may be positive or negative: a positive
value results in the LO frequency being above the central frequency, whilst a negative
aattIF value results in the LO frequency being below the central frequency. The sign of the
IF attribute value determines the default value for the SideBand attribute.

When setting a new value for this attribute, the units in which the frequency value is
supplied may be indicated by appending a suitable string to the end of the formatted
value. If the units are not specified, then the supplied value is assumed to be in units of
GHz. For instance, the following strings all result in an IF of 4 GHz being used: "4.0", "4.0
GHz", "4.0E9 Hz", etc.

When getting the value of this attribute, the returned value is always in units of GHz. The
default value for this attribute is 4 GHz.

ImagFreq
The image sideband equivalent of the rest frequency

(DSBSpecFrames only)

Description:
This is a read-only attribute of a dual-sideband spectrum that gives the frequency corre-
sponding to the rest frequency, but in the opposite sideband.

The value is calculated by first transforming the rest frequency (given by the RestFreq at-
tribute) from the standard of rest of the source (given by the SourceVel and SourceVRF at-
tributes) to the standard of rest of the observer (i.e. the topocentric standard of rest). The
resulting topocentric frequency is assumed to be in the same sideband as the value given
for the DSBCentre attribute (the "observed" sideband), and is transformed to the other

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame

793 Label(axis) SUN/95.45 —Descriptions of Frame Attributes

sideband (the "image" sideband). The new frequency is converted back to the standard
of rest of the source, and the resulting value is returned as the attribute value, in units of
GHz.

Label(axis)
Axis label

Description:
This attribute specifies a label to be attached to each axis of a Frame when it is represented
(e.g.) in graphical output.

If a Label value has not been set for a Frame axis, then a suitable default is supplied,
depending on whether or not the Frame is a SkyFrame.

The default for simple Frames is the string "Axis <n>", where <n> is 1, 2, etc. for each
successive axis.

The default labels for specialised Frames (SkyFrames, SpecFrames, etc.) depend on the par-
ticular co-ordinate system represented by the Frame (e.g. "Right ascension", "Galactic
latitude", "Frequency", "Wavelength in air", etc.).

Examples:
wcsattrib my_data set label(2) "IRAS data (marked in white)"

This sets the Label for Axis 2 in the current Frame in the NDF called my_data, to
the string "IRAS data (marked in white)".

Notes:

• Axis labels are intended purely for interpretation by human readers and not by
software.

• When specifying this attribute by name, it should be subscripted with the number of
the Frame axis to which it applies.

LTOffset
The offset from UTC to Local Time, in hours (TimeFrames only)

Description:
This specifies the offset from UTC to Local Time, in hours, for a TimeFrame. Fractional
hours can be supplied. It is positive for time zones east of Greenwich. AST uses the figure
as given, without making any attempt to correct for daylight saving. The default value is
zero.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_TimeFrame

SUN/95.45 —Descriptions of Frame Attributes 794 Naxes

Naxes
Number of Frame axes

Description:
This is a read-only attribute giving the number of axes in a Frame (i.e. the number of
dimensions of the co-ordinate space that the Frame describes). This value is determined
when the Frame is created.

Examples:
wcsattrib my_data get naxes

This displays the number of axes in the current Frame of the NDF called my_data.

795 ObsLat SUN/95.45 —Descriptions of Frame Attributes

ObsLat
The geodetic latitude of the observer (SpecFrames only)

Description:
This attribute specifies the geodetic latitude of the observer, in degrees. Together with the
ObsLon, Epoch, RefRA, and RefDec attributes, it defines the Doppler shift introduced by
the observers diurnal motion around the Earth’s axis, which is needed when converting
SpecFrames to or from the topocentric standard of rest. The maximum velocity error,
which can be caused by an incorrect value, is 0.5 km/s. The default value for the attribute
is zero.

The value is stored internally in radians, but is converted to and from a degrees string
for access. Some example input formats are: "22:19:23.2", "22 19 23.2", "22:19.387",
"22.32311", "N22.32311", "-45.6", "S45.6". As indicated, the sign of the latitude can
optionally be indicated using characters "N" and "S" in place of the usual "+" and "-".
When converting the stored value to a string, the format "[s]dd:mm:ss.s" is used, when
"[s]" is "N" or "S".

ObsLon
The geodetic longitude of the observer (SpecFrames only)

Description:
This attribute specifies the geodetic (or equivalently, geocentric) longitude of the observer,
in degrees, measured positive eastwards. See also attribute ObsLat. The default value is
zero.

The value is stored internally in radians, but is converted to and from a degrees string for
access. Some example input formats are: "155:19:23.2", "155 19 23.2", "155:19.387",
"155.32311", "E155.32311", "-204.67689", "W204.67689". As indicated, the sign of the
longitude can optionally be indicated using characters "E" and "W" in place of the usual
"+" and "-". When converting the stored value to a string, the format "[s]ddd:mm:ss.s"
is used, when "[s]" is "E" or "W" and the numerical value is chosen to be less than 180
degrees.

RefDec
The declination of the reference point (SpecFrames only)

Description:
This attribute specifies the FK5 J2000.0 declination of a reference point on the sky. See the
description of attribute RefRA for details. This attribute has a default value of zero.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

SUN/95.45 —Descriptions of Frame Attributes 796 RefRA

RefRA
The right ascension of the reference point (SpecFrames only)

Description:
This attribute, together with the RefDec attribute, specifies the FK5 J2000.0 co-ordinates
of a reference point on the sky. For one-dimensional spectra, this should normally be the
position of the source. For spectral data with spatial coverage (spectral cubes, etc.), this
should be close to centre of the spatial coverage. It is used to define the correction for
Doppler shift to be applied when converting between different standards of rest.

The RefRA and RefDec attributes are stored internally in radians, but are converted to and
from a string for access. The format "hh:mm:ss.ss" is used for RefRA, and "dd:mm:ss.s" is
used for RefDec.

RefRA has a default value of zero.

RestFreq
The rest frequency (SpecFrames only)

Description:
This attribute specifies the frequency corresponding to zero velocity. It is used when
converting between between velocity-based spectral co-ordinate systems and and other
co-ordinate systems (such as frequency, wavelength, energy, etc.). The default value is
1.0E5 GHz.

When setting a new value for this attribute, the new value can be supplied either directly
as a frequency, or indirectly as a wavelength or energy, in which case the supplied value
is converted to a frequency before being stored. The nature of the supplied value is
indicated by appending text to the end of the numerical value indicating the units in
which the value is supplied. If the units are not specified, then the supplied value is
assumed to be a frequency in units of GHz. If the supplied unit is a unit of frequency,
the supplied value is assumed to be a frequency in the given units. If the supplied unit
is a unit of length, the supplied value is assumed to be a (vacuum) wavelength. If the
supplied unit is a unit of energy, the supplied value is assumed to be an energy. For
instance, the following strings all result in a rest frequency of around 1.4E14 Hz being used:
"1.4E5", "1.4E14 Hz", "1.4E14 s∗∗-1", "1.4E5 GHz", "2.14E-6 m", "21400 Angstrom",
"9.28E-20 J", "9.28E-13 erg", "0.58 eV", etc.

When getting the value of this attribute, the returned value is always a frequency in units
of GHz.

797 SideBand SUN/95.45 —Descriptions of Frame Attributes

SideBand
Indicates which sideband a dual sideband spectrum represents

(DSBSpecFrames only)

Description:
This attribute indicates whether a dual-sideband spectrum currently represents its lower
or upper sideband, or an offset from the local oscillator frequency. When querying the
current value, the returned string is always one of "usb" (for upper sideband), "lsb" (for
lower sideband), or "lo" (for offset from the local oscillator frequency). When setting a new
value, any of the strings "lsb", "usb", "observed", "image" or "lo" may be supplied (case
insensitive). The "observed" sideband is which ever sideband (upper or lower) contains
the central spectral position given by attribute DSBCentre, and the "image" sideband is
the other sideband. It is the sign of the IF attribute which determines if the observed
sideband is the upper or lower sideband. The default value for SideBand is the observed
sideband.

SourceVel
The source velocity (SpecFrames only)

Description:
This attribute (together with SourceVRF, RefRA, and RefDec) defines the ‘Source’ standard
of rest (see attribute StdOfRest). This is a rest frame that is moving towards the position
given by RefRA and RefDec at a velocity given by SourceVel (in km/s). When setting a
value for SourceVel using WCSATTRIB, the velocity should be supplied in the rest frame
specified by the SourceVRF attribute. Likewise, when getting the value of SourceVel, it will
be returned in the rest frame specified by the SourceVRF attribute.

The default value is zero.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame

SUN/95.45 —Descriptions of Frame Attributes 798 SourceVRF

SourceVRF
Rest frame in which the source velocity is stored (SpecFrames only)

Description:
This attribute identifies the rest frame in which the source velocity is stored (the source
velocity is accessed using attribute SourceVel). When setting a new value for the SourceVel
attribute, the source velocity should be supplied in the rest frame indicated by this attribute.
Likewise, when getting the value of the SourceVel attribute, the velocity will be returned in
this rest frame.

If the value of SourceVRF is changed, the value stored for SourceVel will be converted from
the old to the new rest frame.

The values that can be supplied are the same as for the StdOfRest attribute (except that
SourceVRF cannot be set to "Source"). The default value is "Helio".

StdOfRest
Standard of rest (SpecFrames only)

Description:
This attribute identifies the standard of rest to which the spectral axis values of a SpecFrame re-
fer, and may take any of the values listed in the “Standards of Rest” section (below).

The default StdOfRest value is "Helio".

Standards of Rest :

The SpecFrame class supports the following StdOfRest values (all are case-insensitive).

• "Topocentric", "Topocent" or "Topo": The observers rest-frame (assumed to be on
the surface of the earth). Spectra recorded in this standard of rest suffer a Doppler
shift which varies over the course of a day because of the rotation of the observer
around the axis of the earth. This standard of rest must be qualified using the ObsLat,
ObsLon, Epoch, RefRA, and RefDec attributes.

• "Geocentric", "Geocentr" or "Geo": The rest-frame of the earth centre. Spectra
recorded in this standard of rest suffer a Doppler shift which varies over the course
of a year because of the rotation of the earth around the Sun. This standard of rest
must be qualified using the Epoch, RefRA, and RefDec attributes.

• "Barycentric", "Barycent" or "Bary": The rest-frame of the solar-system barycentre.
Spectra recorded in this standard of rest suffer a Doppler shift which depends both
on the velocity of the Sun through the Local Standard of Rest, and on the movement
of the planets through the solar system. This standard of rest must be qualified using
the Epoch, RefRA, and RefDec attributes.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

799 Symbol(axis) SUN/95.45 —Descriptions of Frame Attributes

• "Heliocentric", "Heliocen" or "Helio": The rest-frame of the Sun. Spectra recorded
in this standard of rest suffer a Doppler shift which depends on the velocity of the
Sun through the Local Standard of Rest. This standard of rest must be qualified using
the RefRA and RefDec attributes.

• "LSR", "LSRK": The rest-frame of the kinematical Local Standard of Rest. Spectra
recorded in this standard of rest suffer a Doppler shift which depends on the velocity
of the kinematical Local Standard of Rest through the galaxy. This standard of rest
must be qualified using the RefRA and RefDec attributes.

• "LSRD": The rest-frame of the dynamical Local Standard of Rest. Spectra recorded
in this standard of rest suffer a Doppler shift which depends on the velocity of the
dynamical Local Standard of Rest through the galaxy. This standard of rest must be
qualified using the RefRA and RefDec attributes.

• "Galactic", "Galactoc" or "Gal": The rest-frame of the galactic centre. Spectra
recorded in this standard of rest suffer a Doppler shift which depends on the velocity
of the galactic centre through the local group. This standard of rest must be qualified
using the RefRA and RefDec attributes.

• "Local_group", "Localgrp" or "LG": The rest-frame of the local group. This standard
of rest must be qualified using the RefRA and RefDec attributes.

• "Source", or "src": The rest-frame of the source. This standard of rest must be
qualified using the RefRA, RefDec, and SourceVel attributes.

Where more than one alternative System value is shown above, the first of these will be
returned when an enquiry is made.

Symbol(axis)
Axis symbol

Description:
This attribute specifies a short-form symbol to be used to represent co-ordinate values for
a particular axis of a Frame. This might be used (e.g.) in algebraic expressions where a
full description of the axis would be inappropriate. Examples include "RA" and "Dec" (for
right ascension and declination).

If a Symbol value has not been set for a Frame axis, then a suitable default is supplied.

The default Symbol value supplied for simple Frames is the string “<Domain><n>”,
where <n> is 1, 2, etc. for successive axes, and <Domain> is the value of the Frame’s
Domain attribute (truncated if necessary so that the final string does not exceed 15 charac-
ters). If no Domain value has been set, "x" is used as the <Domain> value in constructing
this default string.

Specialised Frames (SkyFrame, SpecFrame,etc.) re-define the default Symbol value to be
appropriate for the particular co-ordinate system being represented.

Examples:
wcsattrib my_data set symbol(2) AR

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

SUN/95.45 —Descriptions of Frame Attributes 800 System

This sets the Symbol for Axis 2 in the current Frame in the NDF called my_data,
to the string "AR".

Notes:

• When specifying this attribute by name, it should be subscripted with the number of
the Frame axis to which it applies.

System
Co-ordinate system used to describe positions within the domain

Description:
In general it is possible for positions within a given physical domain to be described using
one of several different co-ordinate systems. For instance, the SkyFrame class can use
galactic co-ordinates, equatorial co-ordinates etc. to describe positions on the sky. As
another example, the SpecFrame class can use frequency, wavelength, velocity etc. to
describe a position within an electromagnetic spectrum. The System attribute identifies the
particular co-ordinate system represented by a Frame. Each class of Frame defines a set of
acceptable values for this attribute, as listed below (all are case insensitive). Where more
than one alternative System value is shown, the first of will be returned when an enquiry
is made.

Applicability:

Frame
The System attribute for a basic Frame always equals "Cartesian", and may not be altered.

SkyFrame
The SkyFrame class supports the following System values and associated celestial co-
ordinate systems.

• "FK4": The old FK4 (barycentric) equatorial co-ordinate system, which should be
qualified by an Equinox value. The underlying model on which this is based is non-
inertial and rotates slowly with time, so for accurate work FK4 co-ordinate systems
should also be qualified by an Epoch value.

• "FK4-NO-E" or "FK4_NO_E": The old FK4 (barycentric) equatorial system but without
the E-terms of aberration (e.g. some radio catalogues). This co-ordinate system should
also be qualified by both an Equinox and an Epoch value.

• "FK5" or "EQUATORIAL": The modern FK5 (barycentric) equatorial co-ordinate system.
This should be qualified by an Equinox value.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

801 System SUN/95.45 —Descriptions of Frame Attributes

• "GAPPT", "GEOCENTRIC" or "APPARENT": The geocentric apparent equatorial co-ordinate
system, which gives the apparent positions of sources relative to the true plane of the
Earth’s equator and the equinox (the co-ordinate origin) at a time specified by the
qualifying Epoch value. (Note that no Equinox is needed to qualify this co-ordinate
system because no model ‘mean equinox’ is involved.) These co-ordinates give the ap-
parent right ascension and declination of a source for a specified date of observation,
and therefore form an approximate basis for pointing a telescope. Note, however, that
they are applicable to a fictitious observer at the Earth’s centre, and therefore ignore
such effects as atmospheric refraction and the (normally much smaller) aberration
of light due to the rotational velocity of the Earth’s surface. Geocentric apparent
co-ordinates are derived from the standard FK5 (J2000.0) barycentric co-ordinates
by taking account of the gravitational deflection of light by the Sun (usually small),
the aberration of light caused by the motion of the Earth’s centre with respect to the
barycentre (larger), and the precession and nutation of the Earth’s spin axis (normally
larger still).

• "ECLIPTIC": Ecliptic co-ordinates (IAU 1980), referred to the ecliptic and mean
equinox specified by the qualifying Equinox value.

• "GALACTIC": Galactic co-ordinates (IAU 1958).

• "SUPERGALACTIC": De Vaucouleurs Supergalactic co-ordinates.

• "UNKNOWN": Any other general spherical co-ordinate system. No Mapping can be
created between a pair of SkyFrames if either of the SkyFrames has System set to
"Unknown".

Currently, the default System value is "FK5".

SpecFrame
The SpecFrame DSBSpecFrame classes supports the following System values and associ-
ated spectral co-ordinate systems (the default is "WAVE"—wavelength):

• "FREQ": Frequency (Hz)

• "ENER" or "ENERGY": Energy (J)

• "WAVN" or "WAVENUM": Wave-number (1/m)

• "WAVE" or "WAVELEN": Vacuum wavelength (m)

• "AWAV" or "AIRWAVE": Wave-length in air (m)

• "VRAD" or "VRADIO": Radio velocity (m/s)

• "VOPT" or "VOPTICAL": Optical velocity (m/s)

• "ZOPT" or "REDSHIFT": Redshift (dimensionless)

• "BETA": Beta factor (dimensionless)

• "VELO" or "VREL": Relativistic velocity (m/s)

The default value for the Unit attribute for each system is shown in parentheses. Note,
changes to the Unit attribute for a SpecFrame will result in the Mapping from pixel to
spectral co-ordinates being modified in order to reflect the change in units.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Mapping
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_DSBSpecFrame

SUN/95.45 —Descriptions of Frame Attributes 802 TimeOrigin

TimeFrame
The TimeFrame class supports the following System values and associated co-ordinate
systems (the default is "MJD"):

• "MJD": Modified Julian Date (d)

• "JD": Julian Date (d)

• "JEPOCH": Julian epoch (yr)

• "BEPOCH": Besselian (yr)

The default value for the Unit attribute for each system is shown in parentheses. Strictly,
these systems should not allow changes to be made to the units. For instance, the usual
definition of "MJD" and "JD" include the statement that the values will be in units of days.
However, AST does allow the use of other units with all the above supported systems
(except BEPOCH), on the understanding that conversion to the "correct" units involves
nothing more than a simple scaling (1 yr = 365.25 d, 1 d = 24 h, 1 h = 60 min, 1 min = 60 s).
Besselian epoch values are defined in terms of tropical years of 365.2422 days, rather than
the usual Julian year of 365.25 days. Therefore, to avoid any confusion, the Unit attribute is
automatically cleared to "yr" when a System value of BEPOCH System is selected, and an
error is reported if any attempt is subsequently made to change the Unit attribute.

TimeOrigin
The zero point for TimeFrame axis values (TimeFrames only)

Description:
This specifies the origin from which all time values are measured within a TimeFrame.
The default value (zero) results in the TimeFrame describing absolute time values in the
system given by the System attribute (e.g. MJD, Julian epoch, etc). If a TimeFrame is to
be used to describe elapsed time since some origin, the TimeOrigin attribute should be
set to hold the required origin value. The TimeOrigin value stored inside the TimeFrame
structure is modified whenever TimeFrame attribute values are changed so that it refers to
the original moment in time.

Input Formats :

The formats accepted when setting a TimeOrigin value are listed below. They are all case-
insensitive and are generally tolerant of extra white space and alternative field delimiters:

• Besselian Epoch: Expressed in decimal years, with or without decimal places ("B1950"
or "B1976.13" for example).

• Julian Epoch: Expressed in decimal years, with or without decimal places ("J2000" or
"J2100.9" for example).

• Units: An unqualified decimal value is interpreted as a value in the system spec-
ified by the TimeFrame’s System attribute, in the units given by the TimeFrame’s

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_TimeFrame

803 TimeScale SUN/95.45 —Descriptions of Frame Attributes

Unit attribute. Alternatively, an appropriate unit string can be appended to the end
of the floating point value ("123.4 d" for example), in which case the supplied value
is scaled into the units specified by the Unit attribute.

• Julian Date: With or without decimal places ("JD 2454321.9" for example).

• Modified Julian Date: With or without decimal places ("MJD 54321.4" for example).

• Gregorian Calendar Date: With the month expressed either as an integer or a three-
character abbreviation, and with optional decimal places to represent a fraction of
a day ("1996-10-2" or "1996-Oct-2.6" for example). If no fractional part of a day is
given, the time refers to the start of the day (zero hours).

• Gregorian Date and Time: Any calendar date (as above) but with a fraction of a day
expressed as hours, minutes and seconds ("1996-Oct-2 12:13:56.985" for example).
The date and time can be separated by a space or by a "T" (as used by ISO8601
format).

Output Format :

When enquiring TimeOrigin values, the returned formatted floating point value represents
a value in the TimeFrame’s System, in the unit specified by the TimeFrame’s Unit attribute.

TimeScale
Time scale (TimeFrames only)

Description:
This attribute identifies the time scale to which the time axis values of a TimeFrame refer,
and may take any of the values listed in the "Time Scales" section (below).

The default TimeScale value depends on the current System value; if the current TimeFrame
system is "Besselian epoch" the default is "TT", otherwise it is "TAI". Note, if the System
attribute is set so that the TimeFrame represents Besselian Epoch, then an error will be
reported if an attempt is made to set the TimeScale to anything other than TT.

Note, the supported time scales fall into two groups. The first group containing UT1,
GMST, LAST and LMST define time in terms of the orientation of the earth. The second
group (containing all the remaining time scales) define time in terms of an atomic process.
Since the rate of rotation of the earth varies in an unpredictable way, conversion between
two timescales in different groups relies on a value being supplied for the Dut1 attribute.
This attribute specifies the difference between the UT1 and UTC time scales, in seconds,
and defaults to zero. See the documentation for the Dut1 attribute in SUN/210 for further
details.

Time Scales :

The TimeFrame class supports the following TimeScale values (all are case-insensitive):

• "TAI" – International Atomic Time

• "UTC" – Coordinated Universal Time

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_TimeFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Dut1

SUN/95.45 —Descriptions of Frame Attributes 804 Title

• "UT1" – Universal Time

• "GMST" – Greenwich Mean Sidereal Time

• "LAST" – Local Apparent Sidereal Time

• "LMST" – Local Mean Sidereal Time

• "TT" – Terrestrial Time

• "TDB" – Barycentric Dynamical Time

• "TCB" – Barycentric Coordinate Time

• "TCG" – Geocentric Coordinate Time

• "LT" – Local Time (the offset from UTC is given by attribute LTOffset)

An very informative description of these and other time scales is available at
http://www.ucolick.org/∼sla/leapsecs/timescales.htm.

UTC Warnings :

UTC should ideally be expressed using separate hours, minutes and seconds fields (or at
least in seconds for a given date) if leap seconds are to be taken into account. Since the
TimeFrame class represents each moment in time using a single floating point number
(the axis value) there will be an ambiguity during a leap second. Thus an error of up
to 1 second can result when using AST to convert a UTC time to another time scale if
the time occurs within a leap second. Leap seconds occur at most twice a year, and are
introduced to take account of variation in the rotation of the earth. The most recent leap
second occurred on 1st January 1999. Although in the vast majority of cases leap second
ambiguities won’t matter, there are potential problems in on-line data acquisition systems
and in critical applications involving taking the difference between two times.

Title
Frame title

Description:
This attribute holds a string that is used as a title in (e.g.) graphical output to describe the co-
ordinate system that a Frame represents. Examples might be "Detector Co-ordinates"
or "Galactic Co-ordinates".

If a Title value has not been set for a Frame, then a suitable default is supplied.

The default supplied by the Frame class is "<n>-d co-ordinate system", where <n> is
the number of Frame axes (Naxes attribute).

Specialised Frames (SkyFrame, SpecFrame, etc.) re-define the default Title value to be
appropriate to the particular co-ordinate system being represented.

Examples:
wcsattrib my_data set Title "My own data"

This sets the Title for the current Frame in the NDF called my_data, to the string
"My own data".

http://www.ucolick.org/$\sim $sla/leapsecs/timescales.htm
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame

805 Unit(axis) SUN/95.45 —Descriptions of Frame Attributes

Notes:

• A Frame’s Title is intended purely for interpretation by human readers and not by
software.

Unit(axis)
Axis physical units

Description:
This attribute contains a textual representation of the physical units used to represent
co-ordinate values on a particular axis of a Frame.

Specialised Frames (SkyFrame, SpecFrame, etc.) re-define the default Unit values to be
appropriate to the particular co-ordinate system being represented.

For most classes, the Unit attribute is a purely descriptive comment intended for human
readers and makes no difference to the operation of the software. However, there are some
classes that have active Unit attributes. Changing the Unit attribute for such classes will
result in the Mappings within the WCS FrameSet being modified in order to reflect the
change in units. By default, only SpecFrames have an active Unit attribute.

In general, the syntax of the Unit attribute should follow the recommendations made in
the FITS standard (see the paper “Representation of world coordinates in FITS” by Greisen
& Calabretta (available at http://www.cv.nrao.edu/fits/documents/wcs/wcs.html).

Notes:

• When specifying this attribute by name, it should be subscripted with the number of
the Frame axis to which it applies (unless the Frame has only one axis).

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SpecFrame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Mapping
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_FrameSet
http://www.cv.nrao.edu/fits/documents/wcs/wcs.html

SUN/95.45 —Descriptions of Plotting Attributes 806

E Descriptions of Plotting Attributes

This appendix lists the available plotting attributes (see Section 7). Note, the default value
included in each description is the value that will be used if no other default value is supplied
(for instance within a defaults file). In particular, the standard KAPPA default style files contained
in $KAPPA_DIR include alternative default values for several attributes which will be used in
preference to those described below.

Individual applications may override the normal behaviour of particular attributes, in which
case the description of the application will include details.

It is often useful to specify values for some of the attributes of the current Frame when giving a
plotting style (title, axis labels, etc.). These additional attributes are described in Appendix D.

Border
Draw a border around valid regions?

Description:
This attribute controls the appearance of annotated axes by determining whether a border
is drawn around regions corresponding to the valid co-ordinates.

If the Border value of a plot is non-zero, then this border will be drawn as part of the axes.
Otherwise, the border is not drawn (although axis labels and tick marks will still appear,
unless other relevant attributes indicate that they should not). The default behaviour is to
draw the border if tick marks and numerical labels will be drawn around the edges of the
plotting area (see the Labelling attribute), but to omit it otherwise.

Colour(element)
Colour index for a plot element

Description:
This attribute determines the colour index used when drawing each element of of a
plot. It takes a separate value for each graphical element so that, for instance, the setting
"Colour(title)=2" causes the title to be drawn using colour index 2. Standard X colour
names, space-separated floating-point RGB triples, or HTML colour codes (optionally
using a "@" inplace of a "#" to avoid the code being interpreted as a comment within a style
file) can also be specified, and the nearest available colour will be used if the requested
colour is not currently in the palette.

The default behaviour is for all graphical elements to be drawn using Pen 1.

Notes:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

807 DrawAxes SUN/95.45 —Descriptions of Plotting Attributes

• For a list of the graphical elements available, see Section 7.1.

•
If no graphical element is specified, (e.g. Colour instead of Colour(title)), then all
graphical elements are affected.

DrawAxes
Draw axes?

Description:
This attribute controls the appearance of annotated axes by determining whether curves
representing co-ordinate axes should be drawn.

If drawn, these axis lines will pass through any tick marks associated with numerical
labels drawn to mark values on the axes. The location of these tick marks and labels (and
hence the axis lines) is determined by the LabelAt(axis) attribute.

If the DrawAxes value is non-zero (the default), then axis lines will be drawn, otherwise
they will be omitted.

Notes:

• Axis lines are drawn independently of any co-ordinate grid lines (see the Grid at-
tribute) so grid lines may be used to substitute for axis lines if required.

• In some circumstances, numerical labels and tick marks are drawn around the edges
of the plotting area (see the Labelling attribute). In this case, the value of the DrawAxes
attribute is ignored.

DrawDSB
Annotate both sidebands if the spectral axis represents a dual

sideband spectrum?

Description:
This attribute controls the appearance of annotated axes by determining what to draw
for a spectral axis representing a dual sideband spectrum. The sideband selected using
the SideBand attribute will always be annotated on the edge of the Plot selected using the
Edge(axis) attribute. In addition, if the DrawDSB attribute is non-zero (the default) the
other sideband will be annotated on the opposite edge of the Plot. If DrawDSB is zero,
then the other sideband will not be annotated.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SideBand

SUN/95.45 —Descriptions of Plotting Attributes 808 DrawTitle

DrawTitle
Draw a title?

Description:
This attribute controls the appearance of annotated axes by determining whether a title is
drawn.

If the DrawTitle value is non-zero (the default), then the title will be drawn, otherwise it
will be omitted.

Notes:

• The text used for the title is obtained from the Title attribute.

• The vertical placement of the title can be controlled using the TitleGap attribute.

Edge(axis)
Which edges to label

Description:
This attribute controls the appearance of annotated axes by determining which edges are
used for displaying numerical and descriptive axis labels. It takes a separate value for
each physical axis so that, for instance, the setting Edge(2)=left specifies which edge to
use to display labels for the second axis.

The values left, top, right and bottom (or any abbreviation) can be supplied for this
attribute. The default is usually bottom for the first axis and left for the second axis.
However, if exterior labelling was requested (see the Labelling attribute) but cannot be
produced using these default Edge values, then the default values will be swapped if this
enables exterior labelling to be produced.

Notes:

• In some circumstances, numerical labels will be drawn along internal grid lines
instead of at the edges of the plotting area (see the Labelling attribute). In this case,
the Edge attribute only affects the placement of the descriptive labels (these are drawn
at the edges of the plotting area, rather than along the axis lines).

809 FileInTitle SUN/95.45 —Descriptions of Plotting Attributes

FileInTitle
Include the NDF name as a second line in the title?

Description:
This attribute controls the appearance of annotated axes by determining whether or not
the title at the top of the plot will include a second line giving the NDF name. The default
value of zero results in the title containing only the text given by the Title attribute. A
non-zero value will result in a second line containing the NDF name being added to the
title.

Font(element)
Character fount for a plot element

Description:
This attribute determines the character fount index used when drawing each element of
a plot. It takes a separate value for graphical element so that, for instance, the setting
Font(title)=2 causes the title to be drawn using fount number 2.

The range of integer fount indices available and the appearance of the resulting text is
determined by the PGPLOT graphics package, but include:

(1) A simple single-stroke fount (the default)

(2) A roman fount

(3) An italic fount

(4) A script fount

Notes:

• For a list of the graphical elements available, see Section 7.1.

• If no graphical element is specified, (e.g. Font instead of Font(title)), then all graphical
elements are affected.

Gap(axis)
Interval between major axis values

Description:
This attribute controls the appearance of annotated axes by determining the interval
between the major axis values at which (for example) major tick marks are drawn. It takes a

SUN/95.45 —Descriptions of Plotting Attributes 810 Grid

separate value for each physical axis so that, for instance, the setting Gap(2)=3.0 specifies
the interval between major values along the second axis.

The Gap value supplied will usually be rounded to the nearest ‘nice’ value, suitable (e.g.)
for generating axis labels, before use. To avoid this ‘nicing’ you should set an explicit
format for the axis using the Format(axis) or Digits/Digits(axis) attribute. The default
behaviour is for the application to generate its own Gap value when required, based on
the range of axis values to be represented.

Notes:

• The Gap value should use the same units as are used internally for storing co-ordinate
values on the corresponding axis. For example, with a celestial co-ordinate system,
the Gap value should be in radians, not hours or degrees.

• If no axis is specified, (e.g. Gap instead of Gap(2)), then both axes are affected.

Grid
Draw grid lines?

Description:
This attribute controls the appearance of annotated axes by determining whether grid lines
(a grid of curves marking the ‘major’ values on each axis) are drawn across the plotting
area.

If the Grid attribute is non-zero, then grid lines will be drawn. Otherwise, short tick marks
on the axes are used to mark the major axis values. The default behaviour is to use tick
marks if the entire plotting area is filled by valid co-ordinates, but to draw grid lines
otherwise.

Notes:

• The spacing between major axis values, which determines the spacing of grid lines,
may be set using the Gap(axis) attribute.

LabelAt(axis)
Where to place numerical labels for a Plot

Description:
This attribute controls the appearance of annotated axes by determining where numerical
axis labels and associated tick marks are placed. It takes a separate value for each physical
axis so that, for instance, the setting "LabelAt(2)=10.0" specifies where the numerical
labels and tick marks for the second axis should be drawn.

811 LabelUnits(axis) SUN/95.45 —Descriptions of Plotting Attributes

For each axis, the LabelAt value gives the value on the other axis at which numerical labels
and tick marks should be placed. For example, in a celestial (right ascension, declination)
co-ordinate system, LabelAt(1) gives a declination value that defines a line (of constant
declination) along which the numerical right-ascension labels and their associated tick
marks will be drawn. Similarly, LabelAt(2) gives the right-ascension value at which the
declination labels and ticks will be drawn.

The default bahaviour is for the application to generate its own position for numerical
labels and tick marks.

Notes:

• The LabelAt value should use the same units as are used internally for storing co-
ordinate values on the appropriate axis. For example, with a celestial co-ordinate
system, the LabelAt value should be in radians, not hours or degrees.

• Normally, the LabelAt value also determines where the lines representing co-ordinate
axes will be drawn, so that the tick marks will lie on these lines (but also see the
DrawAxes attribute).

• In some circumstances, numerical labels and tick marks are drawn around the edges
of the plotting area (see the Labelling attribute). In this case, the value of the LabelAt
attribute is ignored.

LabelUnits(axis)
Include unit descriptions in axis labels?

Description:
This attribute controls the appearance of annotated axes by determining whether the
descriptive labels drawn for each axis should include a description of the units being used
on the axis. It takes a separate value for each physical axis so that, for instance, the setting
"LabelUnits(2)=1" specifies that a unit description should be included in the label for
the second axis.

If the LabelUnits value axis is non-zero, a unit description will be included in the descriptive
label for that axis, otherwise it will be omitted. The default behaviour is to include a unit
description unless the Frame being annotated is a SkyFrame (i.e. a celestial co-ordinate
system), in which case it is omitted.

Notes:

• The text used for the unit description is obtained from Unit(axis) attribute.

• If no axis is specified, (e.g. LabelUnits instead of LabelUnits(2)), then both axes are
affected.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame
http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_SkyFrame

SUN/95.45 —Descriptions of Plotting Attributes 812 LabelUp(axis)

LabelUp(axis)
Draw numerical axis labels upright?

Description:
This attribute controls the appearance of annotated axes by determining whether the
numerical labels for each axis should be drawn upright or not. It takes a separate value
for each physical axis so that, for instance, the setting "LabelUp(2)=1" specifies that
numerical labels for the second axis should be drawn upright.

If the LabelUp value axis is non-zero, it causes numerical labels for that axis to be plotted
upright (i.e. as normal, horizontal text), otherwise (the default) these labels rotate to follow
the axis to which they apply.

Notes:

• In some circumstances, numerical labels and tick marks are drawn around the edges
of the plotting area (see the Labelling attribute). In this case, the value of the LabelUp
attribute is ignored.

• If no axis is specified, (e.g. LabelUp instead of LabelUp(2)), then both axes are affected.

Labelling
Label and tick placement option

Description:
This attribute controls the appearance of annotated axes by determining the strategy for
placing numerical labels and tick marks.

If the Labelling value is "exterior" (the default), then numerical labels and their associated
tick marks are placed around the edges of the plotting area, if possible. If this is not possible,
or if the Labelling value is "interior", then they are placed along grid lines inside the
plotting area.

Notes:

• The LabelAt(axis) attribute may be used to determine the exact placement of labels
and tick marks that are drawn inside the plotting area.

813 MajTickLen SUN/95.45 —Descriptions of Plotting Attributes

MajTickLen
Length of major tick marks

Description:
This attribute controls the appearance of annotated axes by determining the length of the
major tick marks drawn on the axes.

The MajTickLen value should be given as a fraction of the minimum dimension of the
plotting area. Negative values cause major tick marks to be placed on the outside of the
corresponding grid line or axis (but subject to any clipping imposed by PGPLOT), while
positive values cause them to be placed on the inside.

The default behaviour depends on whether a co-ordinate grid is drawn inside the plotting
area (see the Grid attribute). If so, the default MajTickLen value is zero (so that major ticks
are not drawn), otherwise the default is +0.015.

MinTick(axis)
Density of minor tick marks

Description:
This attribute controls the appearance of annotated axes by determining the density of
minor tick marks which appear between the major axis values. It takes a separate value for
each physical axis so that, for instance, the setting "MinTick(2)=2" specifies the density
of minor tick marks along the second axis.

The value supplied should be the number of minor divisions required between each pair
of major axis values, this being one more than the number of minor tick marks to be drawn.
By default, a value is chosen that depends on the gap between major axis values and the
nature of the axis.

Notes:

• If no axis is specified, (e.g. MinTick instead of MinTick(2)), then both axes are affected.

MinTickLen
Length of minor tick marks

Description:
This attribute controls the appearance of annotated axes by determining the length of the
minor tick marks drawn on the axes.

SUN/95.45 —Descriptions of Plotting Attributes 814 NumLab(axis)

The MinTickLen value should be given as a fraction of the minimum dimension of the
plotting area. Negative values cause minor tick marks to be placed on the outside of the
corresponding grid line or axis (but subject to any clipping imposed by the underlying
graphics system), while positive values cause them to be placed on the inside.

The default value is +0.007.

Notes:

• The number of minor tick marks drawn is determined by the MinTick(axis) attribute.

NumLab(axis)
Draw numerical axis labels?

Description:
This attribute controls the appearance of annotated axes by determining whether labels
should be drawn to represent the numerical values along each axis. It takes a separate
value for each physical axis so that, for instance, the setting "NumLab(2)=1" specifies that
numerical labels should be drawn for the second axis.

If the NumLab value for an axis is non-zero (the default), then numerical labels will be
drawn for that axis, otherwise they will be omitted.

Notes:

• The drawing of associated descriptive axis labels (describing the quantity being
plotted along each axis) is controlled by the TextLab(axis) attribute.
• If no axis is specified, (e.g. NumLab instead of NumLab(2)), then both axes are affected.

NumLabGap(axis)
Spacing of numerical labels

Description:
This attribute controls the appearance of annotated axes by determining where numerical
axis labels are placed relative to the axes they describe. It takes a separate value for each
physical axis so that, for instance, the setting "NumLabGap(2)=-0.01" specifies where the
numerical label for the second axis should be drawn.

For each axis, the NumLabGap value gives the spacing between the axis line (or edge of
the plotting area, if appropriate) and the nearest edge of the corresponding numerical axis
labels. Positive values cause the descriptive label to be placed on the opposite side of the
line to the default tick marks, while negative values cause it to be placed on the same side.

The NumLabGap value should be given as a fraction of the minimum dimension of the
plotting area, the default value being +0.01.

815 Size(element) SUN/95.45 —Descriptions of Plotting Attributes

Notes:

• If no axis is specified, (e.g. NumLabGap instead of NumLabGap(2)), then both axes are
affected.

Size(element)
Character size for a plot element

Description:
This attribute determines the character size used when drawing each element of graphical
output. It takes a separate value for each graphical element so that, for instance, the setting
"Size(title)=2.0" causes the plot title to be drawn using twice the default character
size.

Notes:

• For a list of the graphical elements available, see Section 7.1.

• If no graphical element is specified, (e.g. Size instead of Size(title)), then all graphical
elements are affected.

Style(element)
Line style for a plot element

Description:
This attribute determines the line style used when drawing each element of graphical
output. It takes a separate value for each graphical element so that, for instance, the setting
"Style(border)=2" causes the border to be drawn using line Style 2 (which results in a
dashed line).

The range of integer line styles available and their appearance is determined by the PGPLOT
graphics system, but includes the following:

(1) Full line (the default)

(2) Dashed

(3) Dot-dash-dot-dash

(4) Dotted

(5) Dash-dot-dot-dot

Notes:

SUN/95.45 —Descriptions of Plotting Attributes 816 TextBackColour

• For a list of the graphical elements available, see Section 7.1.

• If no graphical element is specified, (e.g. Style instead of Style(border)), then all
graphical elements are affected.

TextBackColour
The background colour to use when drawing text

Description:
This attribute determines the background colour index to use when drawing textual
strings—the foreground colour is determined by the Colour(strings) attribute. Standard X
colour names can also be specified, and the nearest colour will be used if the requested
colour is not currently in the palette.

If the value "-1" or "clear" is given, the background will be transparent.

TextLab(axis)
Draw descriptive axis labels?

Description:
This attribute controls the appearance of annotated axes by determining whether textual
labels should be drawn to describe the quantity being represented on each axis. It takes a
separate value for each physical axis so that, for instance, the setting "TextLab(2)=1" spec-
ifies that descriptive labels should be drawn for the second axis.

If the TextLab value of an axis is non-zero, then descriptive labels will be drawn for that
axis, otherwise they will be omitted. The default behaviour is to draw descriptive labels if
tick marks and numerical labels are being drawn around the edges of the plotting area
(see the Labelling attribute), but to omit them otherwise.

Notes:

• The text used for the descriptive labels is derived from the Label(axis) attribute,
together with its Unit(axis) attribute if appropriate (see the LabelUnits(axis) attribute).

• The drawing of numerical axis labels (which indicate values on the axis) is controlled
by the NumLab(axis) attribute.

• If no axis is specified, (e.g. TextLab instead of TextLab(2)), then both axes are affected.

817 TextLabGap(axis) SUN/95.45 —Descriptions of Plotting Attributes

TextLabGap(axis)
Spacing of descriptive axis labels

Description:
This attribute controls the appearance of annotated axes by determining where descriptive
axis labels are placed relative to the axes they describe. It takes a separate value for each
physical axis so that, for instance, the setting "TextLabGap(2)=0.01" specifies where the
descriptive label for the second axis should be drawn.

For each axis, the TextLabGap value gives the spacing between the descriptive label and the
edge of a box enclosing all other parts of the annotated grid (excluding other descriptive
labels). The gap is measured to the nearest edge of the label (i.e. the top or the bottom).
Positive values cause the descriptive label to be placed outside the bounding box, while
negative values cause it to be placed inside.

The TextLabGap value should be given as a fraction of the minimum dimension of the
plotting area, the default value being +0.01.

Notes:

• If drawn, descriptive labels are always placed at the edges of the plotting area, even
although the corresponding numerical labels may be drawn along axis lines in the
interior of the plotting area (see the Labelling attribute).

• If no axis is specified, (e.g. TextLabGap instead of TextLabGap(2)), then both axes are
affected.

TextMargin
The width of the margin to clear when drawing text

Description:
This attribute determines the width of the margin that is cleared around the edges of each
drawn text string, in units of the text height. That is, if TEXTMARGIN is set to 0.5, the
margin will be half the height of the text. The default is zero.

TickAll
Draw tick marks on all edges?

Description:
This attribute controls the appearance of annotated axes by determining whether tick
marks should be drawn on all edges of the plot.

SUN/95.45 —Descriptions of Plotting Attributes 818 TitleGap

If the TickAll value is non-zero (the default), then tick marks will be drawn on all edges
of the plot. Otherwise, they will be drawn only on those edges where the numerical and
descriptive axis labels are drawn (see the Edge(axis) attribute).

Notes:

• In some circumstances, numerical labels and tick marks are drawn along grid lines
inside the plotting area, rather than around its edges (see the Labelling attribute). In
this case, the value of the TickAll attribute is ignored.

TitleGap
Vertical spacing for the title

Description:
This attribute controls the appearance of annotated axes by determining where the title is
drawn.

Its value gives the spacing between the bottom edge of the title and the top edge of a
bounding box containing all the other parts of the annotated grid. Positive values cause
the title to be drawn outside the box, while negative values cause it to be drawn inside.

The TitleGap value should be given as a fraction of the minimum dimension of the plotting
area, the default value being +0.05.

Notes:

• The text used for the title is obtained from the Title attribute.

Tol
Plotting tolerance

Description:
This attribute specifies the plotting tolerance (or resolution) to be used for curves. Smaller
values will result in smoother and more accurate curves being drawn (particularly in the
presence of discontinuities in the mapping between graphics co-ordinates and physical
co-ordinates), but may slow down the plotting process. Conversely, larger values may
speed up the plotting process in cases where high resolution is not required.

The Tol value should be given as a fraction of the minimum dimension of the plotting area,
and should lie in the range from 1.0E−7 to 1.0. By default, a value of 0.001 is used.

819 Width(element) SUN/95.45 —Descriptions of Plotting Attributes

Width(element)
Line width for a plot element

Description:
This attribute determines the line width used when drawing each element of graphical
output. It takes a separate value for each graphical element so that, for instance, the setting
"Width(border)=2.0" causes the border to be drawn using a line width of 2.0. A value of
1.0 results in a line thickness that is approximately 0.0005 times the length of the diagonal
of the entire display surface.

Notes:

• For a list of the graphical elements available, see Section 7.1.

• If no graphical element is specified, (e.g. Width instead of Width(title)), then all
graphical elements are affected.

SUN/95.45 —Standard Named Colours 820

F Standard Named Colours

The standard set of named colours recognised by KAPPA is tabulated below together with their
red, green, and blue relative intensities. It is the X-windows standard colour set so don’t blame
KAPPA if you think some of them are anomalous. In addition to those tabulated, there are grey
levels at each percentage between “Black” and “White”. These are called “Grey1”, “Grey2”, . . . ,
“Grey99”. All the names containing “Grey” have synonyms spelt with “Gray”.

821 SUN/95.45 —Standard Named Colours

Standard Colour Set

Name R G B Name R G B

AliceBlue 0.941 0.973 1.000 AntiqueWhite 0.980 0.922 0.843

AntiqueWhite1 1.000 0.937 0.859 AntiqueWhite2 0.933 0.875 0.800

AntiqueWhite3 0.804 0.753 0.690 AntiqueWhite4 0.545 0.514 0.471

Aquamarine 0.498 1.000 0.831 Aquamarine1 0.498 1.000 0.831

Aquamarine2 0.463 0.933 0.776 Aquamarine3 0.400 0.804 0.667

Aquamarine4 0.271 0.545 0.455 Azure 0.941 1.000 1.000

Azure1 0.941 1.000 1.000 Azure2 0.878 0.933 0.933

Azure3 0.757 0.804 0.804 Azure4 0.514 0.545 0.545

Beige 0.961 0.961 0.863 Bisque 1.000 0.894 0.769

Bisque1 1.000 0.894 0.769 Bisque2 0.933 0.835 0.718

Bisque3 0.804 0.718 0.620 Bisque4 0.545 0.490 0.420

Black 0.000 0.000 0.000 BlanchedAlmond 1.000 0.922 0.804

Blue 0.000 0.000 1.000 Blue1 0.000 0.000 1.000

Blue2 0.000 0.000 0.933 Blue3 0.000 0.000 0.804

Blue4 0.000 0.000 0.545 BlueViolet 0.541 0.169 0.886

Brown 0.647 0.165 0.165 Brown1 1.000 0.251 0.251

Brown2 0.933 0.231 0.231 Brown3 0.804 0.200 0.200

Brown4 0.545 0.137 0.137 Burlywood 0.871 0.722 0.529

Burlywood1 1.000 0.827 0.608 Burlywood2 0.933 0.773 0.569

Burlywood3 0.804 0.667 0.490 Burlywood4 0.545 0.451 0.333

CadetBlue 0.373 0.620 0.627 CadetBlue1 0.596 0.961 1.000

CadetBlue2 0.557 0.898 0.933 CadetBlue3 0.478 0.773 0.804

CadetBlue4 0.325 0.525 0.545 Chartreuse 0.498 1.000 0.000

Chartreuse1 0.498 1.000 0.000 Chartreuse2 0.463 0.933 0.000

Chartreuse3 0.400 0.804 0.000 Chartreuse4 0.271 0.545 0.000

Chocolate 0.824 0.412 0.118 Chocolate1 1.000 0.498 0.141

Chocolate2 0.933 0.463 0.129 Chocolate3 0.804 0.400 0.114

Chocolate4 0.545 0.271 0.075 Coral 1.000 0.498 0.314

Coral1 1.000 0.447 0.337 Coral2 0.933 0.416 0.314

Coral3 0.804 0.357 0.271 Coral4 0.545 0.243 0.184

CornflowerBlue 0.392 0.584 0.929 Cornsilk 1.000 0.973 0.863

Cornsilk1 1.000 0.973 0.863 Cornsilk2 0.933 0.910 0.804

Cornsilk3 0.804 0.784 0.694 Cornsilk4 0.545 0.533 0.471

Cyan 0.000 1.000 1.000 Cyan1 0.000 1.000 1.000

Cyan2 0.000 0.933 0.933 Cyan3 0.000 0.804 0.804

Cyan4 0.000 0.545 0.545 DarkGoldenrod 0.722 0.525 0.043

DarkGoldenrod1 1.000 0.725 0.059 DarkGoldenrod2 0.933 0.678 0.055

SUN/95.45 —Standard Named Colours 822

Standard Colour Set

Name R G B Name R G B

DarkGoldenrod3 0.804 0.584 0.047 DarkGoldenrod4 0.545 0.396 0.031

DarkGreen 0.000 0.392 0.000 DarkKhaki 0.741 0.718 0.420

DarkOliveGreen 0.333 0.420 0.184 DarkOliveGreen1 0.792 1.000 0.439

DarkOliveGreen2 0.737 0.933 0.408 DarkOliveGreen3 0.635 0.804 0.353

DarkOliveGreen4 0.431 0.545 0.239 DarkOrange 1.000 0.549 0.000

DarkOrange1 1.000 0.498 0.000 DarkOrange2 0.933 0.463 0.000

DarkOrange3 0.804 0.400 0.000 DarkOrange4 0.545 0.271 0.000

DarkOrchid 0.600 0.196 0.800 DarkOrchid1 0.749 0.243 1.000

DarkOrchid2 0.698 0.227 0.933 DarkOrchid3 0.604 0.196 0.804

DarkOrchid4 0.408 0.133 0.545 DarkSalmon 0.914 0.588 0.478

DarkSeaGreen 0.561 0.737 0.561 DarkSeaGreen1 0.757 1.000 0.757

DarkSeaGreen2 0.706 0.933 0.706 DarkSeaGreen3 0.608 0.804 0.608

DarkSeaGreen4 0.412 0.545 0.412 DarkSlateBlue 0.282 0.239 0.545

DarkSlateGrey 0.184 0.310 0.310 DarkSlateGrey1 0.592 1.000 1.000

DarkSlateGrey2 0.553 0.933 0.933 DarkSlateGrey3 0.475 0.804 0.804

DarkSlateGrey4 0.322 0.545 0.545 DarkTurquoise 0.000 0.808 0.820

DarkViolet 0.580 0.000 0.827 DeepPink 1.000 0.078 0.576

DeepPink1 1.000 0.078 0.576 DeepPink2 0.933 0.071 0.537

DeepPink3 0.804 0.063 0.463 DeepPink4 0.545 0.039 0.314

DeepSkyBlue 0.000 0.749 1.000 DeepSkyBlue1 0.000 0.749 1.000

DeepSkyBlue2 0.000 0.698 0.933 DeepSkyBlue3 0.000 0.604 0.804

DeepSkyBlue4 0.000 0.408 0.545 DimGrey 0.412 0.412 0.412

DodgerBlue 0.118 0.565 1.000 DodgerBlue1 0.118 0.565 1.000

DodgerBlue2 0.110 0.525 0.933 DodgerBlue3 0.094 0.455 0.804

DodgerBlue4 0.063 0.306 0.545 Firebrick 0.698 0.133 0.133

Firebrick1 1.000 0.188 0.188 Firebrick2 0.933 0.173 0.173

Firebrick3 0.804 0.149 0.149 Firebrick4 0.545 0.102 0.102

FloralWhite 1.000 0.980 0.941 ForestGreen 0.133 0.545 0.133

Gainsboro 0.863 0.863 0.863 GhostWhite 0.973 0.973 1.000

Gold 1.000 0.843 0.000 Gold1 1.000 0.843 0.000

Gold2 0.933 0.788 0.000 Gold3 0.804 0.678 0.000

Gold4 0.545 0.459 0.000 Goldenrod 0.855 0.647 0.125

Goldenrod1 1.000 0.757 0.145 Goldenrod2 0.933 0.706 0.133

Goldenrod3 0.804 0.608 0.114 Goldenrod4 0.545 0.412 0.078

Green 0.000 1.000 0.000 Green1 0.000 1.000 0.000

Green2 0.000 0.933 0.000 Green3 0.000 0.804 0.000

Green4 0.000 0.545 0.000 GreenYellow 0.678 1.000 0.184

Grey 0.753 0.753 0.753 Honeydew 0.941 1.000 0.941

Honeydew1 0.941 1.000 0.941 Honeydew2 0.878 0.933 0.878

Honeydew3 0.757 0.804 0.757 Honeydew4 0.514 0.545 0.514

HotPink 1.000 0.412 0.706 HotPink1 1.000 0.431 0.706

HotPink2 0.933 0.416 0.655 HotPink3 0.804 0.376 0.565

HotPink4 0.545 0.227 0.384 IndianRed 0.804 0.361 0.361

IndianRed1 1.000 0.416 0.416 IndianRed2 0.933 0.388 0.388

IndianRed3 0.804 0.333 0.333 IndianRed4 0.545 0.227 0.227

Ivory 1.000 1.000 0.941 Ivory2 0.933 0.933 0.878

Ivory3 0.804 0.804 0.757 Ivory4 0.545 0.545 0.514

823 SUN/95.45 —Standard Named Colours

Standard Colour Set

Name R G B Name R G B

Khaki 0.941 0.902 0.549 Khaki1 1.000 0.965 0.561

Khaki2 0.933 0.902 0.522 Khaki3 0.804 0.776 0.451

Khaki4 0.545 0.525 0.306 Lavender 0.902 0.902 0.980

LavenderBlush 1.000 0.941 0.961 LavenderBlush1 1.000 0.941 0.961

LavenderBlush2 0.933 0.878 0.898 LavenderBlush3 0.804 0.757 0.773

LavenderBlush4 0.545 0.514 0.525 LawnGreen 0.486 0.988 0.000

LemonChiffon 1.000 0.980 0.804 LemonChiffon1 1.000 0.980 0.804

LemonChiffon2 0.933 0.914 0.749 LemonChiffon3 0.804 0.788 0.647

LemonChiffon4 0.545 0.537 0.439 LightBlue 0.678 0.847 0.902

LightBlue1 0.749 0.937 1.000 LightBlue2 0.698 0.875 0.933

LightBlue3 0.604 0.753 0.804 LightBlue4 0.408 0.514 0.545

LightCoral 0.941 0.502 0.502 LightCyan 0.878 1.000 1.000

LightCyan1 0.878 1.000 1.000 LightCyan2 0.820 0.933 0.933

LightCyan3 0.706 0.804 0.804 LightCyan4 0.478 0.545 0.545

LightGoldenrod 0.933 0.867 0.510 LightGoldenrod1 1.000 0.925 0.545

LightGoldenrod2 0.933 0.863 0.510 LightGoldenrod3 0.804 0.745 0.439

LightGoldenrod4 0.545 0.506 0.298 LightGoldenrodYellow 0.980 0.980 0.824

LightGrey 0.827 0.827 0.827 LightPink 1.000 0.714 0.757

LightPink1 1.000 0.682 0.725 LightPink2 0.933 0.635 0.678

LightPink3 0.804 0.549 0.584 LightPink4 0.545 0.373 0.396

LightSalmon 1.000 0.627 0.478 LightSalmon1 1.000 0.627 0.478

LightSalmon2 0.933 0.584 0.447 LightSalmon3 0.804 0.506 0.384

LightSalmon4 0.545 0.341 0.259 LightSeaGreen 0.125 0.698 0.667

LightSkyBlue 0.529 0.808 0.980 LightSkyBlue1 0.690 0.886 1.000

LightSkyBlue2 0.643 0.827 0.933 LightSkyBlue3 0.553 0.714 0.804

LightSkyBlue4 0.376 0.482 0.545 LightSlateBlue 0.518 0.439 1.000

LightSlateGrey 0.467 0.533 0.600 LightSteelBlue 0.690 0.769 0.871

LightSteelBlue1 0.792 0.882 1.000 LightSteelBlue2 0.737 0.824 0.933

LightSteelBlue3 0.635 0.710 0.804 LightSteelBlue4 0.431 0.482 0.545

LightYellow 1.000 1.000 0.878 LightYellow1 1.000 1.000 0.878

LightYellow2 0.933 0.933 0.820 LightYellow3 0.804 0.804 0.706

LightYellow4 0.545 0.545 0.478 LimeGreen 0.196 0.804 0.196

Linen 0.980 0.941 0.902 Magenta 1.000 0.000 1.000

Magenta1 1.000 0.000 1.000 Magenta2 0.933 0.000 0.933

Magenta3 0.804 0.000 0.804 Magenta4 0.545 0.000 0.545

Maroon 0.690 0.188 0.376 Maroon1 1.000 0.204 0.702

Maroon2 0.933 0.188 0.655 Maroon3 0.804 0.161 0.565

Maroon4 0.545 0.110 0.384 MediumAquamarine 0.400 0.804 0.667

MediumBlue 0.000 0.000 0.804 MediumOrchid 0.729 0.333 0.827

MediumOrchid1 0.878 0.400 1.000 MediumOrchid2 0.820 0.373 0.933

MediumOrchid3 0.706 0.322 0.804 MediumOrchid4 0.478 0.216 0.545

MediumPurple 0.576 0.439 0.859 MediumPurple1 0.671 0.510 1.000

MediumPurple2 0.624 0.475 0.933 MediumPurple3 0.537 0.408 0.804

MediumPurple4 0.365 0.278 0.545 MediumSeaGreen 0.235 0.702 0.443

MediumSlateBlue 0.482 0.408 0.933 MediumSpringGreen 0.000 0.980 0.604

MediumTurquoise 0.282 0.820 0.800 MediumVioletRed 0.780 0.082 0.522

MidnightBlue 0.098 0.098 0.439 MintCream 0.961 1.000 0.980

SUN/95.45 —Standard Named Colours 824

Standard Colour Set

Name R G B Name R G B

MistyRose 1.000 0.894 0.882 MistyRose1 1.000 0.894 0.882

MistyRose2 0.933 0.835 0.824 MistyRose3 0.804 0.718 0.710

MistyRose4 0.545 0.490 0.482 Moccasin 1.000 0.894 0.710

NavajoWhite 1.000 0.871 0.678 NavajoWhite1 1.000 0.871 0.678

NavajoWhite2 0.933 0.812 0.631 NavajoWhite3 0.804 0.702 0.545

NavajoWhite4 0.545 0.475 0.369 Navy 0.000 0.000 0.502

NavyBlue 0.000 0.000 0.502 OldLace 0.992 0.961 0.902

OliveDrab 0.420 0.557 0.137 OliveDrab1 0.753 1.000 0.243

OliveDrab2 0.702 0.933 0.227 OliveDrab3 0.604 0.804 0.196

OliveDrab4 0.412 0.545 0.133 Orange 1.000 0.647 0.000

Orange1 1.000 0.647 0.000 Orange2 0.933 0.604 0.000

Orange3 0.804 0.522 0.000 Orange4 0.545 0.353 0.000

OrangeRed 1.000 0.271 0.000 OrangeRed1 1.000 0.271 0.000

OrangeRed2 0.933 0.251 0.000 OrangeRed3 0.804 0.216 0.000

OrangeRed4 0.545 0.145 0.000 Orchid 0.855 0.439 0.839

Orchid1 1.000 0.514 0.980 Orchid2 0.933 0.478 0.914

Orchid3 0.804 0.412 0.788 Orchid4 0.545 0.278 0.537

PaleGoldenrod 0.933 0.910 0.667 PaleGreen 0.596 0.984 0.596

PaleGreen1 0.604 1.000 0.604 PaleGreen2 0.565 0.933 0.565

PaleGreen3 0.486 0.804 0.486 PaleGreen4 0.329 0.545 0.329

PaleTurquoise 0.686 0.933 0.933 PaleTurquoise1 0.733 1.000 1.000

PaleTurquoise2 0.682 0.933 0.933 PaleTurquoise3 0.588 0.804 0.804

PaleTurquoise4 0.400 0.545 0.545 PaleVioletRed 0.859 0.439 0.576

PaleVioletRed1 1.000 0.510 0.671 PaleVioletRed2 0.933 0.475 0.624

PaleVioletRed3 0.804 0.408 0.537 PaleVioletRed4 0.545 0.278 0.365

PapayaWhip 1.000 0.937 0.835 PeachPuff 1.000 0.855 0.725

PeachPuff1 1.000 0.855 0.725 PeachPuff2 0.933 0.796 0.678

PeachPuff3 0.804 0.686 0.584 PeachPuff4 0.545 0.467 0.396

Peru 0.804 0.522 0.247 Pink 1.000 0.753 0.796

Pink1 1.000 0.710 0.773 Pink2 0.933 0.663 0.722

Pink3 0.804 0.569 0.620 Pink4 0.545 0.388 0.424

Plum 0.867 0.627 0.867 Plum1 1.000 0.733 1.000

Plum2 0.933 0.682 0.933 Plum3 0.804 0.588 0.804

Plum4 0.545 0.400 0.545 PowderBlue 0.690 0.878 0.902

Purple 0.627 0.125 0.941 Purple1 0.608 0.188 1.000

Purple2 0.569 0.173 0.933 Purple3 0.490 0.149 0.804

Purple4 0.333 0.102 0.545 Red 1.000 0.000 0.000

Red1 1.000 0.000 0.000 Red2 0.933 0.000 0.000

Red3 0.804 0.000 0.000 Red4 0.545 0.000 0.000

RosyBrown 0.737 0.561 0.561 RosyBrown1 1.000 0.757 0.757

RosyBrown2 0.933 0.706 0.706 RosyBrown3 0.804 0.608 0.608

RosyBrown4 0.545 0.412 0.412 RoyalBlue 0.255 0.412 0.882

RoyalBlue1 0.282 0.463 1.000 RoyalBlue2 0.263 0.431 0.933

RoyalBlue3 0.227 0.373 0.804 RoyalBlue4 0.153 0.251 0.545

SaddleBrown 0.545 0.271 0.075 Salmon 0.980 0.502 0.447

Salmon1 1.000 0.549 0.412 Salmon2 0.933 0.510 0.384

Salmon3 0.804 0.439 0.329 Salmon4 0.545 0.298 0.224

825 SUN/95.45 —Standard Named Colours

Standard Colour Set

Name R G B Name R G B

SandyBrown 0.957 0.643 0.376 SeaGreen 0.180 0.545 0.341

SeaGreen1 0.329 1.000 0.624 SeaGreen2 0.306 0.933 0.580

SeaGreen3 0.263 0.804 0.502 SeaGreen4 0.180 0.545 0.341

Seashell 1.000 0.961 0.933 Seashell1 1.000 0.961 0.933

Seashell2 0.933 0.898 0.871 Seashell3 0.804 0.773 0.749

Seashell4 0.545 0.525 0.510 Sienna 0.627 0.322 0.176

Sienna1 1.000 0.510 0.278 Sienna2 0.933 0.475 0.259

Sienna3 0.804 0.408 0.224 Sienna4 0.545 0.278 0.149

SkyBlue 0.529 0.808 0.922 SkyBlue1 0.529 0.808 1.000

SkyBlue2 0.494 0.753 0.933 SkyBlue3 0.424 0.651 0.804

SkyBlue4 0.290 0.439 0.545 SlateBlue 0.416 0.353 0.804

SlateBlue1 0.514 0.435 1.000 SlateBlue2 0.478 0.404 0.933

SlateBlue3 0.412 0.349 0.804 SlateBlue4 0.278 0.235 0.545

SlateGrey 0.439 0.502 0.565 SlateGrey1 0.776 0.886 1.000

SlateGrey2 0.725 0.827 0.933 SlateGrey3 0.624 0.714 0.804

SlateGrey4 0.424 0.482 0.545 Snow 1.000 0.980 0.980

Snow1 1.000 0.980 0.980 Snow2 0.933 0.914 0.914

Snow3 0.804 0.788 0.788 Snow4 0.545 0.537 0.537

SpringGreen 0.000 1.000 0.498 SpringGreen1 0.000 1.000 0.498

SpringGreen2 0.000 0.933 0.463 SpringGreen3 0.000 0.804 0.400

SpringGreen4 0.000 0.545 0.271 SteelBlue 0.275 0.510 0.706

SteelBlue1 0.388 0.722 1.000 SteelBlue2 0.361 0.675 0.933

SteelBlue3 0.310 0.580 0.804 SteelBlue4 0.212 0.392 0.545

Tan 0.824 0.706 0.549 Tan1 1.000 0.647 0.310

Tan2 0.933 0.604 0.286 Tan3 0.804 0.522 0.247

Tan4 0.545 0.353 0.169 Thistle 0.847 0.749 0.847

Thistle1 1.000 0.882 1.000 Thistle2 0.933 0.824 0.933

Thistle3 0.804 0.710 0.804 Thistle4 0.545 0.482 0.545

Tomato 1.000 0.388 0.278 Tomato1 1.000 0.388 0.278

Tomato2 0.933 0.361 0.259 Tomato3 0.804 0.310 0.224

Tomato4 0.545 0.212 0.149 Turquoise 0.251 0.878 0.816

Turquoise1 0.000 0.961 1.000 Turquoise2 0.000 0.898 0.933

Turquoise3 0.000 0.773 0.804 Turquoise4 0.000 0.525 0.545

Violet 0.933 0.510 0.933 VioletRed 0.816 0.125 0.565

VioletRed1 1.000 0.243 0.588 VioletRed2 0.933 0.227 0.549

VioletRed3 0.804 0.196 0.471 VioletRed4 0.545 0.133 0.322

Vory1 1.000 1.000 0.941 Wheat 0.961 0.871 0.702

Wheat1 1.000 0.906 0.729 Wheat2 0.933 0.847 0.682

Wheat3 0.804 0.729 0.588 Wheat4 0.545 0.494 0.400

White 1.000 1.000 1.000 WhiteSmoke 0.961 0.961 0.961

Yellow 1.000 1.000 0.000 Yellow1 1.000 1.000 0.000

Yellow2 0.933 0.933 0.000 Yellow3 0.804 0.804 0.000

Yellow4 0.545 0.545 0.000 YellowGreen 0.604 0.804 0.196

SUN/95.45 —Using MathMaps 826

G Using MathMaps

A MathMap is an AST Object which contains a recipe for transforming positions from one
co-ordinate Frame to another and (optionally) back again. These transformations are specified
using arithmetic operations and mathematical functions similar to those available in Fortran.
WCSADD can be used to create a MathMap and store it in a text file, and such text files can then
be used by applications such as REGRID which require a mapping.

G.1 Defining Transformation Functions

A MathMap’s transformation functions are defined by a set of character strings holding Fortran-
like expressions. If the required Mapping has Nin input axes and Nout output axes, you would
normally supply the Nout expressions for the forward transformation. For instance, if Nout is 2
you might use:

’R = SQRT(X * X + Y * Y)’
’THETA = ATAN2(Y, X)’

which defines a transformation from Cartesian to polar co-ordinates. Here, the variables that
appear on the left of each expression (R and THETA) provide names for the output variables
and those that appear on the right (X and Y) are references to input variables.

To complement this, you must also supply expressions for the inverse transformation. In this
case, the number of expressions given would normally match the number of MathMap input
co-ordinates, Nin. If Nin is 2, you might use:

’X = R $*$ COS(THETA)’
’Y = R $*$ SIN(THETA)’

which expresses the transformation from polar to Cartesian co-ordinates. Note that here the
input variables (X and Y) are named on the left of each expression, and the output variables (R
and THETA) are referenced on the right.

Normally, you cannot refer to a variable on the right of an expression unless it is named on the
left of an expression in the complementary set of functions. Therefore both sets of functions
(forward and inverse) must be formulated using the same consistent set of variable names. This
means that if you wish to leave one of the transformations undefined, you must supply dummy
expressions which simply name each of the output (or input) variables. For example, you might
use:

’X’
’Y’

for the inverse transformation above, which serves to name the input variables but without
defining an inverse transformation.

http://www.starlink.ac.uk/cgi-bin/htxserver/.htx/.html?xref_sun210

827 G.2 Calculating Intermediate Values SUN/95.45 —Using MathMaps

G.2 Calculating Intermediate Values

It is sometimes useful to calculate intermediate values and then to use these in the final expres-
sions for the output (or input) variables. This may be done by supplying additional expressions
for the forward (or inverse) transformation functions. For instance, the following array of five
expressions describes two-dimensional pin-cushion distortion:

’R = SQRT(XIN $*$ XIN $+$ YIN $*$ YIN)’
’ROUT = R $*$ (1 $+$ 0.1 $*$ R $*$ R)’
’THETA = ATAN2(YIN, XIN)’,
’XOUT = ROUT $*$ COS(THETA)’
’YOUT = ROUT $*$ SIN(THETA)’

Here, we first calculate three intermediate results (R, ROUT and THETA) and then use these
to calculate the final results (XOUT and YOUT). The MathMap knows that only the final two
results constitute values for the output variables because its Nout attribute is set to 2. You may
define as many intermediate variables in this way as you choose. Having defined a variable,
you may then refer to it on the right of any subsequent expressions.

Note that when defining the inverse transformation you may only refer to the output variables
XOUT and YOUT. The intermediate variables R, ROUT and THETA (above) are private to the
forward transformation and may not be referenced by the inverse transformation. The inverse
transformation may, however, define its own private intermediate variables.

G.3 Expression Syntax

The expressions given for the forward and inverse transformations closely follow the syntax
of Fortran (with some extensions for compatibility with the C language). They may contain
references to variables and literal constants, together with arithmetic, logical, relational and
bitwise operators, and function invocations. A set of symbolic constants is also available. Each
of these is described in detail below. Parentheses may be used to override the normal order of
evaluation. There is no built-in limit to the length of expressions and they are insensitive to case
or the presence of additional white space.

G.4 Variables

Variable names must begin with an alphabetic character and may contain only alphabetic
characters, digits, and the underscore character "_". There is no built-in limit to the length of
variable names.

G.5 Literal Constants

Literal constants, such as "0", "1", "0.007" or "2.505E-16" may appear in expressions, with the
decimal point and exponent being optional (a "D" may also be used as an exponent character).
A unary minus "-" may be used as a prefix.

G.6 Arithmetic Precision

All arithmetic is floating point, performed in double precision.

SUN/95.45 —Using MathMaps 828 G.7 Propagation of Missing Data

G.7 Propagation of Missing Data

Unless indicated otherwise, if any argument of a function or operator has a bad value (indicating
missing data), then the result of that function or operation is also bad, so that such values are
propagated automatically through all operations performed by MathMap transformations. The
special value used to flag bad values can be represented in expressions by the symbolic constant
"<bad>".

A <bad> result is also produced in response to any numerical error (such as division by zero or
numerical overflow), or if an invalid argument value is provided to a function or operator.

G.8 Arithmetic Operators

The following arithmetic operators are available:

• X1 + X2: Sum of X1 and X2.

• X1 - X2: Difference of X1 and X2.

• X1 ∗ X2: Product of X1 and X2.

• X1 / X2: Ratio of X1 and X2.

• X1 ∗∗ X2: X1 raised to the power of X2.

• + X: Unary plus, has no effect on its argument.

• - X: Unary minus, negates its argument.

G.9 Logical Operators

Logical values are represented using zero to indicate .FALSE. And non-zero to indicate .TRUE..
In addition, the bad value is taken to mean "unknown". The values returned by logical operators
may therefore be 0, 1 or bad. Where appropriate, "tri-state" logic is implemented. For
example, A.OR.B may evaluate to 1 if A is non-zero, even if B has the bad value. This is because
the result of the operation would not be affected by the value of B, so long as A is non-zero.

The following logical operators are available:

• X1 .AND. X2: Logical AND between X1 and X2, returning 1 if both X1 and X2 are non-zero,
and 0 otherwise. This operator implements tri-state logic. (The synonym "&&" is also
provided for compatibility with C.)

• X1 .OR. X2: Logical OR between X1 and X2, returning 1 if either X1 or X2 are non-zero, and
0 otherwise. This operator implements tri-state logic. (The synonym "||" is also provided
for compatibility with C.)

• X1 .NEQV. X2: Logical exclusive OR (XOR) between X1 and X2, returning 1 if exactly one
of X1 and X2 is non-zero, and 0 otherwise. Tri-state logic is not used with this operator.
(The synonym ".XOR." is also provided, although this is not standard Fortran. In addition,
the C-like synonym "^^" may be used, although this is also not standard.)

829 G.10 Relational Operators SUN/95.45 —Using MathMaps

• X1 .EQV. X2: Tests whether the logical states of X1 and X2 (i.e. .TRUE./.FALSE.) are equal.
It is the negative of the exclusive OR (XOR) function. Tri-state logic is not used with this
operator.

• .NOT. X: Logical unary NOT operation, returning 1 if X is zero, and 0 otherwise. (The
synonym "!" is also provided for compatibility with C.)

G.10 Relational Operators

Relational operators return the logical result (0 or 1) of comparing the values of two floating-
point values for equality or inequality. The bad value may also be returned if either argument is
<bad>.

The following relational operators are available:

• X1 .EQ. X2: Tests whether X1 equals X2. (The synonym "==" is also provided for compati-
bility with C.)

• X1 .NE. X2: Tests whether X1 is unequal to X2. (The synonym "!=" is also provided for
compatibility with C.)

• X1 .GT. X2: Tests whether X1 is greater than X2. (The synonym ">" is also provided for
compatibility with C.)

• X1 .GE. X2: Tests whether X1 is greater than or equal to X2. (The synonym ">=" is also
provided for compatibility with C.)

• X1 .LT. X2: Tests whether X1 is less than X2. (The synonym "<" is also provided for
compatibility with C.)

• X1 .LE. X2: Tests whether X1 is less than or equal to X2. (The synonym "<=" is also
provided for compatibility with C.)

Note that relational operators cannot usefully be used to compare values with the <bad> value
(representing missing data), because the result is always <bad>. The ISBAD() function should
be used instead.

Note, also, that because logical operators can operate on floating point values, care must be
taken to use parentheses in some cases where they would not normally be required in Fortran.
For example, the expression:

.NOT. A .EQ. B

must be written:

.NOT. (A .EQ. B)

to prevent the .NOT. Operator from associating with the variable A.

SUN/95.45 —Using MathMaps 830 G.11 Bitwise Operators

G.11 Bitwise Operators

Bitwise operators are often useful when operating on raw data (e.g. from instruments), so they
are provided for use in MathMap expressions. In this case, however, the values on which they
operate are floating-point values rather than the more usual pure integers. In order to produce
results which match the pure integer case, the operands are regarded as fixed point binary
numbers (i.e. with the binary equivalent of a decimal point) with negative numbers represented
using twos-complement notation. For integer values, the resulting bit pattern corresponds to
that of the equivalent signed integer (digits to the right of the point being zero). Operations on
the bits representing the fractional part are also possible, however.

The following bitwise operators are available:

• X1 >> X2: Rightward bit shift. The integer value of X2 is taken (rounding towards zero)
and the bits representing X1 are then shifted this number of places to the right (or to the left
if the number of places is negative). This is equivalent to dividing X1 by the corresponding
power of 2.

• X1 << X2: Leftward bit shift. The integer value of X2 is taken (rounding towards zero),
and the bits representing X1 are then shifted this number of places to the left (or to the
right if the number of places is negative). This is equivalent to multiplying X1 by the
corresponding power of 2.

• X1 & X2: Bitwise AND between the bits of X1 and those of X2 (equivalent to a logical AND
applied at each bit position in turn).

• X1 | X2: Bitwise OR between the bits of X1 and those of X2 (equivalent to a logical OR
applied at each bit position in turn).

• X1 ^ X2: Bitwise exclusive OR (XOR) between the bits of X1 and those of X2 (equivalent to
a logical XOR applied at each bit position in turn).

Note that no bit inversion operator is provided. This is because inverting the bits of a twos-
complement fixed point binary number is equivalent to simply negating it. This differs from the
pure integer case because bits to the right of the binary point are also inverted. To invert only
those bits to the left of the binary point, use a bitwise exclusive OR with the value -1 (i.e. X^-1).

G.12 Functions

The following functions are available:

• ABS(X): Absolute value of X (sign removal), same as FABS(X).

• ACOS(X): Inverse cosine of X, in radians.

• ACOSD(X): Inverse cosine of X, in degrees.

• ACOSH(X): Inverse hyperbolic cosine of X.

• ACOTH(X): Inverse hyperbolic cotangent of X.

• ACSCH(X): Inverse hyperbolic cosecant of X.

831 G.12 Functions SUN/95.45 —Using MathMaps

• AINT(X): Integer part of X (round towards zero), same as INT(X).

• ASECH(X): Inverse hyperbolic secant of X.

• ASIN(X): Inverse sine of X, in radians.

• ASIND(X): Inverse sine of X, in degrees.

• ASINH(X): Inverse hyperbolic sine of X.

• ATAN(X): Inverse tangent of X, in radians.

• ATAND(X): Inverse tangent of X, in degrees.

• ATANH(X): Inverse hyperbolic tangent of X.

• ATAN2(X1, X2): Inverse tangent of X1/X2, in radians.

• ATAN2D(X1, X2): Inverse tangent of X1/X2, in degrees.

• CEIL(X): Smallest integer value not less then X (round towards plus infinity).

• COS(X): Cosine of X in radians.

• COSD(X): Cosine of X in degrees.

• COSH(X): Hyperbolic cosine of X.

• COTH(X): Hyperbolic cotangent of X.

• CSCH(X): Hyperbolic cosecant of X.

• DIM(X1, X2): Returns X1-X2 if X1 is greater than X2, otherwise 0.

• EXP(X): Exponential function of X.

• FABS(X): Absolute value of X (sign removal), same as ABS(X).

• FLOOR(X): Largest integer not greater than X (round towards minus infinity).

• FMOD(X1, X2): Remainder when X1 is divided by X2, same as MOD(X1, X2).

• GAUSS(X1, X2): Random sample from a Gaussian distribution with mean X1 and standard
deviation X2.

• INT(X): Integer part of X (round towards zero), same as AINT(X).

• ISBAD(X): Returns 1 if X has the <bad> value, otherwise 0.

• LOG(X): Natural logarithm of X.

• LOG10(X): Logarithm of X to base 10.

• MAX(X1, X2, ...): Maximum of two or more values.

• MIN(X1, X2, ...): Minimum of two or more values.

• MOD(X1, X2): Remainder when X1 is divided by X2, same as FMOD(X1, X2).

SUN/95.45 —Using MathMaps 832 G.13 Symbolic Constants

• NINT(X): Nearest integer to X (round to nearest).

• POISSON(X): Random integer-valued sample from a Poisson distribution with mean X.

• POW(X1, X2): X1 raised to the power of X2.

• RAND(X1, X2): Random sample from a uniform distribution in the range X1 to X2
inclusive.

• SECH(X): Hyperbolic secant of X.

• SIGN(X1, X2): Absolute value of X1 with the sign of X2 (transfer of sign).

• SIN(X): Sine of X in radians.

• SINC(X): Sinc function of X [= SIN(X)/X].

• SIND(X): Sine of X in degrees.

• SINH(X): Hyperbolic sine of X.

• SQR(X): Square of X (= X∗X).

• SQRT(X): Square root of X.

• TAN(X): Tangent of X in radians.

• TAND(X): Tangent of X in degrees.

• TANH(X): Hyperbolic tangent of X.

G.13 Symbolic Constants

The following symbolic constants are available (the enclosing "<>" brackets must be included):

• <bad>: The ‘bad’ value used to flag missing data. Note that you cannot usefully compare
values with this constant because the result is always <bad>. The ISBAD() function
should be used instead.

• <dig>: Number of decimal digits of precision available in a floating-point (double-
precision) value.

• <e>: Base of natural logarithms.

• <epsilon>: Smallest positive number such that 1.0+<epsilon> is distinguishable from
unity.

• <mant_dig>: The number of base <radix> digits stored in the mantissa of a floating-point
(double-precision) value.

• <max>: Maximum representable floating-point (double-precision) value.

• <max_10_exp>: Maximum integer such that 10 raised to that power can be represented
as a floating-point (double-precision) value.

833 G.14 Evaluation Precedence and Associativity SUN/95.45 —Using MathMaps

• <max_exp>: Maximum integer such that <radix> raised to that power minus 1 can be
represented as a floating-point (double-precision) value.

• <min>: Smallest positive number which can be represented as a normalised floating-point
(double-precision) value.

• <min_10_exp>: Minimum negative integer such that 10 raised to that power can be
represented as a normalised floating-point (double-precision) value.

• <min_exp>: Minimum negative integer such that <radix> raised to that power minus 1
can be represented as a normalised floating-point (double-precision) value.

• <pi>: Ratio of the circumference of a circle to its diameter.

• <radix>: The radix (number base) used to represent the mantissa of floating-point (double-
precision) values.

• <rounds>: The mode used for rounding floating-point results after addition. Possible
values include: -1 (indeterminate), 0 (toward zero), 1 (to nearest), 2 (toward plus infinity)
and 3 (toward minus infinity). Other values indicate machine-dependent behaviour.

G.14 Evaluation Precedence and Associativity

Items appearing in expressions are evaluated in the following order (highest precedence first):

• Constants and variables

• Function arguments and parenthesised expressions

• Function invocations

• Unary + - ! .not.

• ∗∗

• ∗ /

• + -

• << >>

• < .lt. <= .le. > .gt. >= .ge.

• == .eq. != .ne.

• &

• ^

• |

• && .and.

• ^^

SUN/95.45 —Using MathMaps 834 G.14 Evaluation Precedence and Associativity

• || .or

• .eqv. .neqv. .xor.

All operators associate from left-to-right, except for unary +, unary -, !, .not. And ∗∗ which
associate from right-to-left.

835 SUN/95.45 —Standard Components in an NDF

H Standard Components in an NDF

An NDF comprises a main data array plus a collection of objects drawn from a set of standard
items and extensions (see SUN/33). Only the main data array must be present; all the other
items are optional.

example.sdf is an NDF which contains all the standard NDF components, except a WCS
component and a FITS extension; it also has a FIGARO extension. The structure of the file (as
revealed by HDSTRACE) is shown below. The layout is

NAME(dimensions) <TYPE> VALUE(S)

and each level down the hierarchy is indented. Note that scalar objects have no dimensions

EXAMPLE <NDF>

DATA_ARRAY <ARRAY> {structure}
DATA(856) <_REAL> *,0.2284551,-2.040089,45.84504,56.47374,

... 746.2602,820.8976,570.0729,*,449.574
ORIGIN(1) <_INTEGER> 4
BAD_PIXEL <_LOGICAL> FALSE

TITLE <_CHAR*30> ’HR6259 - AAT fibre data’
LABEL <_CHAR*20> ’Flux’
UNITS <_CHAR*20> ’Counts/s’
QUALITY <QUALITY> {structure}

BADBITS <_UBYTE> 1
QUALITY(856) <_UBYTE> 1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0

VARIANCE <ARRAY> {structure}
DATA(856) <_REAL> 2.1,0.1713413,1.5301,34.38378,42.35531,

... 615.6732,427.5547,353.9127,337.1805
ORIGIN(1) <_INTEGER> 4
BAD_PIXEL <_LOGICAL> FALSE

AXIS(1) <AXIS> {structure}

Contents of AXIS(1)
DATA_ARRAY(856) <_REAL> 3847.142,3847.672,3848.201,3848.731,

... 4298.309,4298.838,4299.368,4299.897
LABEL <_CHAR*20> ’Wavelength’
UNITS <_CHAR*20> ’Angstroms’

HISTORY <HISTORY> {structure}
CREATED <_CHAR*30> ’1990-DEC-12 08:21:02.324’
CURRENT_RECORD <_INTEGER> 3
RECORDS(10) <HIST_REC> {array of structures}

Contents of RECORDS(1)

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_

SUN/95.45 —Standard Components in an NDF 836

TEXT <_CHAR*40> ’Extracted spectrum from fibre data.’
DATE <_CHAR*25> ’1990-DEC-19 08:43:03.08’
COMMAND <_CHAR*30> ’FIGARO V2.4 FINDSP command’

MORE <EXT> {structure}
FIGARO <EXT> {structure}

TIME <_REAL> 1275
SECZ <_REAL> 2.13

End of Trace.

Of course, this is only an example format. There are various ways of representing some of the
components. These variants are described in SGP/38, but not all are currently supported.

The components are considered in detail below. The names (in bold typeface) are significant as
they are used by the NDF access routines to identify the components.

DATA — the main data array (called DATA_ARRAY for historical reasons) is the only compo-
nent which must be present in an NDF. In the case of example.sdf, is a one-dimensional
array of real type with 856 elements. It can have up to seven dimensions. It is particularly
referenced via parameter names IN, OUT, and NDF.

If neither origin nor bad-pixel flag were present, the DATA component could have been a
one-dimensional array like this,

DATA_ARRAY(856) <_REAL> *,0.2284551,-2.040089,45.84504,56.47374,
... 746.2602,820.8976,570.0729,*,449.574

rather than the structure shown above.

ORIGIN — an array of the indices of the first pixel along each axis, defaulting to 1. See Sec-
tion 12.1 for further information and a graphic. ORIGIN may be set with task SETORIGIN,
or after processing an NDF section.

BAD_PIXEL — the bad-pixel flag indicating whether there may be bad pixels present. See
SETBADC.1 for further information. The flag may be set with task SETBAD.

TITLE — the character string "HR6259 - AAT fibre data" describes the contents of the NDF.
The NDF’s TITLE might be used as the title of a graph etc. It may be set with task SETTITLE.
Applications that create an NDF assign a TITLE to the NDF via a parameter, called TITLE
unless the application generates several NDFs.

LABEL — the character string "Flux" describes the quantity represented in the NDF’s main
data array. The LABEL is intended for use on the axis of graphs etc. It may be set using the
task SETLABEL.

UNITS — this character string describes the physical units of the quantity stored in the main
data array, in this case, "Counts/s". It may be set via the command SETUNITS.

QUALITY — this component is used to indicate the quality of each element in the main data
array, for example whether each pixel is vignetted or not. The quality structure contains a
quality array and a BADBITS value, both of which must be of type _UBYTE. The quality

http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_

837 SUN/95.45 —Standard Components in an NDF

array has the same shape and size as the main data array and is used in conjunction with
the BADBITS value to decide the quality of a pixel in the main data array. In example.sdf
the BADBITS component has value 1. This means that a value of 1 in the quality array
indicates a bad pixel in the main data array, whereas any other value indicates that the
associated pixel is good. (Note that the pixel is bad if the bit-wise comparison QUALITY
"AND" BADBITS is non-zero). The meanings of the QUALITY bits are arbitrary. See the
task SETBB. To enter new quality information, use the SETQUAL command.

VARIANCE — the variance array is the same shape and size as the main data array and
contains the errors associated with the individual data values. These are stored as variance
estimates for each pixel. VARIANCE may be set with the SETVAR command.

AXIS — the AXIS structure may contain axis information for any dimension of the NDF’s
main array. In this case, the main data array is only one-dimensional, therefore only the
AXIS(1) structure is present. This structure contains the actual axis data array of pixel
centres, and also label and units information. KAPPA uses the label and units for axis
annotations. Not shown in this example are optional array components for storing pixel
widths and the variance of the axis centres. All axes or none must be present. Use SETAXIS
to set the values of an AXIS array component; AXLABEL and AXUNITS to set an axis
LABEL or UNITS component; and SETNORM to set an axis normalisation flag. For more
information see Section 12.2.

WCS — this component provides an alternative, and superior, method for storing co-ordinate
information. The AXIS structure described above has the severe limitation that it can only
describe co-ordinate systems in which all axes are independent (i.e. the value on any axis
can be changed without needing to change the values on any other axes). This means for
instance that axes cannot be rotated (other than by multiples of 90◦), and cannot be used
to describe celestial co-ordinates over a large field, or near a pole. The WCS component
overcomes these restrictions. It contains descriptions of an arbitrary number of different
co-ordinate Frames, together with the mappings required to convert positions between
these Frames. All NDFs have four default Frames available; these are known as the GRID,
FRACTION, PIXEL, and AXIS Frames. The PIXEL Frame corresponds to pixel co-ordinates.
The AXIS Frame corresponds to the co-ordinate Frame implied by the NDF AXIS structures.
The GRID Frame is similar to the PIXEL Frame, the main difference being that it has a
different origin; the centre of the first (‘bottom left’) pixel is always (1.0, 1.0) in the GRID
Frame regardless of the pixel origin of the NDF. The FRACTION Frame corresponds to
normalised PIXEL or GRID co-ordinates, scaled from zero to one. Other Frames can be
added to the WCS component in various ways, for instance, by importing them from
appropriate FITS headers (FITSIN, FITSDIN), or using an appropriate application to create
them from scratch (e.g. WCSADD, SETSKY or GAIA). See Section 12 for more information.

HISTORY — this component provides a record of the processing history of the NDF. Only
the first of three records is shown for example.sdf. This indicates that the spectrum was
extracted from fibre data using the FIGARO FINDSP command on 1990 December 19. The
history recording level is set by task HISSET. This task also allows you to switch off history
recording or delete the history records. HISLIST lists an NDF’s history. You can add
commentary with HISCOM.

EXTENSIONs — the purpose of extensions is to store non-standard items. These auxiliary data
could be information about the original observing setup, such as the airmass during the

http://www.starlink.ac.uk/cgi-bin/htxserver/sun214.htx/sun214.html?xref_

SUN/95.45 —Standard Components in an NDF 838

observation or the temperature of the detector; they may be calibration data or results
produced during processing of the data array, e.g. spectral-line fits. The extensions are
located within the MORE top-level component. example.sdf began life as a FIGARO file. It
was converted to an NDF using the command DST2NDF (see SUN/55). It contains values
for the airmass and exposure time associated with the observations. These are stored in
the FIGARO extension, and the intention is that the FIGARO applications which use these
values will know where to find them. Task SETEXT lets the contents of extensions be listed,
created, deleted, renamed and assigned new values.

One extension that is used by KAPPA is the FITS extension. This holds the FITS headers
as an array of 80-character elements, i.e. one FITS card image per array element. You can
extract the values of ancillary items from the FITS extension to a non-standard extension
via FITSIMP. Use FITSEXP to do the reverse operation. The extension can be listed via
the command FITSLIST. FITSEDIT allows you to edit the headers prior to export of the
dataset to another format such as FITS or IRAF.

KAPPA uses a PROVENANCE extension to record details of the ancestor NDFs used to
generate an NDF. This lets you determine how the NDF before you, came to be. For each
ancestor NDF, the provenance information includes its path at creation time, the creation
epoch, the software that generated the ancestor, and indices to its parent NDFs (if any exist)
within the PROVENANCE extension. There is also a MORE component within PROVE-
NANCE that can be filled with arbitrary additional information. Provenance recording is
controlled through the AUTOPROV environment variable: set it to 1 to enable recording, and
set it to any other value to disable recording. When AUTOPROV is undefined, then an output
NDF will have provenance only if at least one of the input NDFs has provenance. You can
examine provenance with PROVSHOW, and modify it with PROVADD and PROVMOD.
Selected provenance may be removed with PROVREM.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun86.htx/sun86.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun55.htx/sun55.html?xref_DST2NDF
http://fits.gsfc.nasa.gov/
http://iraf.noao.edu/iraf-homepage.html

839 SUN/95.45 —Supported HDS Data Types

I IMAGE data format

The IMAGE format as used by some commands in earlier versions of KAPPA is a simple HDS
structure, comprising a floating-point data array, a character title, and the maximum and
minimum data values. It is variant of the original Wright-Giddings IMAGE structure. There are
others is use that contain more items. An example structure is shown schematically below using
the HDSTRACE (SUN/102) notation; see Appendix H.

HORSEHEAD <IMAGE>

DATA_ARRAY(384,512) <_REAL> 100.5,102.6,110.1,109.8,105.3,107.6,
... 123.1,117.3,119,120.5,127.3,108.4

TITLE <_CHAR*72> ’KAPPA - Flip’
DATA_MIN <_REAL> 28.513
DATA_MAX <_REAL> 255.94

End of Trace.

The DATA_ARRAY may have up to seven dimensions. IMAGE structures are associated with
parameters like INPIC and OUTPIC. The TITLE object of new IMAGE structures takes the value
of the Parameter OTITLE. DATA_MIN and DATA_MAX are now ignored.

The IMAGE format is not too dissimilar from a primitive NDF with no extensions. Indeed if it
did not have DATA_MAX and DATA_MIN it would be a bona fide NDF. Thus applications that
handle the IMAGE format can follow the rules of SGP/38 and process it like an NDF. In effect
this means that all extensions are propagated to output files, and a quality array is propagated
where the processing does not invalidate its values. IMAGE applications also handle most simple
NDFs correctly (those where the data array is an array of numbers at the second level of the
hierarchical structure). This similarity in formats enables NDF and IMAGE applications to work
in co-operation, and so the conversion within KAPPA was undertaken piecemeal over several
years. Note that the primitive variant is no longer the norm for NDFs, since for example, it does
not support origin information.

J Supported HDS Data Types

KAPPA applications can process NDFs in one or more of the following HDS data types. The
correspondence between Fortran types and HDS data types is as follows:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun102.htx/sun102.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sgp38.htx/sgp38.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html?xref_

SUN/95.45 —Supported HDS Data Types 840

HDS Type Number of bytes FORTRAN Type

_DOUBLE 8 DOUBLE PRECISION

_INTEGER 4 INTEGER

_INT64 8 INTEGER*8 (non-standard)

_REAL 4 REAL

_UBYTE 1 BYTE

_BYTE 1 BYTE

_UWORD 2 INTEGER*2

_WORD 2 INTEGER*2

(_UBYTE) and (_UWORD) types are unsigned and so permit data ranges of 0–255 and 0–65535
respectively.

841 SUN/95.45 —Release Notes—V2.6

K Release Notes—V2.6

K.1 New Commands

The following new applications have been added:

COMPLEX Converts between representations of complex data, such as extracting or combining
real and imaginary parts.

MOCGEN Creates a description of selected regions in an image using the IVOA’s Multi-Order
Coverage (MOC) scheme.

PIXBIN Places each input pixel into a bin defined by one or more index NDFs and creates an
output NDF holding all the values in each bin.

K.2 General Changes

The following applications now support huge NDFs: ADD, ADD, CDIV, CMULT, CSUB,
COLLAPSE, DIV, MFITTREND, MSTATS, MULT NDFCOPY, NDFTRACE, NUMB PERMAXES,
STATS, and SUB. Huge means more than 2,147,483,647 elements in an array component.

K.3 Modified Commands

The following applications have been modified:

ARDMASK

• It can now process complex data.

CHPIX

• It is easier now to make several edits by supplying the NDF sections and fill values in
a text file. This is made possible new parameters called MODE and FILE. The default
for MODE preserves the historic interactive behaviour.

DISPLAY

• Parameter KEYPOS(2) accepts negative values to instruct DISPLAY to plot the key
aligned with the image. Thus setting KEY=TRUE and KEYPOS=[0,-1] will draw the
colour-table ramp so that it abuts the image with its vertical extent matching the
image, as commonly needed for journal graphics.

LINPLOT

SUN/95.45 —Release Notes—V2.6 842 K.3 Modified Commands

• The XMAP parameter now has a new option called "LRLinear", which causes the X
axis to be annotated linearly increasing from left to right. This differs from the existing
"Linear" option, which may sometimes produce annotated values that increase from
right to left, depending on the nature of the WCS.

LISTSHOW

• New parameters called NDF and COMP allow the data, error, or variance values
at the catalogued positions within a chosen NDF to be displayed. These use the
interpolation method specified by the new Parameters METHOD and PARAMS. The
pixel values are also written to a new output parameter called PIXVALS.

LISTSHOW

• New parameters called NDF and COMP allow the data, error, or variance values
at the catalogued positions within a chosen NDF to be displayed. These use the
interpolation method specified by the new Parameters METHOD and PARAMS. The
pixel values are also written to a new output parameter called PIXVALS.

MANIC

• It is now possible to collapse axes using a median instead of the default mean,
controlled by a new parameter called ESTIMATOR.

REMQUAL

• A new parameter called CLEAR allows the corresponding bit within the NDF’s
QUALITY array to be cleared.

SCATTER

• A new parameter called FIT allows a linear fit to the scatter plot to be calculated and
displayed.

• The correlation coefficient is now calculated from the visible points alone. Any points
outside the bounds of the plot are ignored. Previously, such points were not ignored.

• The reported number of points plotted now ignores any points outside the bounds of
the plot.

SUBSTITUTE

• A new parameter called LUT allows multiple values to be changed simultaneously by
supplying a table of old and new values in the form a text file. Interpolation between
the values can be performed if required.

• A new parameter called TYPE allows the data type of the output NDF to be specified
explicitly.

843 SUN/95.45 —Notes from Previous Few Releases

L Notes from Previous Few Releases

L.1 Release Notes—V2.0

L.1.1 General Changes

• Now supports 64-bit integer data.

L.1.2 New Commands

The following new applications have been added:

CONFIGECHO This is intended as a scripting tool. It displays the value of a named entry in a
group of configuration parameters.

NDFECHO This is intended as a scripting tool. It expands a given group expression into a list
of explicit NDF names, and displays a specified subset of the expanded names.

L.1.3 Modified Commands

The following applications have been modified:

CHANMAP

• Four new estimators are available: FBAD, FGOOD, NBAD and NGOOD, which
produce the fraction/count of good/bad pixel values.

COLLAPSE

• Four new estimators are available: FBAD, FGOOD, NBAD and NGOOD, which
produce the fraction/count of good/bad pixel values.

MSTATS

• Four new estimators are available: FBAD, FGOOD, NBAD and NGOOD, which
produce the fraction/count of good/bad pixel values.

NORMALIZE

• A new boolean parameter called LOOP permits normalisation against a single row or
column when comparing two-dimensional NDFs.

PARGET

• A new boolean parameter called VECTOR specifies the output format to use for
vector-valued parameters.

ROTATE

• Now estimates north at the centre of the image rather than at the bottom left corner,
and uses a more accurate method.

SUN/95.45 —Notes from Previous Few Releases 844 L.2 Release Notes—V2.1

WCSADD

• The transfer of set attribute values from basis Frame to new Frame can now be con-
trolled using a new boolean parameter called TRANSFER (previously, set attributes
were always transferred). The new default is to transfer attributes only if the two
Frames have the same class and Domain.

WCSREMOVE

• The Frames to remove can now be specified by name as well as by index.

L.2 Release Notes—V2.1

L.2.1 New Commands

The following new applications have been added:

EXCLUDEBAD This will copy a two-dimensional NDF, excluding any rows or columns that
contain too many bad values. Good rows or columns are shuffled down to lower indices
to fill the gaps left by the excluded rows or columns, thus causing the output NDF to be
smaller than the input NDF.

L.2.2 Modified Commands

The following applications have been modified:

ARDPLOT

• Can now display the outline of a Region even if no picture has been displayed
previously on the graphics device. The size of the plot is controlled by the new SIZE
parameter. Any existing picture can be ignored by setting the new CLEAR parameter
to TRUE.

BEAMFIT

• There is now more control of the initial or fixed sizes and shapes of the beams. Note
that this has involved a change of the type and function of Parameter FIXFWHM.
FIXFWHM like other FIX- parameters is _LOGICAL; it just constrains whether the
FWHM values should be fixed. A new parameter called FWHM allows you to set
either initial values, or when FIXFWHM is also set TRUE, it sets fixed FWHM values.
The interpretation of FWHM values depends on a new CIRCULAR parameter, which
constrains the fit to be circular thus there is no minor axis and orientation derived. In
combination it is possible to give a list of circular or elliptical FWHMs.

• The output parameters now store the statistics of every fitted beam, not just those of
the primary beam.

CENTROID

• The centroid’s formatted co-ordinates, such as right ascension and declination, are
now normalised into the usual ranges. This aplies both to the reported positions and
the output parameters.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_Frame

845 L.2 Release Notes—V2.1 SUN/95.45 —Notes from Previous Few Releases

COPYBAD

• Now writes the number of good and bad pixels in the output NDF to output parame-
ters NGOOD and NBAD.

• No longer sets the BAD_PIXEL flag for the DATA and VARIANCE components.

DISPLAY

• The MODE parameter can now be set to "Current" to force the current upper and
lower limits to be re-used.

ERASE

• Now has a parameter called REPORT that indicates if an error should be reported if
the specified object does not exist.

GDCLEAR

• Will now remove any unused space from the graphics-database file, thus keeping its
size to a minimum.

HISTOGRAM

• The new WIDTH parameter offers the option to specify the bin width instead of the
number of bins.

MFITTREND

• Now has a parameter called PROPBAD, which controls whether to propagate bad
input values to the returned fit.

NDFECHO

• A new parameter called EXISTS has been added that allows the list of displayed NDF
paths to be filtered by removing the paths for NDFs that do not exist.

NORMALIZE

• This will loop if the first NDF is one-dimensional and the second is two-dimensional,
provided LOOP=TRUE. It previously only worked if the dimensionalities were in the
reverse sense.

OUTSET

• The USEAXIS parameter now works, needed when the supplied NDF has more than
two axes.

PROVADD

• The inoperative parameter MORE has been removed.

SCATTER

• Now writes the number of pixels used to form the correlation coefficient to output
parameter NPIX.

SUN/95.45 —Notes from Previous Few Releases 846 L.3 Release Notes—V2.2

SETQUAL

• It is now possible to copy all quality information from one NDF to another using a
new parameter called LIKE.

WCSALIGN

• The Gaussian kernel may now be applied in resampling mode as well as rebinning
mode.

L.3 Release Notes—V2.2

L.3.1 Documentation Changes

• SUN/95 has been upgraded to the new style of documentation. Some residual collateral
damage to the typesetting is likely to be present.

• Most of the old release notes have been removed from SUN/95, with just the few most-
recent sets of notes retained in a separate appendix.

• The detailed descriptions of plotting and AST attributes are now in appendices.

L.3.2 Modified Commands

The following applications have been modified:

COLLAPSE

• Fixed bug in the calculation of the variance for the Sum estimator. Note that this
applies to other collapsing commands such as MSTATS.

CONFIGECHO

• A new parameter called LOGFILE has been added that allows the list of displayed
configuration parameters to be written to a text file.

COPYBAD

• Restore setting the BAD_PIXEL flag for the DATA and VARIANCE components, only
setting it false if no bad pixels were copied and none existed in the input NDF.

SEGMENT

• A bug that caused a crash for NDFs with degenerate axes has been fixed.

SETQUAL

847 L.4 Release Notes—V2.3 SUN/95.45 —Notes from Previous Few Releases

• A new parameter QVALUE can be used to store a constant integer value in the range
0 to 255 in the QUALITY component for all pixels.

WCSALIGN

• A new parameter ALIGNREF can be used to control the co-ordinate system in which
the input NDFs are aligned.

WCSMOSAIC

• A new parameter ALIGNREF can be used to control the co-ordinate system in which
the input NDFs are aligned.

L.4 Release Notes—V2.3

L.4.1 New Commands

The following new applications have been added:

NDFCOMPARE Compares two NDFs and reports whether they are equivalent, based on a
range of different tests.

L.4.2 Modified Commands

The following applications have been modified:

BEAMFIT

• Now works for HEALPix maps with its apparently non-square pixels.

• A long-standing issue of occasional nonsense WCS errors has been rectified by using
a better-conditioned algorithm.

FITSMOD

• A missing END header may be appended using the Write mode. Any associated
value and/or comment are ignored. The easiest way to append an END header is
with the wrapper FITSWRITE.

NORMALIZE

• Now calculates and displays Pearson’s coefficient of linear correlation on the remain-
ing data at every iteration.

• New Parameter CORR added to hold the last displayed correlation coefficient.

• New Parameters OUTSLOPE, OUTOFFSET and OUTCORR added. These are one-
dimensional NDFs in which the slopes, offsets and correlation coefficients respectively
are stored when operating in looping mode (i.e. LOOP=TRUE).

SUN/95.45 —Notes from Previous Few Releases 848 L.5 Release Notes—V2.4

ROTATE

• Now writes out the rotation angle actually used to an output parameter (ANGLEUSED).

SQORST

• Propagates UNITS as it used to in the IMAGE-format version.

L.5 Release Notes—V2.4

L.5.1 New Commands

The following new application have been added:

ALIGN2D Aligns a pair of two-dimensional NDFs by minimising the residuals between them.

L.5.2 Modified Commands

The following applications have been modified:

APERADD

• Has a new parameter MASK, which can be used to save an NDF containing a mask
showing which pixels were included in the aperture.

COLLAPSE

• A warning that suggested that WLIM should b lowered even when it had the min-
mum of zero no longer appears.

LINPLOT

• Parameter TEMPSTYLE is withdrawn. The + syntax should be used to set temporary
style changes.

LUCY

• A bug that prevented correct background removal when Parameter BACK was null
was excised.

MFITTREND

• Has a new FOREST parameter, which improves spectral-line masking in line forests
using a smoothed mode rather than the mean and a better estimate of the baseline
noise.

849 L.6 Release Notes—V2.5 SUN/95.45 —Notes from Previous Few Releases

• A bug has been fixed preventing fits in the rare combination of neither variance nor
bad values being present, and without masking of lines. Bad variances are also now
checked before spline fitting.

NDFCOPY

• A bug has been fixed that prevented excess WCS axes from being removed.

NORMALIZE

• Has two new parameters DRAWMARK and DRAWWIDTH that can be used to
exclude central markers and width indicator from the plot.

PROVSHOW

• Has a new option SHOW="TREE", which allows the family tree to be stepped through
in an interactive manner, with the user choosing which parent is to be displayed next.

WCSADD

• Has a new option MAPTYPE="REFNDF", which causes a copy of a co-ordinate Frame
read from a reference NDF to be added into the modified NDF.

• New Parameter RETAIN allows control over whether or not the new Frame becomes
the current Frame in the modified NDF on exit.

L.6 Release Notes—V2.5

L.6.1 General Changes

• A log of KAPPA commands can now be written to a text file specified by the environment
variable KAPPA_LOG. The log lists the application name and parameter values in separate
headed lines. Note that the format of the log may change to simple command lines that
could be replayed in a script.

L.6.2 Modified Commands

The following applications have been modified:

ALIGN2D

• Parameter TR may also include the scale and offset in its seventh and eight elements.

• The RMS residual between the aligned and the reference arrays is now written to an
output parameter called “RMS”.

CONFIGECHO

SUN/95.45 —Release Notes—V2.5-9 850

• This now reports all elements in an array, not just the first element.

CONTOUR

• The dynamic default for Parameter LABPOS is now ! (i.e. a null value), so no label
is now drawn in "Bounds" or "Good" mode unless a value is supplied explicitly for
LABPOS.

DISPLAY

• Has a new Parameter PENRANGE, which can be used to restrict the range of pens
(i.e. colour indices) used. The default is to use the full range of available pens.

• The vertical position of the key can now be controlled through Parameter KEYPOS.

HISCOM

• Has a new Parameter APPNAME, which can be used to change the application name
stored in the new history record from the default of “HISCOM”. Scripts that generate
NDFs can use this facility to record the details of the invocation of the script in the
form of a history record in the output NDF.

MFITTREND

• The auto method uses the median rather than the mean to clip outliers. This permits
better masking of strong and extended emission.

SQORTST

• Permit an axis scale to be retained by using an asterisk in Parameter PIXSCALE.

TRANDAT

• Will now recognise the string "BAD" (case insensitive) within the input text file and
generate appropriate bad values in the output NDF.

M Release Notes—V2.5-9

M.1 Modified Commands

The following applications have been modified:

ALIGN2D

851 M.1 Modified Commands SUN/95.45 —Release Notes—V2.5-9

• The residuals used to determine the fit are now weighted using the SNR of the data
rather than the reciprocal of the variance. This will cause the final alignment to be
determined more by the brighter sections of the map than previously.

COLLAPSE

• There is a new estimator option, "FastMed", that offers a substantially faster calcula-
tion of unweighted medians.

SETAXIS

• There is a new mode, "NDF". It assigns the axis values using the data values in another
NDF, specified by a parameter called AXISNDF.

SQORST

• Has a new Parameter CENTRE, which specifies the centre about which the WCS
co-ordinates are stretched or squashed.

WCSALIGN

• The input NDFs can now be aligned with a specified POLPACK catalogue—see new
Parameter REFCAT.

WCSMOSAIC

• Has a new parameter called WEIGHTS that can be used to specify a weight for each
of the input NDFs.

	Introduction
	Background
	Rôle of KAPPA
	Functionality of KAPPA
	Applications
	General

	This document

	Tutorials
	From the C-shell
	From ICL

	Getting started
	Running KAPPA
	Issuing Commands
	Obtaining Help
	Hypertext Help
	Entering the Help System
	Navigating Help Hierarchies
	Help on KAPPA commands

	Changing the Current Directory in ICL
	Exiting an Application

	Parameters
	Summary
	Defaults
	Globals
	Strings
	Arrays
	Abort and Null
	Help
	Menus
	Environment Variables
	Specifying Parameter Values on Command Lines
	Keyword
	Abbreviations
	Position
	Keyword versus Positional Parameters
	Special Behaviour

	Special Keywords: ACCEPT, PROMPT, RESET
	MIN and MAX parameter values
	Specifying Groups of Objects
	Indirection
	Editing
	Modification
	Ignoring Syntax Characters
	Groups of Data Files
	Examples

	Output Parameters

	Verbosity of Messages
	Graphics Devices and Files
	Selecting a Graphics Device
	Global Parameters
	X-windows

	Composite Hardcopy Plots

	Plotting Styles and Attributes
	Plotting Styles and Attributes
	Specifying a Plotting Style
	Group Expressions
	Temporary Attributes
	Synonyms for Attribute Names
	Colour Attributes

	Establishing Defaults for Plotting Attributes
	Graphical Escape Sequences

	Data structures
	Restrictions on the Usage of Data Structures
	Looking at the Data Structures
	Editing the Data Structures
	Native Format

	NDF Sections
	Specifying Lower and Upper Bounds
	Specifying Centre and Extent
	Using World or Axis Co-ordinates to Specify Sections
	World co-ordinates:
	Axis co-ordinates:

	Specifying Fractional Extents
	Changing Dimensionality
	Mixing Bounds Expressions

	NDF History
	Control and Content of History Recording
	Adding Commentary to History Recording
	Listing History Records

	The Graphics Database
	The Graphics Database in Action
	Other Graphics Database Facilities
	The Co-ordinate Frames Associated with a Picture
	The Graphics Database File
	Working With PostScript Files
	The Choice of Graphics Device
	The PostScript Files
	Combining the Files into a Single File
	Running the Applications
	Using X-windows to Produce a Prototype
	An Example

	Using World Co-ordinate Systems
	Pixel Indices, Pixel Co-ordinates, and Grid Co-ordinates
	Co-ordinate Frames, Axes and Domains
	FrameSets, and the Current Frame
	Reserved Domain Names
	Specifying a Co-ordinate Frame
	Propagation of WCS Information
	Reading WCS Information Stored in Other Forms
	Using SETSKY to Add a Celestial Co-ordinate Frame to an NDF
	Converting an AXIS structure to a SpecFrame
	Specifying Attributes for sub-Frames within Compound Frames

	Interaction Mode
	Graphics Device Colour Table and Palette
	Lookup Tables
	Manipulating Colour Tables
	Creating Lookup Tables
	From a Text File
	Running LUTEDIT

	Palette
	Persistence of Palettes and Colour Tables

	Masking, Bad Values, and Quality
	Bad-pixel Masking
	Doing it the ARD Way
	SEGMENT and ZAPLIN
	Special Filters for Inserting Bad Values

	Quality Masking
	Removing bad pixels

	Using Quality Names
	Introduction
	Quality Names
	Quality Expressions

	Processing Groups of Data Files
	Applications that Process Groups of NDFs
	What about the other Parameters?
	Output Parameters
	What Happens if an Error Occurs?
	What about Applications that Re-use Parameters?
	Introducing a Pause Between Invocations
	Reporting the Data Files being Processed
	The Syntax for Specifying Groups of Data Files
	Using non-NDF Data Formats
	Disabling Multiple Invocations of Applications

	Getting Data into KAPPA
	Automatic Conversion
	Other Routes for Data Import
	FITS readers
	Reading FITS Tapes
	Reading FITS Files

	The FITS Airlock
	NDF Extensions
	Importing and Exporting from and to the FITS Extension
	Listing the FITS Extension and keywords
	Creating and Editing the FITS Extension
	Easy way to create and edit the FITS Extension

	Procedures
	C-shell scripts
	ICL Procedures

	Problems Problems
	Errors
	No Match
	Unable to Obtain Work Space
	Application Automatically Picks up the Wrong NDF
	Unable to Store a Picture in the Graphics Database
	Line Graphics are Invisible on an Graphics Device
	Error Obtaining a Locator to a Slice of an HDS array
	Badly placed ()'s
	Attempt to use 'positional' parameter value (x) in an unallocated position
	The choice x is not in the menu. The options are…
	Annotated axes show the wrong co-ordinate system
	``I've Got This FITS Tape''
	FITSIN does not Recognise my FITS Tape
	It Used to Work…and Weird Errors

	Custom KAPPA
	Tasks
	Parameters
	Commands

	Acknowledgments
	Acknowledging this Software
	Classified KAPPA commands
	DATA IMPORT & EXPORT
	Image generation and input
	Preparation for output

	DATA DISPLAY
	Detail enhancement
	Device selection
	Display control
	Graphics Database
	Lookup/Colour tables
	Output
	Palette

	DATA MANIPULATION
	Arithmetic
	Combination
	Compression and expansion
	Configuration change
	Filtering
	HDS components
	NDF array components
	NDF axis components
	NDF character components
	NDF extensions
	NDF History
	NDF Provenance
	NDF World Co-ordinate Systems
	Pixel editing and masking
	Polarimetry
	Resampling and transformations
	Surface and vector fitting

	DATA ANALYSIS
	Statistics
	Other

	SCRIPTING TOOLS
	INQUIRIES & STATUS
	MISCELLANEOUS

	Quotas to run KAPPA
	Specifications of KAPPA applications
	Explanatory Notes
	ADD
	ALIGN2D
	APERADD
	ARDGEN
	ARDMASK
	ARDPLOT
	AXCONV
	AXLABEL
	AXUNITS
	BEAMFIT
	BLOCK
	CADD
	CALC
	CALPOL
	CARPET
	CDIV
	CENTROID
	CHAIN
	CHANMAP
	CHPIX
	CLINPLOT
	CMULT
	COLCOMP
	COLLAPSE
	COMPADD
	COMPAVE
	COMPICK
	COMPLEX
	CONFIGECHO
	CONTOUR
	CONVOLVE
	COPYBAD
	CREFRAME
	CSUB
	CUMULVEC
	CURSOR
	DISPLAY
	DIV
	DRAWNORTH
	DRAWSIG
	ELPROF
	ERASE
	ERRCLIP
	EXCLUDEBAD
	EXP10
	EXPE
	EXPON
	FFCLEAN
	FILLBAD
	FITSDIN
	FITSEDIT
	FITSEXIST
	FITSEXP
	FITSHEAD
	FITSIMP
	FITSIN
	FITSLIST
	FITSMOD
	FITSTEXT
	FITSURFACE
	FITSVAL
	FITSWRITE
	FLIP
	FOURIER
	GAUSMOOTH
	GDCLEAR
	GDNAMES
	GDSET
	GDSTATE
	GLITCH
	GLOBALS
	HISCOM
	HISLIST
	HISSET
	HISTAT
	HISTEQ
	HISTOGRAM
	INTERLEAVE
	KAPHELP
	KAPVERSION
	KSTEST
	LAPLACE
	LINPLOT
	LISTMAKE
	LISTSHOW
	LOG10
	LOGAR
	LOGE
	LOOK
	LUCY
	LUTABLE
	LUTBGYRW
	LUTCOL
	LUTCOLD
	LUTCONT
	LUTEDIT
	LUTFC
	LUTGREY
	LUTHEAT
	LUTIKON
	LUTNEG
	LUTRAMPS
	LUTREAD
	LUTSAVE
	LUTSPEC
	LUTVIEW
	LUTWARM
	LUTZEBRA
	MAKESNR
	MAKESURFACE
	MANIC
	MATHS
	MEDIAN
	MEM2D
	MFITTREND
	MLINPLOT
	MOCGEN
	MSTATS
	MULT
	NATIVE
	NDFCOMPARE
	NDFCOMPRESS
	NDFCOPY
	NDFECHO
	NDFTRACE
	NOGLOBALS
	NOMAGIC
	NORMALIZE
	NUMB
	ODDEVEN
	OUTLINE
	OUTSET
	PALDEF
	PALENTRY
	PALREAD
	PALSAVE
	PARGET
	PASTE
	PERMAXES
	PICBASE
	PICCUR
	PICDATA
	PICDEF
	PICEMPTY
	PICENTIRE
	PICFRAME
	PICGRID
	PICIN
	PICLABEL
	PICLAST
	PICLIST
	PICSEL
	PICTRANS
	PICVIS
	PICXY
	PIXBIN
	PIXDUPE
	PLUCK
	POW
	PROFILE
	PROVADD
	PROVMOD
	PROVREM
	PROVSHOW
	PSF
	QUALTOBAD
	REGIONMASK
	REGRID
	REMQUAL
	RESHAPE
	RIFT
	ROTATE
	SCATTER
	SEGMENT
	SETAXIS
	SETBAD
	SETBB
	SETBOUND
	SETEXT
	SETLABEL
	SETMAGIC
	SETNORM
	SETORIGIN
	SETQUAL
	SETSKY
	SETTITLE
	SETTYPE
	SETUNITS
	SETVAR
	SHADOW
	SHOWQUAL
	SLIDE
	SQORST
	STATS
	SUB
	SUBSTITUTE
	SURFIT
	THRESH
	TRANDAT
	TRIG
	VECPLOT
	WCSADD
	WCSALIGN
	WCSATTRIB
	WCSCOPY
	WCSFRAME
	WCSMOSAIC
	WCSREMOVE
	WCSSHOW
	WCSSLIDE
	WCSTRAN
	WIENER
	ZAPLIN

	Descriptions of Frame Attributes
	Descriptions of Plotting Attributes
	Standard Named Colours
	Using MathMaps
	Defining Transformation Functions
	Calculating Intermediate Values
	Expression Syntax
	Variables
	Literal Constants
	Arithmetic Precision
	Propagation of Missing Data
	Arithmetic Operators
	Logical Operators
	Relational Operators
	Bitwise Operators
	Functions
	Symbolic Constants
	Evaluation Precedence and Associativity

	Standard Components in an NDF
	IMAGE data format
	Supported HDS Data Types
	Release Notes—V2.6
	New Commands
	General Changes
	Modified Commands

	Notes from Previous Few Releases
	Release Notes—V2.0
	General Changes
	New Commands
	Modified Commands

	Release Notes—V2.1
	New Commands
	Modified Commands

	Release Notes—V2.2
	Documentation Changes
	Modified Commands

	Release Notes—V2.3
	New Commands
	Modified Commands

	Release Notes—V2.4
	New Commands
	Modified Commands

	Release Notes—V2.5
	General Changes
	Modified Commands

	Release Notes—V2.5-9
	Modified Commands

